
Chapter 2

The Radon transformation and
applications

The Radon transformation and its dual, or their associates, of which each com-
ponent of the transformation Θ in Theorem 1.1.1 is a special case, connect the
analysis of functions in the plane and in the hyperbolic half-plane: when enriched
with an automorphy condition, the dual Radon transformation will also set up a
correspondence, in Chapter 3, from automorphic distribution theory (in the plane)
to automorphic function theory (in the half-plane).

After having recalled the Iwasawa decomposition G = NAK of the group
G = SL(2,R), we consider the Radon transformation V from the homogeneous
space G/K to the space G/MN , with M = {±I}, and the dual Radon transforma-
tion, which acts in the reverse direction. The space G/MN can be regarded as the
quotient of R2\{0} by the equivalence that identifies (x, ξ) with (−x,−ξ), while
the space G/K is just the hyperbolic half-plane Π: consequently, the dual Radon
transformation may be considered as a map from even functions in R2 to functions
in Π. Besides, the maps V and V ∗ have associates, obtained by multiplying them,
on the appropriate side, by arbitrary functions, in the spectral-theoretic sense,
of the Euler operator in R2. All norm computations involving SL(2,R)-covariant
maps from even functions in the plane to functions in Π rely on the results of
calculations involving the Radon transformation and its associates. This is in par-
ticular the case for the map h 7→ f0 introduced in Theorem 1.1.1; we shall rely
on these again to complete, in Section 2.2, our study of the totally radial Weyl
calculus, as initiated in Section 1.3. The rest of the chapter is concerned with a
family of bihomogeneous functions homρ,ν in the plane, the dual Radon trans-
forms of which will play a basic role in our construction, in Chapter 4, of a new
class of non-holomorphic modular forms. Splitting such transforms into two terms,

we shall obtain a two-parameter family of functions z 7→ (Im z)
ρ−1

2 χρ,ν
(

Re z
Im z

)
in

the hyperbolic half-plane: these functions will constitute the starting points of the
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48 Chapter 2. The Radon transformation and applications

Poincaré series to be introduced there. The functions χρ,ν are studied with much
care in Section 2.3 and the functions in Π just mentioned are expressed in a natural
way involving the resolvent of the Laplace operator ∆ on Π in Section 2.4.

2.1 The Radon transformation

Consider the transformation Θ = (Θ0,Θ1) : h 7→ (f0, f1) introduced in Theorem
1.1.1 or, using (1.1.38) and starting, more generally, from a distribution,

(Θ0S)(z) = 〈S, (x, ξ) 7→ 2 exp

(
−2π

|x− zξ|2

Im z

)
〉,

(Θ1S)(z) = 〈S, (x, ξ) 7→ 2

[
4π

Im z
|x− zξ|2 − 1

]
exp

(
−2π

|x− zξ|2

Im z

)
〉. (2.1.1)

The two functions just introduced are linked by the equation

Θ1S = Θ0(2iπES), (2.1.2)

as it follows immediately from the fact that the transpose of the operator 2iπE
is −2iπE . As a consequence, identities involving Θ0 will always have analogues
involving Θ1, which we shall dispense with making explicit unless clarity demands
it. We shall also use, consistently and without reference, the fact that the conjugate
of the operator 2iπE under the symplectic Fourier transformation, or under G, is
−2iπE .

The map Θ connects even distributions in the plane to pairs of functions in
the hyperbolic half-plane Π, and it has many nice properties; only, do not confuse
x, the first of the pair of variables (x, ξ) in the plane (the standard notation in
pseudo-differential analysis) with the real part of z. First, recall that Θ is covariant
under the pair of actions of SL(2,R) on R2 and on Π, which means that one always
has

(Θ(S ◦ g−1))(z) = (ΘS)(g−1.z) (2.1.3)

if, given g =
(
a b
c d

)
∈ SL(2,R), one sets g(x, ξ) = (ax+bξ, cx+dξ) and g.z = az+b

cz+d .

Also, Θ kills all odd functions on R2, so we may as well restrict it to the space
S ′even(R2): another symmetry expresses itself in terms of the transformation G in
(1.1.24), as the pair of identities

Θ0(GS) = Θ0S, Θ1(GS) = −Θ1S. (2.1.4)

The first one, say, can be seen by remarking that the (even) function (x, ξ) 7→
2 exp

(
−2π |x−zξ|

2

Im z

)
is G-invariant: to see this, it suffices, taking benefit from the

covariance property, to verify that the function 2 exp(−2π(x2 +ξ2)) is G-invariant,
which is immediate. Another proof consists (cf. what follows (1.1.24)) in remark-
ing, a consequence of (1.1.34), that this function is the symbol of an even-even
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operator. From the fact that the set (φ0
z)z∈Π is total in L2

even(R), one can then
see that, when restricted to even G-invariant tempered distributions, Θ0 becomes
one-to-one.

In view of (1.1.41), one always has the identity

Θ(π2E2S) =

(
∆− 1

4

)
ΘS. (2.1.5)

In other words, if S is homogeneous of degree −1− ν or −1 + ν, the function ΘS

is a pair of (generalized) eigenfunctions of ∆ for the eigenvalue 1−ν2

4 .

The covariance property of Θ0 (or Θ1), as well as the way it exchanges the
operators π2E2 and ∆ − 1

4 , are shared by a family of transformations, linked to
the so-called Radon transformation, which we need to recall in the case of the
group SL(2,R): the Radon transformation has been studied by Helgason [17, 18]
in a considerable generality. We here follow with a few changes the exposition, in
the case of SL(2,R), made in [60, Sec.4], which is more immediately adapted to
our needs related to pseudo-differential analysis, besides being of necessity simpler
since it deals only with a rank-one case.

We parametrize the generic elements of the subgroups N,A,K entering the
Iwasawa decomposition of G = SL(2,R) = NAK as

n =

(
1 b
0 1

)
, a =

(
e
r
2 0

0 e−
r
2

)
, k =

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
, (2.1.6)

where b ∈ R, r ∈ R, 0 ≤ θ < 4π. Following the normalizations in ([18], ch.II,3), we
set dn = π−1db, dk = (4π)−1dθ. The homogeneous space G/K is identified with
the hyperbolic half-plane Π in the usual way, sending gK to z = g.i. On the other
hand, the space Ξ = G/MN , with M = {±I}, is identified with the quotient
of R2\{0} by the equivalence ( xξ ) ∼

(−x
−ξ
)
, under the map

(
a b
c d

)
MN 7→ ± ( ac ):

one must be careful, again, not to use in the same formula x to denote the first
coordinate of ( xξ ) (or (x, ξ)) in R2 and the real part of z = x+ iy ∈ Π. On Π, we

use the invariant measure dm(z) = dxdy
y2 and, identifying functions on Ξ with even

functions on R2, we use there the standard Lebesgue measure on the full plane.
Let us also recall that the hyperbolic distance d on Π associated to the (squared)

line element ds2 = dx2+dy2

y2 is G-invariant, i.e., that d(g.z, g.z′) is independent of g,

and characterized as such by the equation cosh d(i, x+ iy) = 1+x2+y2

2y . The Radon

transformation V from functions f on Π to even functions on R2 is defined by the
equation

(V f)(g. ( 1
0 )) =

∫
N

f((gn).i)dn : (2.1.7)

the integral is convergent, yielding a continuous function V f if, say, |f(z)| ≤
C(cosh d(i, z))−

1
2−ε for some ε > 0. Explicitly, completing if x 6= 0 the column
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( xξ ) into the matrix
(
x 0
ξ x−1

)
,

(V f)(± ( xξ )) =
1

π

∫ ∞
−∞

f

(
x2(i+ b)

xξ(i+ b) + 1

)
db, x 6= 0; (2.1.8)

the dual Radon transform V ∗, the formal adjoint of V , is defined by

(V ∗h)(g.i) =

∫
K

h((gk). ( 1
0 ))dk (2.1.9)

or, in coordinates,

(V ∗h)(x+ iy) =
1

2π

∫ 2π

0

h

(
±
(
y

1
2 cos θ2 − xy

− 1
2 sin θ

2

−y− 1
2 sin θ

2

))
dθ. (2.1.10)

We abbreviate the representation πiλ,0, as defined in (1.2.18), as πiλ — it lies
in the principal series of SL(2,R), whereas the representation πτ+1 in (1.3.5) lies in
the extended projective discrete series of this group — and abbreviate hiλ,0 (resp.
h[iλ,0) as hiλ (resp. h[iλ): in the present section, we only interest ourselves in even
functions in the plane. Through the dual Radon transformation, the representation
πiλ can be realized in some Hilbert space of functions in Π: we need to make this
explicit.

We have already defined the Euler operator 2iπE = x ∂
∂x + ξ ∂∂ξ + 1. It is

essentially self-adjoint on L2(R2) (i.e., it admits a unique self-adjoint extension)
if given the initial domain C∞0 (R2\{0}). This makes it possible to define, in the
spectral-theoretic sense, functions of E . We shall need in particular the operator
(a scalar when restricted to even functions of a given degree of homogeneity)

T =
(π

2

) 1
2 Γ( 1

2 − iπE)

Γ(−iπE)
= π−

1
2 (−iπE)

∫ ∞
0

t−
1
2 (1 + t)−1+iπEdt : (2.1.11)

also, observe that (t2iπEh)(x, ξ) = th(tx, tξ) for t > 0.

We now give useful expressions of the transformation TV and its formal
adjoint V ∗T ∗, with the help of the following special case of (1.2.14):

hiλ(x, ξ) = |ξ|−1−iλh[iλ(
x

ξ
). (2.1.12)

As a consequence of (2.1.11), T acts on (V f)iλ as the scalar (π2 )
1
2

Γ( 1+iλ
2 )

Γ( iλ2 )
, and it

then follows from (2.1.12) and (2.1.8) that, assuming that, say, f ∈ C∞0 (Π), one
has for almost all λ the equation

(TV f)[iλ(s) = (2π)−
3
2

Γ( 1+iλ
2 )

Γ( iλ2 )

∫ ∞
0

tiλ−2dt

∫ ∞
−∞

f

(
s2(i+ b)

s(i+ b) + t2

)
db : (2.1.13)
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performing the change of variable such that

z =
s2(i+ b)

s(i+ b) + t2
, dm(z) =

2dtdb

t
, (2.1.14)

so that t2 = |z−s|2
Im z , one gets

(TV f)[iλ(s) =
1

2
(2π)−

3
2

Γ( 1+iλ
2 )

Γ( iλ2 )

∫
Π

(
|z − s|2

Im z

)− 1
2−

iλ
2

f(z)dm(z). (2.1.15)

In the reverse direction, we use the second equation (2.1.12) and (2.1.10), obtaining
(after one has set s = −ycotan θ

2 + x in the latter formula) that

(V ∗T ∗hiλ)(z) = (2π)−
1
2

Γ( 1−iλ
2 )

Γ(− iλ2 )

∫ ∞
−∞

h[iλ(s)

(
|z − s|2

Im z

)− 1
2 + iλ

2

ds : (2.1.16)

note that the integral on the right-hand side is bounded if h[iλ ∈ L2(R).

