
Chapter 2

Evolution of Geometric Quantities

In studying the long term behavior of solutions of parabolic equations and sys-
tems, in particular in the analysis of singularities, a basic step is always to obtain
a priori estimates. These can be integral or pointwise; the main tool in order to
get these latter is the maximum principle, in particular in the context of mean
curvature flow.

2.1 Maximum Principle

Theorem 2.1.1. Assume that g(t), for t ∈ [0, T ), is a family of Riemannian metrics
on a manifold M , with a possible boundary ∂M , such that the dependence on t is
smooth.
Let u : M × [0, T ) → R be a smooth function satisfying

∂tu ≤ ∆g(t)u+ 〈X(p, u,∇u, t) | ∇u〉g(t) + b(u)

where X and b are respectively a continuous vector field and a locally Lipschitz
function in their arguments.
Then, suppose that for every t ∈ [0, T ) there exists a value δ > 0 and a compact
subset K ⊂M \∂M such that at every time t′ ∈ (t− δ, t+ δ)∩ [0, T ) the maximum
of u( · , t′) is attained at least at one point of K (this is clearly true if M is compact
without boundary).
Setting umax(t) = maxp∈M u(p, t) we have that the function umax is locally Lips-
chitz, hence differentiable at almost every time t ∈ [0, T ) and at every differentia-
bility time,

dumax(t)
dt

≤ b(umax(t)) .

As a consequence, if h : [0, T ′) → R is a solution of the ODE{
h′(t) = b(h(t)),
h(0) = umax(0),

for T ′ ≤ T , then u ≤ h in M × [0, T ′).
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Moreover, if M is connected and at some time τ ∈ (0, T ′) we have umax(τ) =
h(τ), then u = h in M × [0, τ ], that is, u( · , t) is constant in space.

Corollary 2.1.2. Under the same hypotheses, when M is connected and the function
b is nonpositive (in particular if it is identically zero), if the maximum of u is
nondecreasing in a time interval I, the function u is constant in M × I.

The first part of the theorem is a consequence of the following lemma. The last
claim, the strong maximum principle, is more involved, see the book of Landis [82]
for a proof and the extensive discussion in [27, Chapter 12].

Lemma 2.1.3 (Hamilton’s Trick [56]). Let u : M×(0, T ) → R be a C1 function such
that for every time t, there exists a value δ > 0 and a compact subset K ⊂M \∂M
such that at every time t′ ∈ (t− δ, t+ δ) the maximum umax(t′) = maxp∈M u(p, t′)
is attained at least at one point of K.

Then, umax is a locally Lipschitz function in (0, T ) and at every differentia-
bility time t ∈ (0, T ) we have

dumax(t)
dt

=
∂u(p, t)
∂t

where p ∈M \ ∂M is any interior point where u( · , t) gets its maximum.

Proof. Fixing t ∈ (0, T ), we have δ > 0 and K as in the hypotheses, hence on
K × (t − δ, t + δ) the function u is Lipschitz with some Lipschitz constant C.
Consider a value 0 < ε < δ, then we have

umax(t+ ε) = u(q, t+ ε) ≤ u(q, t) + εC ≤ umax(t) + εC ,

for some q ∈ K, hence,

umax(t+ ε) − umax(t)
ε

≤ C .

Analogously,

umax(t) = u(p, t) ≤ u(p, t+ ε) + εC ≤ umax(t+ ε) + εC ,

for some p ∈ K, hence,

umax(t) − umax(t+ ε)
ε

≤ C .

With the same argument, considering −δ < ε < 0, we conclude that umax is a
locally Lipschitz function in (0, T ), hence differentiable at almost every time.
Suppose that t is one of such times; let p be a point in the nonempty set {p ∈
M \ ∂M |u(p, t) = umax(t)}.
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By Lagrange’s theorem, for every 0 < ε < δ, u(p, t + ε) = u(p, t) + ε∂u(p,ξ)
∂t for

some ξ, hence

umax(t+ ε) ≥ u(p, t+ ε) = umax(t) + ε
∂u(p, ξ)
∂t

,

which implies, as ε > 0,

umax(t+ ε) − umax(t)
ε

≥ ∂u(p, ξ)
∂t

.

Sending ε to zero, we get u′max(t) ≥
∂u(p,t)
∂t .

If instead we choose −δ < ε < 0 we get

umax(t+ ε) − umax(t)
ε

≤ ∂u(p, ξ)
∂t

and when ε→ 0, we have u′max(t) ≤
∂u(p,t)
∂t . Thus, we are done. �

Exercise 2.1.4. Prove that the conclusion of the lemma holds also if the function
u is merely locally Lipschitz, provided that all the derivatives involved in the
computations there exist.

Proof of Theorem 2.1.1 – First Part. By the previous lemma, the function umax is
locally Lipschitz and letting t be a differentiability time of umax, we have, choosing
any p ∈M \ ∂M such that u(p, t) = umax(t),

u′max(t) =
∂u(p, t)
∂t

≤∆g(t)u+ 〈X(p, u,∇u, t) | ∇u〉g(t) + b(u(p, t))

≤ b(u(p, t))
= b(umax(t)) .

Let now h : [0, T ′) → R be as in the hypothesis. We define, for ε > 0, the
approximating functions hε : [0, T ′′) → R to be the maximal solutions of the
family of ODE’s {

h′ε(t) = b(hε(t)),
hε(0) = umax(0) + ε .

It is easy to see that, as the function b is locally Lipschitz, then limε→0 hε =
h uniformly on [0, T ′ − δ] for any δ > 0. Suppose that at some positive time
umax > hε and set t > 0 to be the positive infimum of such times (at time zero
umax(0) = hε(0)−ε). Then, umax(t) = hε(t) and, setting Hε = hε−umax, at every
differentiability point of umax in the interval [0, t) we have Hε(0) = ε > 0 and

H ′
ε(t) ≥ b(hε(t)) − b(umax(t)) ≥ −C(hε(t) − umax(t)) = −CHε(t)

where C > 0 is a local Lipschitz constant for b.
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Then, (logHε)′(t) ≥ −C and integrating, logHε|t0 ≥ −Ct, that is, Hε(t) ≥
Hε(0)e−Ct = εe−Ct. In particular, if t→ t, we conclude Hε(t) ≥ εe−Ct > 0 which
is in contradiction with Hε(t) = 0. Hence, umax(t) ≤ hε(t) for every t ∈ [0, T ′ − δ)
and sending ε to zero, umax(t) ≤ h(t) for every t ∈ [0, T ′ − δ). As δ > 0 was
arbitrary, we conclude the proof of the first part of the theorem. �
Exercise 2.1.5. When the function umax is not differentiable at t, one can still
actually say something using the upper derivative, that is the lim sup of the incre-
mental ratios; we call this operator d+. Prove that

d+umax(t)
dt

= sup
{p∈M |u(p,t)=umax(t)}

∂u(p, t)
∂t

.

