Chapter 2

The Radon transformation and
applications

The Radon transformation and its dual, or their associates, of which each com-
ponent of the transformation ©® in Theorem 1.1.1 is a special case, connect the
analysis of functions in the plane and in the hyperbolic half-plane: when enriched
with an automorphy condition, the dual Radon transformation will also set up a
correspondence, in Chapter 3, from automorphic distribution theory (in the plane)
to automorphic function theory (in the half-plane).

After having recalled the Iwasawa decomposition G = NAK of the group
G = SL(2,R), we consider the Radon transformation V' from the homogeneous
space G/ K to the space G/M N, with M = {£I}, and the dual Radon transforma-
tion, which acts in the reverse direction. The space G/M N can be regarded as the
quotient of R?\{0} by the equivalence that identifies (z,¢) with (—z,—¢), while
the space G/K is just the hyperbolic half-plane II: consequently, the dual Radon
transformation may be considered as a map from even functions in R? to functions
in II. Besides, the maps V and V* have associates, obtained by multiplying them,
on the appropriate side, by arbitrary functions, in the spectral-theoretic sense,
of the Euler operator in R2. All norm computations involving SL(2, R)-covariant
maps from even functions in the plane to functions in II rely on the results of
calculations involving the Radon transformation and its associates. This is in par-
ticular the case for the map h — fy introduced in Theorem 1.1.1; we shall rely
on these again to complete, in Section 2.2, our study of the totally radial Weyl
calculus, as initiated in Section 1.3. The rest of the chapter is concerned with a
family of bihomogeneous functions hom,, in the plane, the dual Radon trans-
forms of which will play a basic role in our construction, in Chapter 4, of a new
class of non-holomorphic modular forms. Splitting such transforms into two terms,
we shall obtain a two-parameter family of functions z — (Im z)pz;lxp,,, (Rez) in

Im z

the hyperbolic half-plane: these functions will constitute the starting points of the
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48 Chapter 2. The Radon transformation and applications

Poincaré series to be introduced there. The functions X, , are studied with much
care in Section 2.3 and the functions in IT just mentioned are expressed in a natural
way involving the resolvent of the Laplace operator A on II in Section 2.4.

2.1 The Radon transformation

Consider the transformation © = (0, 01): h — (fo, f1) introduced in Theorem
1.1.1 or, using (1.1.38) and starting, more generally, from a distribution,

(008)(2) = (6, (2, €) > 2exp (—%W)>,

Im z

|z — 2

|z — 2¢)* — 1} exp (-27rlmz>>. (2.1.1)

47

(©16)(2) = (6 (0. 6) 2| -

The two functions just introduced are linked by the equation
@16 = @o(QiﬂgG), (212)

as it follows immediately from the fact that the transpose of the operator 2in€&
is —2iw€. As a consequence, identities involving g will always have analogues
involving ©1, which we shall dispense with making explicit unless clarity demands
it. We shall also use, consistently and without reference, the fact that the conjugate
of the operator 2im€ under the symplectic Fourier transformation, or under G, is
—2im€.

The map © connects even distributions in the plane to pairs of functions in
the hyperbolic half-plane II, and it has many nice properties; only, do not confuse
x, the first of the pair of variables (z,¢) in the plane (the standard notation in
pseudo-differential analysis) with the real part of z. First, recall that © is covariant
under the pair of actions of SL(2,R) on R? and on II, which means that one always
has

(O(60g™)(2) = (©6)(97".2) (2.1.3)
if, given g = (2 %) € SL(2,R), one sets g(z, &) = (ax+b¢, cx+dE) and g.z = ‘CIZZIZ

Also, © kills all odd functions on R?, so we may as well restrict it to the space

8! on(R?): another symmetry expresses itself in terms of the transformation G in

(1.1.24), as the pair of identities
69(G6) =606, ©,(G6) =-0,6. (2.1.4)

The first one, say, can be seen by remarking that the (even) function (z,§) —
2
2 exp (f2w%> is G-invariant: to see this, it suffices, taking benefit from the

covariance property, to verify that the function 2 exp(—27 (2% +£2)) is G-invariant,
which is immediate. Another proof consists (cf. what follows (1.1.24)) in remark-
ing, a consequence of (1.1.34), that this function is the symbol of an even-even
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operator. From the fact that the set (¢2).cqr is total in L2 ., (R), one can then
see that, when restricted to even G-invariant tempered distributions, ©¢ becomes

one-to-one.

In view of (1.1.41), one always has the identity

1
O(n?&%6) = <A - 4) 06. (2.1.5)
In other words, if & is homogeneous of degree —1 — v or —1 + v, the function ©&

. . . . . . 1—12
is a pair of (generalized) eigenfunctions of A for the eigenvalue ~—*-.

The covariance property of ©¢ (or ©1), as well as the way it exchanges the
operators m2£% and A — i, are shared by a family of transformations, linked to
the so-called Radon transformation, which we need to recall in the case of the
group SL(2,R): the Radon transformation has been studied by Helgason [17, 18]
in a considerable generality. We here follow with a few changes the exposition, in
the case of SL(2,R), made in [60, Sec.4], which is more immediately adapted to
our needs related to pseudo-differential analysis, besides being of necessity simpler

since it deals only with a rank-one case.

We parametrize the generic elements of the subgroups N, A, K entering the
Iwasawa decomposition of G = SL(2,R) = NAK as

1 b eg 0 COS% SinQ
n= (0 1)7 a = (O 65)7 k= (-Sing COS% ) (2.1.6)

where b € R, r € R,0 < 0 < 47. Following the normalizations in ([18], ch.IL,3), we
set dn = 7w 1db,dk = (47)~1df. The homogeneous space G/K is identified with
the hyperbolic half-plane II in the usual way, sending gK to z = g.i. On the other
hand, the space = = G/MN, with M = {+£I}, is identified with the quotient
of R*\{0} by the equivalence (¢) ~ (Z¢), under the map (245) MN — £(%):
one must be careful, again, not to use in the same formula = to denote the first
coordinate of (£) (or (x,€)) in R? and the real part of z = 2 + iy € II. On II, we

use the invariant measure dm(z) = d;;ly and, identifying functions on = with even

functions on R?, we use there the standard Lebesgue measure on the full plane.
Let us also recall that the hyperbolic distance d on II associated to the (squared)

2 2
line element ds? = dmy%dy is G-invariant, i.e., that d(g.z, g.z’) is independent of g,
and characterized as such by the equation cosh d(i, x + iy) = % The Radon
transformation V from functions f on II to even functions on R? is defined by the
equation

Vg (}) = /N F((gn)-iydn (2.1.7)

the integral is convergent, yielding a continuous function V'f if, say, |f(z)] <
C(cosh d(z',z))_%_6 for some € > 0. Explicitly, completing if = # 0 the column
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(¢) into the matrix (z xgl),

o x22(i
(V£ (E) = %[ f (M) db, £ 0; (2.1.8)

the dual Radon transform V*, the formal adjoint of V', is defined by

(Vh)(g.0) = / h((gk). (3))dk (2.1.9)

K
or, in coordinates,
1 [ y? cos L — zy =2 sin ¢
V*h)(x +iy) = — hi =+ 2 7 2 do. 2.1.10
0
2m Jo —y zsing

We abbreviate the representation ;3 o, as defined in (1.2.18), as m; — it lies
in the principal series of SL(2,R), whereas the representation 7, in (1.3.5) lies in
the extended projective discrete series of this group — and abbreviate h;y o (resp.
hEA,O) as hix (resp. h2,): in the present section, we only interest ourselves in even
functions in the plane. Through the dual Radon transformation, the representation
m;x can be realized in some Hilbert space of functions in II: we need to make this
explicit.

We have already defined the Euler operator 2in€ = m% + & a% + 1. It is

essentially self-adjoint on L?(R?) (i.e., it admits a unique self-adjoint extension)
if given the initial domain C§°(R?\{0}). This makes it possible to define, in the
spectral-theoretic sense, functions of £. We shall need in particular the operator
(a scalar when restricted to even functions of a given degree of homogeneity)

_m\3D(§ —in€) O © o1 —14inE 3, .
T—(§) T e " (—mg)/o 314 1) dt:  (2.1.11)

also, observe that (t2"€h)(x, &) = th(tx,t€) for t > 0.