From its very definition (2.1.7), the Radon transformation (as well as its
dual) is obviously covariant under the two actions of G, on functions defined on
Π and on R2\{0}, through the fractional-linear change of complex coordinate and
the linear change of real coordinates associated to the same matrix g. On the other
hand, all functions, in the spectral-theoretic sense, of the Euler operator commute
with the second action. Consequently, the transformations V and V ∗ preserve
their covariance if multiplied on the left (resp. on the right) by an “arbitrary”
function of 2iπE . Operators obtained as products of the Radon (resp. dual Radon)
transformation by a function of the Euler operator on the left (resp. right) side
will be called associates of the Radon or dual Radon transformation. A subclass
consists of operators obtained in a comparable way, only replacing the function of
the Euler operator by a function of the hyperbolic Laplacian on the other side: as
a consequence of the last assertion in Theorem 2.1.2 below, even functions of 2iπE
can be replaced by appropriate functions of ∆ with no change. We now show that
the map Θ0 introduced in (2.1.1) is an associate of the dual Radon transformation:
of course, the same will then be true of the map Θ1 in view of (2.1.2).

Proposition 2.1.1. One has

Θ0 = V ∗(2π)
1
2−iπEΓ

(
1

2
+ iπE

)
. (2.1.17)

Proof. Starting from the decomposition (1.2.11) and applying the definition (2.1.1)
of Θ, we obtain

(Θ0hiλ)(z) =
1

2π

∫ ∞
0

tiλΘ0((x, ξ) 7→ h(tx, tξ))dt
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=
1

π

∫ ∞
0

tiλdt

∫
R2

h(tx, tξ) exp

(
−2π

|x− zξ|2

Im z

)
dxdξ

=
1

π

∫
R2

h(x, ξ)dxdξ

∫ ∞
0

tiλ−2 exp

(
−2π

|x− zξ|2

t2Im z

)
dt. (2.1.18)

The integral is easily computed, which leads to the equation

(Θ0hiλ)(z) = (2π)
iλ−3

2 Γ(
1− iλ

2
)

∫
R2

h(x, ξ)

(
|x− zξ|2

Im z

) iλ−1
2

dxdξ. (2.1.19)

On the other hand, using (1.2.11) again and (2.1.16), we have

(V ∗T ∗hiλ)(z) = (2π)−
3
2

Γ( 1−iλ
2 )

Γ(−iλ2 )

∫ ∞
−∞

(
|z − s|2

Im z

)− 1
2 + iλ

2

ds

∫ ∞
0

tiλh(ts, t)dt :

(2.1.20)
we make the change of variable

t = ξ, s =
x

ξ
, dsdt = ξ−1dxdξ, (2.1.21)

and take advantage of the fact that h is assumed to be even to change the domain
{(x, ξ) : ξ > 0} to R2, ending up with the equation

(V ∗T ∗hiλ)(z) =
1

2
(2π)−

3
2

Γ( 1−iλ
2 )

Γ(−iλ2 )

∫
R2

h(x, ξ)

(
|x− zξ|2

Im z

) iλ−1
2

dxdξ. (2.1.22)

Comparing it with (2.1.19), we obtain

Θ0hiλ = 2(2π)
iλ
2 Γ(− iλ

2
)V ∗T ∗hiλ (2.1.23)

or, since 2iπEhiλ = −iλhiλ,

Θ0 = V ∗T ∗2(2π)−iπEΓ(iπE) : (2.1.24)

as T ∗ = (π2 )
1
2

Γ( 1
2 +iπE)

Γ(iπE) , this leads to Proposition 2.1.1. �

This proposition explains several facts. First, since, according to (2.1.5), the
operator π2E2 on R2 on Π transfers under Θ0 to the operator ∆− 1

4 , the same is
true for the Radon transformation or its dual, whether it has been multiplied on
the appropriate side with a function of the Euler operator or not. Next, consider
the formal adjoint of Θ0, defined by the equation

(Θ∗0f)(x, ξ) = 2

∫
Π

f(z) exp

(
−2π

|x− zξ|2

Im z

)
dm(z), (2.1.25)
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or
Θ∗0 = 2(2π)iπEΓ(−iπE)TV. (2.1.26)

As already noticed, the range (the image) of Θ∗0 is G-invariant: also, G(iπE) =
(−iπE)G. As a consequence,

Ran(TV ) is invariant under the involution(2π)−2iπE Γ(iπE)

Γ(−iπE)
G. (2.1.27)

We now recall (with a better proof) a theorem given in [60, p. 27].

Theorem 2.1.2. The transformation TV , initially defined on the space of con-
tinuous functions on Π with a compact support, extends as an isometry from
L2(Π) onto the subspace Ran(TV ) of L2

even(R2) consisting of all functions invari-

ant under the unitary involution (2π)−2iπE Γ(iπE)
Γ(−iπE)G. The operator V ∗T ∗ extends

on Ran(TV ) as the inverse of TV , and is zero on the subspace (Ran(TV ))⊥ of
L2

even(R2) consisting of all functions changing to their negatives under the same
involution. Moreover, the isometry TV intertwines the two actions of G on L2(Π)
and L2

even(R2) respectively, and transforms the operator ∆− 1
4 on L2(Π) into the

operator π2E2 on L2
even(R2).

Proof. The isometry property is a very special case of ([18], ch.II,3), but sorting
out notation is not that easy. An alternative proof is as follows. From (2.1.15) and
(2.1.11), one has

‖(TV f)[iλ‖2L2(R) =
1

32π3

(
λ

2
tanh

πλ

2

)
(2.1.28)

×
∫

Π×Π

f(z)f(w)dm(z)dm(w)

∫ ∞
−∞

(
|z − s|2

Im z

)− 1
2−

iλ
2
(
|w − s|2

Im z

)− 1
2 + iλ

2

ds.

Now, one has

1

π

∫ ∞
−∞

(
|z − s|2

Im z

)− 1
2−

iλ
2
(
|w − s|2

Im z

)− 1
2 + iλ

2

ds = P− 1
2 + iλ

2
(cosh d(z, w)),

(2.1.29)
a consequence of Plancherel’s formula together with [36, p, 401]

π−
1
2

∫ ∞
−∞

(
|z − s|2

Im z

)− 1
2−

iλ
2

e−2iπsσds = y
1
2 e−2iπσx 2π

iλ
2

Γ( 1+iλ
2 )
|σ| iλ2 K iλ

2
(2π|σ|y)

(2.1.30)
and [36, p. 413]∫ ∞

0

K iλ
2

(2πσIm z)K iλ
2

(2πσImw) cos(2πσRe (z − w)))dσ

=
1

8
(Im zImw)−

1
2 Γ(

1 + iλ

2
)Γ(

1− iλ
2

)P− 1
2 + iλ

2
(cosh d(z, w)). (2.1.31)
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The isometry property is then a consequence of (1.2.15) and of Mehler’s decom-
position [36, p. 398] of functions f ∈ C∞0 (Π) provided by the pair of formulas

f(z) =

∫ ∞
0

fλ(z)

(
πλ

2
tanh

πλ

2

)
dλ,

fλ(z) =
1

4π2

∫
Π

f(w)P− 1
2 + iλ

2
(cosh d(z, w))dm(w). (2.1.32)

The factor
πλ

2
tanh

πλ

2
= π

Γ
(

1+iλ
2

)
Γ
(

1−iλ
2

)
Γ
(
iλ
2

)
Γ
(−iλ

2

) (2.1.33)

appears repeatedly in connection with Mehler’s transformation. That the range
of TV is invariant under the involution under consideration has been established
before the statement of the theorem; that it is the full subspace of L2

even(R2)
characterized by this invariance or, what amounts to the same, that the image
is dense, can be obtained by linking this to a property of Θ0, with the help of
Proposition 2.1.1. �

Note that if Hiλ denotes the completion of the space of all fλ ( f ∈ C∞0 (Π))
under the norm such that

‖fλ‖2Hiλ = (4π2)−2

∫
Π×Π

f(z)f̄(w)P− 1
2 + iλ

2
(cosh d(z, w))dm(z)dm(w)

= (4π2)−1(fλ|f)L2(Π), (2.1.34)

one has the identity

‖f‖2L2(Π) = 4π2

∫ ∞
0

‖fλ‖2Hiλ

(
πλ

2
tanh

πλ

2

)
dλ. (2.1.35)

The following consequence of (2.1.24) and Theorem 2.1.2 was announced in
(1.1.43): if a G-invariant function h ∈ L2

even(R2) is the image under 2iπE of some
function in L2

even(R2), so that Γ(iπE)h ∈ L2
even(R2) too, one has

‖Θ0h‖L2(Π) = 2‖Γ(iπE)h‖L2(R2). (2.1.36)

Equation (1.1.44) follows from the preceding one and from (2.1.2).

Restricting the dual Radon transform to K-invariant functions, and using
analytic continuation to replace iλ by a more general complex number ν, one

observes from (2.1.10) that if h(x, ξ) = (x2 + ξ2)
−1−ν

2 , one has

(V ∗h)(iy) =
1

2π

∫ 2π

0

(y cos2 θ

2
+ y−1 sin2 θ

2
)
−1−ν

2 dθ (2.1.37)

=
1

2π

∫ 2π

0

[
y + y−1

2
+
y − y−1

2
cos θ

]−1−ν
2

dθ = P−1−ν
2

(
y + y−1

2

)



2.1. The Radon transformation 55

[36, p. 184] or, more generally, using covariance,

(V ∗h)(z) = P−1−ν
2

(cosh d(i, z)), (2.1.38)

where d is the hyperbolic distance in Π.

The study of the restriction of the Radon, or dual Radon, transform and their
associates to K-invariant functions is very classical: even more so, it is usually a
preparation for the more general theory. All this fits within the so-called theory of
Gelfand pairs and spherical function theory [18, 8]. In Section 2.3, we shall consider
the way these transformations can be restricted to MA-invariant functions.

Consider the part of the Weyl calculus concerned with operators preserv-
ing the parity of functions, in other words the one defined from the considera-
tion of even symbols only. It would be perfectly possible, if hardly advisable in
general, to define a variant of this calculus in which symbols would be pairs of
functions in Π, the images of the “true” symbol under the map Θ in (2.1.1). We
here mention this possibility since, in the automorphic case, such a transfer will
make it possible to bypass some technical difficulties inherent in the automorphic
Weyl calculus, the source of which will be described in Section 3.4. One of our
main interests in pseudo-differential analysis lies in the composition formulas: in
view of Theorem 1.2.2, all we have to do is transferring under any associate of
the dual Radon transformation the operations obtained from the integral kernels
χε1,ε2;ε
iλ1,iλ2;iλ(s1, s2; s). Actually, since we are only dealing with even symbols, one

must take δ = δ1 = δ2 = 0 with the notation from the theorem just referred to,
so that, from (1.2.27), only the two cases in which ε1 = ε2 = ε = 0 or 1 must be
considered.

As will be seen presently, when dealing with homogeneous symbols of given
degrees of homogeneity, the operator with integral kernel χ0,0,0

iλ1,iλ2;iλ (respectively

χ1,1,1
iλ1,iλ2;iλ) will appear, up to scalar factors, as the transfer under any associate of

the Radon transformation of the operator of pointwise multiplication (respectively.
the Poisson bracket) on functions on Π. The simplicity of the result should not
lead one to believe that a non-computational proof should exist as well: for, when
restricted to pairs of (generalized) eigenfunctions of ∆ for specific eigenvalues, a
bilinear operator as simple as the pointwise product of functions may have a variety
of quite complicated disguises. Given h ∈ Seven(R2), let us not confuse, in what
follows, the function hiλ (a function on R2\{0}, homogeneous of degree −1− iλ)
and the function h[iλ on the line (to be precise, on the projective completion of the
line).