Roughly speaking, the sup and the upper derivative operators can be interchanged.
The same holds for the inf and the lower derivative defined analogously.
What can be said about the left/right derivatives of umax?

Remark 2.1.6. Clearly, there hold analogous results for the minimum of the solu-
tion of the opposite partial differential inequality. Moreover, the maximum princi-
ple for elliptic equations easily follows as the special case where all the quantities
around do not depend on the time variable t.

2.2 Comparison Principle

Theorem 2.2.1 (Comparison Principle for Mean Curvature Flow). Let ϕ : M1 ×
[0, T ) → Rn+1 and ψ : M2 × [0, T ) → Rn+1 be two hypersurfaces moving by mean
curvature, with M1 compact. Then the distance between them is nondecreasing in
time.

Proof. The distance between the two hypersurfaces ϕt : M1 → Rn+1 and ψt :
M2 → Rn+1 at time t, is given by dϕψ(t) = infp∈M1,q∈M2 |ϕ(p, t) − ψ(q, t)|. This
function is locally Lipschitz in time, as the curvature is locally bounded and the two
hypersurfaces move by mean curvature, so it is differentiable almost everywhere
and we assume that t is a differentiability point.

This infimum is actually a minimum as M1 is compact, suppose then that it
is positive and let (pt, qt) be any pair realizing such a minimum.

It is easy to see that, by minimality, the respective tangent spaces at pt and qt
of the two hypersurfaces have to be parallel. Then we can write locally ϕ(p, t) and
ψ(p, t) as graphs of two functions f(p, t) and h(p, t) over one of these tangent spaces
for a small interval of time (t− ε, t+ ε). We can assume that 〈e1, . . . , en〉 ⊂ Rn+1

is such a tangent space with ϕ(pt, t) = (0, f(0, t)) and ψ(qt, t) = (0, h(0, t)) at time
t; moreover f(0, t) > h(0, t).

We know, by Exercise 1.3.8 that

ft = ∆f − Hessf(∇f,∇f)
1 + |∇f |2 and ht = ∆h− Hessh(∇h,∇h)

1 + |∇h|2 .



2.2. Comparison Principle 29

Again, by minimality, the function f(x, t)−h(x, t) has a minimum at x = 0, hence,
∆f(0, t) − ∆h(0, t) ≥ 0 and ∇f(0, t) = ∇h(0, t) = 0, but we saw that for graphs,
∆f(0, t) = Hϕ(pt, t)〈νϕ(pt, t) | en+1〉 and ∆h(0, t) = Hψ(qt, t)〈νψ(qt, t) | en+1〉,
thus,

〈Hϕ(pt, t)νϕ(pt, t) − Hψ(qt, t)νψ(qt, t) | en+1〉 = ∆f(0, t) − ∆h(0, t) ≥ 0 .

Now we have pt−qt
|pt−qt| = en+1 by construction and, by Lemma 2.1.3, we can con-

clude, as this analysis holds for all the pairs of points realizing the minimum,
that

d

dt
dϕψ(t) = inf

(pt,qt)∈M1×M2 with |ϕ(pt,t)−ψ(qt,t)|= dϕψ(t)

∂

∂t
|ϕ(pt, t) − ψ(qt, t)|

= inf
(pt,qt)∈M1×M2 with |ϕ(pt,t)−ψ(qt,t)|= dϕψ(t)

〈pt − qt |Hϕνϕ − Hψνψ〉
|pt − qt|

= inf
(pt,qt)∈M1×M2 with |ϕ(pt,t)−ψ(qt,t)|= dϕψ(t)

〈Hϕνϕ − Hψνψ | en+1〉

≥ 0 .

If the minimum is zero, there is nothing to show; obviously the derivative, if it
exists, cannot be negative. �

Exercise 2.2.2. Show the following facts for a compact hypersurface moving by
mean curvature.

• The diameter of the hypersurface decreases during the flow.

• The circumradius of the hypersurface (the radius of the smallest sphere en-
closing the hypersurface) decreases.

Corollary 2.2.3. Let ϕ : M1 × [0, T ) → Rn+1 and ψ : M2 × [0, T ) → Rn+1 be two
hypersurfaces moving by mean curvature such that M1 is compact, M2 is embedded
and ϕ(M1, 0) is strictly “inside” ψ(M2, 0). Then ϕ(M1, t) remains strictly “inside”
ψ(M2, t) for every time t ∈ [0, T ).

Proof. This is an easy consequence of the fact that the distance between the two
hypersurfaces is nondecreasing, so it cannot get to zero, as it starts positive. Hence,
the hypersurface “inside” cannot “touch” the other during the flow. �

Remark 2.2.4. By means of the continuous dependence result in Theorem 1.5.1 one
has a slight improvement of the previous corollary, allowing the two hypersurfaces,
one “inside” the other, to have common points at the initial time. To prove this
fact one can “push” a little inside the initial hypersurface ϕ0 along the gradient
of the distance function from ψ(M2, 0) in a local small tubular neighborhood (M1

is compact), then conclude by the above corollary and the continuous dependence
of the flow on the initial hypersurface.
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By means of the strong maximum principle we can actually show something
more, that is, evolving by mean curvature, the distance between two connected
hypersurfaces (with at least one compact) with possibly only tangent intersections
and such that they “do not cross each other”, is always increasing, otherwise they
must coincide.
This can be seen by using again the idea of the proof of Theorem 1.5.1, writing
the two hypersurfaces as graphs over the initial “external” hypersurface in a small
regular tubular neighborhood of this latter and applying the strong maximum
principle to the “height” functions representing them. As a preliminary step, one
has to consider an “intermediate” hypersurface close enough to the “external”
one which stays in its tubular neighborhood for some positive time. We leave the
technical details to the reader as an exercise.

In other words, if two connected hypersurfaces (one compact “inside” the
other) touch each other at time zero but they are not the same, immediately they
become disjoint, at every positive time.

Even more, in the special case of curves in the plane the number of intersec-
tions (or of self-intersections) is nonincreasing in time, see [14, 16].

Applying Corollary 2.2.3 to the case that ϕ(M2, 0) is a sphere of radius R,
we have the following estimate for the maximal time of smooth existence.

Corollary 2.2.5. Let ϕ : M × [0, T ) → Rn+1 be the mean curvature flow of a
compact hypersurface. If ϕ(M, 0) ⊂ BR(x0) then the flow is contained in BR(x0)
at every time and T ≤ R2/(2n).
Hence, the mean curvature flow of every compact immersed hypersurface develops
a singularity in finite time.
In particular, if Tmax is the maximal time of smooth existence of the flow, then
Tmax ≤ diam2

Rn+1 [ϕ(M, 0)]/2n.

