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Abstract. A mathematical formulation of Darwin’s theory of evolutionary op-
timization through variation and selection is derived in terms of conventional
ODEs that can be interpreted as chemical kinetics of evolution. Variation
in form of mutation and recombination operates on genotypes being DNA
or RNA sequences, whereas phenotypes, which are represented by organisms
or molecular structures, are the target of selection. The impact of recombi-
nation on optimization is briefly sketched. Differential equations modelling
selection in populations with correct replication and mutation are derived
from the molecular mechanisms of polynucleotide replication. The analysis of
these ODEs reveals restrictions of the optimization principle caused by mu-
tation. Error propagation over generations sets a limit to mutation rates in
evolution, which manifests itself in the form of a phase transition-like phe-
nomenon characterized as error threshold. Conditions on fitness landscapes
for the occurrence of error thresholds derived from numerical investigations
are presented: Smooth fitness landscapes show no error thresholds but grad-
ual transitions, sufficiently steep landscapes and rugged landscapes sustain
error thresholds. Sharp transitions are also found with realistic landscapes
combining ruggedness and neutrality. Lethal mutants may lead to extinction
of populations and set another upper limit to mutation rates in form of an
extinction threshold through lethal mutagenesis.
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1. Preamble

This paper has been presented at a meeting that celebrated the 150 years anniver-
sary of Charles Darwin’s famous book on the Origin of Species [1]. Darwin was
presumably the greatest naturalist that has ever lived, a highly talented observer,
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and a genius in intuition. He was certainly not a fan of mathematics and his cen-
tennial treatise of evolution does not contain a single formula. Here we shall make
a gedankenexperiment : How might Charles Darwin have formulated his theory if
he were a mathematician? The knowledge on mathematics related to evolution
was sparse or non existing at Darwin’s time. The mechanism of inheritance and
the origin of variation were completely unknown to Charles Darwin and his con-
temporary biologists. Darwin’s speculations on blending of the parental properties
in the offspring were completely off the point. Gregor Mendel did the first careful
experiments on plants [2] and drew the right conclusions concerning inheritance:
The genomes of both parents are split into pieces and recombined in the offspring
thereby conserving the order of genes but choosing more or less randomly from
father or mother. Mendel had an education in mathematics and physics and with
this background he was in the position to discover a statistical law – a regularity
that becomes evident only when sufficiently many experiments are superimposed
and correctly evaluated. Recombination is one common source of phenotypic varia-
tion in sexually reproducing species. Mutation, the second source of variation that
is occurring in both, asexual and sexual species, and was identified as a change
in the nucleotide sequence of the genetic message. Although Gregor Mendel gave
the correct interpretation of his experiments and discovered the idealized prin-
ciple of recombination, a full understanding of sexual reproduction without the
insights from cellular and molecular biology is not possible. Mutation cannot be
understood at all without molecular knowledge.

2. Selection and optimization

Charles Darwin’s principle of natural selection is a powerful abstraction from ob-
servations, which provides insight into the origin of changing species. Species or
populations don’t multiply but individuals do, either directly in asexual species,
like viruses, bacteria or protists, or in sexual species through pairings of individuals
with opposite sex. Variability of individuals in populations is an empirical fact that
can be seen easily in everyday life. Within populations the variants are subjected
to natural selection and those having more progeny prevail in future generations.
The power of Darwin’s abstraction lies in the fact that neither the shape and the
structure of individuals nor the mechanism of inheritance are relevant for selection
unless they have an impact on the number of offspring. Otherwise Darwin’s ap-
proach had been doomed to fail since his imagination of inheritance was incorrect.
Indeed Darwin’s principle holds simultaneously for highly developed organisms,
for primitive unicellular species like bacteria, for viruses and even for reproducing
molecules in cell-free assays.

Molecular biology provided a powerful possibility to study evolution in its
simplest form outside biology: Replicating ribonucleic acid molecules (RNA) in
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cell-free assays [3] play natural selection in its purest form: In the test tube, evo-
lution, selection, and optimization are liberated from all unnecessary complex fea-
tures, from obscuring details, and from unimportant accessories. Hence, in vitro
evolution can be studied by the methods of chemical kinetics. The parameters
determining the “fitness of molecules” are replication rate parameters, binding
constants, and other measurable quantities, which can be determined indepen-
dently of in vitro evolution experiments, and constitute an alternative access to
the determination of the outcome of selection. Thereby “survival of the fittest” is
unambiguously freed from the reproach of being the mere tautology of “survival of
the survivor”. In addition, in vitro selection turned out to be extremely useful for
the synthesis of molecules that are tailored for predefined purposes. A new area of
applications called evolutionary biotechnology branched off evolution in the test
tube. Examples for evolutionary design of molecules are [4, 5] for nucleic acids,
[6, 7] for proteins, and [8] for small organic molecules.

The section starts by mentioning a few examples of biological applications
of mathematics before Darwin (Subsection 2.1), we derive and analyze an ODE
describing simple selection with asexual species (Subsection 2.2), and consider the
effects of variable population size (Subsection 2.3). The next Subsection 2.4 ana-
lyzes optimization in the Darwinian sense, Subsection 2.5 presents a brief account
of Fisher’s selection equation and his fundamental theorem of natural selection
and eventually we consider generic properties of typical growth functions (Subsec-
tion 2.6).

2.1. Counting and modelling before Darwin

The first mathematical model that seems to be relevant for evolution was conceived
by the medieval mathematician Leonardo Pisano also known as Fibonacci. His
famous book Liber abaci has been finished and published in the year 1202 and was
translated into modern English eight years ago [9]. Among several other important
contributions to mathematics in Europe Fibonacci discusses a model of rabbit
multiplication in Liber abaci. Couples of rabbits reproduce and produce young
couples of rabbits according to the following rules:

(i) Every adult couple has a progeny of one young couple per month,
(ii) a young couple grows to adulthood within the first month and accordingly

begins producing offspring in the second months,
(iii) rabbits live forever, and
(iv) the number of rabbit couples is updated every month.

The model starts with one young couple (1), nothing happens during maturation
of couple 1 in the first month and we have still one couple in the second month. In
the third month, eventually, a young couple (2) is born and the number of couples
increases to two. In the fourth month couple 1 produces a new couple (3) whereas
couple 2 is growing to adulthood, and we have three couples now. Further rabbit
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counting yields the Fibonacci sequence:1

month 0 1 2 3 4 5 6 7 8 9 . . .
# couples 0 1 1 2 3 5 8 13 21 34 . . .

It is straightforward to derive a recursion for the rabbit count. The number of
couples in month (n + 1), fn+1, is the sum of two terms: The number of couples
in month n, because rabbits don’t die, plus the number of young couples that is
identical to the number of couples in month (n− 1):

fn+1 = fn−1 + fn with f0 = 0 and f1 = 1 . (2.1)

With increasing n the ratio of two subsequent Fibonacci numbers converges to
the golden ratio, fk+1/fk = (1 +

√
5)/2 (For a comprehensive discussion of the

Fibonacci sequence and its properties see [12, pp. 290–301] or, e.g., [13]).
In order to proof this convergence we make use of a matrix representation of

the Fibonacci model:

Fn

(
f0
f1

)
=
(
fn

fn+1

)
with F =

(
f0 f1
f1 f2

)
and Fn =

(
fn−1 fn

fn fn+1

)
.

The matrix representation transforms the recursion into an expression that allows
for direct computation of the elements of the Fibonacci sequence.

fn =
(
1 0
)

Fn

(
f0
f1

)
=
(
1 0
)(fn−1 fn

fn fn+1

)(
f0
f1

)
. (2.2)

Theorem 2.1 (Fibonacci convergence). With increasing n the Fibonacci sequence
converges to a geometric progression with the golden ratio as factor, q = (1+

√
5)/2.

Proof. The matrix F is diagonalized by the transformation T−1 · F · T = D with

D =
(
λ1 0
0 λ2

)
. The two eigenvalues of F are: λ1,2 = (1 ± √5)/2. Since F is

a symmetric matrix the L2-normalized eigenvectors of F, (e1, e2) = T, form an
orthonormal set,

T =




1√

1+λ2
1

1√
1+λ2

2
λ1√
1+λ2

1

λ2√
1+λ2

2



 and T · T ′ =
(

1 0
0 1

)

with T′ being the transposed matrix, and T−1 = T′. Computation of the nth
power of matrix F yields

Fn = T ·Dn · T′ = T ·
(
λn

1 0
0 λn

2

)
· T′ =

1√
5

(
λn−1

1 − λn−1
2 λn

1 − λn
2

λn
1 − λn

2 λn+1
1 − λn+1

2

)
,

from which the expression for fn is obtained by comparison with (2.2)

fn =
1√
5
(λn

1 − λn
2 ) . (2.3)

1According to Parmanand Singh [10] the Fibonacci numbers were invented earlier in India and
used for the solution of various problems (see also Donald Knuth [11]).
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Because λ1 > λ2 the ratio converges to zero: limn→∞ λn
2/λ

n
1 = 0, and the Fibonacci

sequence is approximated well by fn ≈ 1√
5
qn with q = (1 +

√
5)/2. �

Since λ2 is negative the Fibonacci sequence alternates around the geometric pro-
gression. Expression (2.3) is commonly attributed to the French mathematician
Jacques Binet [14] and named after him. As outlined in ref. [12, p. 299] the formula
has been derived already hundred years before by the great Swiss mathematician
Leonhard Euler [15] but was forgotten and rediscovered.

Thomas Robert Malthus was the first who articulated the ecological and
economic problem of population growth following a geometric progression [16]:
Animal or human populations like every system capable of reproduction grow like
a geometric progression provided unlimited resources are available. The resources,
however, are either constant or grow – as Malthus assumes – according to an
arithmetic progression if human endeavor is involved. The production of nutrition,
says Malthus, is proportional to the land that is exploitable for agriculture and
the gain in the area of fields will be a constant in time – the increase will be
the same every year. An inevitable result of Malthus’ vision of the world is the
pessimistic view that populations will grow until the majority of individuals will
die premature of malnutrition and hunger. Malthus could not foresee the green
revolutions but he was also unaware that population growth can be faster than
exponential – sufficient nutrition for the entire human population is still a problem.
Charles Darwin and his younger contemporary Alfred Russel Wallace were strongly
influenced by Robert Malthus and took form population theory that in the wild,
where birth control does not exist and individuals fight for food, the major fraction
of progeny will die before they reach the age of reproduction and only the strongest
will have a chance to multiply.