Proposition 2.1.3. Let λ1, λ2, λ be real numbers, and let h1, h2 be two even func-
tions in S(R2). One has the identity
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(TV ((V ∗T ∗(h1)iλ1
).(V ∗T ∗(h2)iλ2

)))[iλ(s) = 2−
9
2π−2 (2.1.39)

×
Γ
(

1−i(λ+λ1+λ2)
4

)
Γ
(

1+i(λ−λ1+λ2)
4

)
Γ
(

1+i(λ+λ1−λ2)
4

)
Γ
(

1+i(λ−λ1−λ2)
4

)
Γ
(
− iλ1

2

)
Γ
(
− iλ2

2

)
Γ
(
iλ
2

)
×
∫
R2

χ0,0,0
iλ1,iλ2;iλ(s1, s2; s)(h1)[λ1

(s1)(h2)[λ2
(s2)ds1ds2.

Proof. As already noted in (1.2.29), one has the estimate |(h1)[λ1
(s1)| ≤ C(1 +

s2
1)−

1
2 and a similar one relative to (h2)[λ2

. Using (2.1.15) and (2.1.16), one can
write the left-hand side of the identity to be proved as

1

2
(2π)−

5
2

Γ
(

1−iλ1

2

)
Γ
(

1−iλ2

2

)
Γ
(

1+iλ
2

)
Γ
(
− iλ1

2

)
Γ
(
− iλ2

2

)
Γ
(
iλ
2

)
×
∫
R2

Aiλ1,iλ2;iλ(s1, s2; s)(h1)[λ1
(s1)(h2)[λ2

(s2)ds1ds2 (2.1.40)

with

Aiλ1,iλ2;iλ(s1, s2; s)

=

∫
Π

(
|z − s1|2

Im z

)− 1
2 +

iλ1
2
(
|z − s2|2

Im z

)− 1
2 +

iλ2
2
(
|z − s|2

Im z

)− 1
2−

iλ
2

dm(z). (2.1.41)

Using the identity

Aiλ1,iλ2;iλ

(
as1 + b

cs1 + d
,
as2 + b

cs2 + d
;
as+ b

cs+ d

)
= |cs1 + d1|1−iλ1 |cs2 + d1|1−iλ2 |cs+ d|1+iλAiλ1,iλ2;iλ(s1, s2; s), (2.1.42)

a consequence of

|z − as+b
cs+d |

2

Im z
= (cs+ d)−2 |g−1.z − s|2

Im (g−1.z)
, g =

(
a b
c d

)
, (2.1.43)

and noting that if s1, s2, s are the images of 0, 1,∞ under the fractional-linear
transformation associated to the matrix

(
a b
c d

)
, then

χ0,0,0
iλ1,iλ2;iλ(s1, s2; s) = |d|1−iλ1 |c+ d|1−iλ2 |c|1+iλ, (2.1.44)

one gets

Aiλ1,iλ2;iλ(s1, s2; s) = I(iλ1, iλ2; iλ)χ0,0,0
iλ1,iλ2;iλ(s1, s2; s) (2.1.45)

with

I(iλ1, iλ2; iλ) =

∫
Π

(
|z|2

Im z

)− 1
2 +

iλ1
2
(
|z − 1|2

Im z

)− 1
2 +

iλ2
2

(Im z)
1
2 + iλ

2 dm(z),

(2.1.46)
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a convergent integral. The justification of all that precedes is based on (1.2.29)
and on the easily proved estimate∫

R3

|(s1−s2)(s2−s)(s−s1)|− 1
2 ((1+s2

1)(1+s2
2)(1+s2))−

1
2 ds1ds2ds <∞. (2.1.47)

Using (2.1.30) and the Plancherel formula for the dx-integration, we obtain

I(iλ1, iλ2; iλ) =
8π1− i(λ1+λ2)

2

Γ( 1−iλ1

2 )Γ( 1−iλ2

2 )

∫ ∞
0

y−
1
2 + iλ

2 dy

∫ ∞
0

σ−
i(λ1+λ2)

2 cos(2πσ)

×K iλ1
2

(2πσy)K iλ2
2

(2πσy)dσ, (2.1.48)

where the dσ-integration has to be carried first. Integrating instead with respect
to dy first so as to take advantage of [36, p. 101], one would formally obtain

I(iλ1, iλ2; iλ) =
π

1
2

2Γ( 1−iλ1

2 )Γ( 1−iλ2

2 )Γ( 1+iλ
2 )
× Γ

(
1− i(λ+ λ1 + λ2)

4

)
(2.1.49)

× Γ

(
1 + i(λ− λ1 + λ2)

4

)
Γ

(
1 + i(λ+ λ1 − λ2)

4

)
Γ

(
1 + i(λ− λ1 − λ2)

4

)
,

and the process can be justified if one first inserts under the right-hand side of
(2.1.48) the factor h(εσ) for some h ∈ S(R) with h(0) = 1, letting at the end ε go
to zero. �

Even though we shall not need this result in our main applications in Chapter
4, let us mention the following analogue of Proposition 2.1.3, in which the Poisson
bracket of two smooth functions in Π is defined as

{f1, f2} = y2

(
−∂f1

∂y

∂f2

∂x
+
∂f1

∂x

∂f2

∂y

)
. (2.1.50)

Proposition 2.1.4. Under the assumptions of Proposition 2.1.3, one has

(TV ({V ∗T ∗(h1)iλ1).(V ∗T ∗(h2)iλ2}))[iλ(s) = 2−
7
2π−2 (2.1.51)

×
Γ
(

3−i(λ+λ1+λ2)
4

)
Γ
(

3+i(λ−λ1+λ2)
4

)
Γ
(

3+i(λ+λ1−λ2)
4

)
Γ
(

3+i(λ−λ1−λ2)
4

)
Γ
(
− iλ1

2

)
Γ
(
− iλ2

2

)
Γ
(
iλ
2

)
×
∫
R2

χ1,1,1
iλ1,iλ2;iλ(s1, s2; s)(h1)[λ1

(s1)(h2)[λ2
(s2)ds1ds2.

The proof of this proposition, fully similar to that of Proposition 2.1.3, can
be found if desired in [60, p. 73].
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2.2 Back to the totally radial Weyl calculus

In this section, we examine the exact way in which the map Λ in Theorem 1.3.1
differs from an isometry, and we connect the totally radial calculus, with symbols
living on Π, to the so-called Berezin calculus [2]. This ought to please people
interested in quantization theory, by which we here mean the development of
analogous (covariant) pseudo-differential analyses in which symbols are functions
on rather general homogeneous spaces, in particular hermitian symmetric spaces.
Even so, this is not yet the “good” symbolic calculus of totally radial operators:
as will be seen in Chapter 6, calculations of an arithmetic character demand that
symbols should live on the plane rather than the half-plane.

Lemma 2.2.1. For every function F (p, q, r) on the cone

C = {(p, q, r) : p > (q2 + r2)
1
2 },

one has, assuming summability, and recalling that ωn = 2π
n
2

Γ(n2 ) ,

I : =

∫
Rn×Rn

F

(
|x|2 + |ξ|2

2
, 〈x, ξ〉, |x|

2 − |ξ|2

2

)
dxdξ

=
ωnωn−1

2

∫
C

F (p, q, r)[p2 − q2 − r2]
n−3

2 dpdqdr. (2.2.1)

Proof. Set

F (p, q, r) = H(p+ r, q, p− r) = H(a, b, c), (2.2.2)

so that

I =

∫
Rn×Rn

H(|x|2, 〈x, ξ〉, |ξ|2)dxdξ. (2.2.3)

Given x, there is an x-dependent rotation in ξ-space which transforms 〈x, ξ〉 to
|x|ξ1. Hence, with ξ = (ξ1, ξ∗),

I =

∫
Rn×Rn

H(|x|2, |x|ξ1, |ξ|2)dxdξ

= ωn−1

∫
Rn
dx

∫ ∞
−∞

dξ1

∫ ∞
0

tn−2H(|x|2, |x|ξ1, ξ2
1 + t2)dt

= ωnωn−1

∫ ∞
−∞

dξ1

∫ ∞
0

∫ ∞
0

sn−1tn−2H(s2, sξ1, ξ
2
1 + t2)dsdt

=
1

4
ωnωn−1

∫
a>0,c>0,|b|<

√
ac

(ac− b2)
n−3

2 H(a, b, c)dadbdc, (2.2.4)

which leads to the expression indicated. �
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Theorem 2.2.2. Assuming n ≥ 2, let f ∈ L2(Π). One has the identity (in which Λ
is the map Λ in Theorem 1.3.1)

‖Λf‖2L2(R2n) =
21−2nπ

(Γ(n2 ))2
‖Γ (n−1

2 +i
√

∆− 1
4 ) f‖2L2(Π). (2.2.5)

Proof. Since (p2− q2− r2)
1
2 = s, one obtains after a straightforward computation

of the jacobian∣∣∣∣D(p, q, r)

D(s, x, y)

∣∣∣∣ =

∣∣∣∣D(p, q, p+ r)

D(s, x, y)

∣∣∣∣ =

∣∣∣∣D(s 1+|z|2
2y , sxy ,

s
y )

D(s, x, y)

∣∣∣∣ =
s2

y2
(2.2.6)

the expression

[p2 − q2 − r2]
n−3

2 dpdqdr = sn−1ds
dxdy

y2
(2.2.7)

in terms of the coordinates (s, z) = (s, x+ iy) linked to (p, q, r) by (1.3.28).

If f satisfies the first identity (2.1.32), (1.3.20) can be rewritten as

(θf)(s, z) = s−
1
2

∫ ∞
0

K iλ
2

(4πs)fλ(z)

(
πλ

2
tanh

πλ

2

)
dλ. (2.2.8)

Then, using Lemma 2.2.1, (2.2.7) and (2.1.35), one obtains

‖Λf‖2L2(R2n)

= 4π2ωnωn−1

2

∫ ∞
0

sn−2ds

∫ ∞
0

|K iλ
2

(4πs)|2‖fλ‖2iλ
(
πλ

2
tanh

πλ

2

)
dλ. (2.2.9)

Now, according to [36, p. 101], and using the duplication formula for the Gamma
function,∫ ∞

0

sn−2
[
K iλ

2
(4πs)

]2
ds = 2−2nπ−n+ 3

2
Γ(n−1

2 )

Γ(n2 )
Γ

(
n− 1 + iλ

2

)
Γ

(
n− 1− iλ

2

)
.

