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Abstract Proteases are not merely restricted to digestive purposes and remodeling

of extracellular matrix and tissues, but are also key factors for the induction of

physiological immune responses. This induction can be direct, through the degra-

dation of pathogens within phagolysosomes, or indirect, through the activation

of key pattern recognition receptors (PRRs), such as toll-like receptors (TLRs).

Unfortunately, excess production of proteases leads to maladaptive host responses

and excess tissue inflammation and damage. Although the mechanisms described

here will apply to a variety of different organs, we will deal chiefly with processes

occurring in the lung, in pathological conditions such as chronic obstructive

pulmonary disease (COPD) and cystic fibrosis (CF). To combat these deleterious

effects of proteases, the host fortunately produces antiproteases, which directly

counteract the proteolytic activities of proteases. In addition to this “straight-

forward” effect, novel “defensin-like” activities for these molecules are clearly

now emerging, as it has recently been demonstrated that protease inhibitors can

themselves help in restoring tissue homeostasis by inducing innate and adaptive

responses, such as through their interaction with dendritic cells (DCs).
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1 Introduction

Proteases are classified on the basis of catalytic mechanism, and five known distinct

classes are described: metallo, aspartic, cysteine, serine, and threonine. In humans,

metallopeptidases are extremely diverse as they encompass 24 families, whereas

cysteine proteases are represented by 19 families, serine proteases 17, and aspartic

and threonine peptidases are represented by three families. For further generic

information about this “degradome,” we refer the reader to recent reviews including

[1] and [2].

Until recent times, the action of proteases was believed to be restricted to diges-

tive purposes, extracellular modeling and/or remodeling of tissues, mainly through

proteolytic activity on interstitial molecules, occurring throughout homeostasis and

development or, in aberrant maladaptive circumstances, during disease pathogene-

sis. This view has clearly become untenable as proteases are clearly involved in a

myriad of homeostatic as well as pathological processes. Similarly, several novel

physiological functions have been attributed to endogenous antiproteases including

antimicrobial and immunomodulatory activities.

We will discuss in this chapter the actions of proteases and antiproteases on

physiological immune induction and inflammatory processes, as well as proteases-

driven maladaptive responses. Although the mechanisms described here will apply

to a variety of different organs, we will deal chiefly with processes occurring in the

lung, as the protease/antiprotease balance in other tissues will be addressed by other

contributors in this issue.

2 Toll-Like Receptors and Dendritic Cells in the Induction

of Immune Responses

Mucosal surfaces are the first barriers against infections and their role is paramount

in the prevention of systemic dissemination of pathogens. To perform this role in

an unchallenged naive host, the latter uses both innate and adaptive immunity.

The innate immune system is genetically programmed to detect invariant features

of invading microbes. In contrast, the adaptive immune system, which is composed

of T and B lymphocytes, employs antigen receptors that are not encoded in

the germline but are generated de novo in each organism. Thus, adaptive immune

responses are highly specific. The best-characterized microbial sensors are the

so-called PRRs of the innate immune system, which detect relatively invariant

28 B. Manoury et al.



molecular patterns found in most micro-organisms [3]. These structures are referred

to as pathogen-associated molecular patterns (PAMPs). Microbial pathogens are

recognized through multiple, distinct PRRs that can be broadly categorized into

secreted, transmembrane, and cytosolic classes. The transmembrane PRRs include

the TLR family and the C-type lectins. TLRs in mammals are either expressed on

the plasma membrane or in endosomal/lysosomal organelles [4]. Cell-surface TLRs

recognize conserved microbial patterns that are accessible on the cell surface, such

as lipopolysaccharide (LPS) of gram-negative bacteria (TLR4), lipoteichoic acids

of gram-positive bacteria and bacterial lipoproteins (TLR1/TLR2 and TLR2/

TLR6), and flagellin (TLR5), whereas endosomal TLRs mainly detect microbial

nucleic acids, such as double-stranded RNA (dsRNA) (TLR3), single-stranded

RNA (ssRNA) (TLR7), and dsDNA (TLR9) [5–8].

Innate immune cells bearing TLRs include DCs, macrophages, and neutrophils,

among others. DCs are crucial immune cells detecting micro-organisms and linking

innate to adaptive immunity. TLR signaling is linked to MyD88- and TRIF-

dependent signaling pathways that regulate the activation of different transcription

factors, such as nuclear factor (NF)-kB. Specific interaction between TLRs and

their ligands activates NF-kB resulting in enhanced inflammatory cytokine

responses, induction of DC maturation (e.g., upregulation of CD40, CD80, CD83,

and CD86) and chemokine receptors (e.g., CCR7) [9]. These features have for

a long time indicated that, in particular, TLR triggering switches the immature

DC phenotype to an inflammatory phenotype that is capable of inducing adaptive

immune responses, instructing both antigen-specific CD4+ and CD8+ T-cell

responses and humoral responses.

