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Abstract Infection elicits a number of innate protective responses in the host that

cooperate to promote effective pathogen clearance. Increasingly, the inflammatory

response to infection appears to be coupled to cell death as an important mediator of

host defence. In this chapter we review the modalities of “pyroptosis”, a highly

inflammatory form of cell death mediated by the inflammasome and caspase-1

activation. Occurring in the context of infection, pyroptosis is morphologically,

mechanistically and physiologically distinct from other forms of cell death. The

pathogenic factors that initiate pyroptosis and the cellular mechanisms and signal-

ling pathways responsible for its execution are examined, with a focus on the role

of the inflammasome in these processes. Finally, we discuss the possible physio-

logical significance of this unique form of cell death during infection, that is, how

pyroptosis can favour pathogen elimination on one hand, while contributing to the

pathophysiology of disease on the other.
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1 Introduction

One of the most primitive antimicrobial responses consists of the elimination of the

infected cell by programmed cell death, a response found in all metazoan phyla,

including plants [1]. Although mammals have developed several additional layers

of immune defence, cell death remains a key component of the host response

against infection. Eliminating an infected cell results in the death of the infectious

agent, promoting effective pathogen clearance and the elimination of a pathogenic

niche. Intracellular pathogens require a viable host cell within which to replicate

and bacteria, such as Mycobacterium tuberculosis [2], Rickettsia rickettsii [3] and
Chlamydia spp. [4], have evolved mechanisms to prevent host cell death to assure

their own survival. Conversely, certain pathogens have devised strategies to use cell

death to their advantage, to subvert normal host defence mechanisms or as a way to

penetrate the epithelial barrier and reach deeper layers of tissue or the blood stream.

Bacillus anthracis [5], Actinobacillus actinomycetemcomitans [6, 7] and Pseudo-
monas aeruginosa [8, 9] secrete cytotoxic exotoxins to kill macrophages before

they themselves are phagocytosed and destroyed. Bordetella pertussis adenylate

cyclase haemolysin promotes successful colonization of alveolar tissue by elimi-

nating the local monocyte population [10]. Cell death therefore plays a major role in

determining the outcome of host–pathogen interactions.

During infection, recognition by the innate immune system is achieved through a

number of pattern-recognition receptors including Toll-like, Nod-like and RIG-I-

like receptors. Activation of these receptors initiates an array of signalling networks

that culminate in the mounting of a proinflammatory immune response [11]. These

innate mechanisms are essential for primary pathogen clearance as well as the

development of an adequate adaptive response to the infection. Increasingly, the

inflammatory response to infection appears to be coupled to the induction of cell

death as an important mediator of host defence. Understanding the modalities of

cell death is therefore critical to the elucidation of pathogenic mechanisms. Here,

we review the current knowledge on the mechanisms and functions of “pyroptosis”,

an inflammatory form of cell death initiated by infection and mediated by the

activities of the inflammasome and caspase-1.

2 Cell Death Pathways

Cell death is generally described dichotomously as either programmed or passive.

The former requires metabolic energy and is mediated by specific cellular pathways

and effector molecules, while the latter occurs uncontrollably due to extracellular

stresses. Programmed cell death can be further classified as either apoptosis (type I)

or autophagic cell death (type II), each with a unique set of cellular mechanisms

and morphologies (Fig. 1). Apoptosis is the best described form of cell death and is

mediated by the apoptotic caspase enzymes, a family of cysteinyl aspartate-specific
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proteases. Eleven human caspases have been identified and are grouped into two

major subfamilies according to their function in either apoptosis or cytokine

maturation [12]. There are two major apoptosis pathways, extrinsic or intrinsic,

and apoptotic caspases are classified as either upstream initiators (caspase-2, -8, -9

and -10) or executioners (caspase-3, -6 and -7) of these pathways. Caspases are

synthesized as inactive precursors but in response to apoptotic signals become

enzymatically active through processing or by a conformational change induced

by oligomerization [13]. The intrinsic pathway is initiated when intracellular

stresses induce the activation of Bcl-2 homology 3 (BH3)-only proteins, which

leads to the oligomerization of the pro-apoptotic Bcl-2 family proteins BAX and

BAK that form pores in the outer mitochondrial membrane [14]. This mitochondrial

outer membrane permeabilization (MOMP) causes the release of apoptogenic

factors, including Smac/DIABLO and cytochrome c, into the cytosol [15]. Cyto-

chrome c associates with the apoptosis protease activating factor-1 (Apaf-1) to

recruit and activate caspase-9 in a protein complex termed the “apoptosome” [16].