Leonhard Euler introduced the notions of the exponential function in the
middle of the eighteenth century [17] and set the stage for modelling populations by
means of differential equations. Simple reproduction results in exponential growth
of a population with N(t) individuals:

dN
dt

= rN and N(t) = N0 exp(rt) with N0 = N(0) , (2.4)

where the parameter r is commonly called Malthus or growth parameter.
Presumably not known to Darwin, the mathematician Pierre François Ver-

hulst complemented the concept of exponential growth by the introduction of finite
resources [18, 19, 20]. The Verhulst equation is of the form2

dN
dt

= rN

(
1− N

K

)
, (2.5)

where N(t) again denotes the number of individuals of a species X , and K is the
carrying capacity of the ecological niche or the ecosystem. Equation (2.5) can be

2The Verhulst equation is also called logistic equation and its discrete analogue is the logistic
map, a standard model to demonstrate the occurrence of deterministic chaos in a simple system.
The name logistic equation was coined by Verhulst himself in 1845.
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integrated by means of partial fractions and reads

N(t) = N0
K

N0 +
(
K −N0

)
exp(−rt) . (2.6)

Apart from the initial condition N0, the number of individuals X at time t = 0, the
logistic equation has two parameters: (i) the Malthusian parameter or the growth
rate r and (ii) the carrying capacity K of the ecological niche or the ecosystem. A
population of size N0 grows exponentially at short times: N(t) ≈ N0 exp(rt) for
K � N0 and t sufficiently small. For long times the population size approaches
the carrying capacity asymptotically: limt→∞N(t) = K.

The two parameters r and K are taken as criteria to distinguish different
evolutionary strategies: Species that are r-selected exploit ecological niches with
low density, produce a large number of offspring each of which has a low probability
to survive, whereas K-selected species are strongly competing in crowded niches
and invest heavily in few offspring that have a high probability of survival to
adulthood. The two cases, r- and K-selection, are the extreme situations of a
continuum of mixed selection strategies. In the real world the r-selection strategy
is an appropriate adaptation to fast changing environments, whereas K-selection
pays in slowly varying or constant environments.

2.2. The selection equation

The logistic equation can be interpreted in a different way that is useful for the
forthcoming analysis: In the second term – −(N/K) rN – the expression rN/K is
identified with a constraint for limiting growth: rN/K ≡ φ(t),

dN
dt

= N
(
r − φ(t)

)
, (2.5′)

The introduction of φ(t) gives room for other interpretations of constraints than
carrying capacities of ecosystems. For example, φ(t) may be a dilution flux in
laboratory experiments on evolution in flow reactors [21, pp. 21–27].

Equation (2.5′) can be used now for the derivation of a selection equation in
the spirit of Darwin’s theory. The single species X is replaced by several variants
forming a population, Π = {X1,X2, . . . ,Xn}; in the language of chemical kinetics
competition and selection are readily cast into a reaction mechanism consisting of
n independent, simple replication reactions:

(M) + Xj

fj−−−−→ 2Xj , j = 1, 2, . . . , n . (2.7)

The symbol M denotes the material from which Xj is synthesized (It is put in
parentheses, because we assume that it is present in access and its concentration
is constant therefore). The numbers of individuals of the variants are denoted by
Nj(t), or in vector notation N(t) =

(
N1(t), N2(t), . . . , Nn(t)

)
with
∑n

i=1Ni(t) =
C(t). The same common carrying capacity is defined for all n variants:

lim
t→∞

n∑

i=1

Ni(t) = lim
t→∞C(t) = K .
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The Malthus parameters are given here by the fitness values f1, f2, . . . , fn, respec-
tively. For individual species the differential equations take on the form

dNj

dt
= Nj

(
fj − C

K
φ(t)
)

; j = 1, 2, . . . , n with

φ(t) =
1
C

n∑

i=1

fiNi(t)
(2.8)

being the mean fitness of the population. Summation over all species yields a
differential equation for the total population size

dC
dt

= C

(
1− C

K

)
φ(t) . (2.9)

Stability analysis is straightforward: From dC/dt = 0 follow two stationary states
of Equation (2.9): (i) C̄ = 0 and (ii) C̄ = K.3 For conventional stability analysis
we calculate the (1× 1) Jacobian and obtain for the eigenvalue

λ =
∂
(
dC/dt

)

∂C
= φ(t) − C

K

(
2φ(t)−K ∂φ

∂C

)
− C2

K

∂φ

∂C
.

Insertion of the stationary values yields λ(i) = φ > 0 and λ(ii) = −φ < 0, state
(i) is unstable and state (ii) is asymptotically stable. The total population size
converges to the value of the carrying capacity, limt→∞ C(t) = C̄ = K.

Equation (2.9) can be solved exactly yielding thereby an expression that
contains integration of the constraint φ(t):

C(t) = C(0)
K

C(0) +
(
K − C(0)

)
exp(−Φ)

with Φ =
∫ t

0

φ(τ)dτ ,

where C(0) is the population size at time t = 0. The function Φ(t) depends on
the distribution of fitness values within the population and its time course. For
f1 = f2 = · · · = fn = r the integral yields Φ = rt and we retain Equation (2.6).
In the long time limit Φ grows to infinity and C(t) converges to the carrying
capacity K.

At constant population size C = C̄ = K Equation (2.8) becomes simpler

dNj

dt
= Nj

(
fj − φ(t)

)
; j = 1, 2, . . . , n . (2.8′)

and can be solved exactly by means of the integrating factor transformation [22,
p. 322ff.]:

Zj(t) = Nj(t) exp
(∫ t

0

φ(τ) dτ
)

or Z(t) = N(t) exp
(∫ t

0

φ(τ) dτ
)
,

3There is also a third stationary state defined by φ = 0. For strictly positive fitness values,
fi > 0∀ i = 1, 2, . . . , n, this condition can only be fulfilled by Ni = 0∀ i = 1, 2, . . . , n, which is

identical to state (i). If some fi values are zero – corresponding to lethal variants – the respective
variables vanish in the infinite time limit because of dNi/dt = −φ(t) Ni with φ(t) > 0.
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solving the linear differential equation dZ/dt = F ·Z, where F is a diagonal matrix
containing the fitness values fj (j = 1, 2, . . . , n) as elements, and using the trivial
equality Z0 = N0 we obtain for the components of N:

Nj(t) = Nj(0) exp(fjt)
C∑n

i=1Ni(0) exp(fit)
; j = 1, 2, . . . , n . (2.10)

Equation (2.10) encapsulates Darwinian selection and will be discussed in detail
in Section 2.4.

2.3. Variable population size

Now we shall show that the solution of Equation (2.8) describes internal equili-
bration for constant and variable population sizes as long as the population does
neither explode nor die out [23]. The validity of theorem 2.2 that will be proven
below is not restricted to constant fitness values fj and hence we can replace
them by general growth functions Gj(N1, . . . , Nn) = Gj(N) or fitness functions
Fj(N) with Gj(N) = Fj(N)Nj in the special case of replicator equations [24]:
dNj/dt = Nj

(
Fj(N)−Ψ(t)

)
where Ψ(t) comprises both, variable total concentra-

tion and constraint.
Time-dependence of the conditions in the ecosystem can be introduced in

two ways: (i) variable carrying capacity, K(t) = C̄(t), and (ii) a constraint or
flux4 ϕ(t), where flux refers to some specific physical device, for example to a
flow reactor. Constraints and fluxes may correspond to unspecific or specific mi-
gration.5 Considering time-dependent carrying capacity and variable constraints
simultaneously, we obtain

dNj

dt
= Gj(N)− Nj

K(t)
ϕ(t); j = 1, 2, . . . , n . (2.11)

Summation over all variants Xj and restricting the analysis to an equilibrated total
concentration C ≈ C̄ = K yields a relation between the time-dependencies of flux
and total concentration:

ϕ(t) =
n∑

i=1

Gj(N) − dC
dt

or

C(t) = C(0) +
∫ t

0

(
n∑

i=1

Gj(N)− ϕ(τ)

)
dτ .

(2.12)

Theorem 2.2 (Equilibration in populations of variable size). Evolution in popu-
lations of changing size approaches the same internal equilibrium as evolution in

4There is a slight difference in the definitions of the fluxes φ and ϕ: φ(t) = ϕ(t)/C(t).
5Unspecific migration means that the numbers Nj of individuals for each variant Xj decrease
(or increase) proportional to the numbers of individuals currently present in the population,
dNj = kNjdt. Specific migration is anything else. In a flow reactor, for example, we have a

dilution flux corresponding to unspecific emigration and an influx of one or a few molecular
species corresponding to specific immigration into the reactor.
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populations of constant size provided the growth functions are homogeneous func-
tions of degree γ in the variables Nj. Up to a transformation of the time axis,
stationary and variable populations have identical trajectories provided the popu-
lation size stays finite and does not vanish.

Proof. Normalized variables, xi = Ni/C with
∑n

i=1 xi = 1, are introduced in
order to separate of population growth, C(t), and population internal changes in
the distribution of variants Xi. From Equations (2.11) and (2.12) with C = C̄ = K
and Nj = Cxj follows:

dxj

dt
=

1
C

(
Gj

(
Cx
)− xj

n∑

i=1

Gi

(
Cx
)
)

; j = 1, 2, . . . , n . (2.13)

The growth functions are assumed to be homogeneous of degree γ in the variables6

Nj : Gj(N) = Gj(Cx) = Cγ Gj(x). and we find

1
Cγ−1

dxj

dt
= Gj(x) − xj

n∑

i=1

Gi(x); j = 1, 2, . . . , n ,

which is identical to the selection equation in normalized variables for C = 1. For
γ = 1 the concentration term vanishes and populations of constant and variable
size have identical trajectories and equilibrium points. In case γ �= 1 the two
systems are the same up to a transformation of the time axis:

dt̃ = Cγ−1 dt and t̃ = t̃0 +
∫ t̃

t̃0

Cγ−1(t) dt ,

where t̃0 is the time corresponding to t = 0 (commonly t̃0 = 0). From Equation
(2.13) we expect instabilities at C = 0 and C =∞. �

The instability at vanishing population size, limC → 0, is of practical importance
for modelling drug action on viral replication. In the case of lethal mutagenesis
[26, 27] medication aims at eradication of the virus population, C → 0, in order
to terminate the infection of the host. At the instant of virus extinction Equation
(2.8) is no longer applicable. More details will be discussed in Section 3.7.