2.1 Role of TLR9 in Inflammation and Immunity

Some studies suggest a role for TLR9 in the triggering of innate immune response

to protozoan parasites as well as for some bacteria and viruses. For example, TLR9

is required for the development of the Th1-type inflammatory responses that follow

oral infection with Toxoplasma gondii in mice from some inbred strains and is also

implicated in the control of parasitemia during infection with Trypanosoma cruzi.
The hemozoin pigment of Plasmodium or some parasite DNA associated with the

pigment results in signaling through TLR9. More recently it has been shown that

the early natural killer (NK) cell response to infection with Leishmania donovani
was dependent on the secretion of IL-12 by myeloid DCs triggered in response to

TLR9 stimulation [10]. TLR9-deficient (TLR9�/�) mice have been recently

described to be more susceptible to infection with Leishmania major. DCs lacking
TLR9 failed to be activated by L. major probably suggesting that the DNA of

L. major is a TLR9 ligand. Furthermore, L. major-infected TLR9�/� DCs were

unable to stimulate CD4+ T cells [11]. TLR9 ligands are known to be ssDNA

carrying unmethylated CpG motifs [12]. A vast array of data indicates that TLR9

plays a key role in DNA-induced immunity and links it with a role in acquired
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immunity through the activation of various cell types such as plasmacytoid DCs

(pDCs), conventional DCs (cDCs), and B cells. Analysis of TLR9�/�mice revealed

that TLR9 is essential not only for proinflammatory cytokines production and

other inflammatory responses but it also plays a role in the induction of Th1

acquired immune response and in the proliferation of B cells. In addition, TLR9

also recognizes bacterial and viral DNA. In particular, TLR9 cooperates with TLR2

to induce innate immune response against Mycobacterium tuberculosis. TLR9
also plays an important role in the fight against infections with Brucella, Strepto-
coccus pneumoniae, and could be involved in recognition and clearance of

Helicobacter. TLR9-mediated antiviral responses are largely documented. Indeed,

mouse cytomegalovirus, herpes simplex virus type 1 and 2, and adenovirus are

recognized by TLR9 on pDCs which produce high amount of interferon (IFN)-a in

response to this stimulation. Recently, natural DNA repetitive extragenic sequences

from Pseudomonas aeruginosa have been shown to strongly stimulate TLR9 [13].

In addition, signaling through TLR9 appears to be important in P. aeruginosa
keratitis, and silencing TLR9 signaling reduces inflammation but contributes to

decreased bacterial killing in the cornea [14].

3 Role of Proteases in the Induction of Immunity

3.1 Cysteine Proteases

Cysteine proteases were historically shown to have an important role in antigen

presentation and the induction of immunity [15]. They are constitutively expressed

in most cell types, especially in macrophages and DCs. They contain a cysteine

thiol as part of their catalytic site and are related to papain and belong to the C1

family. Among them, cathepsins B, C, F, L, H, K, L, S, V andW have been isolated.

Some of these enzymes are endopeptidases, whereas others are either amino or

carboxy exopeptidases (see Table 1). Another endopeptidase named asparagine

Table 1 Lysosomal proteases

Cathepsin Location Family Cleavage pattern Phenotype/function

B Lysosomes Cysteine Carboxypeptidase

Lysosomal apoptosis pathway and

tumor spreading

C Endo/lysosomes Cysteine Aminopeptidase Serine protease activation

F Lysosomes Cysteine Endopeptidase Ii processing

K Lysosomes Cysteine Endopeptidase TLR9 signaling

L(V) Lysosomes Cysteine Endopeptidase CD4 and NK T cells tymic selection

S Endo/lysosomes Cysteine Endopeptidase

MHC class II pathway, Ii chain

processing

X(Z) Endo/lysosomes Cysteine Carboxypeptidase T-cell migration

D,E Lysosomes Aspartic Endopeptidase Lysosomal storage, early cell death

AEP Endo/lysosomes Cysteine Asparagine sites

MHC class II pathway, cathepsins

maturation and TLR processing
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endopeptidase (AEP) or legumain is unrelated to the papain-like cysteine protease

family such as cathepsin B and L and is grouped together with the caspases,

separases, and some bacterial proteases in clan CD [16–18]. Most of these enzymes

are synthesized as precursors and targeted to the endocytic pathway. For example,

the N- and C-terminal propeptides of AEP are auto-cleaved in the lysosomal

compartments to generate a 46 kDa mature form, which can be further processed

into a 36 kDa fragment [19].