Active caspase-9 cleaves and activates the executioner caspases that in turn pro-

cess cellular substrates to ultimately kill the cell. The extrinsic apoptosis pathway is

induced by stimulation of death receptors of the TNF receptor family. At the active

receptor, the adaptor proteins Fas-associated via death domain (FADD) and

TNFR1-associated death domain (TRADD) recruit caspases-8 and -10 to form

the death inducing signalling complex (DISC) [17]. Active caspase-8 cleaves and

activates the executioner caspases, and, in certain cells, amplifies the cell death

signal by cleaving the BH3-only protein Bid to induce MOMP and caspase-9

activation. Apoptotic cells are characterized by DNA fragmentation and chromatin

condensation, nuclear fragmentation, cell shrinkage, loss of membrane asymmetry

and the formation of cytoplasmic blebs and apoptotic bodies (Table 1).

Fig. 1 Cell death pathways. Cell death is generally described as either programmed (apoptosis, or

type I and autophagic cell death, or type II) or passive (necrosis or type III). Pyroptosis is

categorized as programmed cell death, as it requires metabolic energy and is mediated by specific

cellular pathways, namely, the inflammasome and caspase-1. Pyroptotic cells display a distinct set

of morphological and biochemical characteristics, some of which are shared with apoptosis and

necrosis. Unlike apoptosis and autophagic cell death, which do not induce inflammation, cytokine

release and escape of cytoplasmic content during pyroptosis are highly inflammatory events
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Autophagy is also a tightly regulated process. Orchestrated by the ATG/Beclin

proteins, autophagy results in lysosomal enzyme degradation of intracellular com-

ponents captured within a double-membraned vacuole termed the autophagosome

[18]. This catabolic process is essential during starvation conditions to maintain

energy homeostasis and cell survival. Excessive autophagy has, however, been

associated with a form of “autophagic cell death” characterized by massive accu-

mulation of autophagic vacuoles in the cytoplasm in the absence of chromatin

condensation [19]. Cytoplasmic content is not spilled into the extracellular space

and thus, like apoptosis, autophagic cell death is non-inflammatory.

Passive cell death, or necrosis (type III), is often identified in negative terms for

cells that do not have the markers of type I or type II programmed cell death

pathways. Necrosis is thought to occur accidentally and uncontrollably as a result of

Table 1 Pyroptosis is

distinct from apoptosis.

Despite sharing

characteristics with apoptosis,

the morphological,

mechanistic and

physiological features

of pyroptosis make

it a distinct form

of programmed cell death
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environmental perturbations. Cells undergo cytoplasmic and organellar swelling,

resulting in plasma membrane lysis and release of intracellular content, which is a

highly inflammatory event [19]. The causative agents of necrosis are still unclear, as

are the cellular events they initiate. Mitochondrial dysfunction such as production

of reactive oxygen species and membrane permeabilization has been implicated, as

have ATP depletion, loss of Ca2+ homeostasis, protease activation and lysosomal

rupture [20]. Increasingly, there is evidence that necrotic cell death may be

regulated by signal transduction and catabolic mechanisms and is not a completely

passive event [21].