We now give useful expressions of the transformation 7'V and its formal
adjoint V*T*, with the help of the following special case of (1.2.14):
x

hix(@,§) = |§|717thx(g)- (2.1.12)

142X
As a consequence of (2.1.11), T acts on (V f);x as the scalar (E)% Fé(fi))
2

5 , and it

then follows from (2.1.12) and (2.1.8) that, assuming that, say, f € C§°(II), one
has for almost all A the equation

B 7%:[‘(14'_7:)\) oS Ao 00 52(Z+b) .
(TV £)2\(s) = (27) Fé) /0 A dt/mf<w>db. (2.1.13)
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performing the change of variable such that

_ s%(i+b) 2dtdb
z= S0 dm(z) ) (2.1.14)

2
so that t? = |ZI;SZ‘ , one gets

1+iX L g2\ %
(va);&(s)=%(27r)*%r( = )/H< | ) f(z)dm(z).  (2.1.15)

INES) Im z
In the reverse direction, we use the second equation (2.1.12) and (2.1.10), obtaining
(after one has set s = —ycotan § + z in the latter formula) that

1-i\) oo _ g2\ 2t
(V*T*hu)(z)z(%)—irr(g)/ 2y (s) ('ZImZ'> ds:  (2.1.16)

note that the integral on the right-hand side is bounded if h2, € L?(R).

From its very definition (2.1.7), the Radon transformation (as well as its
dual) is obviously covariant under the two actions of G, on functions defined on
IT and on R?\{0}, through the fractional-linear change of complex coordinate and
the linear change of real coordinates associated to the same matrix g. On the other
hand, all functions, in the spectral-theoretic sense, of the Euler operator commute
with the second action. Consequently, the transformations V' and V* preserve
their covariance if multiplied on the left (resp. on the right) by an “arbitrary”
function of 2iw€. Operators obtained as products of the Radon (resp. dual Radon)
transformation by a function of the Euler operator on the left (resp. right) side
will be called associates of the Radon or dual Radon transformation. A subclass
consists of operators obtained in a comparable way, only replacing the function of
the Euler operator by a function of the hyperbolic Laplacian on the other side: as
a consequence of the last assertion in Theorem 2.1.2 below, even functions of 2i7&
can be replaced by appropriate functions of A with no change. We now show that
the map O introduced in (2.1.1) is an associate of the dual Radon transformation:
of course, the same will then be true of the map ©; in view of (2.1.2).

Proposition 2.1.1. One has

1 1
Qo = V*(2m)2 T (2 + i7r5) . (2.1.17)

Proof. Starting from the decomposition (1.2.11) and applying the definition (2.1.1)
of ©, we obtain

(©0hn)() = o / " 00((2.€) v ht, 1€))dr
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1, — 22
= —/ t”‘dt/ h(tx, t€) exp (27r|xzf|> dxd€
™ Jo R2 Im 2

_ 1 ~inca |z — 2¢|
= 7T/R2 h(x,ﬁ)dwdf/o t exp( 2 T 2 dt.  (2.1.18)

The integral is easily computed, which leads to the equation

(@ohin)(2) = (2m) 2P0 (L= h@;,g)('x Z5|2) dxdg. (2.1.19)

2 R2 Im z

On the other hand, using (1.2.11) again and (2.1.16), we have

T 1—i) o) <2 *%Jr%‘ oo
(V*T*han)(2) = (27)~ % (_%)/ ('Z il ) ds/ (s, )dt -
IN(=2) Jooo \ Imz 0
(2.1.20)
we make the change of variable
t=¢, s:g, dsdt = €~ Vdwde, (2.1.21)

and take advantage of the fact that h is assumed to be even to change the domain
{(z,€): £ > 0} to R?, ending up with the equation

L ( Z€|2> dxdg. (2.1.22)

(VT hix)(2) = 5 (2m)"

Comparing it with (2.1.19), we obtain

i\

Oohir = 2(27r)%r(—5)v*T*h,-A (2.1.23)

or, since 2in€h;y = —iAh;y,
Q¢ = V*T*2(2m) "™ (in€) : (2.1.24)
as T = (§)2 2 % this leads to Proposition 2.1.1. O

This proposition explains several facts. First, since, according to (2.1.5), the
operator 722 on R? on II transfers under O to the operator A — Zv the same is
true for the Radon transformation or its dual, whether it has been multiplied on
the appropriate side with a function of the Euler operator or not. Next, consider

the formal adjoint of ©, defined by the equation

(O5f)(z,€) f2/f exp< 27r|xlznzjz)dm(z), (2.1.25)
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or
0} = 2(21)™ T (—in&)TV. (2.1.26)

As already noticed, the range (the image) of © is G-invariant: also, G(in€) =
(—im&)G. As a consequence,

—2irE L(in€)

F(fmg)g‘ (2.1.27)

Ran(TV) is invariant under the involution(2m)

We now recall (with a better proof) a theorem given in [60, p. 27].

Theorem 2.1.2. The transformation TV, initially defined on the space of con-
tinuous functions on II with a compact support, extends as an isometry from
L3(IT) onto the subspace Ran(TV) of L2, (R?) consisting of all functions invari-

even

ant under the unitary involution (27)~2"¢ FF(ijg))g The operator V*T™ extends
on Ran(TV) as the inverse of TV, and is zero on the subspace (Ran(TV))* of
L2, (R?) consisting of all functions changing to their negatives under the same
involution. Moreover, the isometry TV intertwines the two actions of G on L*(II)
and L2, (R?) respectively, and transforms the operator A — 1 on L*(II) into the

(R?).

operator w2E% on L2,
Proof. The isometry property is a very special case of ([18], ch.IL,3), but sorting
out notation is not that easy. An alternative proof is as follows. From (2.1.15) and
(2.1.11), one has

1 A A
TIxII z)J(w)amiz)am (w - — = §

Now, one has

1 / * [z —s|? 3
T ) oo\ Imz
a consequence of Plancherel’s formula together with [36, p, 401]

1_iX :
00 _ <2\ 272 El J
/ (|ZS|) e 2imS0 gy y%672i7rgz 2T 2 ‘O’|%Ku\ (27r|a|y)

oo \ Im=z

2 [w— s|? —3t%
( ) ds =P_1 0 (coshd(z,w)),
(2.1.29)

™

Nl

and [36, p. 413]

/ K (2rolm 2) K ix (2nolm w) cos(2moRe (z — w)))do
0 2 2

14+ad, 1)
)T
2 2

1
= g(lmzlmw)féF(

)P_1 42 (coshd(z,w)). (2.1.31)

=
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The isometry property is then a consequence of (1.2.15) and of Mehler’s decom-
position [36, p. 398] of functions f € C§°(IT) provided by the pair of formulas

/fA ( tnhm>d)\7

e = 2/f _ 142 (coshd(z, w))dm(w). (2.1.32)
The factor . o
(2T (12

7r—)\‘52111h7r—>\ =7 ( 2,>\) (_i ) (2.1.33)
2 2 L) (=)

appears repeatedly in connection with Mehler’s transformation. That the range
of TV is invariant under the involution under consideration has been established
before the statement of the theorem; that it is the full subspace of L2 . (R?)
characterized by this invariance or, what amounts to the same, that the image
is dense, can be obtained by linking this to a property of ©g, with the help of
Proposition 2.1.1. O

Note that if ;5 denotes the completion of the space of all fy ( f € C5°(II))
under the norm such that

#3113, = (4ﬂ2)’2/ F) F(w)PB_y 1 (coshd(z, w))dm(z)dm(w)
IIxII

2
= (@) A ey, (2.1.34)
one has the identity

> A T
e =47 [ 173l (G o 5 ) (2.1.35)

The following consequence of (2.1.24) and Theorem 2.1.2 was announced in
(1.1.43): if a G-invariant function h € L2 . (R?) is the image under 2i7& of some

even
function in L2 ., (R?), so that T'(ir€)h € L2, (R?) too, one has

||@0h||L2(H) = 2||F(i7T5)h||L2(R2). (2.1.36)
Equation (1.1.44) follows from the preceding one and from (2.1.2).

Restricting the dual Radon transform to K-invariant functions, and using
analytic continuation to replace i\ by a more general complex number v, one
observes from (2.1.10) that if h(x, &) = (22 + 52) , one has

v

I 5 0 L 90—
“h)(iy) = — 2 4y lsin? 2)7 2.1.
(V*h)(iy) 27r/0 (y cos 5 Ty sin 2) do (2.1.37)

—1—v
1 2 1 . 5 1
:7/ [“y +Y7Y ose d&—q&?u(“y )
0

2m 2 2 2
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[36, p. 184] or, more generally, using covariance,

(V*h)(z) = Porw (coshd(i, z)), (2.1.38)
where d is the hyperbolic distance in II.

The study of the restriction of the Radon, or dual Radon, transform and their
associates to K-invariant functions is very classical: even more so, it is usually a
preparation for the more general theory. All this fits within the so-called theory of
Gelfand pairs and spherical function theory [18, 8]. In Section 2.3, we shall consider
the way these transformations can be restricted to MA-invariant functions.