Acidic pH is a prerequisite for maturation of most of these enzymes and so

their greatest activity is found in lysosomal compartments. Their main function is to

provide ligands for the MHC class II-restricted antigenic pathway. MHC class II

molecules access the endolysosomal compartments to bind peptides and display

them on the surface of DCs to trigger CD4+ T-cell response. Indeed, the uptake

of exogenous antigen into DCs is followed by protease-mediated degradation in

endolysosomal compartments. These proteases also process the invariant chain (Ii),

a chaperone molecule which associates with MHC class II molecules in the

endoplasmic reticulum (RE). Cathepsin L and cathepsin S are the best characterized

proteases to proteolyse Ii [20]. The endolysosomal proteases have probably a

redundant role in the selection of the peptides which will be presented at the DCs

surface. However, there are examples where some antigens require a particular

protease. Indeed, AEP is unique among lysosomal cysteine proteases, in that it is

insensitive to leupeptin and cleaves on the carboxyl terminal sides of asparagine

residues. AEP initiates the processing of tetanus toxin in human B cells, destroys an

immuno-dominant peptide of myelin basic protein (MBP – an autoantigen

implicated in the autoimmune disease multiple sclerosis) and performs the early

steps of degradation of the Ii chain in human B-EBV cells [21–23].

3.2 Asparagine Endopeptidase, TLR7/9 Pathway and Antigen
Presentation in DCs

DCs are heterogeneous and consist of various DC subsets among which TLR

expression and function differ. pDC is a DC subset which differs from cDC and

can produce vast amounts of type I interferon upon bacterial and viral infection.

pDCs only express TLR7 and TLR9. Thus, pDCs can be regarded as a DC subset

specialized for detecting nucleic acids mainly through TLR7/9. In mice, cross-

presentation has been considered a unique property of cDCs. This crucial mecha-

nism in microbial immunity allows exogenous antigen to be delivered into the

MHC class I pathway to initiate cytotoxic T-cell response. However, recently, it has

been shown that stimulation by TLR 7/9 also licences pDCs to cross-present [24].

Little is known about how endosomal TLRs and their ligands are targeted to the

endocytic pathway. TLRs are sensitive to chloroquine, a lysomotropic agent that

neutralizes acidic compartments indicating a role for endo/lysosomal proteases for

their signaling. Indeed, recent findings have described the importance of proteolysis
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for TLR9 function [25, 26]. It has recently been shown that mouse TLR9 is non-

functional until it is subjected to proteolytic cleavage in the endosomes. Upon

stimulation, full-length TLR9 is cleaved into a C-terminal fragment which is highly

dependent on AEP in DCs. A recruitment of TLR9 and a boost in AEP activity,

which was induced shortly after TLR9 stimulation, was shown to promote TLR9

cleavage and correlated with an increased acidification in endosomes and lyso-

somes. Moreover, mutating a putative AEP cleavage site in TLR9 strongly

decreases its signaling in DCs suggesting perhaps that a direct cleavage of TLR9

by AEP is required for this process. These results demonstrated that TLR9 requires

a proteolytic cleavage for its signaling and identified a key endocytic protease

playing a critical role in this process in DCs [27]. Interestingly, in contrast, TLR9

processing does not rely on AEP in macrophages probably because of the already

highly acidic milieu found in the endocytic pathway of macrophages in comparison

to DCs, thus allowing many proteases (and not only AEP) such as cathepsins B, L,

K and S to perform TLR9 degradation [25, 27] and thus, TLR9 proteolysis has been

proposed to restrict receptor activation to endosomal/lysosomal compartments and

to prevent TLRs from responding to selfnucleic acids. Other endosomal TLRs, and

in particular TLR7, are also probably subjected to a similar proteolytic maturation

but this remains to be fully investigated (unpublished data).

Several studies have suggested that intracellular TLRs can be targeted

directly from the ER, where they reside, to endosomes in which they signal.

Relatedly, mouse and human genomic studies have identified UNC93B1, which

encodes for a 12-membrane spanning molecule highly conserved in the ER, as a key

regulator in the transport of endosomal TLRs. The third mutation (UNC93B

mutation) results in a phenotype where no signaling occurs via the intracellular

TLRs 3, 7 and 9 and also diminishes presentation of exogenous antigen [28, 29].