Recently, a novel form of programmed cell death has been described that occurs

specifically in the context of infection. Like apoptosis, it is mediated by caspases,

but rather than depending on the action of classical apoptotic caspases, it is an

inflammatory caspase, caspase-1, that is critical. Caspase-1 was the first caspase to

be described as the enzyme responsible for the cleavage of pro-IL-1b and was thus

initially named Interleukin-1b converting enzyme, or ICE [22]. Caspase-1 is the

prototypical member of the inflammatory caspase family, which includes caspases-

4, -5 and -12 (and -11 in rodents). Caspase-1 activation is triggered by the formation

of a cytosolic complex termed the “inflammasome” (see previous chapters for

a detailed description). The 44-kDa pro-caspase-1 consists of a 10-kDa CARD

domain (caspase-activation and recruitment domain), a large subunit (p20) and a

small subunit (p10). Proximity-induced oligomerization of caspase-1 [13] results in

auto-processing, release of the CARD domain and tetramerization of two small and

two large subunits to form the active enzyme [22, 23]. Residues from both the p10

and the p20 subunits form the active site of the enzyme. The catalytic cysteine,

Cys285, and histidine, His237, are found in the p20, while substrate specificity is

determined by residues of the p10 [24]. Like all caspases, caspase-1 has an absolute

requirement for Asp in the P1 position of its substrates, immediately N-terminal

of the scissile bond. The optimal caspase-1 amino acid recognition sequence is

Tyr(P4)–Val(P3)–Ala(P2)–Asp(P1), though it can tolerate conservative substitutions at

P2 and P3, and has a preference for hydrophobic amino acids at P4 [25]. Substrate

cleavage by caspase-1 does not contribute to classical apoptosis pathways [26, 27].

Rather, activation of caspase-1 results in the cleavage of a unique array of proteins,

including the preferred substrates pro-IL-1b and pro-Il-18, that are converted into

their secreted, biologically active forms. Both cytokines are highly inflammatory

and play important roles in the immune response by recruiting and activating

immune cells [28]. Indeed, caspase-1 activation is essential for the mounting of

an efficient immune response to a number of infectious pathogens [29].

There are striking parallels between the pathways controlling intrinsic apoptosis

and those that activate caspase-1. Caspase-1-dependent cell death is initiated by

infection, while apoptosis is can be induced by the mitochondria, an organelle

reminiscent of bacteria. Both release stimulatory products (PAMPs and cytochrome c)
into the cytosol to activate sensors (NLR/PYHIN and Apaf-1) that undergo oligo-

merization to form an activation platform (inflammasome and apoptosome).

CARD-containing caspases are subsequently recruited (caspase-1 and caspase-9)

where they are activated by proximity-induced catalysis, resulting in substrate
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recognition and cleavage. In the case of caspase-9, this leads to apoptosis, a

tolerogenic form of cell death. For caspase-1, the outcome is a form of cell death

tightly coupled to inflammation and the anti-microbial response. Such similarities

may be the result of the co-evolution of these pathways under the pressures imposed

by infection. This homology also provides important insight into the mechanisms of

cell death and inflammation, furthering our understanding of the roles played by

both in the host response to infection.

3 Caspase-1-Dependent Cell Death: Pyroptosis

The first report of a caspase-1-dependent cell death was in mouse macrophages

infected with the gram-negative bacteria Shigella flexneri [30], the etiological agent
of bacillary dysentery. In its human host, Shigella invades the colonic mucosa,

where it encounters and infects the phagocytes of the lamina propria, resulting in

extensive macrophage death and abscess formation [31]. Shigella was the first

invasive bacteria reported to induce host cell death, which was initially described

as apoptosis [32]. Further mechanistic studies uncovered a cell death pathway

occurring independently of the apoptotic effector caspase-3, but contingent on the

activity of the inflammatory caspase-1 [30]. Pharmacological inhibition of caspase-

1 by Ac-YVAD-CHO [30, 33] or genetic ablation in casp1�/� mice [34] rendered

macrophages fully resistant to Shigella-induced cytotoxicity while caspase-3,

caspase-11 or p53 deficiency did not [34].

The findings in Shigella-infected macrophages were further corroborated by

reports of caspase-1-dependent cell death induction by Salmonella typhimurium
[35–37]. Macrophages are killed within minutes of Salmonella infection but are

rescued by YVAD treatment [35] or if derived from casp1�/� mice [37]. Further-

more, caspases-3, -6 and -7 remain inactive in these cells [35, 38] and cytochrome c
release does not occur [38]. Together, these findings firmly established the

existence of a caspase-1-mediated cell death pathway distinct from apoptosis.