Consider the part of the Weyl calculus concerned with operators preserv-
ing the parity of functions, in other words the one defined from the considera-
tion of even symbols only. It would be perfectly possible, if hardly advisable in
general, to define a variant of this calculus in which symbols would be pairs of
functions in II, the images of the “true” symbol under the map O in (2.1.1). We
here mention this possibility since, in the automorphic case, such a transfer will
make it possible to bypass some technical difficulties inherent in the automorphic
Weyl calculus, the source of which will be described in Section 3.4. One of our
main interests in pseudo-differential analysis lies in the composition formulas: in
view of Theorem 1.2.2, all we have to do is transferring under any associate of
the dual Radon transformation the operations obtained from the integral kernels
Xix, ixgiin (51,527 8). Actually, since we are only dealing with even symbols, one
must take § = §; = §o = 0 with the notation from the theorem just referred to,
so that, from (1.2.27), only the two cases in which ey = ey =& = 0 or 1 must be
considered.

As will be seen presently, when dealing with homogeneous symbols of given
degrees of homogeneity, the operator with integral kernel X?}’\?’S,\Q-i,\ (respectively

le)\lli ng:in) Will appear, up to scalar factors, as the transfer under any associate of

the Radon transformation of the operator of pointwise multiplication (respectively.
the Poisson bracket) on functions on II. The simplicity of the result should not
lead one to believe that a non-computational proof should exist as well: for, when
restricted to pairs of (generalized) eigenfunctions of A for specific eigenvalues, a
bilinear operator as simple as the pointwise product of functions may have a variety
of quite complicated disguises. Given h € Seven(IR?), let us not confuse, in what
follows, the function h;y (a function on R?\{0}, homogeneous of degree —1 — i\)
and the function k7, on the line (to be precise, on the projective completion of the
line).

Proposition 2.1.3. Let A1, Ao, A be real numbers, and let hy, hy be two even func-
tions in S(R?). One has the identity
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(TV (VT ()i, )- (VT (ho)in,)) i (s) = 27272 (2.1.39)
1—i(A+ A +A 1+i( A=A+ 1+i(A+A —A 1+i( A=A —A

F( Oh, 2>>F< SN 2>>F< SR8 2)>F< A=hy 2>)

D(=5) T (—32)T ()

X /]Rz X agiin (515 523 8) ()3, (51) (h2)3, (52)dsy dso.

X

Proof. As already noted in (1.2.29), one has the estimate [(h1)} (s1)] < C(1 +

$2)72 and a similar one relative to (hQ)KQ. Using (2.1.15) and (2.1.16), one can

write the left-hand side of the identity to be proved as

Lony s LG L (T (52
(=39 (=31 (%)
x / A1) ()3, (51)(ha)3, (s2)dsdsa - (21.40)
with

Aixgiresin(s1, 523 8)

_/ |z = 12\ 7 F
Jn Imz

Using the identity

Ay 2N
2

X 2\ it _s2\ 2
(|z 32> (Iz 8|> dm(z). (2.1.41)

Im z Im z

asy+b asa +b as+b
Aixy ingiin , ;
cs1+d cso+d es+d
= ‘051 + d1|1_i)\1 |C82 + d1|1_i)\2 |CS + d|l+i)\Ai,\1,i,\2;i)\(51, S92; S), (2.1.42)

a consequence of

=1k Lolgtz — 2 o
TTIme (cs +d) Tm (g71.2) 9=1(¢2) (2.1.43)

and noting that if s1,s2,s are the images of 0,1, 00 under the fractional-linear

transformation associated to the matrix (‘Z 3), then

Xiaringsia (51 823.8) = [d] 7 fe o |72, (2.1.44)
one gets
Aixyingin(s1, 525 8) = I(ih1, i)g; i)\)xg/’\?’g)\z;i)\(sl, S9;8) (2.1.45)
with
_l_;'_m 2 _l+m
] ) ) |Z‘2 2T 72 |Z _ 1‘ 2T 72 1,0
T(id1,iM9;1N) = e _ I 35
nnirasin = [ (2 - (tm ) dm ),

(2.1.46)
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a convergent integral. The justification of all that precedes is based on (1.2.29)
and on the easily proved estimate

5 [(s1—52)(s2—5)(s—51)| "2 (14+52)(1+2) (14 5%)) 2 dsidsads < co. (2.1.47)

Using (2.1.30) and the Plancherel formula for the dz-integration, we obtain

i(A1+Ag)
1— 12 2

81

F( 1—21’)\1 )1—\( 1—21')\2

I(iAy,iNa;iN) = ) / y*%+%dy/ P cos(27o)
0 0
X Kix (2moy)Kixy 2moy)do, (2.1.48)
2 2

where the do-integration has to be carried first. Integrating instead with respect
to dy first so as to take advantage of [36, p. 101], one would formally obtain

I(iA1,iA2;00) = WE,Z— (1_2()‘+>‘1+/\2)

o7 (1 ) 1L (1) 1 ) (2.1.49)
XF(1+2'()\>\1+>\2))F(1+i(/\+/\1AQ))F<1+Z‘()\)\1)\2)>’

4 4 4

and the process can be justified if one first inserts under the right-hand side of
(2.1.48) the factor h(eo) for some h € S(R) with ~(0) = 1, letting at the end & go
to zero. 0

Even though we shall not need this result in our main applications in Chapter
4, let us mention the following analogue of Proposition 2.1.3, in which the Poisson
bracket of two smooth functions in IT is defined as

0f10f  0f10f
S e R i I 2.1.
(g =i (5050, HL (2.1.50)
Proposition 2.1.4. Under the assumptions of Proposition 2.1.3, one has
(TV VT (h)in,)-(V T (ha)in, )i (s) = 27 372 (2.1.51)

r (37i()\+4)\1+)\2)> r <3+i()\74)\1+)\2)) r <3+i(>\+4)\17>\2)) T <3+i(>\74)\17>\2))
ix i ix
D (=55 (=32) T (%)

X /]Rz Xinriagiin (515 523 8) (h)3, (51) (h2)3, (52)dsy dso.

X

The proof of this proposition, fully similar to that of Proposition 2.1.3, can
be found if desired in [60, p. 73].
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2.2 Back to the totally radial Weyl calculus

In this section, we examine the exact way in which the map A in Theorem 1.3.1
differs from an isometry, and we connect the totally radial calculus, with symbols
living on II, to the so-called Berezin calculus [2]. This ought to please people
interested in quantization theory, by which we here mean the development of
analogous (covariant) pseudo-differential analyses in which symbols are functions
on rather general homogeneous spaces, in particular hermitian symmetric spaces.
Even so, this is not yet the “good” symbolic calculus of totally radial operators:
as will be seen in Chapter 6, calculations of an arithmetic character demand that
symbols should live on the plane rather than the half-plane.

Lemma 2.2.1. For every function F(p,q,r) on the cone

C={p,qr): p>(g*+r)3},

SE

one has, assuming summability, and recalling that w, = ?? ,

L:/ FCW+K{@OyV|W>M%
R™xR"™

|3
—

2 2
wnwn— n—3
= Tl/ F(p,q,7)[p* — ¢ — r*]"% dpdqdr. (2.2.1)
C
Proof. Set
F(p,q,r)=H(p+r,q,p—7r) = H(a,b,c), (2.2.2)
so that
1:/ H(|f*, (2,€), [¢]*)dwdg. (2.2.3)
R™ xR™

Given z, there is an z-dependent rotation in ¢-space which transforms (z, ) to
|x|&1. Hence, with £ = (&1, &),

= [ H(aP el oo
R xR™
o0 o0
:wn,l/ dx/ d§1/ t" 2 H (|2)?, |x|é1, € + t2)dt
n —00 0
:wnwn_l/ dfl/ / s"_lt”_QH(SQ,sﬁl,gf—|—t2)dsdt
—00 0 0
1

= sWpWnp—1

/ (ac — b2)"=" H(a,b, ¢)dadbdc, (2.2.4)
4 a>0,c>0,|b|<+/ac

which leads to the expression indicated. O
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Theorem 2.2.2. Assuming n > 2, let f € L*(I1). One has the identity (in which A
is the map A in Theorem 1.3.1)

- 21 2n
-~ (T(3)

Proof. Since (p? — ¢* — 7"2)% = s, one obtains after a straightforward computation
of the jacobian

1A S22 geny = g T (252 4i/AE) I3 any- (2.2.5)

lJr|Z\2 sxr s
D(p.q.r)| _|Dp.ap+r)| |Pls=— 59| 8 (2.2.6)
D(s,z,y) D(s, z,y) D(s,z,y) y? o
the expression
dxdy

p? —q® —r ] T dpdqdr = s""lds (2.2.7)

in terms of the coordinates (s,z) = (s, x + iy) linked to (p, q,r) by (1.3.28).
If f satisfies the first identity (2.1.32), (1.3.20) can be rewritten as

(0f)(s,2) =s %/ K (4ms) fa(z )(%ta h—)\> dA. (2.2.8)

Then, using Lemma 2.2.1, (2.2.7) and (2.1.35), one obtains
IAFIIZ g2n)

w1 [ .- >~ A A
— 4% "; 1/ s st/ [ s (475) 2| 1, (”2 tanh—> dr. (2.2.9)
0 0

Now, according to [36, p. 101], and using the duplication formula for the Gamma
function,

o 2 sT(22)  /n—1+i) n—1—1i\
"2 1K (4 = 97 ngTnts r r .
[ )] as () ()