Proof. We have already seen that a sphere of radius R shrinks to a point with
the rule R(t) =

√
R2 − 2nt, hence at time t = R2/(2n) its radius gets to zero. As

ϕ(M, t) ⊂ B√
R2−2nt(x0), at most at time t = R2/(2n) the evolving hypersurface

ϕt must develop a singularity, since at such time it cannot be an immersion.
The last claim is trivial. �

Another consequence of the maximum principle is the following characteriza-
tion of the points of Rn+1 “reached” by the flow at time T , that is, an estimate on
the rate of convergence to a limit hypersurface as t→ T (this will be particularly
interesting when T is a singular time). Roughly speaking, if a hypersurface moving
by mean curvature is “reaching” a point of the Euclidean space at some time, then
it cannot stay “too far” from such a point in the past.

Proposition 2.2.6. Let ϕ : M × [0, T ) → Rn+1 be a mean curvature flow and
define S to be the set of points x ∈ Rn+1 such that there exists a sequence of pairs
(pi, ti) ∈M × [0, T ) with ti ↗ T and ϕ(pi, ti) → x.
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Then, S is closed (and bounded if M is compact), moreover x ∈ S if and only if
for every t ∈ [0, T ) the closed ball of radius

√
2n(T − t) and center x intersects

ϕ(M, t).

Proof. One implication is obvious.
Suppose that x ∈ S and let dt(x) = minp∈M |ϕ(p, t) − x|, that is, the Euclidean
distance from x to the hypersurface at time t.
The function dt : [0, T ) → R is obviously locally Lipschitz and at a differentiability
time with dt(x) > 0, by Hamilton’s trick, Lemma 2.1.3, we have

d′t(x) =
∂

∂t
|ϕ(q, t) − x| ≥ H(q, t)〈ν(q, t) |ϕ(q, t) − x〉

|ϕ(q, t) − x|

for any point q ∈M such that dt(x) = |ϕ(q, t) − x|.
As the closed ball Bdt(x)(x) intersects the hypersurface ϕt only on its boundary
and the vector ϕ(q,t)−x

|ϕ(q,t)−x| is parallel to the normal ν(q, t) by minimality, an easy
geometric argument on the principal eigenvalues of the second fundamental form
shows that

H(q, t)〈ν(q, t) |ϕ(q, t) − x〉
|ϕ(q, t) − x| ≥ −n/dt(x) .

Hence, we conclude that for almost every time t ∈ [0, T ),

d′t(x) ≥ −n/dt(x)

if dt(x) �= 0.
Integrating this differential inequality on [t, s] we get d2

t (x) − d2
s(x) ≤ 2n(s − t)

and by the hypothesis on x we have d2
ti(x) → 0, hence

d2
t (x) = lim

i→∞
d2
t (x) − d2

ti(x) ≤ lim
i→∞

2n(ti − t) = 2n(T − t)

which is the thesis of the proposition.
The closure of S is obvious, if M is compact S is clearly also bounded by Corol-
lary 2.2.5. �

A very important fact about hypersurfaces moving by mean curvature is the
following.

Proposition 2.2.7. If the initial hypersurface is compact and embedded, then it
remains embedded during the flow.

Proof. Given the mean curvature flow ϕt, if the hypersurface ϕ0 is embedded it
remains so for a small positive time, otherwise we will have a sequence of points
and times, with ϕ(pi, ti) = ϕ(qi, ti) and ti → 0, then, extracting a subsequence (not
relabeled) such that pi → p and qi → q, either p �= q so ϕ(p, 0) = ϕ(q, 0), which is
a contradiction, or p = q. By the smooth existence of the flow, in particular by the
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nonsingularity of the differential of ∂xϕ(p, t) there exists a ball B ⊂ M around p
such that for t ∈ [0, ε) the map ϕt|B is one-to-one, which is in contradiction with
the hypotheses.
This short time embeddedness property is also immediate by revisiting the proof
of the short time existence theorem, representing the moving hypersurfaces as
graphs on the initial one.

This argument also implies that the embeddedness holds in an open time
interval, then we assume that T > 0 is the first time such that the hypersurface ϕt
is no more embedded. The set S of pairs (p, q) with p �= q and ϕ(p, T ) = ϕ(q, T ) is a
nonempty closed set disjoint from the diagonal in M ×M , otherwise ϕT fails to be
an immersion at some point in M . Then, we can find a smooth open neighborhood
Ω of the diagonal with Ω ∩ S = ∅.
We consider the quantity

C = inf
t∈[0,T ]

inf
(p,q)∈∂Ω

|ϕ(p, t) − ϕ(q, t)| ,

then C is positive, as Ω ∩ S = ∅ and ∂Ω is compact. We claim that the function

L(t) = min
(p,q)∈M×M\Ω

|ϕ(p, t) − ϕ(q, t)| ,

is bounded from below by min{L(0), C} > 0 on [0, T ], this is clearly in contradic-
tion with the fact that S is nonempty and contained in M ×M \ Ω.
If at some time L(t) < C it follows that L(t) is achieved by some pairs (p, q) not
belonging to ∂Ω, then (p, q) are inner points ofM×M\Ω and a geometric argument
analogous to the one of the comparison Theorem 2.2.1 shows that dL(t)

dt ≥ 0, hence
L(t) is nondecreasing in time. This last fact clearly implies the claim. �

Remark 2.2.8. Theorem 2.2.1 and Proposition 2.2.7 also hold if the involved hy-
persurfaces are not compact, with some additional assumptions on the behavior
at infinity (for instance, uniform bounds on the curvature), the analysis is anyway
more complicated.

2.3 Evolution of Curvature

Now we derive the evolution equations for g, ν, Γijk, A and H. We already know
that

∂

∂t
gij = −2Hhij .

Differentiating the formula gisgsj = δji we get

∂

∂t
gij = −gis ∂

∂t
gslg

lj = 2Hgishslglj = 2Hhij .
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The derivative of the normal ν is given by〈
∂ν

∂t

∣∣∣∣ ∂ϕ∂xi
〉

= −
〈
ν

∣∣∣∣ ∂2ϕ

∂t∂xi

〉
= −

〈
ν

∣∣∣∣ ∂(Hν)
∂xi

〉
= − ∂H

∂xi
.