Caspase-1-dependent cell death has since been reported in macrophages infected

with a number of pathogens including Listeria monocytogenes [39], Legionella
pneumophila [40, 41], Yersinia pseudotuberculosis [42], P. aeruginosa [43],

Burkholderia pseudomallei [44] and Francisella tularensis [45], though the possi-

ble contribution of other inflammatory caspases to the cell death induced by these

bacteria has not been fully investigated.

Concomitant with cell death are the inflammatory consequences of caspase-1

activation. Secretion of IL-1b promotes inflammatory cell recruitment and further

production of proinflammatory mediators, resulting in important and sometimes

severe physiological consequences such as fever, hypotension and metabolic

derangements [46]. The release of mature IL-18 further amplifies the inflammatory

response by stimulating immune cell activation and cytokine secretion [28]. The

cleavage and release of IL-1b and IL-18 are not, however, required for caspase-1-

mediated cell death [47]. Indeed, the action of caspase-1 is not limited to the
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processing of these cytokines, as demonstrated by the resistance of casp1�/� mice

[27] but not IL-1b�/� [48] or IL-1b/IL-18 double knockout animals [49] to

endotoxemia and septic shock. Although neither IL-1b nor IL-18 is required for

its execution [47], caspase-1-dependent cell death is a highly inflammatory event, a

key feature distinguishing it from apoptosis. The term “pyroptosis” has been

proposed to describe this unique form of programmed cell death [50] as “pyro” or

fire, denotes the release of proinflammatory mediators, while “ptosis” denotes

falling, a term commonly used to describe cell death.

4 Execution of Pyroptosis

Pyroptosis is a distinct form of cell death [19] with a unique combination of

morphological and mechanistic features (Table 1).

4.1 Morphology

Morphologically, pyroptosis is most notably characterized by loss of plasma mem-

brane integrity and release of cytoplasmic content into the extracellular milieu

[35, 38, 51]. This feature is shared with necrosis but not with apoptosis, in which

cytosolic content is contained within cytoplasmic blebs and apoptotic bodies [52].

Microscopically, the pyroptotic plasma membrane appears to rupture, then rapidly

reseal and swell, forming a “balloon-shaped” vesicle around the nucleus [51]

(Fig. 2). Indeed, during pyroptosis, cells undergo a measurable size increase [44,

53]. As the membrane swells, the nucleus also undergoes rounding and condensa-

tion [40, 51], but, unlike apoptosis, nuclear integrity is maintained. Pyroptotic cells

undergo DNA fragmentation and, like apoptotic cells, show positive TUNEL

staining [42, 45, 47, 53] (Table 1). The TUNEL positivity of S. flexneri and

S. typhimurium infected cells initially led to the assumption that cell death induced

by these pathogens was apoptotic.

4.2 Mechanisms

The cellular mechanisms that mediate caspase-1-dependent cell death are still

largely unknown, but are distinct from the classical apoptotic pathways. The

apoptotic caspases, including caspases-3, -6 and -7, are not involved in pyroptosis

[34, 35, 38]. During apoptosis, the poly-ADP ribose polymerase (PARP) is cleaved

by executioner caspases in an attempt to preserve cellular ATP energy stores [54].

PARP is also cleaved by caspase-1 [55] but studies using PARP inhibitors [53]

and PARP1-/- macrophages [56] suggest that PARP activity does not significantly
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impact pyroptosis. During apoptosis, DNA is degraded by the caspase activated

DNase (CAD). The activity of CAD is controlled by its inhibitor, ICAD, a caspase-3

substrate [57]. During pyroptosis, DNA fragmentation depends on nuclease activity,

but the lack of detectable ICAD processing suggests that this is a CAD-independent

process [53]. Finally, a crucial step in apoptosis is the induction of MOMP, which

causes the release of cytochrome c and Smac/DIABLO into the cytosol [14]. In

pyroptosis, mitochondrial integrity is maintained and cytochrome c is not released

[38, 39, 53].