2.4. Optimization

Since systems with growing and stationary population size are identical for homo-
geneous growth function of degree γ = 1 by Theorem 2.2, we shall use normalized
or internal coordinates except in Subsection 3.7. The ODE is of the form

dxj

dt
= fjxj − xjφ(t) = xj

(
fj − φ(t)

)
; j = 1, 2, . . . , n with

φ(t) =
∑n

i=1
fixi ,

(2.14)

6The degree γ is determined by the mechanism of reproduction. For sexual reproduction ac-

cording to Ronald Fisher’s selection equation (2.19) [25] we have γ = 2. Asexual reproduction
discussed here fulfils γ = 1.
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the solution is derived in the same way as in case of Equation (2.8):

xj(t) =
xj(0) exp(fjt)∑n
i=1 xi(0) exp(fit)

; j = 1, 2, . . . , n . (2.15)

The use of normalized variables,
∑n

i=1 xi = 1, implies that the unit simplex,
S

(1)
n = {0 ≤ xi ≤ 1 ∀ i = 1, . . . , n ∧∑n

i=1 xi = 1}, is the physically accessible
domain. All boundaries of the simplex – corners, edges, faces, etc. – are invariant
sets, since xj = 0 ⇒ dxj/dt = 0 by Equation (2.14).

For a discussion of selection and optimization we shall assume here that all
fitness values fj are different and that without loosing generality we rank them:

f1 > f2 > · · · > fn−1 > fn . (2.16)

The variables xj(t) fulfil two time limits:

lim
t→0

xj(t) = xj(0) ∀ j = 1, 2, . . . , n by definition, and

lim
t→∞xj(t) =

{
1 iff j = 1
0 ∀ j = 2, . . . , n .

In the long time limit the population becomes homogeneous and contains only
the fittest genotype X1. The process of selection is illustrated best by differential
fitness, fj − φ(t), the second factor in the ODE (2.14): The constraint φ(t) =∑n

i=1 fixi = f̄ represents the mean fitness of the population. The population
variables xl of all variants with a fitness below average, fl < φ(t), decrease whereas
the variables xh with fh > φ(t) increase. As a consequence the average fitness φ(t)
in increasing too and more sequences fall below the threshold for survival. The
process continues until the fittest variant is selected.

Optimization of mean fitness can be proved also without referring to differ-
ential fitness:

Theorem 2.3 (Optimization of mean fitness). The mean fitness

φ(t) = f̄ =
∑n

i=1
fixi with

∑n

i=1
xi = 1

in a population as described by Equation (2.14) is non-decreasing.

Proof. The time-dependence of the mean fitness or flux φ is given by

dφ
dt

=
n∑

i=1

fiẋi =
n∑

i=1

fi



fixi − xi

n∑

j=1

fjxj



 =

=
n∑

i=1

f2
i xi −

n∑

i=1

fixi

n∑

j=1

fjxj =

= f2 − (f̄ )2 = var{f} ≥ 0 .

(2.17)

Since a variance is always nonnegative, Equation (2.17) implies that φ(t) is a
non-decreasing function of time. �
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The condition var{f} = 0 is met only by homogeneous populations. The
one containing only the fittest variant X1 has the largest possible mean fitness:
f̄ = φmax = f1 = max{fj; j = 1, 2, . . . , n}. φ cannot increase any further and
hence, it was been optimized by the selection process. The state of maximal fitness
of population Π = {X1, . . . ,Xn}, x|max{φ(Π)} = {x1 = 1, xi = 0 ∀ i = 2, . . . , n} =
P1, is the unique stable stationary state, and all trajectories starting from initial
conditions with nonzero amounts of X1, x1 > 0, have P1 as ω-limit. An illustration
of the selection process with three variants is shown in Figure 2.1: The trajectories
are plotted on the unit simplex S

(1)
3 .

Gradient systems [28, p. 199] facilitate the analysis of the dynamics, they
obey the equation

dx
dt

= −grad{V (x)} = −∇V (x) (2.18)

and fulfil criteria that are relevant for optimization:
(i) The eigenvalues of the linearization of (2.18) evaluated at the equilibrium

point are real.
(ii) If x̄0 is an isolated minimum of V then x̄0 is an asymptotically stable solution

of (2.18).
(iii) In x(t) is a solution of (2.18) that is not an equilibrium point, then V

(
x(t)
)

is a strictly decreasing function and the trajectories are perpendicular to the
constant level sets of V .

(iv) Neither periodic nor chaotic solutions of (2.18) do exist.
As easily seen from Figure 2.1 the trajectories of (2.14) are not perpendicular to
the constant level sets of φ(x) and hence, Equation (2.14) is not a gradient system
in the strict sense. With the definition of a generalized inner product corresponding
to a Riemannian metric [29], however, the selection equation can be visualized as
a generalized gradient and oscillations or deterministic chaos can be excluded [30].

2.5. Fisher’s selection equation

Sexual reproduction introduces obligatory recombination of genotypes into the se-
lection equation. A sexually reproducing organism carries two copies of every gene.
Contrasting asexual reproduction where the whole genome is replicated and trans-
ferred to progeny in one piece, sexual reproduction is accompanied by partitioning
the two parental genomes into pieces and by organized recombination of genes
into the genomes of the progeny.7 On the population level genes are chosen from
a set of n variants called the gene pool: A = {A1, . . . , An}. Every specific (single)
locus on the genome is occupied by two alleles. Ronald Fisher, the great scholar

7Organized means here that each offspring carries two alleles for every gene. An allele Aj is a
variant of a specific gene. One allele of the offspring is one of the two maternal alleles, the second
one comes from the father who also carries two alleles of the gene. The position of a gene on the
genome or chromosome is called the locus. The genome consists of several chromosomes. There
are two classes of chromosomes: autosomes and sex chromosomes. In humans the males carry

two different sex chromosomes, X and Y, with different genes and this constitutes an exception
of the two alleles per gene rule.
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Figure 2.1. Selection on the unit simplex. In the upper part of the figure
we show solution curves x(t) of Equation (2.15) with n = 3. The parameter
values are: f1 = 3 [t−1], f2 = 2 [t−1], and f3 = 1 [t−1], where [t−1] is an
arbitrary reciprocal time unit. The two sets of curves differ with respect to
the initial conditions:

(i) x(0) = (0.02, 0.08, 0.90), dotted curves, and
(ii) x(0) = (0.0001, 0.0999, 0.9000), full curves.

Color code: x1(t) black, x2(t) red, and x3(t) green. The lower part of the figure

shows parametric plots x(t) on the unit simplex S
(1)
3 . Constant level sets of

φ(x) = f̄ are shown in grey.
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of population genetics, presented the first mathematical unification of Darwin’s
theory of natural selection and Mendel’s laws of inheritance [25]. Since population
genetics will be treated extensively in other contributions, only a very brief ac-
count on Fisher’s the selection equation and his fundamental theorem of natural
selection will be given here. The selection equation describes the evolution of the
allele distribution at a single locus:

dxj

dt
= xj

(
n∑

i=1

aji xi − φ(t)

)
; j = 1, . . . , n with

φ(t) =
n∑

j=1

n∑

i=1

aji xi xj and
n∑

i=1

xi = 1 .

(2.19)

The (normalized) variables xj represent the allele frequencies, the parameters aji

represent the fitness values for the allele combination [Aj ·Ai], and the constraint
φ(t) conserves the normalization condition. Fisher’s selection equation (2.19) is a
replicator equation [24] with Fj(x) =

∑n
i=1 ajixi being a linear function and Gj(x)

is homogeneous with γ = 2. Since the fitness of an allele combination is assumed to
be independent of the descendence of the allele on an autosome – it does not matter
whether a particular allele stems from the paternal or the maternal chromosome,
the allele combinations [Aj ·Ai] and [Ai ·Aj ] have identical fitness, and the matrix
A = {aji; i, j = 1, 2, . . . , n} is symmetric.

The introduction of mean rate parameters āi =
∑n

j=1 aijxj facilitates the
forthcoming calculation. The time-dependence of φ is now given by

dφ
dt

=
n∑

i=1

n∑

j=1

aij

(
dxi

dt
· xj + xi · dxj

dt

)
= 2

n∑

i=1

n∑

j=1

aji · xi · dxj

dt

= 2
n∑

i=1

n∑

j=1

aji · xi

(
n∑

k=1

ajkxjxk − xj

n∑

k=1

n∑

�=1

ak�xkx�

)

= 2
n∑

j=1

xj

n∑

i=1

ajixi

n∑

k=1

ajkxk − 2
n∑

j=1

xj

n∑

i=1

ajixi

n∑

k=1

xk

n∑

�=1

ak�x�

= 2
(〈ā2〉 − 〈ā〉2) = 2 var{ā} ≥ 0 . (2.20)

Again we see that the constraint φ(t) is a non-deceasing function of time, and it
approaches an optimal value on the simplex. This result is often called Fisher’s
fundamental theorem of evolution (see, for example, [31]).

The physically relevant part of Rn with non-negative values for all variables
is the unit simplex S

(1)
n and – as in case of the selection equation (2.14) for asexual

reproduction – all boundary sets of the simplex are invariant for Fisher’s selection
equation (2.19). Both equations, (2.14) and (2.19), have also in common that the
selection constraint φ(t) is a non-decreasing function of time t, and accordingly
φ(t) is optimized. There is, however, also an important difference between the
two selection equations: The selected state is unique in the asexual case, whereas
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Fisher’s selection equation may converge to different states for different initial con-
ditions. A straightforward example is sufficiently large fitness of the homozygotes
[Ai · Ai] and [Aj · Aj ] compared to the heterozygote [Aj · Ai], (aii, ajj) > aij .
Then, either of the two homozygotes – corresponding to the corners Pi and Pj of
the simplex – may be selected and the outcome of the selection process depends
on the initial state x(0) = x0. In case the heterozygote has higher fitness than
the homozygotes,8 aij > (aii, ajj), Fisher’s selection equation (2.19) predicts that
the selected stationary allele distribution becomes 0.5 : 0.5. Heterozygote selec-
tion in real populations is more complicated, since a homogeneous population of
heterozygotes is not compatible with random mating. In this case the resulting
diploid combinations, [Ai · Ai], [Aj · Ai] and [Aj · Aj ], are formed with a ratio
of 0.25:0.5:0.25. Homozygotes will not vanish completely unless they are lethal.
A real world example of overdominance with one practically lethal homozygote is
sickle-cell anemia (for an overview of the highly complex phenotypes of this disease
see [32, 33]).