(2.2.10)
The theorem follows. �

Theorem 2.2.3. For every w ∈ Π, define on Rn the radial function

φw(x) =

(
2Im (− 1

w
)

)n
4

exp

(
iπ

w̄
|x|2
)
, (2.2.11)

generalizing (1.1.32). For every function f ∈ L2(Π), one has

(φw|Op(Λf)φw)L2(Rn) = 2−n−
1
2

∫
Π

f(z)|(φw|φz)|2dm(z)

= 2−
n
2−

1
2

∫
Π

f(z)(1 + cosh d(z, w))−
n
2 dm(z). (2.2.12)
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Proof. Using the covariance property, it is no loss of generality to assume that
w = i. One has

W (φi, φi)(x, ξ) = 2n exp(−2π(|x|2 + |ξ|2)) = 2ne−4πp

in terms of the coordinates p, q, r introduced just after (1.3.23). Using Lemma
2.2.1, then (1.3.28) to express p in terms of s, z, one can write

(φi|Op(Λf)φi) = 2n−1ωnωn−1

∫ ∞
0

sn−1ds

×
∫

Π

s−
1
2

(
K
i
√

∆− 1
4

(4πs)f
)

(z) exp

(
−4πs

1 + |z|2

2Im z

)
dm(z) : (2.2.13)

we set

δ = cosh d(i, z) =
1 + |z|2

2Im z
. (2.2.14)

To continue the calculation, we must integrate by parts, letting the self-
adjoint operator K

i
√

∆− 1
4

(4πs) act on the function z 7→ exp (−4πs cosh d(i, z))

rather than on f . On functions of δ = cosh d(i, z), the operator ∆ acts as the ordi-

nary differential operator (1− δ2) d
2

dδ2 − 2δ ddδ and, on the interval (1,∞), Legendre
functions provide generalized eigenfunctions, since[

(1− δ2)
d2

dδ2
− 2δ

d

dδ

]
P− 1

2 + iλ
2

(δ) =
1 + λ2

4
P− 1

2 + iλ
2

(δ). (2.2.15)

Mehler’s inversion formula (2.1.32) then gives the integral decomposition

e−4πsδ =

∫ ∞
0

ψ(λ)P− 1
2 + iλ

2
(δ)dλ (2.2.16)

if

ψ(λ) =
λ

4
tanh

πλ

2

∫ ∞
1

e−4πsδP− 1
2 + iλ

2
(δ)dδ

= 2−
3
2π−1 Γ( 1+iλ

2 )Γ( 1−iλ
2 )

Γ( iλ2 )Γ(−iλ2 )
s−

1
2K iλ

2
(4πs), (2.2.17)

where we have used on one hand (2.1.33), on the other hand [36, p. 194] to compute
the last integral. Then, the image of the function e−4πs cosh d(i,z) under the operator
K
i
√

∆− 1
4

(4πs) is

K
i
√

∆− 1
4

(4πs)
(
e−4πsδ

)
= 2−

3
2π−1

∫ ∞
0

Γ( 1+iλ
2 )Γ( 1−iλ

2 )

Γ( iλ2 )Γ( 2−iλ
2 )

s−
1
2

[
K iλ

2
(4πs)

]2
P− 1

2 + iλ
2

(δ)dλ (2.2.18)
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and, from (2.2.13),

(φi|Op(Λf)φi) = 2n−1ωnωn−12−
3
2π−1

∫ ∞
0

sn−2ds

×
∫

Π

f(z)dm(z)

∫ ∞
0

Γ( 1+iλ
2 )Γ( 1−iλ

2 )

Γ( iλ2 )Γ(−iλ2 )

[
K iλ

2
(4πs)

]2
P− 1

2 + iλ
2

(δ)dλ. (2.2.19)

Now [36, p. 101], one has (cf. (2.2.10))∫ ∞
0

sn−2
[
K iλ

2
(4πs)

]2
ds = 2−2nπ

3
2−n

Γ(n−1
2 )

Γ(n2 )
Γ(
n− 1 + iλ

2
)Γ(

n− 1− iλ
2

) :

(2.2.20)
with the help of the last two equations, one obtains the equation

(φw|Op(Λf)φw) =
2−n−

1
2

(Γ(n2 ))2

∫
Π

f(z)dm(z) (2.2.21)

×
∫ ∞

0

Γ( 1+iλ
2 )Γ( 1−iλ

2 )

Γ( iλ2 )Γ(−iλ2 )
Γ(
n− 1 + iλ

2
)Γ(

n− 1− iλ
2

)P− 1
2 + iλ

2
(cosh d(z, w))dλ.

We transform now the right-hand side of (2.2.12), still under the assumption
that w = i, by decomposing the function z 7→ (1 + cosh d(i, z))−

n
2 into generalized

eigenfunctions of ∆. Again, Mehler’s inversion formula gives the answer. Using
first the Gamma integral, next the integral already used in (2.2.17), we obtain∫ ∞

1

(1 + δ)−
n
2 P− 1

2 + iλ
2

(δ)dδ =
(4π)

n
2

Γ(n2 )

∫ ∞
0

s
n
2 e−4πsds

∫ ∞
1

e−4πsδP 1
2 + iλ

2
(δ)dδ

=
1

2
1
2π

(4π)
n
2

Γ(n2 )

∫ ∞
0

s
n−3

2 e−4πsK iλ
2

(4πs)ds

= 2−
n
2 +1 Γ

(
n−1+iλ

2

)
Γ
(
n−1−iλ

2

)
(Γ(n2 ))2

: (2.2.22)

at the last point, we have used the integral given in [13], p. 98. Then,

(1 + δ)−
n
2 =

∫ ∞
0

ψ(λ)P 1
2 + iλ

2
(δ)dλ (2.2.23)

with

ψ(λ) = 2−
n
2

Γ( 1+iλ
2 )Γ( 1−iλ

2 )

Γ( iλ2 )Γ(−iλ2 )

Γ
(
n−1+iλ

2

)
Γ
(
n−1−iλ

2

)
(Γ(n2 ))2

. (2.2.24)

This proves the identity of the right-hand sides of (2.2.12) and (2.2.21). One also
observes, since

φ−z−1(x) = (2Im z)
n
4 e−iπz̄|x|

2

, (2.2.25)
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that

|(φ−z−1 |φi)|2 = 2n(Im z)
n
2 [(Re z)2 + (1 + Im z)2]−

n
2

=

(
1 + cosh d(i, z)

2

)−n2
= |(φz|φi)|2. (2.2.26)

�

Remark 2.2.a. The present short remark will not be used in all that follows, and
addresses itself only to readers interested in quantization theory, in particular in
the Berezin calculus [2]. The first equation (2.2.12) can be interpreted as the fact

that the function 2−n−
1
2 f coincides with the contravariant symbol of the operator

(on functions defined on the half-line) ROp(Λf)R−1, with R as defined in (1.3.1):
more precisely, since Berezin considered only complex-type realizations of Hilbert
spaces with reproducing kernels, one should consider the conjugate of the last
operator under the Laplace transformation defined in (1.3.7).

2.3 The dual Radon transform of bihomogeneous dis-
tributions

N.B. This section, in which the function χρ,ν , basic in Chapter 4, is analyzed, has
no independent interest: we therefore suggest that the reader should be temporarily
satisfied with a look at Proposition 2.3.2 and Proposition 2.3.5. Theorem 2.4.1,
in the section to follow, will already give some explanation of our interest in the
function χρ,ν .

Theorem 1.1.3 has shown the relevance of homogeneous functions, or distri-
butions on R2, to modular form theory. It is natural to refine the notion by the
consideration of bihomogeneous symbols, considering the variables x, ξ separately.

In other words, besides the Euler operator E = 1
2iπ

(
x ∂
∂x + ξ ∂∂ξ + 1

)
, we wish to

consider the operator B = 1
4iπ

(
x ∂
∂x − ξ

∂
∂ξ

)
. Since the two operators commute,

one may consider their joint spectral theory. Of course, the operator B does not
commute with the action of SL(2,R), or SL(2,Z), and it will not be possible to
consider (in Chapter 4) modular distributions which would be at the same time
generalized eigenfunctions of it. But applying the Poincaré summation process,
starting from functions on Π built from bihomogeneous symbols, will lead to a
class of automorphic functions with interesting properties.

Here, we still concentrate on the non-arithmetic situation. Note the equation

(Bh)(x, ξ) =
1

2iπ

d

dr

∣∣∣∣
r=0

h(e
r
2 x, e−

r
2 ξ), (2.3.1)

which indicates that B is the infinitesimal operator of the action on symbols of the
one-parameter group A ⊂ SL(2,R) recalled in (2.1.6). In view of the covariance
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property (1.1.20), the operator B has an interpretation in the Weyl calculus, ex-
pressed by the commutation identity, in which h is an arbitrary symbol in S ′(R2),

Op(Bh) =
1

2

[
QP + PQ

2
,Op(h)

]
, (2.3.2)

involving the basic infinitesimal operators Q and P of Heisenberg’s representation.
By the way, the operator E , too, has an interpretation in the symbolic calculus
(not linked to covariance), to wit the general identity

Op(Eh) = POp(h)Q−QOp(h)P. (2.3.3)

Both formulas are easily obtained from (1.2.6).

In view of arithmetic applications, we consider only even functions of x, ξ in
the plane, since the dual Radon transformation kills odd functions. As done in
[61, Section 18], the consideration of odd functions of x, ξ is necessary if, besides
(Maass) non-holomorphic modular forms of usual type, one interests oneself in
so-called Maass forms of weight one [4, Section 2.1]. It is for simplicity that we
shall consider here only functions separately even with respect to x and ξ. This
will force us to restrict our interest, in Chapter 4, to non-holomorphic modular
forms of even type under the symmetry z 7→ −z̄: this is not necessary, but it is
sufficient for our main purpose there.

Then, joint generalized eigenfunctions of the pair (E ,B), to wit separately
even symbols satisfying the pair of equations

2iπEh = νh, 4iπBh = (ρ− 1)h, (2.3.4)

are multiples of the function

homρ,ν(x, ξ) = |x|
ρ+ν−2

2 |ξ|
ν−ρ

2 . (2.3.5)

Theorem 1.2.2, more precisely (1.2.68), has shown how such symbols, with ν on
the line Re ν = 0 and ρ on the line Re ρ = 1 occur from the decomposition into
homogeneous components of a sharp product such as |x|−1−iλ1#|ξ|−1−iλ2 .

Our task in the present section is the computation and analysis of the func-
tion on Π obtained from the function (2.3.5) by a dual Radon transformation.
Transferring under such a transformation the operator B, one will obtain an op-
erator commuting with ∆. Starting from (2.1.8) and using the equation(

x
∂

∂x
− ξ ∂

∂ξ

)
x2(i+ b)

xξ(i+ b) + 1
= 2

x2(i+ b)

xξ(i+ b) + 1
, (2.3.6)

one obtains the general identity

BV f = V

(
1

2iπ

(
z
∂

∂z
+ z

∂

∂z

)
f

)
. (2.3.7)
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Again, on Π, the Euler operator z ∂
∂z + z ∂

∂z does not commute with the action of
SL(2,Z) by fractional-linear transformations, and this operator does not preserve
automorphic functions: in Chapter 4, something will remain from it, however, in
an automorphic situation.

From (2.1.10), we obtain

(V ∗homρ,ν)(x+ iy) =
1

2π

∫ 2π

0

|y− 1
2 sin

θ

2
|
ν−1

2 |y 1
2 cos

θ

2
− xy− 1

2 sin
θ

2
|
ρ+ν−2

2 dθ

= y
ρ−1

2 × 1

2π

∫ 2π

0

| sin θ
2
|
ν−1

2 | cos
θ

2
− x

y
sin

θ

2
|
ρ+ν−2

2 dθ. (2.3.8)

We must thus compute the integral obtained, a function of x
y only. The simplest

case is that for which ρ = 1, which corresponds to MA-invariant symbols. As will
be seen, while simpler, it is often a singular case rather than a special case only:
this will be even more apparent in Chapter 4. For the time being, the computation
of the integral (2.3.8) is quite simple when ρ = 1. Indeed, setting t = x

y , we first
write it as

(V ∗hom1,ν)(x+ iy) =
1

2π
2

1−ν
2

∫ 2π

0

| sin θ − t(1− cos θ)|
ν−1

2 dθ : (2.3.9)

after a t-dependent translation in the θ-variable, we can change sin θ− t(1− cos θ)
to
√

1 + t2 cos θ, so that

(V ∗hom1,ν)(x+ iy) = 2
−1−ν

2 π−1

∫ 2π

0

|t−
√
t2 + 1 cos θ|

ν−1
2 dθ. (2.3.10)

Starting from the classical integral representation [36, p. 184] of Legendre functions

P ν−1
2

(w) =
1

2π

∫ 2π

0

[w +
√
w2 − 1 cos θ]

ν−1
2 dθ (2.3.11)

and using the relation

e−
iπ(1−ν)

4 + e
iπ(1−ν)

4 =
2π

Γ( 1+ν
4 )Γ( 3−ν

4 )
, (2.3.12)

one obtains, setting t = x
y and assuming that Re ν > −1 for convergence,

(V ∗hom1,ν)(x+ iy) = 2
−1−ν

2 π−1Γ(
1 + ν

4
)Γ(

3− ν
4

)
[
P ν−1

2
(it) + P ν−1

2
(−it)

]
:

(2.3.13)
this is an analytic function of t on the whole real line, since one has [36, p. 153]

P ν−1
2

(−it) = 2F1

(
1− ν

2
,

1 + ν

2
; 1;

1 + it

2

)
, (2.3.14)
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and the hypergeometric function is single-valued when a cut along the real line,
from 1 to ∞, has been made in the plane.