Although distinct from apoptotic pathways, the question remains, what are the

pro-death mechanisms occurring downstream of caspase-1 (Fig. 3)? The finding

that mice genetically deficient in both IL-1b and IL-18 do not phenocopy caspase-

1-deficient animals in septic shock models prompted investigation into the discov-

ery of novel caspase-1 substrates and the description of novel caspase-1 mediated

signalling pathways. Some insight into these signals has been gained with the report

of the caspase-1 digestome using the diagonal gel approach on the human mono-

cytic THP-1 cell line [55]. Caspase-1 was shown to target substrates involved in

cellular functions as diverse as maintenance of the cytoskeleton, ATP metabolism,

detoxification, trafficking, RNA/protein synthesis and degradation, signal transduc-

tion and cytokine production. Caspase-1 was further shown to cleave and inactivate

a number of glycolysis enzymes, linking inactivation of bioenergetic pathways to

cell death. An interesting conclusion of this study is the seemingly dual function of

caspase-1 as both an initiator and executioner caspase.

Another report of caspase-1 substrates used the gel-free COFRADIC peptide

sorting methodology on the mouse Mf4/4 macrophage cell line [58]. This study

identified caspase-7 as a specific caspase-1 substrate. Caspase-7 cleavage was

10.5 min0 min 3.0 min 22.5 min

Fig. 2 Imaging of pyroptosis by time-lapse confocal microscopy. Pyroptosis was induced in

differentiated THP-1-ASC-GFP cells with crude LPS. Top row; fluorescence images depicting the

formation of the cytoplasmic ASC-GFP pyroptosome. Bottom row; plasma membrane rupture was

observed rapidly (black arrow), followed by membrane re-sealing and swelling (black arrowhead)
and nuclear condensation (white arrowhead) (these images are courtesy of Dr. E. Alnemri;

reprinted with the permission of Nature Publishing Group)
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identified downstream of a number of caspase-1 activators, but casp7�/� cells were

not deficient in IL-1b or IL-18 production and were not protected from death during

S. typhimurium infection. A follow-up study using L. pneumophila-infected
macrophages did demonstrate that caspase-7 was required for efficient bacterial

clearance by promoting phagosome fusion with the lysosome [58]. Both studies

reported caspase-3 processing in pyroptotic macrophages, but this occurred inde-

pendently of caspase-1 activity and caspase-3-deficiency did not impair cytokine

processing or cell death, leaving the function of this processing undetermined.

A downstream mechanism proposed to mediate pyroptotic cell lysis during

S. typhimurium infection is the formation of small-ion permeable pores in the plasma

membrane [35, 42, 44, 53]. Through size-exclusion studies and flow cytometry,

the pore size has been estimated to be 1.1–2.4 nm in diameter [53]. Addition of

extracellular glycine or osmoprotectants of 2.4 nm or greater to pyroptotic

Fig. 3 Cellular mechanisms of pyroptosis. Caspase-1 is activated within the “inflammasome” a

cytosolic multiprotein complex assembled in response to cytosolic PAMPs or host-derived

DAMPs. Caspase-1 activation results in proinflammatory cytokine processing, as well as the

cleavage of a number of additional substrates such as pro-caspase-7 and glycolysis enzymes.

The nature of the pathways downstream of caspase-1 that ultimately result in cell lysis and death

are still unknown

Pyroptosis: A Caspase-1-Dependent Programmed Cell Death and a Barrier to Infection 25



macrophages prevented cell swelling and lysis [35, 53]. Thus, it is suggested that

plasma-membrane pores dissipate the cellular ionic gradient, producing an increase

in osmotic pressure that results in water influx, cell swelling and membrane lysis

[53]. Whether these events are downstream of substrate processing by caspase-1

remains to be examined.