In the simple version presented here, Fisher’s fundamental theorem of natu-
ral selection is identified with optimization of φ(t) in the selection equation (2.19).
Unfortunately – but fortunately for population geneticists and theoretical biolo-
gists, because a whole plethora of interesting mathematical problems emerged and
still emerges from the mathematics of recombination – Fisher’s selection equation
is a single locus model and holds on the genome level only for the unrealistic
assumption of independent genes. Two and more locus models with gene interac-
tion turned out to be much more complicated and no generally valid optimization
principle was reported so far: Natural selection in the sense of Charles Darwin
is an extremely powerful optimization heuristic but no theorem (see also Subsec-
tion 3.3). Nevertheless, Fisher’s fundamental theorem is much deeper than the toy
version that has been presented here. The interested reader is referred to a few,
more or less arbitrarily chosen references from the enormous literature on this issue
[34, 35, 36].

2.6. Growth functions and selection

It is worth considering different classes of growth functions z(t) and the behavior
of long time solutions of the corresponding ODEs. An intimately related problem
concerns population dynamics: What is the long time or equilibrium distribution
of genotypes in a normalized population, limt→∞ x(t) provided the initial distri-
bution has been x0? Is there a universal long time behavior, for example selection,
coexistence or cooperation, that is characteristic for certain classes of growth func-
tions?

The differential equation describing unlimited growth,

dz
dt

= f · zn (2.21)

8The two situations are called underdominance or homozygote advantage and overdominance or
heterozygote advantage, respectively.
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Figure 2.2. Typical functions describing unlimited growth. All func-
tions are normalized in order to fulfil the conditions z0 = 1 and
dz/dt|t=0 = 1. The individual curves show hyperbolic growth (z(t) =
1/(1− t); magenta; the dotted line indicates the position of the instabil-
ity), exponential growth (z(t) = exp(t); red), parabolic growth (z(t) =
(1 + t/2)2; blue), linear growth (z(t) = 1 + t; black), sublinear growth
(z(t) =

√
1 + 2t; turquoise), logarithmic growth (z(t) = 1 + log(1 + t);

green), and sublogarithmic growth (z(t) = 1 + t/(1 + t); yellow; the
dotted line indicates the maximum value zmax: limt→∞ z(t) = zmax).

yields two types of general solutions for the initial value z(0) = z0

z(t) =
(
z1−n
0 + (1− n)ft

)1/(1−n)
for n �= 1 and (2.21a)

z(t) = z0 · eft for n = 1 . (2.21b)

In order to make the functions comparable we normalize them in order to fulfil
z0 = 1 and dz/dt|t=0 = 1. According to Equations (2.21) this yields z0 = 1 and
f = 1. The different classes of growth functions indicated by different colors in
Figure 2.2 are characterized by the following behavior:

(i) Hyperbolic growth requires n > 1; for n = 2 it yields the solution curve of
the z(t) = 1/(1 − t). Characteristic is the existence of an instability in the
sense that z(t) approaches infinity at some critical time, limt→tcr z(t) = ∞
with tcr = 1. The selection behavior of hyperbolic growth is illustrated by
the Schlögl model:9 dzj/dt = fjz

2
j ; j = 1, 2, . . . , n. Depending on the initial

conditions each of the replicators Xj can be selected. Xm the species with the
highest replication parameter, fm = max{fi; i = 1, 2, . . . , n} has the largest
basin of attraction and the highest probability to be selected. After selection
has occurred a new species Xk is extremely unlikely to replace the current

9The Schlögl model is tantamount to Fisher’s selection equation with diagonal terms only: fj =

ajj ; j = 1, 2, . . . , n [37].
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species Xm even if its replication parameter is substantially higher, fk � fm.
This phenomenon is called once-for-ever selection.

(ii) Exponential growth is observed for n = 1 and described by the solution z(t) =
et. It represents the most common growth function in biology. The species
Xm having the highest replication parameter, fm = max{fi; i = 1, 2, . . . , N},
is always selected, limt→∞ zm = 1. Injection of a new species Xk with a still
higher replication parameter, fk > fm, leads to selection of the fitter variant
Xk.

(iii) Parabolic growth occurs for 0 < n < 1 and for n = 1/2 has the solution curve
z(t) = (1 − t/2)2. It is observed, for example, in enzyme free replication of
oligonucleotides that form a stable duplex, i.e., a complex of one plus and one
minus strand [38]. Depending on parameters and concentrations coexistence
or selection may occur [39].

(iv) Linear growth follows from n = 0 and takes on the form z(t) = 1 + t. Linear
growth is observed, for example, in replicase catalyzed replication of RNA at
enzyme saturation [40].

(v) Sublinear growth occurs for n < 0. In particular, for n = −1 gives rise to the
solution y(t) = (1 + 2t)1/2 =

√
1 + 2t.

In addition we mention also two additional forms of weak growth that do not
follow from Equation (2.21):
(vi) Logarithmic growth that can be expressed by the function z(t) = z0 + ln(1+

ft) or z(1) = 1 + ln(1 + t) after normalization, and
(vii) sublogarithmic growth modeled by the function z(t) = z0 + ft/(1 + ft) or

z(t) = 1 + t/(1 + t) in normalized form.
Hyperbolic growth, parabolic growth, and sublinear growth constitute families of
solution curves that are defined by a certain parameter range (see figure 2.2), for
example a range of exponents, nlow < n < nhigh, whereas exponential growth,
linear growth and logarithmic growth are critical curves separating zones of char-
acteristic growth behavior: Logarithmic growth separates growth functions ap-
proaching infinity in the limit t → ∞, limt→∞ z(t) = ∞ from those that remain
finite, limt→∞ z(t) = z∞ <∞, linear growth separates concave from convex growth
functions, and exponential growth eventually separates growth functions that reach
infinity at finite times from those that don’t.

3. Mutation, selection, and optimization

Molecular biology was initiated when Watson and Crick published their centennial
paper on the structure of deoxyribonucleic acid (DNA) [41]. Further development
provided information on the chemistry of life at a breathtaking pace [42]. A closer
look on the structure of DNA revealed the discrete nature of base pairing – two
nucleotides make a base pair that fits into the double helix or they don’t. With this
restriction the natural nucleobases allow for only four pairings: AT, TA, GC, and
CG. This fact is already sufficient for an rough understanding of the molecular basis
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of genetics: Genetic information is of digital nature and multiplication of informa-
tion is tantamount to copying. Mutation, the process that leads to innovation in
evolution, was identified with imperfect reproduction or erroneous copying. Molec-
ular insights into recombination occurring during meiotic cell division10 provided
straightforward explanations for the deviations from Mendel’s idealized ratios of
offspring with different appearance.

3.1. Complementary replication of nucleic acids

The device for cellular DNA replication is highly involved as the replication com-
plex consists of more than twenty protein enzymes performing a concerted reaction
that makes two double stranded molecules from one double stranded molecule.
Simpler DNA replication and common RNA replication use the principle of com-
plementary strand template completion: A single strand is completed to a double
helix nucleotide after nucleotide (Figure 3.1) whereby the complementary strand
is synthesized leading to the mechanism for complementary synthesis (in the un-
limited growth case):

(M) + X− f−

−−−−→ X+ + X− and

(M) + X+
f+

−−−−→ X− + X+

lead to
dz+

dt
= f− z− and

dz−

dt
= f+ z+ .

(3.1)

Transformation of variables,

ζ =
z+

√
f+

+
z−√
f− and η =

z+

√
f+
− z−√

f− ,

yields the solutions

η(t) = η(0) exp(−ft) and ζ(t) = ζ(0) exp(+ft) (3.1’)

with f =
√
f+f−. The combined variable η(t) describes the internal equilibration

of plus- and minus-strand and ζ(t) is the growth function of the plus-minus en-
semble. It is worth noticing that the fitness value of the ensemble is the geometric
mean of the individual fitness values of the two strands, f+ and f−.

Complementary replication of DNA is the basis of the polymerase chain re-
action (PCR) [43], which is a standard technique in molecular genetics. RNA
replication in cells infected by several classes of RNA viruses and replication in
cell free media follow also a complementary replication mechanism and usually
involve only one or very few enzymes. The kinetic reaction mechanism of RNA

10Two different classes of cell divisions are distinguished: (i) Mitosis leading from one diploid cell
to two diploid cells, where diploid defines the fact that the cells carries two sets of chromosomes,
and (ii) meiosis leading from one diploid cell to four haploid cells constituting the germ line.
Haploid expresses the fact that the cell carries only one set of chromosomes. Diploidy of the cells

is restored when one paternal and one maternal haploid germ line cell fuse to yield a diploid
zygote.
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Figure 3.1. Sketch of template induced DNA replication. Template
induced polymerization of nucleic acids (DNA or RNA) follows the same
logical principle: The polymerase binds to the 3′-end of the template
molecule and synthesizes the complementary strand in the direction
from the 5′-end to the 3′-end by adding nucleotide after nucleotide.
Considering the incorporation of individual nucleotides as independent
reaction steps, the accuracy of correct replication of template Xj is
simply: Qjj = q1 · q2 · · · · · q�, where  denotes the chain length of the
polynucleotide and qj is the accuracy of correct incorporation at position
“j”. An important example of a DNA polymerizing single enzyme is the
thermostable DNA polymerase isolated from the bacterium Thermus
aquaticus. It replicates single stranded DNA and is used commonly for
DNA amplification in the polymerase chain reaction (PCR) tech-
nique [43].