Finally the derivative of the Christoffel symbols is

∂

∂t
Γijk =

1
2
gil

{
∂

∂xj

(
∂

∂t
gkl

)
+

∂

∂xk

(
∂

∂t
gjl

)
− ∂

∂xl

(
∂

∂t
gjk

)}

+
1
2
∂

∂t
gil

{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1
2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+
1
2
gil

{
∂

∂t
gkzΓzjl +

∂

∂t
glzΓzjk +

∂

∂t
gjzΓzkl

+
∂

∂t
glzΓzjk −

∂

∂t
gjzΓzkl −

∂

∂t
gkzΓzjl

}

− 1
2
gis

∂

∂t
gszg

zl

{
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

}

=
1
2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}

+ gil
∂

∂t
glzΓzjk − gis

∂

∂t
gszΓzjk

=
1
2
gil

{
∇j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
gjl

)
−∇l

(
∂

∂t
gjk

)}
= − gil {∇j(Hhkl) + ∇k(Hhjl) −∇l(Hhjk)}
= − hik∇jH − hij∇kH + hjk∇iH − H(∇jh

i
k + ∇kh

i
j −∇ihjk) .

Summarizing, we have

∂

∂t
gij = − 2Hhij

∂

∂t
gij =2Hhij

∂

∂t
ν = −∇H

∂

∂t
Γijk =∇H ∗ A + H ∗ ∇A = ∇A ∗ A .

Proposition 2.3.1. The second fundamental form satisfies the evolution equation

∂

∂t
hij = ∆hij − 2Hhilglshsj + |A|2hij . (2.3.1)
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It follows that
∂

∂t
hji = ∆hji + |A|2hji , (2.3.2)

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

and
∂

∂t
H = ∆H + H|A|2 . (2.3.3)

Proof. Keeping in mind the Gauss–Weingarten relations (1.1.1) and the previous
evolution equations, we compute

∂

∂t
hij =

∂

∂t

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉

=
〈
ν

∣∣∣∣ ∂2(Hν)
∂xi∂xj

〉
−
〈
∇H

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉

=
∂2H
∂xi∂xj

− H
〈
ν

∣∣∣∣ ∂

∂xi

(
hjlg

ls ∂ϕ

∂xs

)〉

−
〈
∂H
∂xl

· ∂ϕ
∂xs

gls
∣∣∣∣ Γkij

∂ϕ

∂xk
+ hijν

〉

=
∂2H
∂xi∂xj

− Hhjlgls
〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xs

〉
− Γkij

∂H
∂xk

=∇i∇jH − Hhilglshsj .

Then using Simons’ identity (1.1.4) we conclude that

∂

∂t
hij = ∆hij − 2Hhilglshsj + |A|2hij .

The other equations follow from straightforward computations, as ∂
∂tg

ij = 2Hhij .
�

Remark 2.3.2. Since it will be useful in the sequel, we see in detail the evolution
equations in the special one-dimensional case of the flow by curvature γ : S1×[0, T )
of a closed curve in the plane.
We denote by θ the parameter on S1 and by s = s(θ, t) =

∫ θ
0
|∂θγ(θ, t)| dθ the

arclength, τ = ∂sγ is the tangent unit vector and ν = Rτ is the unit normal,
where R : R2 → R2 is the counterclockwise rotation of an angle of π/2, finally
k = 〈∂sτ | ν〉 is the curvature.
Notice that ∂s = |γθ|−1∂θ and that the evolution equation reads ∂tγ = kν = ∂2

ssγ.
Then, we easily get the commutation rule ∂t∂s = ∂s∂t + k2∂s which implies

∂tτ = ∂t∂sγ = ∂s∂tγ + k2∂sγ = ∂s(kν) + k2τ = ksν,

∂tν = ∂t(Rτ) = R ∂tτ = −ksτ,
∂tk = kss + k3 .
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Now we deal with the covariant derivatives of A.

Lemma 2.3.3. The following formula for the interchange of time and covariant
derivative of a tensor T holds:

∂

∂t
∇T = ∇ ∂

∂t
T + T ∗ A ∗ ∇A .

Proof. We suppose that T = Ti1...ik is a covariant tensor, the general case is
analogous, as it will be clear by the following computation:

∂

∂t
∇jTi1...ik =

∂

∂t

(∂Ti1...ik
∂xj

−
k∑
s=1

ΓljisTi1...is−1lis+1...ik

)

=
∂

∂xj

∂Ti1...ik
∂t

−
k∑
s=1

Γljis
∂Ti1...is−1lis+1...ik

∂t

−
k∑
s=1

∂

∂t
ΓljisTi1...is−1lis+1...ik

=∇j
∂Ti1...ik
∂t

−
k∑
s=1

(A ∗ ∇A)ljisTi1...is−1lis+1...ik ,

which is the formula we wanted. �
Lemma 2.3.4. We have, for k > 0, denoting by ∇k the kth iterated covariant
derivative,

∂

∂t
∇khij = ∆∇khij +

∑
p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA.

Proof. We work by induction on k ∈ N. The case k = 0 is given by equation (2.3.1);
we then suppose that the formula holds for k−1. We have, by the previous lemma,

∂

∂t
∇khij =∇ ∂

∂t
∇k−1hij + ∇k−1A ∗ ∇A ∗ A

=∇
(
∆∇k−1hij +

∑
p+q+r=k−1 | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA
)

+ ∇k−1A ∗ ∇A ∗ A

=∇∆∇k−1hij +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA.

Interchanging now the Laplacian and the covariant derivative and recalling that
Riem = A ∗ A, we have the conclusion, as all the extra terms we get are of the
form A ∗ A ∗ ∇kA and A ∗ ∇A ∗ ∇k−1A. �
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Proposition 2.3.5. The following formula holds:

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +

∑
p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA.

(2.3.4)

Proof. We compute

∂

∂t
|∇kA|2 = 2g

(
∇kA,

∂

∂t
∇kA

)
+ ∇kA ∗ ∇kA ∗ A ∗ A

= 2g
(
∇kA,∆∇kA +

∑
p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA
)

+ ∇kA ∗ ∇kA ∗ A ∗ A

= 2g
(
∇kA,∆∇kA

)
+

∑
p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

= ∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA .

�

2.4 Consequences of Evolution Equations

Let us see some consequences of application of the maximum principle to evolution
equations for curvature.
Suppose that we have a mean curvature flow of a compact hypersurface M in the
time interval [0, T ); we have seen that

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4

and
∂

∂t
H = ∆H + H|A|2 .

First we deal with the so-called mean convex hypersurfaces that play a major
role in the subject.
A hypersurface is mean convex if H ≥ 0 everywhere. We will see in the next
proposition that this property is preserved by the mean curvature flow. Mean
convexity is a significant generalization of convexity; for instance, it is general
enough to allow the neckpinch behavior described in Section 1.4, in particular,
mean convex hypersurfaces do not necessarily shrink to a point at the singular
time.
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Proposition 2.4.1. Assume that the initial, compact hypersurface satisfies H ≥ 0.
Then, under the mean curvature flow, the minimum of H is increasing, hence H
is positive for every positive time.

Proof. Arguing by contradiction, suppose that in an interval (t0, t1) ⊂ R+ we
have Hmin(t) < 0 and Hmin(t0) = 0 (Hmin is obviously continuous in time and
Hmin(0) ≥ 0).