5 The Role of the Inflammasome

The inflammasome is activated by bacterial [60], viral [61] and parasitic infection

[62], as well as by host-derived danger-associated molecular patterns (DAMPs)

[63]. The generation of knock-out mice for the various components of the

inflammasome has allowed the investigation of which pathways are required for

caspase-1 activation and pyroptosis.

5.1 NLRC4 and NAIP5

The NLRC4 inflammasome is most closely associated with the induction of

pyroptosis. It is activated by the flagellin [64] and the rod proteins of the type-

three secretion system [65] of a number of bacterial pathogens. Expression of

NLRC4 is essential for pyroptosis induced by S. typhimurium [66], P. aeruginosa
[43, 67, 68] and S. flexneri [69]. The role of ASC in mediating NLRC4 signalling

differs between cytokine production and cell death. Indeed, macrophages infected

with S. typhimurium require both NLRC4 and ASC for IL-1b production, but only

Nlrc4�/� cells are resistant to pyroptosis [64, 66, 70, 71]. The same conditions are

also true for S. flexneri and P. aeruginosa-infected macrophages [43, 67–69].

The facultative intracellular bacteria L. pneumophila is distinct in that it has

an absolute requirement for a functional NAIP5 to stimulate caspase-1 activity.

The action of NAIP5 is coupled to that of NLRC4 as both mediate cytotoxicity but

require the additional presence of ASC to permit IL-1b secretion [40, 41, 72, 74].

NAIP5 was identified as the effector gene of the Lgn locus that controls macrophage

permissiveness to Legionella replication [75]. Cells derived from A/J mice express

a mutant NAIP5 and are resistant to pyroptosis, whereas those derived from

C57BL/6 mice, which carry the functional Lgn allele, are susceptible. To better

understand the function of NAIP5, complete Naip5�/� mice were recently

generated on a C57BL/6 background [73]. Infectious studies in macrophages

derived from these animals have now demonstrated a partial dependence on

NAIP5 expression for S. typhimurium and P. aeruginosa induced pyroptosis [73].
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5.2 NLRP1

A critical factor in the virulence of B. anthracis is the production of anthrax lethal

toxin (LeTx). LeTx is produced during infection and is secreted as two proteina-

ceous subunits, protective antigen (PA) and lethal factor (LF). When PA-LF

complexes are endocytosed and trafficked to acidic vesicles, conformational

changes in PA allow LF to translocate to the cytosol [76]. LF, a zinc-dependent

metalloprotease, specifically cleaves MAPKKs, disrupting MAPK signalling

pathways [77]. Although MAPKK cleavage occurs in all infected mammalian

cells, LeTx is not universally lethal. In mouse macrophages, cell death is strain

dependent, where C57BL/6-derived cells are resistant and 129S1 or BALB/c cells

are susceptible. Genetic studies have mapped susceptibility to the Ltxs1 locus and

subsequently shown that Nlrp1bmediates strain susceptibility. NLRP1b is essential

for caspase-1 activation by lethal toxin and is required for both IL-1b production

and cytotoxicity, suggesting that LeTx kills cells by pyroptosis [78]. Macrophages

derived from 129S1 or BALBc mice express a functional NLRP1, and are suscep-

tible to LeTx pyroptosis, whereas the C57Bl/6 strain Nlrp1b gene is mutated and

non-functional, conferring LeTx-resistance to macrophages derived from these

mice. B. anthracis spores activate caspase-1 and promote IL-1b release by macro-

phages, but do not induce cell death [79]. It is not yet known whether live

B. anthracis infection activates caspase-1.

5.3 NLRP3

The list of activators of the NLRP3 inflammasome is increasingly long and includes

pathogen-derived signals (viral [80], fungal [81, 82] and bacterial infection [83],

pore-forming toxins [71]), environment-derived factors (silica [84], asbestos [85],

alum [84, 86]) and host-derived danger signals (ATP [71], uric acid [87], hyaluronan

[88], amyloid-b [89]). Yet despite this list of agonists, NLRP3 is not known to

mediate caspase-1-dependent cell death. Mutant, overactive forms of NLRP3 are

capable of driving an inflammatory form of cell death during infection, distinct from

pyroptosis, termed “pyronecrosis”. It is entirely caspase independent but requires the

activity of cathepsin B [90]. Pyronecrosis promotes and the release of HMGB1, a

cellular DAMP [91], and is induced by high multiplicity of infection with S. flexneri
[90], K. pneumoniae [92] and N. gonorrhoeae [83].