replication in vitro has been studied in great detail [40, 44, 45]: Under suitable
conditions, excess replicase and nucleotide triphosphates (ATP, UTP, GTP, and
CTP), the concentration of the RNA plus-minus ensemble grows exponentially
(Figure 3.2). The population maintains exponential growth if consumed materials
are replenished either by a suitable flow device or by serial transfer, which consists
of repeated transfer of small quantities of the current reaction mixture into fresh
reaction medium [3]. The condition of exponential growth is trivially fulfilled for
cellular life, because replication and cell divisions are strongly coupled mechanisti-
cally through cellular metabolism, and selection relevant multiplication occurs at
the level of cells. With virus replication in the host cell the situation is more in-
volved: Inside the cell replication is exhausting the reservoir of building blocks for
the virus specific biomolecules and conditions of exponential growth exist only in
the early stages of cellular infection. Formation of virus particles, so-called virions,
however, introduces exponential growth and selection of fitter variants.
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Figure 3.2. Kinetics of RNA replication in a closed system. The
time course of specific RNA replication by Qβ-replicase shows three
distinct growth phases: (i) an exponential phase, (ii) a linear phase,
and (iii) a phase characterized by saturation through product inhi-
bition [40, 44, 45]. The experiment is initiated by transfer of a very
small sample of RNA suitable for replication into a medium containing
Qβ-replicase (R) and the activated monomers, ATP, UTP, GTP, and
CTP in excess (consumed materials are not replenished in this exper-
iment). In the phase of exponential growth there is shortage of RNA
templates, every free RNA molecule is instantaneously bound to an en-
zyme molecule and replicated, and the corresponding over-all kinetics
follows dx/dt = f ·x resulting in x(t) = x0 · exp(ft). In the linear phase
the concentration of template is exceeding that of enzyme, every enzyme
molecule in engaged in replication, and over-all kinetics is described by
dx/dt = k′ · e(R)

0 = k, wherein e
(R)
0 is the total enzyme concentration,

and this yields after integration x(t) = x0 + kt. Further increase in
RNA concentration slows down the dissociation of product (and tem-
plate) RNA from the enzyme-RNA complex and leads to a phenomenon
known as product inhibition of the reaction. It can be approximated by
a Verhulst-type saturation term: x(t) = α

/(
α + (1 − α) exp(−κt)). At

the end, all enzyme molecules are blocked by RNA in complexes and no
more RNA synthesis is possible, x(t)→ 1.

The repertoire of naturally occurring changes in genomes is very rich and
ranges from point mutations, insertions and deletions to duplications of genes and
whole genomes or other large scale genome rearrangements. For the sake of simplic-
ity only single point mutations will be considered here. This, however, is sufficient
to be able to reach every sequence from every other sequence of the same length
through a finite number of mutation steps. Subsection 3.2 introduces the kinetic
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Figure 3.3. A schematic view of replication and mutation. The repli-
cation device (violet) binds the template nucleic acid molecule (DNA or
RNA; Xj , orange) and initiates copying of the genetic information with
a rate parameter fj. The reaction has n different channels and yields a
correct copy with frequency Qjj or leads through mutation to one of the
(n − 1) variants Xk (spectrum of colors) with frequency Qkj whereby
Qjj � Qkj ∀ k �= j is required for stable inheritance. Stoichiometry of
replication requires

∑n
i=1Qij = 1, since the product has to be either

correct or incorrect. Replication requires activated monomers M – in na-
ture in form of the deoxynucleoside-triphosphates (dATP, dTTP, dGTP,
and dCTP in DNA) or nucleoside-triphosphates (ATP, UTP, GTP, and
CTP in RNA) – and suitable reaction conditions.

differential equation for replication and mutation, and derives the solution. Dif-
ferent from selection based on error free replication, optimization of mean fitness
f̄ = φ is no longer a global property but restricted to some region on the unit
simplex S

(1)
n (Subsection 3.3). Correct reproduction and mutation at the molecu-

lar level are seen as parallel chemical reactions (Figure 3.3). In order to guarantee
inheritance, correct copying must occur more frequently than mutation. In Sub-
section 3.4 we shall cast this intuitive statement into a quantitative expression and
in Subsection 3.5 the analytical results are supplemented by data from numerical
computations. Eventually, we consider neutrality in replication (Subsection 3.6)
and lethal mutations (Subsection 3.7).

3.2. The mutation selection equation

Replication leading to correct copies and mutations is properly described by the
overall mechanism

(M) + Xj

Qijfj−−−−→ Xi + Xj ; i, j = 1, 2, . . . , n , (3.2)



Darwin 1859 and 2009 47

that is cast by chemical kinetics into the differential equation:11

dxj

dt
=

n∑

i=1

Qjifixi − φ(t)xj , j = 1, 2, . . . , n with

φ(t) =
n∑

i=1

n∑

j=1

Qjifixi =
n∑

i=1

fixi , (3.2′)

or
dx
dt

= (Q · F− φ(t)) x in vector notation ,

where x is an n-dimensional column vector; Q and F are n×nmatrices. The matrix
Q contains the mutation probabilities – Qji referring to the production of Xj as
an error copy of template Xi – and F is a diagonal matrix whose elements are the
replication rate parameters or fitness values fj. The product Q ·F = W is defined
as the value matrix W, since it encapsulated the selective values of variants.

The form of the mutation selection equation portrays the schematic mecha-
nism shown in Figures 3.1 and 3.3: Initiation of replication, propagation along the
template Xj , and termination are modeled by an overall rate parameter fj that ac-
counts also for the constant concentrations of building blocks M. After initiation
the enzyme progresses stepwise along the polynucleotide chain, each nucleotide
incorporation opens κ reaction channels where κ is the number of different nu-
cleotide bases (κ = 2 holds for binary sequences and κ = 4 for natural DNA or
RNA molecules) and hence, correct replication and mutation are parallel chem-
ical reactions. One reaction channel incorporates the correct nucleotide whereas
κ − 1 channels produce mutants, the matrix elements Qji with j = 1, . . . , n de-
termine the probability to obtain Xj as a (correct or incorrect) copy of Xi and by
conservation of probabilities we have

∑n
j=1Qji = 1.

Equation (3.2) can be transformed into a linear ODE by means of integrating
factor transformation and is thereby reduced to the following eigenvalue problem
[46, 47]:

z(t) = x(t) · exp
(∫ t

0

φ(τ)dτ
)
,

dz

dt
= Q · Fz = W z , and

W = B · Λ · B−1 or Λ = B−1 ·W · B ,

with Λ being a diagonal matrix, whose elements are the ordered eigenvalues of W,
λ1 ≥ λ2 ≥ · · · ≥ λn. The calculation of the solutions xj yields by straightforward
insertion:

xj(t) =
∑n

k=1 bjk

∑n
i=1 hkixi(0) exp(λkt)∑n

l=1

∑n
k=1 blk

∑n
i=1 hkixi(0) exp(λk t)

, j = 1, 2, . . . , n . (3.3)

11The building blocks M are put in parentheses because they are assumed to be present in excess
and therefore do not appear as variables in the ODEs.
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The new quantities in this equation are the elements of the two transformation
matrices:

B = {bjk; j, k = 1, . . . , n} and

B−1 = {hkj ; k, j = 1, 2, . . . , n}
The columns of B and the rows of B−1 represent the right-hand and left-hand
eigenvectors of the matrix W. For example we have

ζ1 =





b11
b21
...
bn1



 .

Assuming a unique largest eigenvalue, λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn (see Theo-
rem 3.1), the stationary solution contains only the contributions of the largest
eigenvector, ζ1:

lim
t→∞xj(t) = x̄j =

bj1
∑n

i=1 h1ixi(0)
∑n

k=1 bk1

∑n
i=1 h1ixi(0)

, j = 1, . . . , n . (3.4)

In other words, ζ1 describes the stationary distribution of mutants and represents
the genetic reservoir of an asexually reproducing species similarly to the gene pool
of a sexual species. For this reason ζ1 has be called quasispecies, its properties will
be discussed now in Subsection 3.3.

3.3. Mutation and optimization

Before considering the optimization problem we shall derive the biologically rele-
vant properties of quasispecies.

Theorem 3.1 (Unique and strictly positive quasispecies). If all single point muta-
tions yield non-lethal variants, the largest eigenvector of matrix W, the quasispecies
ζ1, will be unique and all elements of ζ1 will be strictly positive.

Proof. The matrix F is a diagonal matrix with strictly positive elements. The
matrix Q contains  strictly positive diagonal elements representing the replication
accuracies Qjj (j = 1, . . . , ) and strictly positive elements for all single point
mutations that can be reached from some specific (initial) sequence X0 by one
replication event. These are all (κ − 1) sequences Xk with Hamming distance12

dH(Xk,X0) = dH
k0 = 1 and accordingly, Q has (2κ − 1) strictly positive and

(− 2κ+ 1) zero entries. Since multiplication with a diagonal matrix leaves zero
entries unchanged, W = Q · F has the same zero elements as Q. Cumulative
consecutive replication events as described by the mutation matrices Q2,Q3, . . . ,
provide nonzero mutation frequencies for all sequences Xk of Hamming distances

12The Hamming distance counts the number of positions in which two aligned sequences
differ[48].
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dH
k0 = 2, 3, . . . , and eventually after  replications the matrix Q� is strictly positive:

Q is a primitive matrix, and so is W.
Accordingly, Perron-Frobenius theorem [49, pp. 3–11] for primitive matrices ap-
plies for matrix W and there exists an largest eigenvalue λ1 such that

(i) λ1 is real and strictly positive,
(ii) associated with λ1 are one strictly positive left and one strictly positive right

eigenvector, ζ̃1 and ζ1,
(iii) the eigenvectors associated with λ1 are unique to constant multiples,
(iv) λ1 > |λk| holds for all λk �= λ1, and
(v) λ1 is a simple root of the characteristic equation of W.

Items (ii), (iii), (iv), and (v) meet the conjectures of the theorem. �

In other words, the quasispecies theorem states that the mutation selection prob-
lem as modeled by equation (3.2) has a unique long time or equilibrium solution,
the quasispecies, and no variant vanishes in the long time limit. Both conditions
root the model safely in chemical kinetics and thermodynamics.