However, the exact role played by UNC93B1 in these processes remains to be fully

elucidated.

4 Proteases and Maladaptive Inflammation

Proteases produced by inflammatory cells such as neutrophils and macrophages

play a crucial role in the first line of defense against invading bacteria, fungi and

protozoa, either by directly killing pathogens or by inducing immune recognition,

e.g., via TLRs. Individuals with cyclic neutropenia, a disease characterized by

mutations in the gene encoding neutrophil elastase (NE), commonly experience

recurrent bacterial infections, highlighting their critical importance in this respect.

Neutrophils contain at least four types of granules: azurophil granules, specific

granules, gelatinase granules, and secretory granules [30, 31]. In addition to

proteases, these granules are an important reservoir of other antimicrobial proteins,

such as defensins, and components of the respiratory burst oxidase [32]. It has also

been suggested that these granules contain a wide range of membrane-bound

receptors (e.g., CD11b/CD18 [33] and N-formyl-methionyl-leucyl-phenylalanine

32 B. Manoury et al.



[fMLP] receptor) for endothelial adhesion molecules, extracellular matrix proteins,

bacterial products, and soluble mediators of inflammation [30, 32]. In addition to

these molecules, a novel antimicrobial mechanism for neutrophils has recently been

described, with the demonstration that neutrophils form neutrophil extracellular

traps (NET) that could potentially bind, disarm and kill pathogens extracellularly

[34–37]. DNA is the major structural component of NETs and it provides the

backbone on which the proteinaceous effectors such as proteases are anchored

to [34].

Although all of the effects described above are beneficial to the host, chronic and

persistent presence of neutrophils is a hallmark of lung pathologies such as COPD

and CF. There is certainly an excess of neutrophil chemoattractants such as IL-8

and leukotriene B4 (LTB4) recovered in bronchoalveolar lavage (BAL) fluid of

these patients [38, 39]. Bacteria present in high concentrations in these pathologies

also provide additional chemoattractants for neutrophils. Furthermore, neutrophils

may survive longer in the airways of CF/COPD patients because of the production

of excess concentrations of granulocyte macrophage-colony stimulating factor

(GM-CSF) and the relative lack of IL-10, which, when present, promotes neutrophil

apoptosis [38–41]. Moreover, cleavage of the phosphatidylserine receptor (PSR)

and CD14 by NE could specifically disrupt phagocytosis of apoptotic neutrophils

by macrophages [42, 43]. On the other hand, the decreased mucociliary clearance

in CF/COPD leads to longer retention of apoptotic neutrophils causing them to

necrose, hence releasing their toxic agents, e.g., NE, into the affected airways. In

turn, NE contributes to the vicious circle of chronic inflammatory airway disease by

inducing mucin production in airway epithelial cells [44–46]. Mucins, normally

beneficial in microbial infections, by binding and removing bacteria via the

mucociliary ladder, can be detrimental in chronic pathologies, by clogging the

airways and providing an appropriate milieu for bacterial growth and colonization

[47]. NE also reduces ciliary beat frequency resulting in marked disruption of

epithelial cells [48], and induces goblet cell metaplasia which is dependent on its

proteolytic activity [49–52].

In addition to the direct deleterious effect of proteases (such as NE) on innate

immune effectors, these mediators also have a negative effect on immune cells such

as DCs. For years, the nature of the elusive lung DCs was poorly understood, but

with increasing interest in the role of adaptive immunity in the pathophysiology of

human CF, COPD and emphysema, interest in further characterization of specific

DC subsets in normal and diseased lungs arose [53–55]. In that context, we and

others have shown that NE could be instrumental in the elicitation of this breach in

host defense, through its action on DCs. Indeed, we demonstrated that NE is able to

disable mature DC function by reducing the level of DC surface costimulatory

molecules (CSMs), interfering both with the ability of immature DCs to mature in

response to bacterial LPS and by reducing the allostimulatory activity of these cells,

resulting in reduced Th1 cytokine production [56]. Similarly, neutrophils and

culture supernatants of unprimed/primed neutrophils are able to downregulate

human monocyte-derived DCs allostimulatory function in vitro [57]. This effect

was associated with the amount of NE released by neutrophils, which in turn
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converted immature myeloid DCs into transforming growth factor (TGF)-b1-
secreting cells [57]. These in vitro observations are further supported by an earlier

report showing that APCs isolated from BAL fluid of CF patients were unable to

present antigen and stimulate T-cell responses [58], despite appropriate responses

from systemic APCs (monocytic cells). However, although the characteristics and

functional properties of lung DCs can be easily studied in animal models, very few

and in most cases contradictory data from their human counterparts are currently

available [55].