2
(2.2.10)
The theorem follows. O

Theorem 2.2.3. For every w € I1, define on R™ the radial function

bu(x) = (21111(—%)) " e <%T|33|2) , (2.2.11)
generalizing (1.1.32). For every function f € L?(II), one has
(6ulOPANu)iery = 27" [ FEN(6ulor) Pam(:)

= *%*%/f )(1 4 coshd(z,w))~ Fdm(z). (2.2.12)
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Proof. Using the covariance property, it is no loss of generality to assume that
w = i. One has

W (i, ¢:)(x, &) = 2% exp(—2m(|z|* + |€]?)) = 2"~ 4™

in terms of the coordinates p,q,r introduced just after (1.3.23). Using Lemma
2.2.1, then (1.3.28) to express p in terms of s, z, one can write

(¢Z|Op(Af)¢z) = 2nilwnwn—1 / s lds
0

X /Hs_% (Ki\/A_—%(ZLWS)f) (2) exp (—4#3%) dm(z): (2.2.13)

1+
2Imz

we set
0 = coshd(i, z) =

(2.2.14)

To continue the calculation, we must integrate by parts, letting the self-
adjoint operator KZ,\/E(ZMTS) act on the function z +— exp (—4wscoshd(i, z))
4
rather than on f. On functions of 6 = cosh d(i, z), the operator A acts as the ordi-
2
nary differential operator (1 — (52)# —26 d% and, on the interval (1,00), Legendre
functions provide generalized eigenfunctions, since

5. 2 d
(1-6%) 255 — 25%] Toyio)=—"PB 1,50 (2.2.15)

Mehler’s inversion formula (2.1.32) then gives the integral decomposition

et / PP 10 (5)dA (2.2.16)
if
Y(A) = %tanh %)\ 6_47r86q3,1+@ (0)dd
1 2 2

wsﬁfm (4rs) (2.2.17)
=y a : 2.

D(5)0(
where we have used on one hand (2.1.33), on the other hand [36, p. 194] to compute
the last integral. Then, the image of the function e 475 oshd(i.2) ypder the operator

Ki\/A_—i(élﬂ’S) is

= 27%7{'71

Kim(4ﬂs) (674#55)

P F(H—z/\)r( QiA) . 2

o (0)dA  (2.2.18)

""y
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and, from (2.2.13),

(6:|Op(Af) i) = 2" oo, 12~ - / 2

X /Hf(z)dm(z) /000 % [K%(zlﬂs)rm,

Now [36, p. 101], one has (cf. (2.2.10))

L (8)dr. (2.2.19)

m\)—‘

oo 2 D2 n—140A  n—1—i)
2K, (4 = g3 2 /p r ;
J A L e O R
(2.2.20)
with the help of the last two equations, one obtains the equation
2-"n3
(6ulOB(AS)60) = (s [ () (22.21)
T(5))? Ju
mr(lg”)r(l—ik) n—1+i\ _ n—1—i)
X —= T T YB_1, 4 (coshd(z,w))dA.

We transform now the right-hand side of (2.2.12), still under the assumption
that w = i, by decomposing the function z + (1+coshd(i, 2)) "% into generalized
eigenfunctions of A. Again, Mehler’s inversion formula gives the answer. Using
first the Gamma integral, next the integral already used in (2.2.17), we obtain

o n . :(471-)72L
/1(1+6) ¥y (00 =1

)
L (4

87 —47rsd8/ —47rs6q3 7}\( )
1 2

\_/0\8

/ s" T eI (47s)ds
0

257 I(3) *

N T n—1+4i\ T n—1—i\

=2721! (*= )n g ) (2.2.22)
(T'(3))
at the last point, we have used the integral given in [13], p. 98. Then,

(1+0)"% = l/] (NP1 (6)dX (2.2.23)

with Ltidyp(1=id) ( 1+ A ( )

s F( 7 )F( —1 n— 7

YA =277 —= j . (2.2.24)

I'(2)M(=2) T'(3))?
This proves the identity of the right-hand sides of (2.2.12) and (2.2.21). One also
observes, since

¢ (x) = (2Im 2) F e~ 72l (2.2.25)
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that

n

|(¢—-2160)* = 2" (Im 2) [(Re 2)* + (1 + Im )] 7%

y 2

= (FEE) e 2
O
Remark 2.2.a. The present short remark will not be used in all that follows, and
addresses itself only to readers interested in quantization theory, in particular in
the Berezin calculus [2]. The first equation (2.2.12) can be interpreted as the fact
that the function 2-"2 f coincides with the contravariant symbol of the operator
(on functions defined on the half-line) ROp(Af)R™!, with R as defined in (1.3.1):
more precisely, since Berezin considered only complex-type realizations of Hilbert
spaces with reproducing kernels, one should consider the conjugate of the last

operator under the Laplace transformation defined in (1.3.7).

2.3 The dual Radon transform of bihomogeneous dis-
tributions

N.B. This section, in which the function x, ., basic in Chapter 4, is analyzed, has
no independent interest: we therefore suggest that the reader should be temporarily
satisfied with a look at Proposition 2.3.2 and Proposition 2.3.5. Theorem 2.4.1,
in the section to follow, will already give some explanation of our interest in the
function x,. ..

Theorem 1.1.3 has shown the relevance of homogeneous functions, or distri-
butions on R2, to modular form theory. It is natural to refine the notion by the

consideration of bihomogeneous symbols, considering the variables x, £ separately.

In other words, besides the Euler operator £ = 5 (m% + 58% + 1), we wish to

24
1

consider the operator B = — (x% ¢ 8%)' Since the two operators commute,

one may consider their joint spectral theory. Of course, the operator B does not
commute with the action of SL(2,R), or SL(2,Z), and it will not be possible to
consider (in Chapter 4) modular distributions which would be at the same time
generalized eigenfunctions of it. But applying the Poincaré summation process,
starting from functions on II built from bihomogeneous symbols, will lead to a
class of automorphic functions with interesting properties.

Here, we still concentrate on the non-arithmetic situation. Note the equation

1 d

(Bh)(z,&) = h(ezx,e”2¢), (2.3.1)

Simdr|

which indicates that B is the infinitesimal operator of the action on symbols of the
one-parameter group A C SL(2,R) recalled in (2.1.6). In view of the covariance
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property (1.1.20), the operator B has an interpretation in the Weyl calculus, ex-
pressed by the commutation identity, in which h is an arbitrary symbol in &'(R?),

1[QP+ PQ

Op(Bh) = 5 5

Op(h)|, (2.3.2)
involving the basic infinitesimal operators () and P of Heisenberg’s representation.
By the way, the operator &, too, has an interpretation in the symbolic calculus
(not linked to covariance), to wit the general identity

Op(Eh) = POp(h)Q — QOp(h)P. (2.3.3)

Both formulas are easily obtained from (1.2.6).

In view of arithmetic applications, we consider only even functions of z, ¢ in
the plane, since the dual Radon transformation kills odd functions. As done in
[61, Section 18], the consideration of odd functions of x, ¢ is necessary if, besides
(Maass) non-holomorphic modular forms of usual type, one interests oneself in
so-called Maass forms of weight one [4, Section 2.1]. It is for simplicity that we
shall consider here only functions separately even with respect to x and . This
will force us to restrict our interest, in Chapter 4, to non-holomorphic modular
forms of even type under the symmetry z — —Zz: this is not necessary, but it is
sufficient for our main purpose there.

Then, joint generalized eigenfunctions of the pair (£, B), to wit separately
even symbols satisfying the pair of equations

2inEh = vh, 4irBh = (p—1)h, (2.3.4)

are multiples of the function

hom,,, (z,€) = | 5 [¢] 7. (2.3.5)
Theorem 1.2.2, more precisely (1.2.68), has shown how such symbols, with v on
the line Rerv = 0 and p on the line Rep = 1 occur from the decomposition into
homogeneous components of a sharp product such as |z| =1~ #[¢| 7172,

Our task in the present section is the computation and analysis of the func-
tion on II obtained from the function (2.3.5) by a dual Radon transformation.
Transferring under such a transformation the operator 3, one will obtain an op-
erator commuting with A. Starting from (2.1.8) and using the equation

< 0 £8> z2(i +b) 5 z2(i+b) (23.6)

Yor  C06) €+ b) 11 wE(i+b)+ 1

one obtains the general identity

BVf=V (21 (zaz +za> f> . (2.3.7)

17T
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Again, on II, the Euler operator z% + E% does not commute with the action of
SL(2,7) by fractional-linear transformations, and this operator does not preserve
automorphic functions: in Chapter 4, something will remain from it, however, in
an automorphic situation.