5.4 AIM2

During infection by intracellular pathogens, the presence of foreign double-

stranded DNA (dsDNA) leads to robust caspase-1 activation. The inflammasome

component involved in this case is AIM2, a cytosolic member of the HIN-200
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protein family that specifically binds dsDNA and associates with ASC to activate

caspase-1 [93–96]. Transfection of the synthetic dsDNA poly(dA:dT) results in

AIM2-dependent IL-1b processing and macrophage death, both of which require

the presence of ASC [95]. Pyroptosis of macrophages infected with F. tularensis or
L. monocytogenes was long known to depend on ASC but the PRR involved was

unknown until AIM2 was identified as the activated inflammasome [97, 98].

Cytosolic release of dsDNA by these intracellular Gram-negative bacteria is

directly sensed by AIM2, resulting in caspase-1 activation, IL-1b secretion and

pyroptosis.

5.5 ASC

The role of the adaptor protein ASC in mediating pyroptosis is still unclear. As

described above, NLRC4/NAIP5 inflammasome-dependent pyroptosis does not

require ASC whereas AIM2-mediated cell death does. A recent study [99] deter-

mined that it is the presence of a CARD domain that determines whether an

inflammasome requires ASC to induce pyroptosis. It was further reported that

ASC-independent pyroptosis does not induce caspase-1 auto-proteolysis as does

ASC-dependent pro-IL-1b processing, suggesting the existence of two different

caspase-1 activation pathways.

ASC has been implicated in other pyroptotic conditions. For instance, ASC has

been shown to induce pyroptosis in a human THP-1 monocytic cell line engineered

to stably express an ASC-GFP fusion protein. These cells were used to demonstrate

the formation of a large supramolecular ASC complex termed the “pyroptosome” in

response to a number of inflammasome agonists [51, 94]. Upon stimulation, a single

ASC pyroptosome is formed in the cell and is required for caspase-1 activation and

the induction of pyroptosis. ASC oligomers were also shown to form in primary

macrophages from both wild-type and casp1�/� mice, though only the former

succumbed to cell death [51].

The observation that caspase-1 activation does not always result in cell death is

indicative of the existence of a unique, pro-death inflammasome signalling path-

way. A certain level of signalling specificity is achieved by the type of inflam-

masome activated by an agonist; while NLRC4 activation is closely associated

with pyroptosis, NLRP3 responses are predominantly cytokine based. The types of

inflammasome agonists that induce pyroptosis also reflect this specificity. NLRC4

is primarily activated by bacteria in the context of a live infection. In these

conditions, pyroptosis would result in the elimination of the infected cell and

promote a strong inflammatory response at the site of infection. NLRP3, on the

other hand, is mainly activated by danger signals derived from the environment or

from other cells. In this case, a cytokine-only response would promote tissue repair

without causing cell death.

28 K. Labbé and M. Saleh



6 Physiological Significance

During infection, pyroptosis can be a beneficial event for the host. The com-

promised cell is eliminated, effectively destroying a protective milieu in which

infectious agents can thrive. For instance, macrophages deficient in caspase-1,

NLRC4 or NAIP5 are protected from pyroptosis during L. pneumophila infection

and support higher intracellular bacterial loads [41, 73]. Pyroptosis also promotes

pathogen clearance by acting as an alarm signal that recruits immune cells to

the site of infection. The production of IL-1b and IL-18 promotes leukocyte infil-

tration and activation [46] and cell lysis releases immuno-stimulatory factors into

the extracellular milieu. Several cytosolic products are potent DAMPs, such as

HMGB1 [100], ATP [71], uric acid [87], heat-shock proteins [101] and

DNA–chromatin complexes [102], that promote proinflammatory cytokine produc-

tion through the activation of pattern-recognition receptors.