4.1 Neutrophil Elastase

Human NE is a serine protease found in the azurophil granules of the neutrophil.

The highly cationic glycoprotein product contains 218 amino acids and four

disulfide bridges, and is a member of the serine protease family [59]. The catalytic

site of the NE molecule is composed of the triad His41-Asp99-Ser173, in which

the g-oxygen of serine becomes a powerful nucleophile, able to attack a suitably

located carbonyl group on the target substrate [60]. Neutrophils release NE upon

exposure to various cytokines and chemoattractants, including tumor necrosis

factor (TNF)-a, interleukin (IL)-8, C5a, LPS, and a tripeptide derived from bacte-

rial wall fMLP [61]. The concentration of NE in neutrophils exceeds 5 mM [62],

and each neutrophil contains approximately 400 NE-positive granules. Although

NE is most abundant in neutrophils, small amounts are expressed by monocytes and

T cells [63, 64]. NE has broad substrate specificity and is capable of degrading a

wide range of extracellular matrix proteins, including elastin, collagen (types I–IV),

fibronectin, laminin, and proteoglycans. Additionally, many biological molecules

like cytokines and their receptors contain putative cleavage sites for neutrophil

serine proteases. Indeed, as expected, many receptors, cytokines and other

molecules have been found to be natural substrates for NE (Table 2).

Like the cysteine protease family described above, NE possesses potent

microbicidal activity and is speculated to assist with phagocytosis of pathogens

by activated neutrophils [65]. To determine the contribution of NE in combating

bacterial infections, NE-deficient (NE�/�) mice were generated [62] and shown to

be more susceptible to sepsis and death following intraperitoneal infection with

gram-negative (Klebsiella pneumoniae, P. aeroginosa, and Escherichia coli) but
not gram-positive (Staphylococcus aureus) bacteria. NE is required for maximal

intracellular killing of P. aeruginosa by neutrophils, as it degrades the major outer

membrane protein F, a protein with important functions, including porin activity,

maintenance of structural integrity, and sensing of host immune system activation

[66]. In addition, in vitro incubation of NE with E. coli leads to a loss of bacterial

integrity and lysis of bacteria [62]. Indeed, the primary sequence of outer membrane

protein A (OmpA) amino acid has multiple NE-preferred cleavage sites and NE was

shown to directly degrade purified OmpA of E. coli in vitro [62]. Furthermore, NE

degrades virulence factors of enterobacteria such as Salmonella enterica serovar
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Table 2 Summary of the expanding list of natural neutrophil elastase (NE) substrates

Target Hypothetical biological function References

Receptors

Proteinase-activated receptor-1

(PAR-1) Inactivation, modulation of response [76, 150]

PAR-2 Inactivation, modulation of response [150–152]

PAR-3 Inactivation, modulation of response [153]

IL-2Ra
Inhibiting cellular response and

prolongation of cytokine half-life time [154]

TNF-RII

Inhibiting cellular response and

prolongation of cytokine half-life time [155]

C5aR (CD88)

Inhibition of chemotaxis, feedback

mechanism [156]

CR1 (CD35) Inhibition of complement signaling [157]

Urokinase R (CD87) Regulation of cell migration [158]

Granulocyte-colony stimulating

factor receptor (G-CSF-R) Growth inhibition [159, 160]

CD43 (sialophorin) Regulation of adhesion [161, 162]

CD14

Inhibition of LPS-mediated cell

activation/apoptotic cell recognition [163]

CD2, CD4, and CD8 Impairment of T lymphocytes [164]

CD40, CD80, and CD86 Impairment of DCs [56]

Soluble IL-6 receptor Regulation of inflammation [165]

CXC chemokine receptor 1

(CXCR1) Regulation of cell migration [166]

Cytokines/chemokines

TNF-a Regulation of inflammation [167]

IL-2 Regulation of inflammation [63]

IL-6 Regulation of inflammation [168]

IL-8 Regulation of inflammation [169]

IL-12p40 Regulation of inflammation (unpublished)

G-CSF Growth inhibition [159]

Integrins/others

Intercellular adhesion molecule-1

(ICAM-1) Regulation of adhesion [170, 171]

Vascular endothelium cadherin Regulation of adhesion [172]

Proepithelin Regulation of wound healing [173]

Tissue factor pathway inhibitor

(TFPI)