From (2.1.10), we obtain

(V*h )( + . ) 1 /27r| _% . 9|%1| % 9 _% . 9|p+;—2d0
om, ) (z+iy) = — sin = cos — —xy 2 sin -
P Y 27 J, Y B ) B Y B
R T S 4 0 oty
:yTl X %/0 |sin§|Tl\cos§ - gsin§| 5 dp. (2.3.8)

We must thus compute the integral obtained, a function of £ only. The simplest
case is that for which p = 1, which corresponds to M A-invariant symbols. As will
be seen, while simpler, it is often a singular case rather than a special case only:
this will be even more apparent in Chapter 4. For the time being, the computation

of the integral (2.3.8) is quite simple when p = 1. Indeed, setting t = 5, we first
write it as
* . 1 1w - . v—1
(V*hom, ,)(z + iy) = 2—2 2 |sin® —t(1 —cos )| = db: (2.3.9)
u 0

after a t-dependent translation in the f-variable, we can change sin @ — ¢(1 — cos 6)

to v/1 +t2cos6, so that

27
(V*hom, ,)(z + iy) = 277 g1 / [t — V/t2 + 1cos 9|%1d9. (2.3.10)
0

Starting from the classical integral representation [36, p. 184] of Legendre functions

e vo1
P (w) = —/ [w+ Vw2 —1cos] = db (2.3.11)
2 2 0

and using the relation

im(l—v) im(l—v) 2
i s el (2.3.12)
T(HE2)T(33Y)

one obtains, setting t = % and assuming that Rev > —1 for convergence,

. ) 1y . 14+v . 3—v . .
(V*homy ) (@ + iy) = 275 77 D(— ) T(E) [P (i) + Poga (—it)|
(2.3.13)
this is an analytic function of ¢ on the whole real line, since one has [36, p. 153]

1—v 1—|—1/_

1+t
v—1 (—it) = oF! 1; 2.3.14
mT( Z) 2 1( 9 ) 9 ) Ly B >7 ( 3 )
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and the hypergeometric function is single-valued when a cut along the real line,
from 1 to oo, has been made in the plane.

We shall spend more time on the general case, in which p is arbitrary. From
the second equation (2.3.4), the function V*hom, , on II must satisfy the trans-

formation rule V*hom, ,(az) = a'T V*hom,, , (2) for a > 0. From Theorem 2.1.2
and the fact that the operator T' there commutes with £, it must also satisfy the

1—12

equation (A — ) V*hom, , = 0; finally, it must be invariant under the map

z — —Zz. One must thus have

-1 (Rez
*hom,, ,(z) = (Imz) "= 2.3.1
Vhom,, (2) = (In9) 1o ) (23.15)

for some even function y = x(t) on the real line, chosen so that the right-hand

side of this equation, as a function of z, should lie in the nullspace of A — %

Temporarily forgetting the parity condition, it is a straightforward matter to verify
that this is the case if and only if the function x satisfies the ordinary differential
equation

1= (p—1)(p—3)
4 + 4

(L+E)X"(t) + (3 — p)tx'(t) + [ } x(t) =0. (2.3.16)

We first solve this equation in each of the intervals | — oo, 0[ and ]0, oco[. The

WKB method shows that, as t — 00, x(t) must be equivalent to a constant times
[t] u+§—2, with g = £v: more precisely, it is so unless the real part of v is zero. It

is then natural to set

ptvr—2

0= (=51) 7 v, 2317
+

where we now make our convention regarding powers of complex numbers with
non-integral exponents explicit: we shall denote as z® the complex power of a
number z with Imz > 0, when the argument is taken in ]0,7[, and as z¢ the
corresponding complex power of z with z ¢] — 0o, 0] when the argument is taken
in | — m, 7w[. Then,

ima

(—iz)f =e 2 2% if Imz>0. (2.3.18)

Unless otherwise stated, the cut made to make the hypergeometric function a
single-valued function will always be the interval [1, ool.

Lemma 2.3.1. Given p,v € C with v & Z,p+ v ¢ 2Z, the function

ptv—2
—1—14t 2 l1-v 2—p—v 2
t) = F —_— 1l -, — 2.3.19
w=(=1) o (Y i) (2319

satisfies the equation (2.3.16) in | — oo, 0[U]0, ool.
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Proof. Set (t) = F(s) with s = ﬁ The computations which follow are abso-

lutely tedious but straightforward. If x and 1) are linked by (2.3.17), one has
X'@) ')  ilp+v—2)

OGS
X' _v"(t)  ilptv=2) ¥'() Q2-p-v)(d-p-v),
X(t) () 2 w(t) 16 . (2:3.20)

Then, (2.3.16) reads

(1+t2)’(///(t)—‘r |:i<p+;/—2)

+{_ 2—p-—v)d-—p—v)

S+ + (3 p)t} (1)

2 2
16 s7(1+t%)

L B=Plerr=2, 1= (- 1)(”_3)]w<t> =0. (2321
4 4 4
Now, one has
!/ Z 2/ 1! 83 / 84 1
W(t) = =587 F'(s), ¥7(t) = =5 F'(s) = T F"(s). (2.3.22)
Also,
=21, 144 = Als - 1), (2.3.23)
S S

and one obtains

41— s) [EF’ + fF”} + {i(p i) Gl BT p)(% = 1)} (—%ﬁF’)

2 4 2 s
+[— Cop =P =V) 1)y 3- )22 1)
n 1‘4”2 n <p_1)4(p_3)]F=0. (2.3.24)

The coefficient of F here reduces to W&. The coefficient of F” is s?(1—s),
and the coefficient of F” is

(p+v—2)s(s—1)+ %3(23_32) —92s(s—1) = (u+%5)52+(1 —)s. (2.3.25)

The equation for F' equivalent to (2.3.21), hence to (2.3.16), is, after we have
divided everything by s,

5— ,02— 2VS}F/(S)+ (ptv —42)(1 - ”)F(s) =0: (2.3.26)

s(1—=s)F"(s)+[1—v—

a solution of it is the function oFy (5%, 2=~

1 —v; s). This proves the lemma.
|
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It is useful to make the way y transforms under the symmetry ¢ — —t explicit.
From [36, p. 47], one obtains if Re z # 0, with some care about determinations of
power functions, the general identity

—b
. 1—
oF1(a,b; ¢ 2) = eI (7 ( Z) oF1 (c— 0, b6 —— 1> :
z zZ —

+
(2.3.27)
if z = ﬁ with ¢ € R, t # 0, the signs of Im z and of ¢ are the negative of each
other, and one has %5 = % so that, starting from the hypergeometric function

occurring in the definition of x, one must read the product of power functions on
the right-hand side of (2.3.27) as

1 2—p—v 1 24 ptv

—1 —1t 2 — it 2

( ! ) ( aakl ) . (2.3.28)
2 ), 2 ),

im(2—v—p)
X(t) = e Ty (—t) if t > 0. (2.3.29)
Remark 2.3.a. In the next proposition, we define the function x,, as a certain
multiple of the function y in (2.3.19). The normalization is chosen so that one
should have simply

It follows that

Poos (—it) = X1 () + X1 () (2:3.30)

and, more important, that the quantities denoted as C(p,v) and I(p,v) in what
follows should be odd functions of v.

Proposition 2.3.2. Assume that v ¢ Z and p £ v ¢ 27, and set

: I(3)
__ov—1_—= 2
XMV(Q =2 ™ 2F(27§+V)

ptv—2
—1—it 2 l1—-v 2—p—v 2

X F —_— 1l —v;— ). (2.3.31
( 2 )+ 21( 2 T 9 V’l+it> (2:3.31)

This function is analytic in R\{0} and one has for some constant C' > 0 the
imequality

Re (pFv)—2
2

Xpw () S CA+E) 2, t#0. (2.3.32)

It extends as a C° function to each of the two closed intervals | —oo,0] and [0, ool.
The negative of the jump at O of the first-order derivative is

1 L(5(33%)
Clp,v) =2""Pr2 222 A (2.3.33)
(=)D (=)0 ()T (557)
For Re(p+v) <0, one has
e 4C(p,v
I(p,v): :/ Xp7l,(t)dt_y2(fpl.ﬂ): (2.3.34)
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we still denote as I(p,v) the analytic continuation of this function.

Proof. Let us temporarily denote as x§ ,, the function in (2.3.19), so as not to have
to carry the extra coefficient in the first line of (2.3.31) all the time. Similarly, we
denote as C°(p,v) and I°(p,v) the quantities defined in the same way as C'(p,v)
and I(p,v), only with x,, replaced by Xp,v-

We first consider the case when p — 1 ¢ 2Z. We need to analyze the function
Xpv(t) ast — 0% or 07, so that the argument ﬁ of the hypergeometric function
goes to 2: to avoid arguments close to the half-line [1, co[, we use [36, p. 48],

TEOT(b—a), . | |
m(iz)i 2F1(a,a —c+lia—b+1; ;)

I'(e)'(a—b)
['(a)T'(c—b)

(fz)f"_gFl(a, bye;z) =

1
Fi(bb—c+1;0—a+1;-). (2.3.35)
z

This equation, applied with z = ﬁ, shows, since in our case b — a = kTp is
assumed to lie outside Z, that the function x, ., while continuous on each of the
two intervals | — co,0] and [0,00[, has a discontinuity at 0. It is an easy, but
unnecessary matter, to compute the jump there of this function: actually, we shall

kill this discontinuity later by considering only the even part of x, ..