We shall spend more time on the general case, in which ρ is arbitrary. From
the second equation (2.3.4), the function V ∗homρ,ν on Π must satisfy the trans-

formation rule V ∗homρ,ν(az) = a
ρ−1

2 V ∗homρ,ν(z) for a > 0. From Theorem 2.1.2
and the fact that the operator T there commutes with E , it must also satisfy the

equation
(

∆− 1−ν2

4

)
V ∗homρ,ν = 0; finally, it must be invariant under the map

z 7→ −z̄. One must thus have

V ∗homρ,ν(z) = (Im z)
ρ−1

2 χ

(
Re z

Im z

)
(2.3.15)

for some even function χ = χ(t) on the real line, chosen so that the right-hand

side of this equation, as a function of z, should lie in the nullspace of ∆ − 1−ν2

4 .
Temporarily forgetting the parity condition, it is a straightforward matter to verify
that this is the case if and only if the function χ satisfies the ordinary differential
equation

(1 + t2)χ′′(t) + (3− ρ)tχ′(t) +

[
1− ν2

4
+

(ρ− 1)(ρ− 3)

4

]
χ(t) = 0. (2.3.16)

We first solve this equation in each of the intervals ]−∞, 0[ and ]0,∞[. The
WKB method shows that, as t→ ±∞, χ(t) must be equivalent to a constant times

|t|
µ+ρ−2

2 , with µ = ±ν: more precisely, it is so unless the real part of ν is zero. It
is then natural to set

χ(t) =

(
−1− it

2

) ρ+ν−2
2

+

ψ(t), (2.3.17)

where we now make our convention regarding powers of complex numbers with
non-integral exponents explicit: we shall denote as zα the complex power of a
number z with Im z > 0, when the argument is taken in ]0, π[, and as zα+ the
corresponding complex power of z with z /∈] −∞, 0] when the argument is taken
in ]− π, π[. Then,

(−iz)α+ = e−
iπα

2 zα if Im z > 0. (2.3.18)

Unless otherwise stated, the cut made to make the hypergeometric function a
single-valued function will always be the interval [1,∞[.

Lemma 2.3.1. Given ρ, ν ∈ C with ν /∈ Z, ρ+ ν /∈ 2Z, the function

χ(t) =

(
−1− it

2

) ρ+ν−2
2

+
2F1

(
1− ν

2
,

2− ρ− ν
2

: 1− ν;
2

1 + it

)
(2.3.19)

satisfies the equation (2.3.16) in ]−∞, 0[∪]0,∞[.
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Proof. Set ψ(t) = F (s) with s = 2
1+it . The computations which follow are abso-

lutely tedious but straightforward. If χ and ψ are linked by (2.3.17), one has

χ′(t)

χ(t)
=
ψ′(t)

ψ(t)
+
i(ρ+ ν − 2)

4
s,

χ′′(t)

χ(t)
=
ψ′′(t)

ψ(t)
+
i(ρ+ ν − 2)

2
s
ψ′(t)

ψ(t)
− (2− ρ− ν)(4− ρ− ν)

16
s2. (2.3.20)

Then, (2.3.16) reads

(1 + t2)ψ′′(t) +

[
i(ρ+ ν − 2)

2
s(1 + t2) + (3− ρ)t

]
ψ′(t)

+

[
− (2− ρ− ν)(4− ρ− ν)

16
s2(1 + t2)

+
i(3− ρ)(ρ+ ν − 2)

4
st+

1− ν2

4
+

(ρ− 1)(ρ− 3)

4

]
ψ(t) = 0. (2.3.21)

Now, one has

ψ′(t) = − i
2
s2F ′(s), ψ′′(t) = −s

3

2
F ′(s)− s4

4
F ′′(s). (2.3.22)

Also,

it =
2

s
− 1, 1 + t2 =

4(s− 1)

s2
, (2.3.23)

and one obtains

4(1− s)
[
s

2
F ′ +

s2

4
F ′′
]

+

[
i(ρ+ ν − 2)

2

4(s− 1)

s
− i(3− ρ)(

2

s
− 1)

](
− i

2
s2F ′

)
+

[
− (2− ρ− ν)(4− ρ− ν)

4
(s− 1) + (3− ρ)

ρ+ ν − 2

4
s(

2

s
− 1)

+
1− ν2

4
+

(ρ− 1)(ρ− 3)

4

]
F = 0. (2.3.24)

The coefficient of F here reduces to (ρ+ν−2)(1−ν)
4 s. The coefficient of F ′′ is s2(1−s),

and the coefficient of F ′ is

(ρ+ν−2)s(s−1)+
ρ− 3

2
(2s−s2)−2s(s−1) = (ν+

ρ− 5

2
)s2 +(1−ν)s. (2.3.25)

The equation for F equivalent to (2.3.21), hence to (2.3.16), is, after we have
divided everything by s,

s(1−s)F ′′(s)+[1−ν− 5− ρ− 2ν

2
s]F ′(s)+

(ρ+ ν − 2)(1− ν)

4
F (s) = 0 : (2.3.26)

a solution of it is the function 2F1

(
1−ν

2 , 2−ρ−ν
2 ; 1− ν; s

)
. This proves the lemma.

�
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It is useful to make the way χ transforms under the symmetry t 7→ −t explicit.
From [36, p. 47], one obtains if Re z 6= 0, with some care about determinations of
power functions, the general identity

2F1(a, b; c; z) = e−iπbsign(Im z)(−z−1)b+

(
1− z
z

)−b
+

2F1

(
c− a, b; c; z

z − 1

)
:

(2.3.27)
if z = 2

1+it with t ∈ R, t 6= 0, the signs of Im z and of t are the negative of each

other, and one has z
z−1 = 2

1−it so that, starting from the hypergeometric function
occurring in the definition of χ, one must read the product of power functions on
the right-hand side of (2.3.27) as(

−1− it
2

) 2−ρ−ν
2

+

(
−1 + it

2

)−2+ρ+ν
2

+

. (2.3.28)

It follows that
χ(t) = e

iπ(2−ν−ρ)
2 χ(−t) if t > 0. (2.3.29)

Remark 2.3.a. In the next proposition, we define the function χρ,ν as a certain
multiple of the function χ in (2.3.19). The normalization is chosen so that one
should have simply

P ν−1
2

(−it) = χ1,ν(t) + χ1,−ν(t) (2.3.30)

and, more important, that the quantities denoted as C(ρ, ν) and I(ρ, ν) in what
follows should be odd functions of ν.

Proposition 2.3.2. Assume that ν /∈ Z and ρ± ν /∈ 2Z, and set

χρ,ν(t) = 2ν−1π−
1
2

Γ(ν2 )

Γ( 2−ρ+ν
2 )

×
(
−1− it

2

) ρ+ν−2
2

+
2F1

(
1− ν

2
,

2− ρ− ν
2

: 1− ν;
2

1 + it

)
. (2.3.31)

This function is analytic in R\{0} and one has for some constant C > 0 the
inequality

|χρ,ν(t)| ≤ C(1 + |t|)
Re (ρ+ν)−2

2 , t 6= 0. (2.3.32)

It extends as a C∞ function to each of the two closed intervals ]−∞, 0] and [0,∞[.
The negative of the jump at 0 of the first-order derivative is

C(ρ, ν) = 22−ρπ
1
2

Γ(ν2 )Γ( 2−ν
2 )

Γ( 2−ρ+ν
2 )Γ( 2−ρ−ν

2 )Γ(ρ+ν4 )Γ(ρ−ν4 )
. (2.3.33)

For Re (ρ+ ν) < 0, one has

I(ρ, ν) : =

∫ ∞
−∞

χρ,ν(t)dt =
4C(ρ, ν)

ν2 − ρ2
: (2.3.34)
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we still denote as I(ρ, ν) the analytic continuation of this function.

Proof. Let us temporarily denote as χoρ,ν the function in (2.3.19), so as not to have
to carry the extra coefficient in the first line of (2.3.31) all the time. Similarly, we
denote as Co(ρ, ν) and Io(ρ, ν) the quantities defined in the same way as C(ρ, ν)
and I(ρ, ν), only with χρ,ν replaced by χoρ,ν .

We first consider the case when ρ− 1 /∈ 2Z. We need to analyze the function
χρ,ν(t) as t→ 0+ or 0−, so that the argument 2

1+it of the hypergeometric function
goes to 2: to avoid arguments close to the half-line [1,∞[, we use [36, p. 48],

(−z)b+2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)b−a+ 2F1(a, a− c+ 1; a− b+ 1;

1

z
)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) 2F1(b, b− c+ 1; b− a+ 1;

1

z
). (2.3.35)

This equation, applied with z = 2
1+it , shows, since in our case b − a = 1−ρ

2 is
assumed to lie outside Z, that the function χρ,ν , while continuous on each of the
two intervals ] − ∞, 0] and [0,∞[, has a discontinuity at 0. It is an easy, but
unnecessary matter, to compute the jump there of this function: actually, we shall
kill this discontinuity later by considering only the even part of χρ,ν .

It is clear, since the cut along [1,∞[ made to define the hypergeometric
function could be moved slightly, that, on each of the two closed intervals under
consideration, the function χρ,ν is actually C∞. We need to compute the jump of
its first derivative at 0. From [36, p. 41], we pick the relations, for z /∈ [0,∞[,

z2 d

dz

[
(−z)

2−ρ−ν
2

+ 2F1

(
1− ν

2
,

2− ρ− ν
2

; 1− ν; z

)]
=
ρ+ ν − 2

2
(−z)

4−ρ−ν
2

+ 2F1

(
1− ν

2
,

4− ρ− ν
2

; 1− ν; z

)
(2.3.36)

and

z2 d

dz

[
(−z)

−ρ−ν
2

+ 2F1

(
1− ν

2
,
−ρ− ν

2
; 1− ν; z

)]
=
ρ+ ν

2
(−z)

2−ρ−ν
2

+ 2F1

(
1− ν

2
,

2− ρ− ν
2

; 1− ν; z

)
. (2.3.37)

With z = 2
1+it , so that dz

dt = − i
2z

2, one obtains from these equations the relations

d

dt
χoρ,ν =

i(2− ρ− ν)

4
χoρ−2,ν ,

d

dt
χoρ+2,ν = − i(ρ+ ν)

4
χoρ,ν(t). (2.3.38)

We then apply the general identity (2.3.35) to the new hypergeometric func-
tion. When z = 2

1+it , only the first term on the right-hand side (the one accom-
panied by a power of −z) has discontinuities at t = 0: one has
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(
−1− i0+

2

)a−b
+

−
(
−1− i0−

2

)a−b
+

= 2b−a[e−iπ(a−b) − eiπ(a−b)]

= 21+b−a iπ

Γ(b− a)Γ(1 + a− b)
. (2.3.39)

It follows on one hand that

Co(ρ, ν) =
i(ρ+ ν − 2)

4
[χoρ−2,ν(0+)− χoρ−2,ν(0−)] =

2− ρ− ν
4

2
5−ρ

2

× π

Γ( 3−ρ
2 )Γ(ρ−1

2 )

Γ(1− ν)Γ( 3−ρ
2 )

Γ( 4−ρ−ν
2 )Γ( 1−ν

2 )
2F1

(
1− ν

2
,

1 + ν

2
;
ρ− 1

2
;

1

2

)
, (2.3.40)

on the other hand that

Io(ρ, ν) = − 4i

ρ+ ν
[χoρ+2,ν(0+)− χoρ+2,ν(0−)] (2.3.41)

=
4

ρ+ ν
2

1−ρ
2

π

Γ(−1−ρ
2 )Γ( 3+ρ

2 )

Γ(1− ν)Γ(−1−ρ
2 )

Γ(−ρ−ν2 )Γ( 1−ν
2 )

2F1

(
1− ν

2
,

1 + ν

2
;
ρ+ 3

2
;

1

2

)
.