Regulation of coagulation and intravascular

thrombus growth [174]

Matrix metalloprotease-9 (MMP-9) Regulation of proteolysis [175]

Tissue inhibitor of metalloprotease-

1 (TIMP-1) Regulation of proteolysis [175]

Basic fibroblast growth factor

(bFGF) Regulation of angiogenesis [176]

Vascular endothelial growth factor

(VEGF) Regulation of angiogenesis [176, 177]

Laminin-332 (laminin-5) Regulation of cell migration [178]

Surfactant protein D (SP-D) [179]

(continued)
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Typhimurium, Shigella flexneri, Yersinia enterocolitica and Streptococcus
pneumoniae [67]. Thus, in the absence of NE these bacteria escape from the

phagolysosome leading to their increased survival in the cytoplasm of infected

neutrophils [68]. Finally, NE is able to suppress flagellin transcription in

P. aeruginosa. Flagellin suppression by NE could elucidate how and why CF

patients undergo cyclical exacerbations of the inflammatory lung disease caused

by P. aeruginosa. When neutrophil numbers and thus NE concentrations are low,

P. aeruginosa may proliferate, assemble a flagellum, and release flagellin,

stimulating a robust inflammatory response in the patient’s airways [69].

4.1.1 NE Signaling Activity

It has been suggested that NE signals via the cell surface membrane-bound TLR4

[70], by activating the NF-kB signaling pathway [71–73]. A more recent study,

however, proposed that IL-1R1/MyD88 signaling and inflammasome activation,

but not TLRs, are critical for NE-induced lung inflammation and emphysema in

murine models [74]. Additionally, NE has been reported to induce apoptosis, thus

contributing to the pathogenesis of inflammatory injury in the respiratory tract.

NE-induced apoptosis of lung epithelial cells is mediated by a proteinase-activated

receptor-1 (PAR1)-triggered pathway involving activation of NF-kB and p53, and a

PUMA- and Bax-dependent increase in mitochondrial permeability leading to

activation of distal caspases [75, 76].

4.2 Endogenous Protease Inhibitors

To modulate the multiple activities of proteases (including NE), either beneficial,

but also potentially deleterious (see above), the body synthesizes antiproteases. We

will concentrate our discussion on NE inhibitors, as other inhibitors will be

described in this issue by other contributors. These NE inhibitors can be broadly

classified into two groups, the “alarm” and the “systemic” antiproteases. Systemic

antiproteases, such as a1-protease inhibitor (a1-PI), are produced mainly by

hepatocytes. However, during infection, the activity of locally produced mucosal

Table 2 (continued)

Target Hypothetical biological function References

Regulation of inflammation/innate

immunity

Insulin receptor substrate-1 (IRS-1) Regulation of cell growth [180]

von Willebrand factor (VWF) Regulation of cell hemostasis [181]

Cut homeobox 1 (CUX1) Regulation of gene expression [182]

Plasma factor XIII (FXIII) Regulation of coagulation [183]

AlphaIIb b3 Regulation of adhesion [184]
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alarm antiproteases such as SLPI and elafin may add an extra edge to the host

defense armamentarium, as will be discussed below (reviewed in [77]and [78]).

4.2.1 Alarm Antiproteases

SLPI and elafin alarm antiproteases have been isolated and characterized under a

variety of names in adult and fetal tissues [78]. They belong to the family of whey-

acidic protein (WAP) proteins and are produced by epithelial cells and cells of the

immune system. Importantly, alarm antiproteases are generated locally in areas of

infection or neutrophil infiltration and are upregulated by pathogen- and inflamma-

tion-associated factors, including cytokines and NE itself [79]. In addition to their

antiprotease properties, and because of their biochemical characteristics (heavily

disulphide-bonded, low molecular mass cationic peptides, present at mucosal sites),

elafin and SLPI have recently been proposed to possess “defensin/cathelicidin-like”

properties [77, 78, 80].

Elafin

Elafin was simultaneously isolated from the skin of psoriatic patients [81, 82] and

from the sputum of COPD subjects [83, 84]. Elafin gene was cloned and sequenced

by Saheki and colleagues in 1992 [85] and by Sallenave and Silva in 1993 [86], and

shown to code for a 117-amino acids protein, of which the first 22 amino acids

represent a hydrophobic signal peptide. Elafin is produced as a 9.9-kDa full-length

non-glycosylated cationic protein composed of an N-terminal “cementoin” domain

which facilitates transglutaminase-mediated cross-linkage on to polymers or extra-

cellular matrix components and a globular C-terminus, containing the protease

inhibitor moiety [87]. The elafin molecule shares ~40% homology with SLPI and

has been shown to be a more specific inhibitor of proteases than SLPI, since it

inhibits NE, porcine pancreatic enzyme, and proteinase 3 [83, 88, 89], but does not

inhibit cathepsin G, trypsin, or chymotrypsin [83, 88].