The eigenvectors belonging to the eigenvalues λk with k �= 1 have no direct
physical meaning but they are important for an understanding of optimization in
the presence of mutation. For the purpose of illustration we consider L1 normalized
variables on the unit simplex S

(1)
n and assume that the eigenvalues of W are real.13

A point on S
(1)
n is defined by the vector x, likewise we define a simplex Σ(1)

n in the
eigenspace of W and its points by the vectors ξ = (ξ1, . . . , ξn). The unit vectors
Pj = (xj = 1, xi = 0 ∀ i �= j) in concentration space are replaced by unit vectors
Ξk = (ξk = 1, ξi = 0 ∀ i �= k).

Definition 3.2. The eigensimplex Σ(1)
n is a unit simplex of unit vectors Ξk,

k = 1, . . . , n in Rn spanned by the eigenvectors ζk of the value matrix W:
Σ(1)

n = {0 ≤ ξi ≤ 1 ∀ i = 1, . . . , n ∧∑n
i=1 ξi = 1}.

Theorem 3.3 (Restricted optimization of average fitness). The average fitness
φ(t) = f̄ =

∑n
i=1 fixi with xi ≥ 0 and

∑n
i=1 xi = 1 in a population described by the

mutation selection equation (3.2) is nondecreasing on the intersection S
(1)
n ∪Σ(1)

n ,
denoted as optimization cone.

Proof. Points on the simplex S
(1)
n fulfil the conditions xi ≥ 0 and

∑n
i=1 xi = 1.

Equation 3.2 transformed by diagonalization of W = B · Λ · B−1 becomes
dζk

dt
= ζk

(
λk − φ(t)

)
, k = 1, . . . , n ,

which is identical to Equation (2.14) and hence, Theorem 2.3 holds on the simplex
Σ(1)

n . Both conditions are fulfilled on the intersection of the two simplices. �

13The matrix W may have complex conjugate pairs of eigenvalues without violating Perron-

Frobenius theorem. Special cases of W with complex eigenvalues can be constructed but are not
compatible with realistic assumptions on mutation frequencies Qji.
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Figure 3.4. The quasispecies on the unit simplex. Shown is the case of
three variables (x1, x2, x3) on S

(1)
3 . The point representing pure quasis-

pecies Ξ1, is shown together with the points for the other two eigenvec-
tors, Ξ2 and Ξ3. The simplex is partitioned into an optimization cone
(S(1)

n ∪ Σ(1)
n ; lower white area) where the mean replication rate f̄(t)

is nondecreasing, and three other zones where f̄(t) may also decrease.
Here, X1 is chosen to be the master sequence, the sequence with the
highest fitness value. Solution curves are presented as parametric plots
x(t). The mean replication rate f̄(t) is monotonously increasing along
red trajectories, monotonously decreasing along the blue trajectory (up-
per white area), and not necessarily monotonous along green trajectories
(grey areas). The parameter values are: f1 = 2.1 [t−1], f2 = 2.0 [t−1],
and f3 = 1.9 [t−1], the Q-matrix was assumed to be bistochastic with the
elements Qii = 0.98 and Qij = 0.01 for i, j = {1, 2, 3}. The eigenvalues
and eigenvectors of W are:

k λk b1k b2k b3k

1 2.065 0.742 0.165 0.093

2 1.958 -0.248 1.078 0.170

3 1.857 -0.103 -0.224 1.327

The optimization principle does not hold outside the optimization cone, S
(1)
n ∪

Σ(1)
n . It can be shown that φ(t) is nonincreasing in the cone defined by Θ =
{ξ1 ≥ 1, ξi ≤ 0 ∀ j = 2, . . . , n} [50]. This fact can be easily made plausible by
assuming as initial condition a homogenous population of the master sequence, the
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sequence corresponding to the fittest phenotype. All variants have lower fitness
and accordingly, mutation leads to a reduction in the mean fitness f̄ , which is
decreasing as the quasispecies with f̄ = λ1 < f1 is approached in the long time
limit. In the remaining sections of the unit simplex no predictions on φ(t) can be
made, special cases with non-monotonous behavior can be constructed [50]. The
somewhat sophisticated conditions of optimization in the replication mutation
system are illustrated by means of a numerical example in Figure 3.4.

3.4. Mutation rates and error thresholds

In general, the mutation rates are not tunable but they can be varied within certain
limits by applying suitable experimental assays. In order to illustrate the mutation
rate dependence of quasispecies and to subject it to mathematical analysis, a
simplifying model called uniform error rate model is adopted [51]. The error rate
per nucleotide and replication, p, is assumed to be independent of the position and
the nature of the nucleotide exchange: A→U, A→G or A→C occur with the same
frequency p and the total error rate at a given position is 3p. Then the elements
of the mutation matrix Q depend only on three quantities: The chain length of
the sequence to be replicated, , the error frequency p and the Hamming distance
between the template, Xi, and the newly synthesized sequence, Xj , denoted by dH

ij ,

Qji =
(
1− (κ− 1)p

)�−dH
ij · pdH

ij =
(
1− (κ− 1)p)� εdH

ij with

ε =
p

1− (κ− 1)p
,

(3.5)

with κ being the size of the nucleotide alphabet (κ = 4 for natural polynucleotides
corresponding to {A,U(T),G,C}). The explanation of Equation (3.5) follows from
Figure 3.1: The two sequences differ in dH

ij positions and hence − dH
ij nucleotides

have to be copied correctly, each one contributing a factor 1 − (κ − 1)p, and dH
ij

errors with frequency p have to be made at certain positions. Since the Hamming
distance is a metric, we have dH

ij = dH
ji, and within the approximation of the

uniform error rate model the mutation matrix Q is symmetric.
For p = 0 we encounter the selection case (2.15): The species of highest fitness,

the master sequence X1, is selected and all other variants disappear in the long
time limit. The other extreme is random replication where correct and incorrect
incorporations of digits are equally probable and occur with frequency p̃ = κ−1.
Then all elements of matrix Q are equal to κ−�, and the uniform distribution
Υ = {x̄j = n−1 ∀ j = 1, 2, . . . , n with n = κ�} is the eigenvector corresponding
to the largest eigenvalue λ1 = κ−�

∑n
i=1 fi (all other eigenvalues of W vanish).

In the whole range 0 ≤ p ≤ κ−1 the stationary distribution changes from the
homogeneous population, Ξ1 = {x̄1 = 1, x̄j = 0 ∀ j = 2, . . . , n} to the uniform
distribution Υ.

Between the two extremes the function x̄1(p) was approximated by Man-
fred Eigen through neglect of back-flow from mutants to the master sequence. He
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obtained for dx1/dt = 0 [51]:

x̄1 = Q11 − f̄−1

f1
= Q11 − σ−1

1 with f̄−1 =
∑n

i=1 fix̄i

1− x̄1
. (3.6)

The quantity σ1 = f1/f̄−1 is denoted as the superiority of the master sequence X1.
In this rough, zeroth-order approximation the frequency of the master sequence
becomes zero at a critical value of the mutation rate parameter, pmax, for con-
stant chain length  or at a maximal chain length max for constant replication
accuracy p,

pmax ≈ lnσ1

(κ− 1) 
or max ≈ lnσ1

(κ− 1) p
,

respectively. The critical replication accuracy has been characterized as the error
threshold of replication. Numerically computed error thresholds remind of a phase
transition in which the quasispecies changes from a mutant distribution centered
around a master sequence to the uniform distribution. In other words the solution
that becomes exact at p = p̃ is closely approached at pmax already. For the purpose
of illustration for a superiority of σ1 = 1.1 and a chain length of  = 100 we obtain
pmax = 0.00032 compared to p̃ = 0.5.

Both relations for the error threshold, the maximum replication accuracy
and the maximum chain length, were found to have practical implications: (i)
RNA viruses replicate at mutation rates close to the maximal value [52]. A novel
concept for the development of antiviral drugs makes use of this fact and aims at
driving the virus population to mutation rates above the error threshold [53].
(ii) There is a limit in chain length for faithful replication that depends on the
replication machinery: The accuracy limit of enzyme-free replication is around
one error in one hundred nucleotides, RNA viruses with a single enzyme and no
proof reading can hardly exceed accuracies of one error in 10 000 nucleotides, and
DNA replication with repair on the fly reaches one error in 108 nucleotides. For
prokaryotic DNA replication with post-replication repair the accuracy increases
to 10−9 – 10−10, which is roughly one mutation in 300 duplications of bacterial
cells, and for eukaryotes similar fractions of mutations were reported despite much
longer genomes [54].

3.5. Numerical computations on error thresholds

The approximation of the error threshold through neglect of mutational back-
flow (3.6) caused the results to be largely independent of the distribution of the
fitness values of mutants, since only the mean fitness, f̄−m, enters the expressions,
in contrast to numerical computations, which suggested that the appearance of
an error threshold and its shape are strongly dependent on details of the fitness
landscape (see [55] and [21, pp. 51–60]). The influence of the distribution of fitness
values will be considered in two steps:
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(i) different fitness values are applied for error classes being sets of sequences
with the same Hamming distances from the master sequence X1,

Yk = {Xj | dH
j1 = k} ,

yk =
∑

j
xj | Xj∈Yk

and
(3.7)

(ii) different fitness values are assigned to individual sequences.

In the first case all sequences Xj with Hamming distance dH
1,j = k fall into the

error class ‘k’. Although the assumption that all sequences in a given error class
have identical fitness is not justified on the basis of molecular data, it is frequently
used in population genetics. Calculations applying this assumption turned out to
be useful for an understanding of the threshold phenomenon.

Five model landscapes, which are characterized by their fitness matrices F =
{Fij = fi · δij}, were applied here:

(i) the single-peak landscape: f(Y0) = f0 and f(Yj) = fn ∀ j �= 1,
(ii) the hyperbolic landscape: f(Yj) = f0 − (f0 − fn)(n + 1)j/

(
n(j + 1)

) ∀ j,
(iii) the step-linear landscape: f(Yj) = f0 − (f0 − fn)j/k ∀ j = 0, . . . , k and

f(Yj) = fn ∀ j = k + 1, . . . , n,

(iv) the multiplicative landscape: f(Yj) = f0(fn/f0)
j/n ∀ j, and

(v) the additive or linear landscape: f(Yj) = f0 − (f0 − fn)j/n ∀ j.