It is clear, since the cut along [1,00[ made to define the hypergeometric
function could be moved slightly, that, on each of the two closed intervals under
consideration, the function x, , is actually C*°. We need to compute the jump of
its first derivative at 0. From [36, p. 41], we pick the relations, for z ¢ [0, o],

d 2=p-v l—v 2—p—v
2 . .
z e {(Z)+ 2 2F1< 5 5 ,1V,Z>:|

_9 1-p- 1—y 4—p—
:%(—z)_‘_g 2F1< 2y,gy;1—y;z) (2.3.36)

2—p—v 1 — 2 _ —
- (—2), 2 oF) ( iy . u;z> . (2.3.37)

2 2 2
With z = ﬁ, so that % = —%z2, one obtains from these equations the relations
d o i(2_p_1/) o d o Z(p+V) o
%Xﬁyl’ = pr—zw %XerQ,U = _TXPJ/(t)' (2338)

We then apply the general identity (2.3.35) to the new hypergeometric func-
tion. When z = ﬁ, only the first term on the right-hand side (the one accom-
panied by a power of —z) has discontinuities at t = 0: one has
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P a—b cn—\ a—Db
(-1 — 0 ) B (-1 — 0 ) _ gb—afmin(ab) _ gin(a—b)]
2 2
+ +

— gl+b—a i . (23
T(b—a)(l+a—0b) (2.3.39)

It follows on one hand that

Co(pr) = L= g (07) = X (0] = 202
T (1 - v)T(352) 1—v 14+v p—1 1
XF<3—5’2>F<P;—1>F<4—";‘—”>F<1T>2FI( 272 7 2 ’§>’ (2.3.40)

on the other hand that

43

I(p,v) = —H—V[xzw,u(()*) = Xp42,,(07)] (2.3.41)
4 7r (1 —v)(=52) (1—1/ 1+v p+3 1)
= 11— —o—v —o 2H1 ) ; 'S
p+v D(=52)N(32) T(=52)(45) 2 2 2 2

Now, one has [36, p. 41]

1—v 1+v 1 1 ()
1 ,——y; = | =277 w2 . 2.3.42
241 < 2 D) v 2) F(1+2Z—V)1—\(1+21+V> ( )

|

i i L) I(pv) s s :
Obtaining the ratio Clow) = Tolpw) 18 just a matter of applying the last three

formulas, and simplifying a few factors by means of the functional equation of the
function Gamma. To obtain C(p,v), we must also apply the duplication formula,
which leads to the equation

C°(p,v) = 23—P—"7TF (2.3.43)

and finally to (2.3.33).

This completes the proof of Proposition 2.3.2 under the extra assumption
that p—1 ¢ 27Z. The general case follows by a continuity argument: however, since
the case when p = 1 will be very important in the sequel, let us just indicate the
differences in a direct proof in this case. Equation (2.3.35) does not apply any
more: instead, one has

(2.3.44)
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it is understood, there, that the argument —ﬁ of the logarithm is to be taken

in the interval | — m, w[. Then, one can write

. w)r-v) 1 F(l_T”-i-n) F(l'g—”—i—n)ﬂ
A NG 2T NG ()
B L(v)D(1 —v) D2 +n)D (L +n) 27"
I Ny () el

3—v 3+v 1
2

Again, the special value of the hypergeometric function is to be found in [36, p.
1

40): it is —f25—5~: using this, one obtains the case p = 1 of (2.3.33).
DT (52)
This was the only place where a special argument was needed when p = 1.
This case will be important in Chapter 4, where its singularity will originate from

the fact that the Eisenstein series F is undefined for s = 1. O

We can now make V*hom,, ,, explicit: in particular, in view of (2.3.13), it will
confirm (2.3.30).

Proposition 2.3.3. Under the assumptions of Proposition 2.3.2, to be completed by
Rev > max(Rep — 2, —Rep), one has

(V*hom,,,)(2) = (Im 2)“7 (2.3.46)
y 2»;W_1F<2"%>F<’t—”>r<4—‘;ﬂ>{ (R_) (R_)]
NG pro\Im z P \Imz /|’
with
250 (1) = 3 [ () + (1], (2.3.47)
Proof. The proof of Proposition 2.3.2 shows that the functions x7'%,, are continu-

ous on the real line, even at 0: they have a discontinuity of the first-order derivative
there, expressed by the pair of equations

OGem) (0%) = (&) (07) = =C(p,v),
(&) (0%) = (&) (07) = =Cp, ) : (2.3.48)

since the coefficient C(p, v) is an odd function of v, the sum X%/" 4 x5/, is a C'!

function on the line, actually a C*° function in view of the differential equation
it satisfies on each of the two closed intervals | — oo, 0] and [0, oo[. The function
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ykTp(V*homp,U)(x + iy) must coincide with a multiple of this function. The co-
efficient is obtained by considering an equivalent as ¢ = £ — oo: to obtain this
equivalent, we further assume, which is not a loss of generality because of the
possibility of analytic continuation of the formula obtained, that Rer > 0. In this

case, it is immediate, from (2.3.8), that

X p+' —2 1 2 . 6 v—1
= (V*hom, ) (z + iy) ~|—’ by ’sma‘ do
INE4 ptv—2
=3 521 2] (2.3.49)
57y
On the other hand, (2.3.31), (2.3.47) and the equation
(r+1=2) | o= F(ptv=2) 2
e'f e Flord o T (2.3.50)
[0 (—=)
yield the equivalent, as |t| — oo,
- I'% ptv

O (t) ~ 2 e (iz — |t (2.3.51)

D)5 (=)
The proposition follows. O

We need another lemma.

Lemma 2.3.4. Under the assumptions that v ¢ Z, p—1 ¢ 2Z and p £ v ¢ 27, one
has

) F 2+Z_” F(2+Z+V)
(1412, () = e +V)X2_py(o. (2.3.52)
4 4

Proof. We start from [36, p. 47], writing when Re z # 0 the identity

1—v p— 1-
oF1 ( iy V; 1- y;z) = exp (z'ﬂ' 5 psign(lm z))

2 72
1—p
e (1—2\ 2 l—-v 2—p—v
)2 F TPV us) . (2353
X(Z)+(Z>+21<2 5 Vz> ( )
With z = 1+7,t’ one has (—z)~! = == 122 — =14l " and one must read the

product of power functions on the rlght hand side of (2 3.53) as

1—p

e N\ T3
e”%%®“(iliﬁ> <_1+”> . (2.3.54)
2 ), 2/,
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One can then write

v—p
—1—at\ = 1—v p—v 2
t) = ' 2 " 1—-p——_
X2 pu() < >+ 21( 9 ' 9 V’l—i-it)
v_1 1—p
2 =1+dt\ l—v 2—p—v 2
1=
( ) ( 2 >+ 2F1< 2 T 2 V’1+it>
i\ l—v 2—p—v 2
o m’"—mgnt 2F1 ’ P ;171/; :
2 n 2 2 1+t

) Xz,y(t>‘ (2.3.55)

blgnt

Mr—mgn t

Hence,

2}
1+t2 7 o \even 1 itiz2 o irezt o
(F55) T @ 0= [0 €T 0] 2356

or, using (2.3.29), one has for ¢t > 0

1 + t2 %p o \even 1 i?Tl il -
( 4 ) (Xp,u) (t) = 5 |:€ +e 2 6 =" i| X2 0, Il(t)

using (2.3.29) again,

[

e

v—p
g3

(ngp,y)even (t) — F(2_4+U)F(2+4_y)Xgip,y(ﬂ. (2.3.58)
Hence,
142\ 7 oven DY) e
< 4 ) (XP,V) (t)= F(pzy)r(zlfify) (Xzfp’l,) (t). (2.3.59)

Finally, using the extra coefficient from x7 ,, to x,,. given in (2.3.31), one obtains

(%) 7 050 remmrenm e
(0 EBNE==I ez R

which simplifies to (2.3.52) by an application of the duplication formula.
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From Proposition 2.3.2, one may note that the product I'(1=2+)1(4=£=2) x
C(p,v) is invariant under the map p — 2 — p. It follows from this, and Lemma
2.3.4, that

> 2 lpr ven o (V—p)(V+p) v
/_Oo(l+t) i = )1 (p.), (2.3.61D)

To kill the discontinuity of . at the origin, we replace it by its symmetrized
version X5 as defined in (2.3.47): note that this does not change the jump of the
first-order derivative at 0.