The regulation of elafin expression during inflammation has been well studied.

In vitro, bronchial and alveolar epithelial cells produce little elafin protein, but the

quantity of elafin recovered from the supernatant can be greatly enhanced by

addition of the inflammatory cytokines IL-1 and TNF-a [79]. These cytokines

induce similar increases in expression of elafin from keratinocytes in vitro [90].

The c-jun, p38 mitogen-activated protein (MAP) kinase, and NF-kB pathways are

thought to be implicated in the elafin response to inflammatory cytokines [91–93].

Of note, the cytokine-mediated increase in elafin production by epithelial cells is

greater than the increase in SLPI production [79]. Hence, whereas SLPI has been

described as providing a baseline antiprotease shield and can be isolated from

bronchial lavage samples from healthy individuals [94–96], elafin might be of

greater significance during an inflammatory challenge to the lungs. In keeping
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with this notion, elafin mRNA expression in bronchial epithelial cells is increased

by free NE, which is found in abundance at times of inflammation [97, 98].

Although inhibition of NE activity has historically been considered to be the

primary role of elafin, recent work has highlighted further properties of this cationic

molecule. Simpson and colleagues [99] demonstrated that elafin has antibacterial

activity against gram-negative P. aeruginosa and gram-positive S. aureus, and
further established that, while antiprotease activity resides exclusively in the

C-terminus, the majority of antimicrobial activity of elafin resides in its N-terminal

domain [99]. In support of these findings, supernatants of P. aeruginosa could

induce elafin production in human keratinocytes, and elafin inhibits growth of

P. aeruginosa in vitro, but not E. coli [100, 101]. Further, adenovirus (Ad)-

mediated augmentation of human elafin in murine lungs was shown to protect the

lungs against P. aeruginosa-mediated injury, and also reduced bacterial numbers.

Similarly, overexpression of elafin using the Ad-strategy dramatically improved the

clearance of S. aureus in vitro and in vivo [102]. In these studies, concomitant anti-

inflammatory activities have been demonstrated, which can probably be explained

by an inhibition of the AP-1 and NF-kB pathways [103, 104]. More recently, using

wild-type and CD14 knockout mice, Wilkinson and co-workers demonstrated the

opsonic activity for elafin against P. aeruginosa, both in vitro and in vivo [105]. In

an extension of these data, there is evidence that elafin binds both smooth and rough

forms of LPS in vitro and could potentially modulate immune responses depending

on the microenvironment [106].

We have also shown that elafin exhibits chemotactic activity for leukocytes

locally in the lung [107, 108], while, conversely, downregulating inflammation

systemically [108]. In keeping with this immunomodulatory activity, we demon-

strated that overexpression of elafin in murine lungs results in a higher number of

CD11c+/MHCII+ DCs with an activated phenotype, as evidenced by expression

of higher levels of co-stimulatory molecules CSMs (CD80 and CD86), and

higher levels of Th1-biased cytokines IL-12p40, TNF-a, and IFN-g in their

broncholaveolar (BAL) fluids [109].

Secretory Leukocyte Protease Inhibitor

Secretory leukocyte protease inhibitor (SLPI) is an 11.7-kDa protein that was first

isolated from human parotid gland secretions [110]. SLPI orthologs have also been

demonstrated in mice, rats, pigs, and sheep [111–113]. It is a non-glycosylated,

highly basic, acid-stable, cysteine-rich, 107-amino acid, single-chain polypeptide

[110]. The tertiary structure of the SLPI molecule resembles a boomerang, with

each arm carrying one domain [114]. The four-in-each-domain disulfide bridges

formed between the cysteine residues, as well as the two-domain interaction,

contribute to the conformation and efficacy of the molecule [115]. SLPI provides

a significant component of the human antiprotease shield within the lung. Through

its C-terminal domain, SLPI gives significant protection against proteases, such as

NE and the serine protease cathepsin G [116]. SLPI is produced by various
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inflammatory cells, such as neutrophils [117], mast cells [118], and macrophages

[119]. It is estimated that SLPI is present at concentrations of 0.1–2 mg/ml in BAL

fluid [120, 121] and 2.5 mg/ml in nasal secretions [122].