The hypothesis that pyroptosis is detrimental to the pathogen is also supported

by the description of several microbial inflammasome-evasion mechanisms. One

such strategy is to reduce the presence of pyroptosis-inducing agonists, as does

S. typhimurium. By downregulating flagellin expression during in vivo infection,

Salmonella evades detection by the inflammasome, thus rendering Nlrc4�/� mice

as susceptible to infection as wild-type animals [37, 64]. Other pathogens have

evolved effector proteins capable of directly inhibiting inflammasome activation,

such as the Y. pseudotuberculosis T3SS Rho-GTPase activating protein YopE

[103], the M. tuberculosis zinc metalloprotease Zmp1 [104], the poxvirus M13L

[105] or the influenza virus NS1 protein [106]. Recently, a screen for F. tularensis
virulence genes identified two targets involved in the delay of IL-1b release and cell

death in infected cells [107]. Similarly, virulent Pseudomonas strains express the
effector protein ExoU, which blocks caspase-1-dependent cell death and promotes

necrosis [43]. The evolution of such mechanisms would suggest that preventing

inflammasome activation contributes to pathogen fitness, and that the activity of

caspase-1 leading to pyroptosis represents an important selective pressure that

prevents replication and spread of the pathogen to neighbouring cells.

Yet, as with any physiological process, excessive pyroptosis is detrimental to

the host and may contribute to histopathology and disease. Macrophage cell death

prevents appropriate elimination of the infectious agent and pyroptosis of dendritic

cells [108, 109] leads to immunosuppression by impairing cytokine production

and antigen presentation. Excessive pyroptosis also leads to the development of

severe sepsis and septic shock, through the release of the alarmin HMGB1. When

released into the circulation, HMGB1 acts as a critical mediator of severe sepsis

[110] and administration of HMGB1 neutralizing antibodies confers resistance

from lethality [111]. During apoptosis, oxidation of HMGB1 neutralizes its stimu-

latory activity [112].

Finally, it is difficult to determine the immunological function of pyroptosis, as

caspase-1 activities are numerous and extend beyond cell death. Furthermore,

there is enormous redundancy in cell death pathways, and cells in which pyroptosis
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is blocked will often die by alternative pathways. Thus, although casp1�/�

macrophages are protected from pyroptosis during S. typhimurium infection, they

nonetheless succumb to a delayed form of cell death [38]. In S. flexneri-infected
macrophages, deficiency in either caspase-1 or NLRC4 results in increased activa-

tion of autophagy [69]. The induction of alternate cell death pathways could

provide a backup mechanism for the infected cell in cases where the inflammasome

is not activated or actively is inhibited by the pathogen in an attempt to clear the

infection. On the other hand, these alternate routes may provide time for the

pathogen to replicate before the cell is destroyed. One study [113] sought to tease

out the contribution of pyroptosis to the host response by using a strain of

S. typhimurium engineered to persistently express flagellin. Enhanced clearance

of these bacteria did not depend on cytokine production, but on the pyroptotic

release of the pathogen from macrophages, where it was subsequently killed by

neutrophil ROS production. A similar result was obtained for L. pneumophilia
and B. thailandensis, illustrating that pyroptosis is an important innate effector

mechanisms protecting from bacterial infection in vivo.

7 Conclusion

Cell death is an important factor in host–pathogen interactions. The elimination of

an infected cell can be beneficial or detrimental to both parties, and each utilizes a

number of strategies to regulate the outcome in its favour. Both host and pathogen

responses to infection also rely on the modulation of the proinflammatory response

to promote own survival. It should come as no surprise, then, that the pathways

responsible for mounting the inflammatory response are also involved in the

regulation of certain forms of cell death. Elucidation of cell death mechanisms

will undoubtedly reveal information on inflammatory processes, and vice versa.

Thus, a better understanding of pyroptosis will provide information on the function

and regulation of the inflammasome, as well as important insights into the role of

cell death during infection.
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