Let |A|2 ≤ C in such an interval. Then

∂H
∂t

= ∆H + H|A|2 implies
∂Hmin

∂t
≥ CHmin

for almost every t ∈ (t0, t1).
Integrating this differential inequality in [s, t] ⊂ (t0, t1) we get Hmin(t) ≥

eC(t−s)Hmin(s), then sending s→ t+0 we conclude Hmin(t) ≥ 0 for every t ∈ (t0, t1)
which is a contradiction.

Since then H ≥ 0 we get

∂H
∂t

= ∆H + H|A|2 ≥ ∆H + H3/n .

With the notation of Theorem 2.1.1, we let u = −H, X = 0 and b(x) = x3/n,
then, if Hmin(0) = 0 the ODE solution h(t) is always zero; so if at some positive
time Hmin(τ) = 0, we have that H( · , τ) is constant equal to zero on M , but there
are no compact hypersurfaces with zero mean curvature. Hence, Hmin is always
increasing during the flow and H is positive on all M at every positive time. �

Actually, this proposition can be slightly improved as follows.

Proposition 2.4.2. If the initial, compact hypersurface satisfies |A| ≤ αH for some
constant α, then |A| ≤ αH for every positive time.

Proof. We know that H > 0 for every positive time, hence also |A| > 0 for every
positive time which implies that it is smooth as |A|2.
Let [0, T ) be the interval of smooth existence of the flow. Computing the evolution
equation of the function f = |A| − αH, we get

∂f

∂t
=

1
2|A| (∆|A|2 − 2|∇A|2 + 2|A|4) − α(∆H + H|A|2)

=∆|A| + 1
2|A| (2|∇|A||2 − 2|∇A|2) + |A|3 − α(∆H + H|A|2)

=∆f + |A|2f +
1

2|A| (2|∇|A||2 − 2|∇A|2)

≤∆f + |A|2|f | ,

as the term |∇|A||2 − |∇A|2 is nonpositive.
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Hence, choosing any T ′ < T , if C is the maximum of |A|2 on M × [0, T ′], we have
∂tf ≤ ∆f + C|f | on M × [0, T ′]. By the maximum principle Theorem 2.1.1, as
fmax(0) ≤ 0, we conclude f ≤ 0 on M × [0, T ′]. By the arbitrariness of T ′ < T ,
the thesis follows. �
Corollary 2.4.3. If H > 0 for the initial, compact, n-dimensional hypersurface,
then there exists α0 > 0 such that α0|A|2 ≤ H2 ≤ n|A|2 everywhere on M for
every time.
If the initial hypersurface has positive scalar curvature, then the same holds for
every positive time.

Proof. The first claim is immediate by the compactness of M and the previous
proposition (the second inequality is algebraic).
Recalling that the scalar curvature is equal to H2 − |A|2, positive scalar curvature
implies that H > 0 (H cannot change sign on M and there is always a point where
it is positive, as M is compact) and H2/|A|2 > 1, the second part of this corollary
is also a consequence of Proposition 2.4.2. �
Corollary 2.4.4. Assume that the initial, compact hypersurface has H ≥ 0, then, if
A is not bounded as t→ T then H is also not bounded.

Proof. Immediate consequence of Proposition 2.4.1 and the estimate of the previ-
ous corollary. �

Now we consider the evolution equation of |A|2 which implies

∂

∂t
|A|2max ≤ 2|A|4max .

Notice that |A|2max is always positive, otherwise at some time t we would have
A = 0 identically on M , which would imply that M is a hyperplane in Rn+1 in
contradiction with the compactness hypothesis of M . Hence, we can divide both
members by |A|2max obtaining the following differential inequality for the locally
Lipschitz function 1/|A|2max, holding at almost every time t ∈ [0, T ),

− d

dt

1
|A|2max

≤ 2 .

Integrating in time in any interval [t, s] ⊂ [0, T ), we get

1
|A( · , t)|2max

− 1
|A( · , s)|2max

≤ 2(s− t) .

Suppose now that A is not bounded in [0, T ), that is, there exists a sequence of
times si ↗ T such that |A( · , si)|2max → +∞. Substituting these times si in the
previous inequality and sending i→ ∞, we get

1
|A( · , t)|2max

≤ 2(T − t) .
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Exercise 2.4.5. Show that the only compact hypersurfaces in Rn+1 with constant
mean curvature are the spheres. What can be said about a compact hypersurface
in Rn+1 with constant |A|?

In other words, we have proved the following.

Proposition 2.4.6. If the second fundamental form A during the mean curvature
flow of a compact hypersurface is not bounded as t → T < +∞, then it must
satisfy the following lower bound for its blow-up rate:

max
p∈M

|A(p, t)| ≥ 1√
2(T − t)

for every t ∈ [0, T ).
Hence,

lim
t→T

max
p∈M

|A(p, t)| = +∞ .

Exercise 2.4.7. Assume that the initial, compact hypersurface has H > 0, then the
maximal time of smooth existence of the flow can be estimated as Tmax ≤ n

2H2
min(0)

.

Proposition 2.4.8. If the second fundamental form is bounded in the interval [0, T )
with T < +∞, then all its covariant derivatives are also bounded.

Proof. By Proposition 2.3.5 we have

∂

∂t
|∇kA|2 =∆|∇kA|2 − 2|∇k+1A|2 +

∑
p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA

≤∆|∇kA|2 + P (|A|, . . . , |∇k−1A|)|∇kA|2 +Q(|A|, . . . , |∇k−1A|) ,

where P and Q are smooth functions independent of time (actually they are
polynomials in their arguments). Notice that in the arguments of P,Q there
is not ∇kA; indeed, in the terms ∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA there can be only
one or two occurrences of ∇kA, since p + q + r = k and p, q, r ∈ N. If there
are two, suppose that r = k, then necessarily p = q = 0 and we estimate
|A∗A∗∇kA∗∇kA| ≤ |A|2|∇kA|2; if there is only one this means that p, q, r < k and
we again estimate |∇pA∗∇qA∗∇rA∗∇kA| ≤ |∇pA∗∇qA∗∇rA|2/2+ |∇kA|2/2.

Reasoning by induction on k, being the case k = 0 in the hypotheses, we
assume that all the covariant derivatives of A up to order k − 1 are bounded,
hence also P (|A|, . . . , |∇k−1A|) and Q(|A|, . . . , |∇k−1A|) are bounded, thus

∂

∂t
|∇kA|2 ≤ ∆|∇kA|2 + C|∇kA|2 +D .