Examples for the dependence of the quasispecies distribution on the error rate,
Y(p), on different landscapes are shown in Figure 3.5.

The analysis of error thresholds on different landscapes revealed three separa-
ble features: (i) a steep decay in the frequency of the master sequence – x1(p)→ 0
in the zeroth-order approximation (3.6), (ii) a phase transition-like sharp change
in the mutant distribution, and (iii) the transition leads from the quasispecies to
the uniform distribution. All three phenomena coincide on the single-peak land-
scape. Characteristic for most hyperbolic landscapes is a steep decay of the master
sequence (i) and an abrupt transition in the distribution of sequences according to
(ii) but – in contrast to the single-peak landscape – the transition does not lead to
the uniform distribution but to another distribution that changes gradually into
the uniform distribution, which becomes the exact solution at the point p = p̃.
The step-linear landscape illustrates the separation of the decay range (i) and the
phase transition to the uniform distribution (ii and iii). In particular, the phase
transition point pmax shifts towards higher values of p when the position of the
step (at error class k) moves towards higher error-classes, whereas the decay of
the master sequence (X1) moves in opposite direction. The additive and the multi-
plicative landscape, the two landscapes that are often used in population genetics,
do not sustain threshold-behavior. On these two landscapes the quasispecies is
transformed smoothly with increasing p into the uniform distribution.
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Figure 3.5. Error thresholds on model landscapes. Relative stationary con-
centrations of entire error classes ȳk(p) are plotted as functions of the muta-
tion rate p (different error classes Yk are color coded, k = 0: black, k = 1:
red, k = 2: yellow, k = 3: chartreuse, k=4: green, etc). Top row: single-peak
fitness landscape (enlarged on the right-hand side), conditions (i), (ii), and
(iii) coincide. Middle row: hyperbolic landscape (enlarged on the right-hand
side), the phase transition leads to a distribution that changes gradually into
the uniform distribution, (i) has an offset to the left of (ii). Bottom row: step-
linear landscape on the l.h.s. meets condition (ii) and (iii) but (i) has a large
offset to the left, and additive landscape on the r.h.s. does not sustain an error
threshold at all. Parameters used in the calculations: � = 100, f1 = f0 = 10,
fn = 1 (except the hyperbolic landscape where we used fn = 0.9091 in or-
der to have f̄−m = 1 as for the single peak landscape), and k = 5 for the
step-linear landscape.
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Realistic fitness landscapes as derived from the properties of biomolecules are
characterized by two features: (i) ruggedness and (ii) neutrality.14 Error thresholds
on realistic fitness landscapes can be modeled by the assumption of a randomly
scattered distribution of fitness values within a given band of width d for all se-
quences except the master sequence:

f(Xj) = f̄n + 2d(f0 − fn)
(
η rnd(j)− 0.5

)− 1, j = 2, . . . , κ� . (3.8)

In this expression “η rnd(j)” is a random number drawn from a random number
generator with uniform distribution of numbers in the range 0 ≤ η rnd(j) ≤ 1 with
j being the index of the consecutive calls of the random function, and d is the band
width of fitness values. The two limiting cases are: the full band width d = 1, where
individual fitness values may be as large as f0, the value for the master sequence,
and the single peak landscape with d = 0. The computational capacities of today
allow for studies of error thresholds at the resolution of individual sequences up to
chain lengths n = 10. Further increase in computational power raises expectation
to be able to reach n = 20, which in case of binary sequences is tantamount to the
diagonalization of 106 × 106 matrices.

Transitions between two quasispecies were found first by computational anal-
ysis [50]: The master sequence on quasispecies I with a larger fitness value, f (I)

1 >

f
(II)
1 , has a smaller mutational backflow than quasispecies II,

∑n
i=2Q

(I)
1i x

(I)
i <∑n

k=2Q
(II)
1k x

(II)
k . Since the mutational backflow increases with increasing error

rate p, there may exist a value p = ptrans < pmax � p̃ at which the two qua-
sispecies exchange stability. The sharpness of the transition depends primarily on
the Hamming distance between the two master sequences, dH(X (I)

1 ,X (II)
1 ) = dH

I,II :
The larger the distance the sharper is the transition – numerical computations with
binary sequences of chain lengths  = 10 have shown that a Hamming distance of
dH > 6 is sufficient for hard transitions. Several transitions of this kind may occur
before the error threshold. In Figure 3.6 we show an example of a fitness landscape
that sustains three transitions between four quasispecies. A sharp transition with
Hamming distance dH

I,II = 8 between the master sequences is presented on the
l.h.s. of the figure. Two more consecutive transitions are shown on the l.h.s: A
sharper one with dH

II,III = 7 and a smoother one with dH
III,IV = 6. A large muta-

tional backflow requires a small difference in fitness between the master sequence
and its mutants and hence, the transitions with increasing p between quasispecies
lead from steeper to flatter region on the fitness landscape. Examples are common
and constructed straightforwardly. Thirteen years later the phenomenon has been
rediscovered with digital organisms and named survival of the flattest [56].

Two more questions are important in the context of fitness values at a resolu-
tion of individual sequences: (i) How does the dispersion of fitness values expressed

14Ruggedness implies that nearby sequences may lead to identical but also to very different
structures. By the same token functions like fitness values may be the same or very different for

close by lying genotypes. Neutrality means that a certain fraction of different genotypes measured
by the degree of neutrality, λ, have properties that cannot be distinguished by selection.
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Figure 3.6. Transitions between quasispecies. Both figures show tran-
sitions on a landscape defined by Equation (3.8) for 1024 binary se-
quences of chain length  = 10. The transition on the l.h.s. involves the
sequences 0→ 1003 (decimal equivalent of the binary sequence of chain
length  = 10) with dH

0,1003 = 8 and is extremely sharp. The plot on the
r.h.s shows to more transitions 0 → 923 and 923 → 247 (dH

0,923 = 7,
dH
923,247 = 6). Parameters: f0 = 1.1, fn = 1.0, and the seed s = 229 for

the random number generator legacy of Mathematica. The band width
was chosen d = 1.0 (l.h.s.) and d = 0.995 (r.h.s.). The fitness values
are: f0 = 1.1, f1003 = 1.09999 and 1.09949 for the two bandwidth,
f923 = 1.09921, and f247 = 1.09834 for d = 0.995, respectively.

by the band width d change the characteristics of the error threshold and (ii) what
happens if two more sequences have the same maximal fitness value f1 = f0. The
answer to question (i) follows readily from the computed results (Figure 3.7): The
position at which the frequency of the master sequence decays to zero, x1(p)→ 0,
migrates towards smaller f -values with increasing band width d. This observation
agrees well with the expectations, since the fitness value closest to f1 increases for
broader bands (at constant f̄−1). In other words, the gap in fitness values between
the fittest variant and the fittest but one variant becomes smaller. The scatter
of fitness values at the same time broadens the band of curves for the sequences
belonging to one error class. Both phenomena are easily recognized in the three
plots on the l.h.s of Figure 3.7.

3.6. Neutral variants

Degeneracy of fitness values occurs when two or more genotypes have the same
fitness and this is commonly denoted as neutrality in biology. An investigation of
the role of neutrality requires an extension of Equation (3.8). A certain fraction of
sequences, expressed by the degree of neutrality λ, is assumed to have the highest
fitness value f0 and the fitness values of the remaining fraction 1− λ are assigned
as in the non-neutral case (3.8). This random choice of neutral sequences together
with a random dispersion of the other fitness values yields an interesting result:
Random selection in the sense of Motoo Kimura’s neutral theory of evolution [57]
occurs only for sufficiently distant fittest sequences. The case of vanishing mutation
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Figure 3.7. Error thresholds on realistic landscapes. The plots on the l.h.s.
show the error threshold for a landscape defined by Equation (3.8) for 1024
binary sequences of chain length � = 10. With increasing d (top: d = 0,
single peak landscape, middle: d = 0.5, and bottom: d = 0.925) the scatter
of sequences within the same error class increases and the error threshold
defined by sharp decline of the master sequence, x̄1(p) → 0 migrates towards
smaller error rates. The plots on the r.h.s. refers to landscapes with neutrality.
The topmost plot shows the frequencies of the master sequences in a neutral
network of two nearest neighbors, X0 (black) and X64 (red, almost entirely
hidden behind the black curve), with the 18 one-error mutants surrounding
the two sequences (orange). The other plots refer to a network of seven near-
est neighbors

(
Figure 3.8; three inner sequences, X248, X760 and X728 (black),

and four outer sequences, X184, X504, X600 and X729 (brown)
)
. Strong cou-

pling pertains until the population reaches the error threshold. The spectrum
of one error mutants is shown in the plot at the bottom. Parameters, l.h.s:
f0 = 2, fn = 1, s = 491, and r.h.s: f0 = 1.1, fn = 1.0, d = 0.5, topmost plot:
λ = 0.01, s = 367, middle and bottom: λ = 0.1, s = 229, color code see

Figure 3.8.
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rate, lim p → 0, has been studied analytically [50] for two neutral genotypes, Xj

and Xk and different Hamming distance dH
jk. The exact results are

(i) dH
jk = 1: limp→0

x̄j

x̄k
= 1 or limp→0 x̄j = limp→0 = x̄k = 0.5,

(ii) dH
jk = 2: limp→0

x̄j

x̄k
= α or limp→0 x̄j = α/(1 − α), limp→0 x̄k = 1/(1 − α),

with some value α and
(iii) dH

jk ≥ 3: limp→0 x̄1 = 1, limp→0 x̄2 = 0 or limp→0 x̄1 = 0, limp→0 x̄2 = 1.