Now, one has [36, p. 41]

2F1

(
1− ν

2
,

1 + ν

2
; γ;

1

2

)
= 21−γπ

1
2

Γ(γ)

Γ( 1+2γ−ν
4 )Γ( 1+2γ+ν

4 )
. (2.3.42)

Obtaining the ratio I(ρ,ν)
C(ρ,ν) = Io(ρ,ν)

Co(ρ,ν) is just a matter of applying the last three

formulas, and simplifying a few factors by means of the functional equation of the
function Gamma. To obtain C(ρ, ν), we must also apply the duplication formula,
which leads to the equation

Co(ρ, ν) = 23−ρ−νπ
Γ( 2−ν

2 )

Γ( 2−ρ−ν
2 )Γ(ρ+ν4 )Γ(ρ−ν4 )

, (2.3.43)

and finally to (2.3.33).

This completes the proof of Proposition 2.3.2 under the extra assumption
that ρ−1 /∈ 2Z. The general case follows by a continuity argument: however, since
the case when ρ = 1 will be very important in the sequel, let us just indicate the
differences in a direct proof in this case. Equation (2.3.35) does not apply any
more: instead, one has

χ1,ν(t) =
Γ(ν)Γ(1− ν)

(Γ( 1+ν
2 )Γ( 1−ν

2 ))2

∑
n≥0

1

(n!)2

Γ( 1−ν
2 + n)

Γ( 1−ν
2 )

Γ( 1+ν
2 + n)

Γ( 1+ν
2 )

(2.3.44)

×
(

1 + it

2

)n [
log

(
− 2

1 + it

)
+ 2

Γ′(n+ 1)

Γ(n+ 1)
−

Γ′( 1−ν
2 + n)

Γ( 1−ν
2 + n)

−
Γ′( 1−ν

2 − n)

Γ( 1−ν
2 − n)

]
;
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it is understood, there, that the argument − 2
1+it of the logarithm is to be taken

in the interval ]− π, π[. Then, one can write

−C(1, ν) : =

(
d

dt
χ1,ν

)
(0+)−

(
d

dt
χ1,ν

)
(0−)

= 2iπ
Γ(ν)Γ(1− ν)

(Γ( 1+ν
2 )Γ( 1−ν

2 ))2

∑
n≥1

1

(n)2

Γ( 1−ν
2 + n)

Γ( 1−ν
2 )

Γ( 1+ν
2 + n)

Γ( 1+ν
2 )

in

2n

= −2π
Γ(ν)Γ(1− ν)

(Γ( 1+ν
2 )Γ( 1−ν

2 ))3

∑
n≥1

Γ( 1−ν
2 + n)Γ( 1+ν

2 + n)

Γ(n)

2−n

n!

= −π 1− ν2

4

Γ(ν)Γ(1− ν)

(Γ( 1+ν
2 )Γ( 1−ν

2 ))2 2F1

(
3− ν

2
,

3 + ν

2
; 2;

1

2

)
. (2.3.45)

Again, the special value of the hypergeometric function is to be found in [36, p.

40]: it is π
1
2

Γ( 5+ν
4 )Γ( 5−ν

4 )
: using this, one obtains the case ρ = 1 of (2.3.33).

This was the only place where a special argument was needed when ρ = 1.
This case will be important in Chapter 4, where its singularity will originate from
the fact that the Eisenstein series Es is undefined for s = 1. �

We can now make V ∗homρ,ν explicit: in particular, in view of (2.3.13), it will
confirm (2.3.30).

Proposition 2.3.3. Under the assumptions of Proposition 2.3.2, to be completed by
Re ν > max(Re ρ− 2,−Re ρ), one has

(V ∗homρ,ν)(z) = (Im z)
ρ−1

2 (2.3.46)

× 2
ρ−ν

2 π−1 Γ( 2−ρ+ν
2 )Γ(ρ+ν4 )Γ( 4−ρ−ν

4 )

Γ(ν+1
2 )

[
χeven
ρ,ν

(
Re z

Im z

)
+ χeven

ρ,−ν

(
Re z

Im z

)]
,

with

χeven
ρ,ν (t) =

1

2
[χρ,ν(t) + χρ,ν(−t)] . (2.3.47)

Proof. The proof of Proposition 2.3.2 shows that the functions χeven
ρ,±ν are continu-

ous on the real line, even at 0: they have a discontinuity of the first-order derivative
there, expressed by the pair of equations(

χeven
ρ,ν

)′
(0+)−

(
χeven
ρ,ν

)′
(0−) = −C(ρ, ν),(

χeven
ρ,−ν

)′
(0+)−

(
χeven
ρ,−ν

)′
(0−) = −C(ρ,−ν) : (2.3.48)

since the coefficient C(ρ, ν) is an odd function of ν, the sum χeven
ρ,ν + χeven

ρ,−ν is a C1

function on the line, actually a C∞ function in view of the differential equation
it satisfies on each of the two closed intervals ] −∞, 0] and [0,∞[. The function
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y
1−ρ

2 (V ∗homρ,ν)(x + iy) must coincide with a multiple of this function. The co-
efficient is obtained by considering an equivalent as t = x

y → ∞: to obtain this
equivalent, we further assume, which is not a loss of generality because of the
possibility of analytic continuation of the formula obtained, that Re ν > 0. In this
case, it is immediate, from (2.3.8), that

y
1−ρ

2 (V ∗homρ,ν)(x+ iy) ∼
∣∣x
y

∣∣ ρ+ν−2
2 × 1

2π

∫ 2π

0

∣∣ sin θ
2

∣∣ν−1
dθ

= π−
1
2

Γ(ν2 )

Γ(ν+1
2 )
|x
y

∣∣ ρ+ν−2
2 . (2.3.49)

On the other hand, (2.3.31), (2.3.47) and the equation

e
iπ
4 (ρ+ν−2) + e−

iπ
4 (ρ+ν−2) =

2π

Γ(ρ+ν4 )Γ( 4−ρ−ν
4 )

(2.3.50)

yield the equivalent, as |t| → ∞,

χeven
ρ,ν (t) ∼ 2

ν−ρ
2 π

1
2

Γ(ν2 )

Γ( 2−ρ+ν
2 )Γ(ρ+ν4 )Γ( 4−ρ−ν

4 )
|t|

ρ+ν−2
2 . (2.3.51)

The proposition follows. �

We need another lemma.

Lemma 2.3.4. Under the assumptions that ν /∈ Z, ρ− 1 /∈ 2Z and ρ± ν /∈ 2Z, one
has

(1 + t2)
1−ρ

2 χρ,ν(t) =
Γ( 2+ρ−ν

4 )Γ( 2+ρ+ν
4 )

Γ( 4−ρ−ν
4 )Γ( 4−ρ+ν

4 )
χ2−ρ,ν(t). (2.3.52)

Proof. We start from [36, p. 47], writing when Re z 6= 0 the identity

2F1

(
1− ν

2
,
ρ− ν

2
; 1− ν; z

)
= exp

(
iπ

1− ρ
2

sign(Im z)

)
× (−z)

1−ρ
2

+

(
1− z
z

) 1−ρ
2

+
2F1

(
1− ν

2
,

2− ρ− ν
2

; 1− ν; z

)
. (2.3.53)

With z = 2
1+it , one has (−z)−1 = −1−it

2 , 1−z
z = −1+it

2 , and one must read the
product of power functions on the right-hand side of (2.3.53) as

eiπ
ρ−1

2 sign t

(
−1− it

2

) ρ−1
2

+

(
−1 + it

2

) 1−ρ
2

+

. (2.3.54)
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One can then write

χo2−ρ,ν(t) =

(
−1− it

2

) ν−ρ
2

+
2F1

(
1− ν

2
,
ρ− ν

2
; 1− ν;

2

1 + it

)

= eiπ
ρ−1

2 sign t

(
−1− it

2

) ν−1
2

+

(
−1 + it

2

) 1−ρ
2

+
2F1

(
1− ν

2
,

2− ρ− ν
2

; 1− ν;
2

1 + it

)

= eiπ
ρ−1

2 sign t

(
1 + t2

4

) 1−ρ
2
(
−1− it

2

) ν+ρ−2
2

+
2F1

(
1− ν

2
,

2− ρ− ν
2

; 1− ν;
2

1 + it

)

= eiπ
ρ−1

2 sign t

(
1 + t2

4

) 1−ρ
2

χoρ,ν(t). (2.3.55)

Hence,

(
1 + t2

4

) 1−ρ
2 (

χoρ,ν
)even

(t) =
1

2

[
eiπ

1−ρ
2 χo2−ρ,ν(t) + eiπ

ρ−1
2 χo2−ρ,ν(−t)

]
(2.3.56)

or, using (2.3.29), one has for t > 0

(
1 + t2

4

) 1−ρ
2 (

χoρ,ν
)even

(t) =
1

2

[
eiπ

1−ρ
2 + eiπ

ρ−1
2 eiπ

ν−ρ
2

]
χo2−ρ,ν(t)

=
πeiπ

ν−ρ
4

Γ(ρ+ν4 )Γ( 4−ρ−ν
4 )

χo2−ρ,ν(t) : (2.3.57)

using (2.3.29) again,

(
χo2−ρ,ν

)even
(t) =

πeiπ
ν−ρ

4

Γ( 2−ρ+ν
4 )Γ( 2+ρ−ν

4 )
χo2−ρ,ν(t). (2.3.58)

Hence,

(
1 + t2

4

) 1−ρ
2 (

χoρ,ν
)even

(t) =
Γ( 2−ρ+ν

4 )Γ( 2+ρ−ν
4 )

Γ(ρ+ν4 )Γ( 4−ρ−ν
4 )

(
χo2−ρ,ν

)even
(t). (2.3.59)

Finally, using the extra coefficient from χoρ,ν to χρ,ν given in (2.3.31), one obtains

(
1+t2

4

) 1−ρ
2 (

χoρ,ν
)even

(t)(
χo2−ρ,ν

)even
(t)

= 21−ρΓ( 2−ρ+ν
4 )Γ( 2+ρ−ν

4 )

Γ(ρ+ν4 )Γ( 4−ρ−ν
4 )

Γ(ρ+ν2 )

Γ( 2−ρ+ν
2 )

, (2.3.60)

which simplifies to (2.3.52) by an application of the duplication formula.
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From Proposition 2.3.2, one may note that the product Γ( 4−ρ+ν
4 )Γ( 4−ρ−ν

4 )×
C(ρ, ν) is invariant under the map ρ 7→ 2 − ρ. It follows from this, and Lemma
2.3.4, that∫ ∞

−∞
(1 + t2)

1−ρ
2 χeven

ρ,ν (t)dt =
(ν − ρ)(ν + ρ)

(ν − 2 + ρ)(ν + 2− ρ)
I(ρ, ν). (2.3.61)

�

To kill the discontinuity of χρ,ν at the origin, we replace it by its symmetrized
version χeven

ρ,ν as defined in (2.3.47): note that this does not change the jump of the
first-order derivative at 0.