It is believed that SLPI also shields the tissues against inflammatory products

by downregulating the macrophage responses against bacterial LPS. Patients

with sepsis have elevated circulating SLPI levels and LPS is the key mediator in

bacterial endotoxic shock [96, 123, 124]. LPS seems to induce SLPI production by

macrophages directly or by way of IL-1b, TNF-a, IL-6, and IL-10 [125, 126]. SLPI,
like elafin, in turn inhibits the downstream components of the NF-kB pathway

by protecting the inhibitor of NF-k (I-kB) from degradation by the ubiquitin-

proteosome pathway [103]. SLPI is believed to enter cells, becoming rapidly

localized to the cytoplasm and nucleus where it affects NF-kB activation by binding

directly to NF-kB binding sites in a site-specific manner [127]. Thus, SLPI renders

macrophages unable to release pro-inflammatory cytokines and nitric oxide [125].

These data have been confirmed by in vivo studies demonstrating that SLPI

knockout mice show increased susceptibility to endotoxic shock, and macrophages

and B lymphocytes from the same mice show increased activation after administra-

tion of LPS [128].

In addition to its NE inhibitory and immunomodulatory activities, SLPI,

like elafin, possesses broad-spectrum antibactericidal, antiviral, and antifungal

properties [115, 129–134].

The Systemic Antiprotease a1-Protease Inhibitor

The systemic antiprotease a1-PI (also called a1-antitrypsin) is a 52-kDa secreted

glycoprotein and is the prototypic member of the serine protease inhibitor (serpin)

superfamily of proteins, which has a major role in inactivating NE and other

proteases, such as cathepsin G and proteinase 3. Although some epithelial surfaces

and cells of the immune system may produce small quantities of systemic

antiproteases, such as a1-PI [135, 136], these inhibitors are produced primarily

by hepatocytes [137, 138]. The production of a1-PI by alveolar macrophages is

upregulated by pro-inflammatory cytokines and bacterial LPS [139]. Also, the

cytokine oncostatin M is a major inducer of a1-PI in bronchial epithelial cells

[135, 140].

The importance of a1-PI in the lung has historically been inferred from genetic

studies: a1-PI deficiency is a genetic disorder that affects about 1 in 2,000–5,000

individuals. a1-PI deficiency is characterized by a decrease in levels of secreted

a1-PI, which results in early-onset of emphysema in affected individuals. Although

it was originally believed that genetic emphysema was caused by this decreased

secretion of a1-PI in the respiratory tract, leading to unopposed and prolonged NE

activity [141], recent evidence suggests that the mutated Z variant of a1-PI, when
polymerized, may be pro-inflammatory when secreted, acting as an important

chemoattractant for neutrophils in the a1-PI-deficient lung and adding to the

excessive neutrophil and NE burden [137, 142].
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In addition to its role as an antiprotease, like elafin and SLPI, a1-PI possesses
important pleiotropic anti- or pro-inflammatory properties, depending upon the

conditions. These effects include blocking of the pro-inflammatory effects of

human NE [143, 144], and regulating expression of pro-inflammatory cytokines

such as TNF-a, IL-6, IL-8, IL-1b, and monocyte chemotactic protein (MCP)-1 by

monocytes [145, 146]. Both the native and polymerized forms of a1-PI have been
shown to possess similar effects as monocyte stimulators, with pro-inflammatory

effects at low doses, and anti-inflammatory activities at physiologically normal

doses [145]. This strengthens the concept that some of the apparently contradictory

effects of these inhibitors reported in the literature may be due to differences in

dosage between experimental protocols.

Lastly, a1-PI could also inhibit alveolar cell apoptosis in vivo [147]. Thus direct
inhibition of active NE [75] and caspase-3 [148] by a1-PI may represent a novel

anti-apoptotic mechanism relevant to disease processes characterized by excessive

structural cell apoptosis, oxidative stress, and inflammation in the airways [149].

5 Conclusions

Here, we have described the important role of proteases in immune functions, not

only in the direct degradation of micro-organisms and antigen presentation, but also

in the induction of inflammatory responses. We have also discussed the importance

of protease inhibitors in the modulation of maladaptive responses caused by

extracellularly released proteases. Finally, we described novel bioactivities of

elastase inhibitors, such as antimicrobial and adjuvant-like functions. These latter

functions are likely to be exploited further for the treatment of individuals prone

to developing CF and COPD, especially to combat frequent episodes of lung

infections, either in a therapeutic (antimicrobial activity) or prophylactic (vaccina-

tion) fashion.
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