In full agreement with the exact result [50] we find that two fittest sequences of
Hamming distance dH = 1 – being two nearest neighbors in sequence space –
are selected as a strongly coupled pair with equal frequency of both members.
Numerical results demonstrate that this strong coupling occurs not only for small
mutation rates but extends over the whole range of p-values from p = 0 to the
error threshold p = pmax (Figure 3.7). For clusters of more than two nearest
neighbor sequences, the frequencies of the individual members of the cluster can
be obtained from the largest eigenvector of the adjacency matrix. Pairs of fittest
sequences with Hamming distance dH = 2 – being two next nearest neighbors
with two sequences in between – are also selected together but the ratio of the two
frequencies is different from one. Again strong coupling extends from zero mutation
rates up to the error threshold p = pmax. For fittest sequences with dH ≥ 3 random
selection chooses one sequence arbitrarily and eliminates all others as predicted
by the Kimura’s neutral theory of evolution. An example of a network of seven
strongly coupled sequences is shown in Figure 3.8. The stationary frequencies of
the seven sequences are readily obtained from the largest eigenvector and have the
simple form: x̄inner = 2x̄outer where by the three inner sequences (black) and the
four outer sequences have identical frequencies. Deviation from the exact result
for p → 0 can be seen only in the enlargement (plot at the bottom) and are
small indeed. Strong coupling of fittest sequences manifests itself, for example, in
virology in form of systematic deviations from consensus sequences of populations
as they are indeed found in nature through systematic sequencing of populations.

3.7. Lethal mutants

Lethal mutants are mutants with zero fitness, f = 0, which are unable to replicate
and which may lead to extinction of the population. The model that has been used
to investigate mutation and selection at constant population size is not applicable
as concentrations may go to zero and a more detailed physical setup is required
for the description. Different setups were discussed and analyzed rigorously be-
fore [30] and the existence of an extinction threshold for autocatalytic processes
like replication reactions was proved (see also [21, pp. 18–27]). We choose here
a continuously stirred flowreactor (CSTR) as an appropriate device: An influx
of reactants, for example monomeric building blocks M at concentration m0 and
polymerase to compensate for enzyme degradation in case of RNA replication, is
installed to replace consumed materials, the reactor is well stirred in order to guar-
antee instantaneous mixture of the reactor content, the influx is compensated by
an unspecific outflux, and the flow rate r is assumed to be tunable. The mechanism
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Figure 3.8. A neutral network of replicating genotypes. Shown is the
network of seven neutral sequences being nearest neighbors (black and
brown). Seven out of the 51 one error mutants of the neutral sequences
occupy special positions that are coupled to two members of the net-
work. As seen in the plot in Figure 3.7 (r.h.s., bottom) only X216 (red)
has substantially higher frequency and the curves of the other six special
sequences are embedded in the band of the one error class.

for replication and mutation in the flowreactor with X1 being the only replicating
variant is of the form

�
m0 r

−−−−→ M ,

M + X1

Qj1k1−−−−→ Xj + X1 ; j = 1, 2, . . . , n ,

M
r

−−−−→ � , and

Xj

r

−−−−→ � ; j = 1, 2, . . . , n .

(3.9)

where � and � refer to influx and outflux, respectively. Reaction kinetics leads to
the differential equation

dm
dt

= −
(

n∑

i=1

Qj1k1c1

)
m+ r(m0 −m)

dcj
dt

= Qj1k1mc1 − rcj , j = 1, 2, . . . , n .

(3.10)

In order to be able to handle lethal mutants properly we have to go back to absolute
concentrations cj = xjc(t) with

∑n
j=1 cj = c, the variable m is the concentration

of the building blocks M in the reactor, and the rate parameter k1 is related to
the fitness through f1 = k1m.

Calculation of stationary states is straightforward and yields two solutions, (i)
the state of extinction with m̄ = m0 and c̄j = 0 ∀ j = 1, 2, . . . , n, and (ii) a state of
quasispecies selection consisting of X1 and its mutant cloud at the concentrations
m̄ = r/(Q11k1), c̄1 = Q11m0 − r/k1, and c̄j = c̄1(Qj1/Q11) for j = 2, . . . , n.
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Stability analysis yields a straightforward result: A nonzero population is stable
below a critical flow rate r < rcr = Q11k1m0. The master sequence X1 and all its
mutants vanish for the condition r = rcr above which we have extinction. As an
example for the distribution of genotypes we compute a maximum error rate for
the uniform error rate model (3.5):

Q11 = (1− p)� and

Qj1 = pdH
j1 · (1− p)�−dH

j1 ,

where dH
j1 is the Hamming distance between the two sequences Xj and X1. Instead

of the superiority σ of the master sequence, which diverges since k̄−m = 0 because
of k2 = · · · = kn = 0, we use the carrying capacity of the flowreactor, η, which can
be obtained straightforwardly as

η =
k1m0

r
.

The value of p , at which the stationary concentration of the master sequence c̄1(p)
and all other mutants vanishes, represents the analogue to the error threshold
(3.6), and for the sake of clearness it is referred to as extinction threshold. Using
the approximation ln(1− p) ≈ −p we obtain:

p̂max ≈ ln η


for small p . (3.11)

The major difference between the error threshold (3.6) and the extinction thresh-
old (3.11) concerns the state of the population at values p > pmax: Replication
with non-zero fitness of mutants leads to the uniform distribution whereas the
population goes extinct in the lethal mutant case. Accordingly, the transformation
to relative concentrations fails and Equation (3.2) is not applicable. In Figure 3.9
we show an example for the extinction threshold with  = 20 and η = 2. The ex-
tinction threshold is calculated from Equation (3.11) to occur at p̂max = 0.03466
compared to an exact value of 0.03406. In the figure we see also a comparison
of the curves for the master sequence and the one error class for the single peak
landscape and the lethality model. The agreement of the two curves for the mas-
ter sequences is not surprising, since the models were adjusted to coincide in the
values c̄1(0) = 1 and p̂max = pmax = ln 2/20. The curves for the one error class
show some difference that is caused by the lack of mutational backflow from higher
mutants in case of lethal variants.

It is important to note that a quasispecies15 can exist also in cases where
the Perron-Frobenius theorem is not fulfilled as in the current example of lethal
mutants: Only genotype X1 has a positive fitness value, f1 > 0 and f2 = · · · =
fn = 0, and hence only the entries Wk1 = Qk1f1 of matrix W are nonzero and

15Although this distribution is not derived under constant population size, it will be called
quasispecies here.
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Figure 3.9. Lethal mutants and replication errors. The model for
lethal mutants corresponding to a single peak landscape with f1 = 2
and f2 = · · · = fn = 0 is studied in the flowreactor. The concentrations
of the master sequence (black) and the mutant classes (red, dark orange,
light orange, etc.; full lines) are shown as functions of the error rate p.
The parameters were chosen to be  = 20, m0 = 2, and η = 2. The plots
are compared to the curves for the master sequence and the one error
class (grey, light red; broken curves) for a single peak landscape with
f1 = 2, f2 = · · · = fn = 1,  = 20, σ = 2. The single peak landscape has
been chosen such that the error threshold coincides with the extinction
threshold at p̂max = pmax = ln 2/20.

hence

W =





W11 0 . . . 0
W21 0 . . . 0

...
...

. . .
...

Wn1 0 . . . 0



 and Wk = W k
11





1 0 . . . 0
W21
W11

0 . . . 0
...

...
. . .

...
Wn1
W11

0 . . . 0



 .

Accordingly, W is not primitive in this example, but under suitable conditions
x̄ = (Q11, Q21, . . . , Qn1) is a stable stationary mutant distribution and for Q11 >
Qj1 ∀ j = 2, . . . , n (correct replication occurs more frequently than a particular
mutation) genotype X1 is the master sequence. On the basis of a rather idiosyn-
cratic mutation model consisting of a one-dimensional chain of mutants [58] the
claim has been raised that no quasispecies can be stable in presence of lethal
mutants, and hence no error thresholds can occur. A more recent paper [59, 60]
used more realistic high-dimensional mutation models and presented numerically
computed examples of perfect error thresholds in the presence of lethal mutants.
A more detailed discussion of lethal mutagenesis is found in [26, 27, 60] but for
a full understanding of the phenomenon investigations of realistic landscapes are
indispensable.
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4. Perspectives

The Darwinian principle of variation and selection has been attributed with two
features that were studied here by means of simple models: (i) optimization of
mean fitness in populations and (ii) uniqueness of the result of a selection pro-
cess. Both features are not necessarily fulfilled neither in model systems nor in
nature. In Table 1 a comparison is shown for the three models described in this
chapter. Only the simple selection equation (2.14) sustains both features as mean
fitness is optimized and in absence of neutrality the outcome of the selection pro-
cess is unique. When mutation is included in Equation (3.2′) the unique outcome
as represented by the quasispecies is guaranteed but the mean fitness may also
decrease under certain circumstances. Fisher’s selection equation (2.19) describes
recombination on a single locus and mean fitness is optimized according to the
fundamental theorem but no unique outcome is guaranteed – different initial con-
ditions may lead to different allele combinations. Extrapolation of Fisher’s model
to multiple loci requires independence of genes and gene functions that is com-
pletely unrealistic. Interacting genes, in general, fulfil none of the two criteria.
Therefore, the Darwinian principle is no theorem but a very powerful optimiza-
tion heuristic that finds various applications in many disciplines from engineering
to social sciences [61].

The mathematics of the ODE based model systems is fairly simple and
straightforward. When applied to real situations the models gain enormous com-
plexity essentially for two reasons: (i) any comprehensive model should cover a
sufficiently large section of sequence space and this leads to gigantic dimension-
ality – the number of possible genotypes is 4� DNA or RNA sequences of chain
length  – that cannot be handled without drastic simplifications, and (ii) suitable
models that allow for applications require realistic assumptions on the structure
of fitness landscapes. Simple model landscapes assuming, for example, additivity
of mutation effects or assigning equal fitness to all genotypes at the same distance
from a reference sequence lead to wrong results. Ruggedness and neutrality shape
fitness landscapes in reality and this can be taken into account properly only by
models making use of random assignments, examples are the approach described
here (Subsection 3.5) and the frequently used NK-model [62, pp. 40–60]. Direct
calculation of fitness values for individual genotypes is possible at present only

Table 1. Optimization behavior in simple genetic systems.

Phenomenon Optimization Unique outcome

Selection yes yes
Mutation and selection no yes

Recombination and selection
independent genes yes no
interacting genes no no
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for RNA molecules within certain approximations [63, 64]. In silico evolution on
these landscapes yields results that are in general agreement with those reported
here. The great challenge for the future, however, is the construction of fitness
landscapes that are based on solid experimental information. Apart from molecu-
lar in vitro systems, where such data are hard to get but within reach, systematic
studies on virus infection in hosts are very promising for this goal.
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