Proposition 2.3.5. Assume that ν /∈ Z and that ρ ± ν /∈ 2Z. One has in the
distribution sense[
−(1 + t2)

d2

dt2
+ (ρ− 3)t

d

dt
− 1− ν2

4
− (ρ− 1)(ρ− 3)

4

]
χeven
ρ,ν (t) = C(ρ, ν)δ.

(2.3.62)
On the other hand, one has in Π the equation(

∆− 1− ν2

4

)[
z 7→ (Im z)

ρ−1
2 χeven

ρ,ν

(
Re z

Im z

)]
= C(ρ, ν)(Im z)

ρ−1
2 δ(0,i∞),

(2.3.63)
where δ(0,i∞) is the measure dy

y on the hyperbolic line from 0 to i∞.

Proof. Since the function χeven
ρ,ν is C∞ in [0,∞[ (up to the boundary), continuous on

the line, and since it satisfies in ]0,∞[ the differential equation (2.3.16), its image,
in the distribution sense, under the operator on the left-hand side of (2.3.62),
depends only on the discontinuity at 0 of its first-order derivative. One can then,

without modifying the result, replace the complete operator by − d2

dt2 , and χeven
ν

by the function, linear on ] −∞, 0] and on [0,∞[, with the same half-derivatives
at 0: this leads to (2.3.62).

The second part of the lemma is a corollary of the first. �

2.4 The symmetries ν 7→ −ν and ρ 7→ 2− ρ
In the function homρ,ν in the plane defined in (2.3.5), the parameters ρ and ν
appear in a clear way: in particular, −1 + ν stands for the global degree of homo-
geneity, so that the functions homρ,ν and hρ,−ν , when Re ν < 0, could be regarded
as “ingoing” and “outgoing” in the sense of scattering theory [34]. However, the
G-transform of a function homogeneous of degree −1+ν is homogeneous of degree
−1 − ν, and, under the dual Radon transform or any of its associates, a homo-
geneous distribution and its G-transform have proportional images (cf. Theorem
2.1.2). Indeed, Proposition 2.3.3 confirms that, up to multiplication by a scalar,
V ∗homρ,ν depends only on the pair (ρ, ν2).
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The function x + iy 7→ (C(ρ, ν))−1y
ρ−1

2 χeven
ρ,ν

(
x
y

)
is the starting point from

which, with the help of a Poincaré series process, we shall build automorphic
functions of a new style in Chapter 4. As a consequence of Lemma 2.3.4, it changes
to a multiple when ρ is changed to 2−ρ. On the other hand, it is essential, in view of
our applications in Chapter 4, to make a clearcut distinction between the function

(C(ρ, ν))−1y
ρ−1

2 χeven
ρ,ν

(
x
y

)
and its transform under the symmetry ν 7→ −ν, even

though they satisfy the same differential equation (2.3.63). More precisely, in order
to consider integral superpositions of these functions with a fixed ρ and Re ν < 0,
we need to characterize, when Re ν < 0, the first of these functions within the pair
under consideration.

The answer is provided by the resolvent of ∆: as is well-known (say, from
spherical function theory, i.e., the reduction toK-invariant functions), the operator
∆ is essentially self-adjoint in L2(Π) = L2(Π, dm), where dm(x + iy) = dxdy

y2 , if,

say, one takes C∞0 (Π) as its initial domain; it has a purely continuous spectrum,

coinciding with the interval [ 1
4 ,∞[, so that the resolvent ν 7→

(
∆− 1−ν2

4

)−1

is

well-defined for Re ν 6= 0. It is usually made explicit in terms of its integral kernel
k 1−ν

2
(z, z′), a function of d = d(z, z′), according to the general (Gelfand’s) theory

of point-pair invariants: reducing the problem to its special case concerned with
K-invariant theory, one obtains explicitly, assuming Re ν < 0,

k 1−ν
2

(z, z′) =
1

4π

(Γ( 1−ν
2 ))2

Γ(1− ν)
(cosh

d

2
)ν−1

2F1

(
1− ν

2
,

1− ν
2

; 1− ν;
1

cosh2 d
2

)
.

(2.4.1)
This can be found in many places, including [32, 55], and could also be derived
from (2.4.11) below.

This formula does not lead to tractable integrals when
(

∆− 1−ν2

4

)−1

has

to be applied to general (not K-invariant) functions: the proof of the theorem to
follow will rely on an alternative construction [60, p. 205] of the resolvent, based of
M.Riesz’s theory [43] dealing with the solid convex cone in R3. We shall dispense
with giving a priori arguments showing that the resolvent extends to spaces of
distributions containing measures such as the one occurring in the next theorem:

this will result, instead, from the explicit form (2.4.9) of
(

∆− 1−ν2

4

)−1

.

Theorem 2.4.1. Assume that 0 < Re ρ < 2 and Re ν < 0. It is convenient to set

ψ(z) =
Re z

Im z
. (2.4.2)

Recalling Proposition 2.3.5, denote as δ
(ρ)
(0,i∞) the measure in Π supported by the

hyperbolic line from 0 to i∞, coinciding with y
ρ−1

2
dy
y in terms of y = Im z. One

has
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∆− 1− ν2

4

)−1

δ
(ρ)
(0,i∞)

]
(z) =

1

C(ρ, ν)
(Im z)

ρ−1
2

(
χeven
ρ,ν ◦ ψ

)
(z), (2.4.3)

with C(ρ, ν) as defined in (2.3.33).

Proof. Let C be the cone in R3 consisting of points η = (η0, η1, η2) with η0 > 0
and η2

0 − η2
1 − η2

2 > 0, and let H be the sheet of hyperboloid defined within C
by the equation η2

0 − η2
1 − η2

2 = 1. It is a very classical fact that H, provided
with the (Riemannian) metric which is the restriction to it of the indefinite metric
−dη2

0 + dη2
1 + dη2

2 in C, is another model of Π = G/K: the map κ from H to Π
providing the required isometry is defined as κ(η) = η2+i

η0−η1
. With

� =
∂2

∂η2
0

− ∂2

∂η2
1

− ∂2

∂η2
2

(2.4.4)

and

E = η0
∂

∂η0
+ η1

∂

∂η1
+ η2

∂

∂η2
, (2.4.5)

it is easily verified (this is an extension to hyperboloids of the classical theory
of spherical harmonics) that if Ψ is a function in C homogeneous of degree k ∈
C satisfying the equation �Ψ = 0, its restriction to H satisfies the eigenvalue
equation

∆H
(
Ψ
∣∣
H

)
= −k(k + 1)Ψ

∣∣
H, (2.4.6)

if one denotes as ∆H the operator obtained by transferring under κ the hyperbolic
Laplacian ∆ on Π.

M.Riesz’s theory [43, 44] gives a fundamental solution at 0 of the operator
� as the convolution by the function (supported in the closure of C)

Z2 =
1

2π

(
η2

0 − η2
1 − η2

2

)− 1
2

pos
, (2.4.7)

where the subscript indicates that the whole function is to be multiplied by the
characteristic function of C. Then, if Ψ is homogeneous of degree −5−ν

2 in C, the
function Z2 ∗ Ψ lies in the nullspace of � and is homogeneous of degree −1−ν

2 so
that, as a consequence of the equation (2.4.6) taken with k = −1−ν

2 , one has(
∆H −

1− ν2

4

)(
(Z2 ∗Ψ)

∣∣
H

)
= Ψ

∣∣
H. (2.4.8)

This provides the following recipe for computing the image of the resolvent(
∆− 1−ν2

4

)−1

on a function f ∈ C∞0 (Π), under the assumption (to be justified

presently) that Re ν < 0: transfer f to the function f ◦κ on H, extend the function
obtained to a function Ψ on C homogeneous of degree −5−ν

2 , restrict the function
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Z2 ∗Ψ to H, finally compose this restriction with κ−1. Since, for r > 0 and ξ ∈ H,
one has d(rξ) = r2dr dξ1dξ2ξ0

, one obtains the formula we have been looking for:

[(
∆− 1− ν2

4

)−1

f

]
(κ(η)) =

1

2π

∫ ∞
0

r
−1−ν

2 dr

×
∫
H

[(η0 − rξ0)2 − (η1 − rξ1)2 − (η2 − rξ2)2]
− 1

2

pos
f(κ(ξ))

dξ1dξ2
ξ0

. (2.4.9)

One easily checks that the measure dξ1dξ2
ξ0

coincides with dm(κ(ξ)), the transfer
under κ of the invariant measure dm on Π.

When κ(η) = z and κ(ξ) = z′, one has

η0ξ0 − η1ξ1 − η2ξ2 = cosh d(z, z′), (2.4.10)

so that the integral kernel of the operator obtained in (2.4.9) is the function

(z, z′) 7→ 1

2π

∫ e−d(z,z′)

0

r
ν−1

2 (1− 2r cosh d(z, z′) + r2)−
1
2 dr

=
1

2π
1
2

Γ( 1−ν
2 )

Γ( 2−ν
2 )

e
(ν−1)d(z,z′)

2 2F1

(
1

2
,

1− ν
2

;
2− ν

2
; e−2d(z,z′)

)
. (2.4.11)

With the help of two transformations (one of which is quadratic) of the hypergeo-
metric function, one can see [60, p. 206] that this is identical to the integral kernel
k(z, z′) in (2.4.1): however, the expression (2.4.9) of the operator will be more con-
venient in the MA-invariant case. From any of the two expressions of the integral
kernel in (2.4.11), one sees that it is bounded by a constant times | log d(z, z′)|
near the diagonal and by a constant times (cosh d(z, z′))

Re ν−1
2 when d(z, z′) ≥ 1.

Since this kernel is K-biinvariant and, in polar geodesic coordinates ρ, θ around
i ∈ Π (with ρ = d(i, z)), the invariant measure expresses itself as sinh ρdρdθ, it fol-
lows from the most popular criterion regarding L2-continuity that, provided that

Re ν < −1, the operator
(

∆− 1−ν2

4

)−1

defined in (2.4.9) is indeed the resolvent.

Now, if one only has Re ν < 0, the criterion just mentioned does not apply but
it is immediate from the same estimates regarding the kernel that the operator
under consideration is continuous from L2(Π) to the Banach space of bounded
continuous functions: as such, it depends analytically on ν, and must still coincide
with the resolvent (hence, be a continuous endomorphism of L2(Π)).

We now substitute for f the measure δ
(ρ)
(0,i∞). When ξ2 = 0 and y = 1

ξ0−ξ1 ,

one has dy
y = dξ1

ξ0
. We must thus, in the preceding integral, replace f(κ(ξ))dξ1dξ2ξ0

by dξ1√
1+ξ2

1

and set the variable ξ2 at the value 0, getting as a result (with ξ0 =√
1 + ξ2

1)
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`ρ,ν(κ(η)) : =

[(
∆− 1− ν2

4

)−1

δ
(ρ)
(0,i∞)

]
(κ(η)) (2.4.12)

=
1

2π

∫ ∞
0

r
−1−ν

2 dr

∫ ∞
−∞

[(η0 − rξ0)2 − (η1 − rξ1)2 − η2
2 ]
− 1

2

pos
(ξ0 − ξ1)

1−ρ
2
dξ1
ξ0
.