Proposition 2.3.5. Assume that v ¢ 7 and that p £ v ¢ 27Z. One has in the
distribution sense

[—(1 T K A S R I 3’] (1) = C(p,v).
(2.3.62)

On the other hand, one has in 11 the equation

1—12 =1 sven [ Rez p—1
<A 1 ) [z — (Imz)2 s (Imzﬂ = C(p,v)(Im2) 2 §(0,i00)
(2.3.63)

where 0(0,ix0) 5 the measure d?y on the hyperbolic line from 0 to ico.

Proof. Since the function x5';" is C°° in [0, oo (up to the boundary), continuous on
the line, and since it satisfies in ]0, oo[ the differential equation (2.3.16), its image,
in the distribution sense, under the operator on the left-hand side of (2.3.62),
depends only on the discontinuity at 0 of its first-order derivative. One can then,
without modifying the result, replace the complete operator by —%, and yove"
by the function, linear on | — oo, 0] and on [0, co[, with the same half-derivatives
at 0: this leads to (2.3.62).

The second part of the lemma is a corollary of the first. O

2.4 The symmetries v — —v and p+— 2 —p

In the function hom,, in the plane defined in (2.3.5), the parameters p and v
appear in a clear way: in particular, —1 + v stands for the global degree of homo-
geneity, so that the functions hom, , and h, —,, when Rev < 0, could be regarded
as “ingoing” and “outgoing” in the sense of scattering theory [34]. However, the
G-transform of a function homogeneous of degree —1+ v is homogeneous of degree
—1 — v, and, under the dual Radon transform or any of its associates, a homo-
geneous distribution and its G-transform have proportional images (c¢f. Theorem
2.1.2). Indeed, Proposition 2.3.3 confirms that, up to multiplication by a scalar,
V*hom, , depends only on the pair (p,v?).
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The function z + iy — (C(p,v)) 'y =T Xf)v,fn (ﬂ) is the starting point from
which, with the help of a Poincaré series process, we shall build automorphic
functions of a new style in Chapter 4. As a consequence of Lemma 2.3.4, it changes
to a multiple when p is changed to 2—p. On the other hand, it is essential, in view of
our applications in Chapter 4, to make a clearcut distinction between the function
(C(p,v))~ Ly Xpuo" (%) and its transform under the symmetry v — —v, even
though they satisfy the same differential equation (2.3.63). More precisely, in order
to consider integral superpositions of these functions with a fixed p and Rerv < 0,
we need to characterize, when Rev < 0, the first of these functions within the pair
under consideration.

The answer is provided by the resolvent of A: as is well-known (say, from
spherical function theory, i.e., the reduction to K-invariant functions), the operator
A is essentially self-adjoint in L?(II) = L?(II,dm), where dm(x + iy) = dmy if

)

)

say, one takes C5°(II) as its initial domain; it has a purely continuous spectrum,
1-02
1
well-defined for Rev # 0. It is usually made explicit in terms of its integral kernel
klfTV (2,2"), a function of d = d(z, 2'), according to the general (Gelfand’s) theory
of point-pair invariants: reducing the problem to its special case concerned with

K-invariant theory, one obtains explicitly, assuming Rev < 0,

1 (T(:54)° d, 1—v 1—v 1
h =)V~ oF i1 — v
ar T(1—v) (cos 2) 1 2 7 27 v costh
(2.4.1)

This can be found in many places, including [32, 55], and could also be derived
from (2.4.11) below.

coinciding with the interval [i, oo[, so that the resolvent v — (A — is

!
kl—Tu(Z,Z)

oy —1
This formula does not lead to tractable integrals when (A — PT”) has

to be applied to general (not K-invariant) functions: the proof of the theorem to
follow will rely on an alternative construction [60, p. 205] of the resolvent, based of
M.Riesz’s theory [43] dealing with the solid convex cone in R®. We shall dispense
with giving a priori arguments showing that the resolvent extends to spaces of
distributions containing measures such as the one occurring in the next theorem:

-1
this will result, instead, from the explicit form (2.4.9) of (A - %) .
Theorem 2.4.1. Assume that 0 < Rep < 2 and Rev < 0. It is convenient to set

Rez
Imz’

P(z) = (2.4.2)

Recalling Proposition 2.3.5, denote as 5

(0,i00)

the measure in 11 supported by the

hyperbolic line from 0 to ico, coinciding with ypT_l% in terms of y = Imz. One
has
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N .
(A_ 1 1 ) 5%31‘00)] (2) = 11, (Im2)"= (X5 ov) (2),  (24.3)

with C(p,v) as defined in (2.3.33).

Proof. Let C be the cone in R? consisting of points n = (19,71, 72) with 79 > 0
and 13 —n} —n3 > 0, and let H be the sheet of hyperboloid defined within C
by the equation n¢ — n? —n3 = 1. It is a very classical fact that H, provided
with the (Riemannian) metric which is the restriction to it of the indefinite metric
—dng + dn? + dn3 in C, is another model of Il = G/K: the map « from H to II
providing the required isometry is defined as r(n) = -2+ With

no—mn1 "
02 0?2 0?
o= _< _ 2 2.4.4
ong  oni  In (244)
and 5 5
FE = 2.4.
7708 +771817 -1-772877 (2.4.5)

it is easily verified (this is an extension to hyperboloids of the classical theory
of spherical harmonics) that if ¥ is a function in C' homogeneous of degree k €
C satisfying the equation LJU = 0, its restriction to #H satisfies the eigenvalue
equation

Ay (Y],,) = —k(k+ 1)V, (2.4.6)

if one denotes as Ay the operator obtained by transferring under s the hyperbolic
Laplacian A on II.

M.Riesz’s theory [43, 44] gives a fundamental solution at 0 of the operator
O as the convolution by the function (supported in the closure of C')

1

1 2
Zy = . (n5 —ni — Wz)pObv (2.4.7)

where the subscript indicates that the whole function is to be multiplied by the
characteristic function of C'. Then, if ¥ is homogeneous of degree _52_” in C, the
function Z, * U lies in the nullspace of [J and is homogeneous of degree =4~ so

2
that, as a consequence of the equation (2.4.6) taken with k = *12*”, one has

1—v?
<AH 1 >((Z2*\I!)|H)\II|H. (2.4.8)

This provides the following recipe for computing the image of the resolvent

(A - 1_4”2) on a function f € C§°(IT), under the assumption (to be justified

presently) that Rev < 0: transfer f to the function fok on H, extend the function

obtained to a function ¥ on C' homogeneous of degree _52_”, restrict the function
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Zx W to H, finally compose this restriction with x~!. Since, for r > 0 and ¢ € H,
one has d(r¢) = err‘E%z, one obtains the formula we have been looking for:

AN 1
(a-55) f] () = 5 [ 7
-1 dé1d
< | 1 = r&o)? = (m = 162)* = (1 — reaPL A (w(€) R
k &
One easily checks that the measure %ﬁ coincides with dm(k(€)), the transfer

under k of the invariant measure dm on II.

When x(n) = z and x(§) = 2/, one has

(2.4.9)

n0éo — mér — 12z = coshd(z, 2'), (2.4.10)

so that the integral kernel of the operator obtained in (2.4.9) is the function

e—d(z,z/)

1 v—
(z,7) — 2_/ r 21(1 —2rcoshd(z,2') +7‘2)7%dr
T Jo
_ LTS emngesh (L 1o 200 ) (2.4.11)
= I T(SY) File -

With the help of two transformations (one of which is quadratic) of the hypergeo-
metric function, one can see [60, p. 206] that this is identical to the integral kernel
k(z,2") in (2.4.1): however, the expression (2.4.9) of the operator will be more con-
venient in the MA-invariant case. From any of the two expressions of the integral

kernel in (2.4.11), one sees that it is bounded by a constant times |logd(z, z’)]
near the diagonal and by a constant times (coshd(z,z')) %~ when d(z,2') > 1.

Since this kernel is K-biinvariant and, in polar geodesic coordinates p, around
i € II (with p = d(i, 2)), the invariant measure expresses itself as sinh pdpdf, it fol-
lows from the most popular criterion regarding L2-continuity that, provided that

-1
Rev < —1, the operator (A — 1’4”2) defined in (2.4.9) is indeed the resolvent.

Now, if one only has Rer < 0, the criterion just mentioned does not apply but
it is immediate from the same estimates regarding the kernel that the operator
under consideration is continuous from L?(II) to the Banach space of bounded
continuous functions: as such, it depends analytically on v, and must still coincide
with the resolvent (hence, be a continuous endomorphism of L*(II)).