By the maximum principle, this implies

d

dt
|∇kA|2max ≤ C|∇kA|2max +D ,
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and since the interval [0, T ) is bounded, the quantity |∇kA|2max is also bounded,
as one can obtain an easy exponential estimate for the function u(t) = |∇kA|2max,
integrating the ordinary differential inequality u′ ≤ Cu + D, holding for almost
every time t ∈ [0, T ). �

Proposition 2.4.9. If the second fundamental form is bounded in the interval [0, T )
with T < +∞, then T cannot be a singular time for the mean curvature flow of a
compact hypersurface ϕ : M × [0, T ) → Rn+1.

Proof. By the previous proposition we know that all the covariant derivatives
of A are bounded by constants depending on T and the geometry of the initial
hypersurface. As H is bounded, we have

|ϕ(p, t) − ϕ(p, s)| ≤
∫ t

s

|H(p, ξ)| dξ ≤ C(t− s)

for every 0 ≤ s ≤ t < T , then the maps ϕt = ϕ( · , t) uniformly converge to a
continuous limit map ϕT : M → R

n+1 as t→ T .
We fix now a vector v = {vi} ∈ TpM ,

d

dt
log |v|2g =

∂gij
∂t v

ivj

|v|2g
=

−2Hhijvivj

|v|2g
≤ C

|A|2|v|2g
|v|2g

≤ C;

then, for every 0 ≤ s ≤ t < T ,∣∣∣∣∣log
|v|2g(t)
|v|2g(s)

∣∣∣∣∣ ≤
∫ t

s

∣∣∣∣ ddξ log |v|2g(ξ)
∣∣∣∣ dξ ≤ C(t− s)

which implies that the metrics g(t) are all equivalent and the norms | · |g(t) uni-
formly converge, as t → T , to an equivalent norm | · |T which is continuous. As
the parallelogram identity passes to the limit, it must hold also for | · |T , hence
this latter comes from a metric tensor gT which can be obtained by polarization.
Moreover, since gT is equivalent to all the other metrics, it is also positive definite.
Another consequence of such equivalence is that we are free to use any of these
metrics in doing our estimates.

By the evolution equation for the Christoffel symbols, we see that

∣∣Γkij(t)∣∣ ≤ ∣∣Γkij(0)
∣∣ +

∫ t

0

∣∣∣∣ ∂∂ξΓkij(ξ)
∣∣∣∣ dξ ≤ C +

∫ T

0

|A ∗ ∇A| dξ ≤ C +DT ,

for some constants depending only on the initial hypersurface. Thus, the Christoffel
symbols are equibounded in time, after fixing a local chart. This implies for every
tensor S, ∣∣∣∣

∣∣∣∣ ∂S∂xi
∣∣∣∣− |∇iS|

∣∣∣∣ ≤ C|S| ,
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that is, the derivatives in coordinates differ by the relative covariant ones by equi-
bounded terms.

In the rest of the proof, by simplicity, we will denote by ∂ the coordinate
derivatives and by ∇ the covariant ones.

As the time derivative of the Christoffel symbols is a tensor of the form
A ∗ ∇A, we have

|∂t∂sl1...lsΓ
k
ij | = |∂sl1...ls∂tΓ

k
ij | = |∂sl1...lsA ∗ ∇A| ,

hence, by an induction argument on the order s and integration as above, one can
show that

∣∣∂sl1...lsΓkij∣∣ ≤ C for every s ∈ N.
Then, again by induction, the following formula (where we avoid indicating the
indices) relating the iterated covariant and coordinate derivatives of a tensor S,
holds:

| |∇sS| − |∂sS| | ≤
s∑
i=1

∑
j1+···+ji+k≤s−1

∣∣∂j1Γ . . . ∂jiΓ∂kS∣∣ ≤ C

s−1∑
k=1

∣∣∂kS∣∣ .
This implies that if a tensor has all its covariant derivatives bounded, also all the
coordinate derivatives are bounded. In particular this holds for the tensor A, that
is,

∣∣∂kA∣∣ ≤ Ck. Moreover, by induction, as ∇kg = 0 all the coordinate derivatives
of the metric tensor g are equibounded.

We already know that |ϕ| is bounded and |∂ϕ| = 1, then by the Gauss–
Weingarten relations (1.1.1),

∂2ϕ = Γ∂ϕ+ Aν , ∂ν = A ∗ ∂ϕ ,

we get

|∂kϕ| =

∣∣∣∣∣
k−2∑
i=0

(
k − 2
i

)
∂k−2−iΓ∂i+1ϕ+

k−2∑
i=0

(
k − 2
i

)
∂k−2−iA∂iν

∣∣∣∣∣
≤C

k−2∑
i=0

|∂i+1ϕ| + C
k−2∑
i=1

|∂i−1(A ∗ ∂ϕ)| + C

=C
k−2∑
i=0

|∂i+1ϕ| + C
k−2∑
i=1

∣∣∣ ∑
p+q+r=i−1

∂pA ∗ ∂qg ∗ ∂r+1ϕ
∣∣∣ + C

≤C

k−2∑
i=0

|∂i+1ϕ| + C

k−2∑
i=1

i−1∑
r=0

|∂r+1ϕ| + C

≤C
k−2∑
i=0

|∂i+1ϕ| + C
k−2∑
i=1

|∂iϕ| + C

≤C
k−1∑
i=0

|∂iϕ|
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where we estimated with a constant all the occurrences of ∂kA and ∂kg. Hence,
we obtain by induction that |∂kϕ| < Ck for constants Ck independent of time
t ∈ [0, T ). By the Ascoli–Arzelà theorem we can conclude that ϕT : M → Rn+1 is
a smooth immersion and the convergence ϕ( · , t) → ϕT is in C∞.

Moreover, with the same argument, repeatedly differentiating the evolution
equation ∂tϕ = Hν one gets also uniform boundedness of the time derivatives of
the map ϕ, that is |∂st ∂kxϕ| ≤ Cs,k. Hence the map ϕ : M × [0, T ) → Rn+1 can be
extended smoothly to the boundary of the domain of ϕ with the map ϕT .

By means of the short time existence Theorem 1.5.1 we can now “restart” the
flow with the immersion ϕT , obtaining a smooth extension of the map ϕ which is in
contradiction with the fact that T was the maximal time of smooth existence. �

Open Problem 2.4.10. Recently the condition of bounded second fundamental
form was weakened by Le and Sesum [84] to a lower bound on A and an integral
bound on H.
An interesting open problem is whether actually a uniform bound only on the
mean curvature H is sufficient to exclude singularities during the flow (see [85]).

Thus, we conclude this section stating the following slightly improved version
of Theorem 1.5.1.

Theorem 2.4.11. For any initial, compact, smooth hypersurface immersed in Rn+1

there exists a unique mean curvature flow which is smooth in a maximal time
interval [0, Tmax).
Moreover, Tmax is finite and

max
p∈M

|A(p, t)| ≥ 1√
2(Tmax − t)

for every t ∈ [0, Tmax).