Now,

(η0 − rξ0)2 − (η1 − rξ1)2 − η2
2 = 1− 2r(η0ξ0 − η1ξ1) + r2 : (2.4.13)

recalling that 1 + η2
2 = η2

0 − η2
1 , consider the matrix (1 + η2)−

1
2 ( η0 η1

η1 η0 ), which
corresponds to a Lorentz transformation (in (1 + 1)-dimensional spacetime) in the
variable (ξ0, ξ1), thus preserving the measure dξ1

ξ0
. Under this transformation, the

expression (2.4.13) transforms into 1− 2rξ0
√

1 + η2
2 + r2, while ξ0− ξ1 transforms

into (1 + η2
2)−

1
2 (η0 − η1)(ξ0 − ξ1). Hence, setting z = κ(η), so that η0 − η1 =

(Im z)−1, η2 = Re z
Im z = ψ(z), one obtains

`ρ,ν(z) = (Im z)
ρ−1

2

(
1 + (ψ(z))2

) ρ−1
4 (2.4.14)

× 1

2π

∫ ∞
0

r
−1−ν

2 dr

∫ ∞
−∞

[1− 2rξ0
√

1 + (ψ(z))2 + r2]
− 1

2

pos
(ξ0 − ξ1)

1−ρ
2
dξ1
ξ0
.

This is an even function of t = Re z
Im z , which can be written, after one has performed

the change of variable r 7→ [2ξ0
√

1 + t2]−1r, as

`ρ,ν(z) =
2
ν−1

2

2π
(Im z)

ρ−1
2 (1 + t2)

ρ+ν−2
4 Intρ,ν(t), (2.4.15)

with

Intρ,ν(t) =

∫ ∞
0

r
−ν−1

2 dr

∫ ∞
−∞

[
1− r +

r2

4(1 + t2)(1 + ξ2
1)

]− 1
2

pos

(ξ0 − ξ1)
1−ρ

2 ξ
ν−3

2
0 dξ1.

(2.4.16)
As |t| → ∞, the integral goes to

Intρ,ν(∞) =

∫ 1

0

r
−ν−1

2 (1− r)− 1
2 dr

∫ ∞
−∞

(1 + ξ2
1)

ν−3
4 (ξ0 − ξ1)

−1+ρ
2 dξ1

= π
1
2

Γ( 1−ν
2 )

Γ( 2−ν
2 )
×
∫ ∞
−∞

(cosh t)
ν−1

2 e
(1−ρ)t

2 dt

= 2
−1−ν

2 π
1
2

Γ(ρ−ν4 )Γ( 2−ρ−ν
4 )

Γ( 2−ν
2 )

, (2.4.17)

where we have used [36, p. 432] at the end: note that this expression does not
change under the symmetry ρ 7→ 2−ρ. One thus has the equivalent, as Re z

Im z →∞,

(Im z)
1−ρ

2 `ρ,ν(z) ∼ π−
1
2

4

Γ(ρ−ν4 )Γ( 2−ρ−ν
4 )

Γ( 2−ν
2 )

∣∣∣∣Re z

Im z

∣∣∣∣
ρ+ν−2

2

. (2.4.18)
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Since the image under ∆− 1−ν2

4 of the function `ρ,ν is zero in the complement
of the hyperbolic line from 0 to i∞, it follows from the structure of `ρ,ν(z) as the

product of (Im z)
1−ρ

2 by an even function of Re z
Im z and from (2.3.16) that the function

in (2.4.18) must be a linear combination of the functions χeven
ρ,ν (t) and χeven

ρ,−ν(t): in
view of the equivalent of χρ,ν(t) as |t| → ∞ resulting from (2.3.31), it has to be
a multiple of the function χeven

ρ,ν (t) only (recall the assumption that Re ν < 0).
The proof of Theorem 2.4.1 now reduces to proving that the functions `ρ,ν(t) and

1
C(ρ,ν)χ

even
ν (t) are equivalent as |t| → ∞.

Comparing (2.4.18) to the equivalent (2.3.51) of the second function, using
the duplication formula

Γ(
2− ρ− ν

4
)Γ(

4− ρ− ν
4

) = (2π)
1
2 2
−1+ρ+ν

2 Γ(
2− ρ− ν

2
) (2.4.19)

and the expression (2.3.33) of C(ρ, ν), we obtain (2.4.3). �

Remark 2.4.a. Even though one has
(

∆− 1−ν2

4

)(
(Im z)

ρ−1
2 χρ,ν ◦ ψ

)
= 0 in the

complement of a one-dimensional set, this phenomenon leaves no trace after one

has applied to the function (Im z)
ρ−1

2 χρ,ν ◦ ψ a non-local operator such as the
Radon transformation. It would be somewhat misleading to regard the function
under consideration as “almost” an eigenfunction of ∆.

Our construction of Poincaré series (of a novel kind) in Chapter 4 is based

on the use of the functions (Im z)
ρ−1

2 χρ,ν ◦ψ, with Re ν < 0. These Poincaré series
will take the place usually taken by Eisenstein series. In a way similar to that
which leads, classically, to so-called incomplete Eisenstein series (this terminology,
borrowed from [21, 23], sounds more appropriate than the traditional one of in-
complete theta series), we may consider integral superpositions of the functions
χρ,ν for a fixed ρ. What we obtain as a result is a space of images of the mea-

sure δ
(ρ)
(0,i∞) (introduced in Theorem 2.4.1) under fairly general functions, in the

spectral-theoretic sense, of the Laplacian: an integral transform will make these
explicit.

In view of the spectrum of the hyperbolic Laplacian ∆, whether in the free
half-plane or in the automorphic situation, a function of ∆ is the same as an even

function H of the operator 2
√

∆− 1
4 (the factor 2 is of course for convenience

only), provided that, in the second case, one interests oneself only in automorphic
functions orthogonal to constants (so that the square root should not create a
difficulty). Experience, in particular with quantization theory [63, p. 57-59], shows
that, as a function of one real variable, it is most of the time the function H,
rather than the corresponding function of ∆, that appears simple, or interesting.
This may be considered, in view of (2.1.5), as one more argument in favor of using
the plane, rather than the half-plane, in the study of ∆.
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Theorem 2.4.2. Let H = H(µ) be an even holomorphic function in some strip
|Imµ| < β0, such that

∫
Imµ=β

|µ|2|H(µ)|2dµ < ∞ for every β with |β| < β0: set

G(σ) =
∫∞
−∞H(λ)e2iπλσdλ. Assuming 0 < Re ρ < 2, the image of the measure

δ
(ρ)
(0,i∞) under the operator H

(
2
√

∆− 1
4

)
is a function φ, which can be made

explicit in terms of sinh(4πτ) = Re z
Im z as

φ(z) = − 1

4π
(Im z)

ρ−1
2 (cosh 4πτ)

ρ−2
2

∫ ∞
|τ |

G′(σ)P ρ−2
2

(
cosh 4πσ

cosh 4πτ

)
dσ. (2.4.20)

Given any number β ∈]0, β0[, one has the identity

φ(z) = − 1

4iπ

∫
Re ν=−β

νH(iν)

[(
∆− 1− ν2

4

)−1

δ
(ρ)
(0,i∞)

]
(z)dν

= − 1

4iπ

∫
Re ν=−β

ν
H(iν)

C(ρ, ν)
(Im z)

ρ−1
2 χeven

ρ,ν

(
Re z

Im z

)
dν. (2.4.21)

In the case when one has H(λ) = K iλ
2

(α) for some α > 0, so that G(σ) =

2π exp (−α cosh(4πσ)), one has

φ(z) =

(
2α

π

) 1
2

|z|
ρ−1

2 K ρ−1
2

(
α|z|
Im z

)
. (2.4.22)

Proof. Setting F = 1
2iπG

′, one has F̂ (µ) = µH(µ): it follows from the assumption

made about H that
∫∞
−∞ |G(σ)|2e4π|β|σdσ < ∞ whenever |β| < β0, and that the

same holds with F substituted for G.

Recall from the proof of Theorem 2.4.1 that the function `ρ,ν is the image of

the measure δ
(ρ)
(0,i∞) under

(
∆− 1−ν2

4

)−1

and that, from (2.4.14),

`ρ,ν(z) = 2−
3
2π−1(Im z)

ρ−1
2

×
(
1 + (ψ(z))2

) ρ−2
4

∫ ∞
0

r
−ν−2

2 Intρ

(
1 + r2

2r

(
1 + (ψ(z))2

)− 1
2

)
dr, (2.4.23)

with

Intρ(c) =

∫ ∞
−∞

(c− ξ0)
− 1

2
pos(ξ0 − ξ1)

1−ρ
2
dξ1
ξ0
. (2.4.24)

This integral is zero if c ≤ 1, and we now compute it for c > 1. Setting c = cosh a
with a > 0 and making the change of variable ξ1 = sinh η, one obtains, using [36,
p. 407] at the end,

Intρ(c) =

∫ a

−a
[cosh a− cosh η]−

1
2 e

(ρ−1)η
2 dη = 2

1
2πP ρ−2

2
(cosh a), (2.4.25)
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an expression invariant when changing ρ to 2− ρ.

As told in the statement of the proposition, we set Re z
Im z = sinh 4πτ for z ∈ Π,

and we also make the change of variable r = e−4πσ in this integral. We obtain

`ρ,ν(z) = 2π(Im z)
ρ−1

2 (cosh 4πτ)
ρ−2

2

∫ ∞
|τ |

e2πνσP ρ−2
2

(
cosh 4πσ

cosh 4πτ

)
dσ. (2.4.26)

Since

F (σ) =

∫ ∞
−∞

F̂ (λ)e2iπλσdλ =
1

i

∫
Re ν=−β

F̂ (−iν)e2πνσdν, (2.4.27)

the function φ defined in (2.4.20) can be written as

1

2i
(Im z)

ρ−1
2 (cosh 4πτ)

ρ−2
2

∫ ∞
|τ |

P ρ−2
2

(
cosh 4πσ

cosh 4πτ

)
dσ.

1

i

∫
Re ν=β

F̂ (−iν)e2πνσdν

= − 1

4π

∫
Reµ=−β

F̂ (−iν)`ρ,ν(z)dν. (2.4.28)

This leads to the pair of equations (2.4.21), of which we now consider the first.

When ν moves along the straight line from −β− i∞ to −β+ i∞, the variable

µ = 1−ν2

4 describes a parabola P− enclosing the spectrum [ 1
4 ,∞[ of ∆ in the

clockwise sense: denoting as P+ the negative of the contour that precedes, one
transforms the integral under consideration into the integral

1

2iπ

∫
P+

H

(
2

√
µ− 1

4

)
(µ−∆)−1dµ, (2.4.29)

which completes the main part of Theorem 2.4.2, in view of Dunfords’s integral
representation of the resolvent of an operator.

When H(λ) = K iλ
2

(α), that G(σ) = 2π exp (−α cosh(4πσ)) follows from [36,

p. 408]. Then,

φ(z) = 2πα(Im z)
ρ−1

2 (cosh 4πτ)
ρ−2

2

∫ ∞
τ

sinh(4πσ)e−α cosh(4πσ)P ρ−2
2

(
cosh 4πσ

cosh 4πτ

)
dσ

=
α

2
(Im z)

ρ−1
2 (cosh 4πτ)

ρ
2

∫ ∞
1

e−αt cosh(4πτ)P ρ−2
2

(t)dt

=

(
2α

π

) 1
2

(Im z)
ρ−1

2 (cosh 4πτ)
ρ−1

2 K ρ−1
2

(α cosh(4πτ)) (2.4.30)

according to [36, p. 194]: now, cosh(4πτ) = |z|
Im z , which leads to (2.4.22). �
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