We now substitute for f the measure 5Eg)ioo). When & =0 and y = ﬁ,
one has %y = df%. We must thus, in the preceding integral, replace f(l{(f))%

d£1 . . . _
by v and set the variable & at the value 0, getting as a result (with & =

V1+£7)
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Cow(R(n): =

2\t
(A_ 1 . ) 553}2,00)] (k(n)) (2.4.12)

! R = 1— p d
“or o TTdr[m[(ﬁo —1&)? — (m —ré&1)* — ng]pos(€0 —&)= ;;)1

Now,
(no —760)* — (m —r&1)* —m3 = 1 — 2r(nofo — mé&) + 1 : (2.4.13)

recalling that 14 72 = 12 — n?, consider the matrix (1 4 7)== (1 7)), which
corresponds to a Lorentz transformation (in (1 + 1)-dimensional spacetime) in the
variable (£o,&1), thus preserving the measure dfoi. Under this transformation, the

expression (2.4.13) transforms into 1 —2r&y+/1 + 13 + 12, while &y — &; transforms

into (14 n3)~2(no — m) (& — &). Hence, setting z = (), so that g — n =
(Im 2)~1, o = B2 — 4)(2), one obtains

Im z
0y (2) = (Im2)"7 (1+ (6(2))?) T (2.4.14)
X % ’/‘_12_Vd7’/ 1—27“60\/74'7’ pos 50—51) p%

This is an even function of t = Im Z, which can be written, after one has performed
the change of variable r — [260v/1 + 2] 717, as

0o (2) = 2; (Im2) 7 (14 3“5 Int,, (¢), (2.4.15)
with
* v o r? %
Ity (1) = /o " dr/_oo [1 BTG +£%)Los (G- T d
(2.4.16)

As |t| — oo, the integral goes to

Int,, (c0) :/0 r_uz_l(l—r)_%dr/oo(l—kfl) (go—gl)

— 0o

s r 1—v (e’ o oy
=72 (231/) ></ (cosht)Tle%dt
I'(%")
R (2=e=v
_ o I )Z(V ) (2.4.17)
(%)
where we have used [36, p. 432] at the end: note that this expression does not
change under the symmetry p — 2 — p. One thus has the equivalent, as Rez — 00,
1 —v 2—p—v pty=2
1, 77z D(EE) (L) |Rez| 2
I =, (2) ~ 4 4 2.4.18
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Since the image under A — % of the function £, , is zero in the complement
of the hyperbolic line from 0 to ioo, it follows from the structure of ¢, ,(z) as the

product of (Im z)“=* by an even function of 222 and from (2.3.16) that the function

in (2.4.18) must be a linear combination of the functions x9/$"(¢) and X', (¢): in
view of the equivalent of x, ., (t) as [t| — oo resulting from (2.3.31), it has to be
a multiple of the function X5'7"(#) only (recall the assumption that Rev < 0).
The proof of Theorem 2.4.1 now reduces to proving that the functions ¢, , (t) and

mx‘j"en(t) are equivalent as [t| — oo.

Comparing (2.4.18) to the equivalent (2.3.51) of the second function, using
the duplication formula

2—p— 4—p— oty
NN = eni

2—p—v

I( ) (2.4.19)

and the expression (2.3.33) of C(p,v), we obtain (2.4.3). O

Remark 2.4.a. Even though one has (A — 11"2> ((Im z)%lxmu o w) = 0 in the
complement of a one-dimensional set, this phenomenon leaves no trace after one
has applied to the function (Im z)ﬂT_1 Xp,» © % a non-local operator such as the
Radon transformation. It would be somewhat misleading to regard the function
under consideration as “almost” an eigenfunction of A.

Our construction of Poincaré series (of a novel kind) in Chapter 4 is based

on the use of the functions (Im z)%lxpﬁ,, o1, with Rev < 0. These Poincaré series
will take the place usually taken by Eisenstein series. In a way similar to that
which leads, classically, to so-called incomplete Eisenstein series (this terminology,
borrowed from [21, 23], sounds more appropriate than the traditional one of in-
complete theta series), we may consider integral superpositions of the functions
Xp,v for a fixed p. What we obtain as a result is a space of images of the mea-

sure 5ég)ioo
spectral-theoretic sense, of the Laplacian: an integral transform will make these

explicit.

) (introduced in Theorem 2.4.1) under fairly general functions, in the

In view of the spectrum of the hyperbolic Laplacian A, whether in the free
half-plane or in the automorphic situation, a function of A is the same as an even

function H of the operator 2,/A — ; (the factor 2 is of course for convenience

only), provided that, in the second case, one interests oneself only in automorphic
functions orthogonal to constants (so that the square root should not create a
difficulty). Experience, in particular with quantization theory [63, p. 57-59], shows
that, as a function of one real variable, it is most of the time the function H,
rather than the corresponding function of A, that appears simple, or interesting.
This may be considered, in view of (2.1.5), as one more argument in favor of using
the plane, rather than the half-plane, in the study of A.
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Theorem 2.4.2. Let H = H(u) be an even holomorphic function in some strip
[Tm p| < Bo, such that fImu:B ||| H (1) |2dp < oo for every B with |3| < Bo: set

G(o) = ffooo H(M\)e? ™ 7d)\. Assuming 0 < Rep < 2, the image of the measure

6((3)ioo) under the operator H (21/A — i) is a function ¢, which can be made
explicit in terms of sinh(47r7) = B2 g5
1 o1 p—z [ cosh 4ro
=——(1 Tz h 4 Tz ! o — . 2.4.2
#(2) 47r( mz) 2 (coshdnr)™2 /lr G'(0)P ez (cosh47r7’> do. (2.4.20)

Given any number [ €]0, Bo[, one has the identity
1 .
P(z) = ——— vH (iv)

1— 2\ ! (o)
A — P
dim Reve_j ( 4 ) 5(0,200)] (Z)dl/

1 H{(iv) p=1 Rez
= — I el —— | dv. 2.4.21
B07 Sy Clpry 7 T X (T (2421)

In the case when one has H(\) = K%(a) for some a > 0, so that G(o) =
2w exp (—acosh(4no)), one has

6(z) = (2;) 217 Ko (a—z|> . (2.4.22)

Im 2z

Proof. Setting F = 5—G’, one has ﬁ(,u) = pH(p): it follows from the assumption
made about H that [~ |G (0)|?e*™18l7 do < oo whenever || < fBo, and that the
same holds with F' substituted for G.

Recall from the proof of Theorem 2.4.1 that the function ¢, , is the image of

—1
under (A - 1_4"2) and that, from (2.4.14),

(p)
the measure 6(0,ioo)

loo(2) = 2_%77_1(1111 z)%1

p=2 o0 —y—2 7"2 _1
><(1+(z/1(z))2)T/0 r~z Int, (H— (14 (¢(2))?) 2>dr, (2.4.23)

2r

with

> _1 1—p d€
tuty(0) = [ (= gl — 60T L.
This integral is zero if ¢ < 1, and we now compute it for ¢ > 1. Setting ¢ = cosha
with @ > 0 and making the change of variable £; = sinh7, one obtains, using [36,
p. 407] at the end,

(2.4.24)

Int,(c) = / [cosha — cosh n]*%e(p_‘;)n dn = Q%W‘B%z (cosha), (2.4.25)

—a
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an expression invariant when changing p to 2 — p.

f‘ez = sinh 477 for z € 11,
m z

in this integral. We obtain

As told in the statement of the proposition, we set
and we also make the change of variable r = e~47

-1 2 [ h 4
£ (2) = 2m(Im 2) " (cosh 4m7) “2° /T| e (—Zzzh = ) do.  (2.4.26)
Since
o . 1 ~
F(o) = / F(\)e*™7d)\ = - / F(—iv)e*™dv, (2.4.27)
—oo v JRev=—5

the function ¢ defined in (2.4.20) can be written as

1 = o= o h4 1 ~
S-(ln 2)%" (cosh dr7) ‘% / Ty (M) oL / Fliv)e™dy
| Rev=p

i - z \ cosh4nt i
1 ~
=—— F(—iv)l,,(z)dv. (2.4.28)
47 Re p=—_

This leads to the pair of equations (2.4.21), of which we now consider the first.

When v moves along the straight line from — 5 —ioco to —+i00, the variable

o= 1*4”2 describes a parabola P~ enclosing the spectrum [i,oo[ of A in the
clockwise sense: denoting as P+ the negative of the contour that precedes, one
transforms the integral under consideration into the integral

1 [ 1 B
%in - H <2 w— Z) (b —A)"dp, (2.4.29)

which completes the main part of Theorem 2.4.2, in view of Dunfords’s integral
representation of the resolvent of an operator.

When H(A) = K (a), that G(o) = 27 exp (—a cosh(4ro)) follows from [36,
p. 408]. Then,

d(z) = 2ma(Im z)pT_l(cosh47rT)pT_2/

s h 4
Snh(dna)e Ao, (ST do

cosh4nr

NS}

= %(Im 2) o (cosh 47T)

/ e—at cosh(47r7—)q3p7_2 (t)dt
1

20\ ? . e
= (_a) (Im Z)Tl(cosh 47TT)TleT—1 (avcosh(4rT)) (2.4.30)
7r
according to [36, p. 194]: now, cosh(4n7) = %, which leads to (2.4.22). O
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