Notice that it follows that the maximal time of smooth existence of the flow
can be estimated from below as Tmax ≥ 1

2|A( · ,0)|2max
.

2.5 Convexity Invariance

Corollary 2.4.3 is a consequence of a more general invariance property of the
elementary symmetric polynomials of the curvatures, as we are going to show.
We recall that the elementary symmetric polynomial of degree k of λ1, . . . , λn is
defined as

Sk =
∑

1≤i1<i2<···<ik≤n
λi1λi2 · · ·λik

for k = 1, . . . , n. In particular, if λi are the eigenvalues of the second fundamental
form A we have S1 = H, S2 is the scalar curvature and |A|2 = S2

1 + 2S2.
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It is not difficult to show that

λ1 ≥ 0, . . . , λn ≥ 0 ⇐⇒ S1 ≥ 0, . . . ,Sn ≥ 0 , (2.5.1)
λ1 > 0, . . . , λn > 0 ⇐⇒ S1 > 0, . . . ,Sn > 0 .

These polynomials enjoy various concavity properties, see [73, 91].

Proposition 2.5.1. Let Γk ⊂ Rn denote the connected component of {Sk > 0}
containing the positive cone. Then Sl > 0 in Γk for all l = 1, . . . , k and the
quotient Sk+1/Sk is concave on Γk.

The above properties remain unchanged if we regard the polynomials Sk as
functions of the Weingarten operator hij instead of the principal curvatures, as we
have the following algebraic result, see [9, Lemma 2.22] or [73, Lemma 2.11].

Proposition 2.5.2. Let f(λ1, . . . , λn) be a symmetric convex (concave) function of
its arguments and let F (A) = f (eigenvalues of A) for any n×n symmetric matrix
A whose eigenvalues belong to the domain of f . Then F is convex (concave).

We are now ready to derive the evolution equations of some relevant quanti-
ties and to apply the maximum principle to obtain some invariance properties.

Proposition 2.5.3. Let F (hij) be a homogeneous function of degree one. Let ϕ be
a mean curvature flow of a compact, n-dimensional hypersurface with H > 0 and
such that hij belongs everywhere to the domain of F . Then,

∂

∂t

F

H
− ∆

F

H
=

2
H

〈
∇H

∣∣∣∇F

H

〉
− 1

H
∂2F

∂hij∂h
k
l

gpq∇ph
i
j∇qh

k
l .

As a consequence, if F is concave (convex), any pinching of the form F ≥ αH
(F ≤ αH) is preserved during the flow by the maximum principle, as the last term
is then nonnegative (nonpositive).

Proof. A straightforward computation using formula (2.3.2) in Proposition 2.3.1
and Euler’s theorem on homogeneous functions yields

∂

∂t

F

H
=

1
H

∂F

∂hij
(∆hij + |A|2hij) −

F

H2
(∆H + |A|2H)

= ∆
F

H
+

2
H

〈
∇H

∣∣∣∇F

H

〉
− 1

H
∂2F

∂hij∂h
k
l

gpq∇ph
i
j∇qh

k
l . �

In particular, the previous proposition can be applied to the quantity F =
Sk+1/Sk, provided Sk �= 0. This leads to the following result, which generalizes
Corollary 2.4.3.

Proposition 2.5.4. Let the initial, compact hypersurface satisfy Sk > 0 everywhere
for a given k ∈ {1, . . . , n} and let ϕ : M × [0, T ) → Rn+1 be its evolution by mean
curvature. Then, for any i = 2, . . . , k there exists αi such that Si ≥ αiHi > 0 for
every p ∈M and t ∈ [0, T ).
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Proof. We assume that the hypersurface M is connected, otherwise we argue com-
ponent by component.
For every pair of of points p and q in M , the set of principal curvatures at p
and the set of principal curvatures at q belong to the same connected component
of {Sk > 0} ⊂ Rn, seeing Sk as a map from Rn to R (connect with an arc the
two points). Then, as the initial hypersurface is compact, there exists a point
p ∈ M where all the principal curvatures are positive (consider a tangent sphere
containing the hypersurface), hence, the set of principal curvatures at all the points
of M belongs to the connected component Γk of the positive cone defined in
Proposition 2.5.1. Hence, for every i = 1, . . . , k we have Si > 0 everywhere on
the initial hypersurface. In particular H = S1 > 0 and, by compactness, we have
Si ≥ βiHSi−1 for suitable constants βi > 0, for any i = 2, . . . , k.
We know from Proposition 2.4.2 that H > 0 everywhere on M for every t ∈ [0, T ).
Then we can consider the quotient S2/H2 = S2/(HS1) which is well defined for
every t and it is greater than β2 at time t = 0. By Proposition 2.5.3 its minimum
is nondecreasing, hence S2 ≥ β2H2 for every t ∈ [0, T ).
We now apply the same procedure to the quotient S3/(HS2) to conclude that it is
greater than β3 for every t ∈ [0, T ), then in general Si ≥ βiHSi−1 for i = 2, . . . , k.
Multiplying together all these inequalities we get

Si ≥ βiHSi−1 ≥ βiβi−1H2Si−2 ≥ · · · ≥ βiβi−1 · · ·β2Hi

and the claim follows by setting αi = βiβi−1 · · ·β2. �
Corollary 2.5.5. If the initial, compact hypersurface is strictly convex, it remains
strictly convex under the mean curvature flow.

Proof. Strict convexity is equivalent to the set of conditions S1, . . . ,Sn > 0 on
the eigenvalues of the second fundamental form, by relations (2.5.1) and these
conditions are preserved under the mean curvature flow, by the previous proposi-
tion. �
Remark 2.5.6. By Hamilton’s strong maximum principle for tensors in [56, Sec-
tion 8] (Theorem C.1.3 in Appendix C), if an initial, compact hypersurface is
only convex (not necessarily strictly convex), then it becomes immediately strictly
convex. Even more precisely, in this case, the smallest eigenvalue of the second
fundamental form on all M increases in time.
Indeed, the Weingarten operator is nonnegative definite for every positive time
and satisfies (see Proposition 2.3.1)

∂

∂t
hji = ∆hji + |A|2hji ,

then by Theorem C.1.3 its rank (hence the rank of A) is constant in some time
interval (0, δ); moreover, the null space is invariant by parallel transport and time.
Then, supposing that such rankm is less than the dimension n of the hypersurface,
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we have an (n − m)-dimensional subspace Np ⊂ TpM at every point p ∈ M ,
invariant by parallel transport, where Ap(v, v) = 0 for every v ∈ Np.
If v ∈ TpM is a vector in the null space, any geodesic γ in M starting at p is also
a geodesic in Rn+1 as γ̇ remains always in the null space of A and

∇R
n+1

γ̇ γ̇ = ∇M
γ̇ γ̇ + A(γ̇, γ̇)ν = 0 .

Hence, all the (n −m)-dimensional null space (as an affine subspace of Rn+1) is
contained in M , which is in contradiction with the compactness of M .
Remark 2.5.7. If the initial hypersurface is not convex, it is not true that the
smallest eigenvalue of A increases; think of Angenent’s homothetically shrinking
torus we mentioned in Section 1.4 (see [17]).

Notice that the results about the strict monotonicity of geometric quantities
during the flow are valid when the initial hypersurface is compact and can fail
otherwise. For instance, an evolving cylinder does not become immediately strictly
convex.

Proposition 2.5.8. If for a constant α ∈ R there holds A ≥ αHg (as forms) for the
initial, compact hypersurface, this condition is preserved during the mean curvature
flow.

Proof. We consider the function f = hijv
ivj − αHgijvivj where vi(p, t) is a time-

dependent smooth vector field such that ∂vi/∂t = Hhikv
k,

∂f

∂t
=
∂hij
∂t

vivj + 2hijvi
∂vj

∂t
− α

∂H
∂t
gijv

ivj + 2αH2hijv
ivj − 2αHgijvi

∂vj

∂t

=(∆hij − 2Hh2
ij + |A|2hij)vivj + 2Hh2

ijv
ivj − α(∆H + H|A|2)gijvivj

=(∆hij + |A|2hij)vivj − α∆Hgijvivj − αH|A|2gijvivj

=∆(hijvivj − αHgijvivj) + |A|2(hij − αHgij)vivj

− 4(∇khij − α∇kHgij)vi∇kvj

− 2(hij − αHgij)∇kv
i∇kvj − 2(hij − αHgij)vi∆vj

=∆f + |A|2f − 4(∇khij − α∇kHgij)vi∇kvj

− 2(hij − αHgij)∇kv
i∇kvj − 2(hij − αHgij)vi∆vj .

Let µ(t) be the smallest value of hij(q, t)vivj − αHgij(q, t)vivj for t fixed, q ∈ M
and v ∈ TqM a unit tangent vector of (M, gt).
Since µ is a locally Lipschitz function, it is differentiable at almost every time;
moreover by the hypotheses, we have µ(0) ≥ 0.
We suppose that there exists an open interval of time (t0, t1) where µ is negative
and µ(t0) = 0. Let t ∈ (t0, t1) be a differentiability point of µ, then there exists a
point p ∈M and a unit vector v ∈ TpM such that

µ(t) = hij(p, t)vivj − αH(p, t)gij(p, t)vivj ≤ hij(q, t)wiwj − αH(q, t)gij(q, t)wiwj
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for every q ∈ M and w ∈ TqM of unit norm. We extend the vector v in space to
a vector field that we still call v with the following properties:

• gt(v(q), v(q)) ≤ 1 for every q ∈M ,
• ∇gtv(p) = 0,
• ∆gtv(p) = 0,

this can be done, for instance, working in local coordinates.
Now we extend v also locally in time by solving the ODE ∂vi/∂t = Hhikv

k and we
consider the associated function f as above.
Notice that since µ(t) is negative in (t0, t1), the function f( · , t) gets a minimum
in space at p ∈M . Indeed, if f(q, t) < 0, we have v(q) �= 0 and

f(p, t) = µ(t) ≤ hij(q, t)vi(q)vj(q) − αH(q, t)gt(v(q), v(q))
gt(v(q), v(q))

=
f(q, t)

gt(v(q), v(q))
≤ f(q, t)

as gt(v(q), v(q)) ≤ 1 by construction. Hence, ∆f(p, t) ≥ 0 and at the point (p, t)
we have

∂f

∂t
= ∆f + |A|2f ≥ Cf

where C > 0 is a constant such that |A|2 ≤ C on [0, t1).
By this inequality, given ε > 0, there exists some t2 ∈ [t0, t], such that if t ∈ [t2, t]
we have

f(p, t) < f(p, t) − C(t− t)f(p, t) + ε(t− t) .

Since v(p, t) is still a unit vector, as ∂g(v, v)/∂t = −2Hhijvivj + 2g(∂v/∂t, v) = 0
so the norm of v is constant, we get

µ(t) ≤ f(p, t) < f(p, t)−C(t− t)f(p, t) + ε(t− t) = µ(t)−C(t− t)µ(t) + ε(t− t) .

In other words µ(t)−µ(t)

t−t ≥ Cµ(t) − ε and since t is a differentiability time for µ,
passing to the limit as t↗ t, we obtain µ′(t) ≥ Cµ(t) − ε.
Finally, as ε is arbitrarily small, we conclude that µ′(t) ≥ Cµ(t).
Since this relation holds at every differentiability time in (t0, t1) where µ < 0,
hence almost everywhere, we can integrate it in the interval (t0, t1). Recalling that
µ(t0) = 0 by continuity, we conclude that µ(t) must be identically zero in [t0, t1)
which is in contradiction with the hypotheses.
Notice the similarities with the proofs of Lemma 2.1.3 and Proposition 2.4.1. �

Exercise 2.5.9. Show that for an initial hypersurface with H > 0 the smallest
eigenvalue of the form hij/H is nondecreasing during the flow.
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Finally, further invariance properties for the mean curvature flow can be ob-
tained again by means of Hamilton’s maximum principle for tensors [56, Sections 4
and 8] (whose proof is a generalization of the argument above), see Appendix C.
Let us first recall a definition; we say that an immersed hypersurface is k-convex,
for some 1 ≤ k ≤ n, if the sum of the k smallest principal curvatures is nonneg-
ative at every point. In particular, one-convexity coincides with convexity, while
n-convexity means nonnegativity of the mean curvature H, that is, mean convexity.
Then we mention the following result generalizing Corollary 2.5.5 (see [75]).

Proposition 2.5.10. If an initial, compact hypersurface is k-convex, then it is so
for every positive time under the mean curvature flow.

Proof. The result follows from Hamilton’s maximum principle for tensors, provided
we show that the inequality λ1 + · · · + λk ≥ αH describes a convex cone in the
set of all matrices, and that this cone is invariant under the system of ODE’s
dhij/dt = |A|2hij for the Weingarten operator.
As

(λ1 + · · · + λk)(p) = min
e1,...,ek∈TpM
gp(ei,ej)=δij

{Ap(e1, e1) + · · · + Ap(ek, ek)} ,

the quantity λ1 + · · ·+λk is a concave function of the Weingarten operator, being
the infimum of a family of linear maps. Therefore the inequality λ1+ · · ·+λk ≥ αH
describes a convex cone of matrices. In addition, the system dhij/dt = |A|2hij
changes the Weingarten operator by homotheties, thus leaves any cone invariant.
The conclusion follows. �
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