
Chapter 2

Symplectic capacities

2.1 Definition and application to embeddings

In the following we introduce a special class of symplectic invariants discovered by
I. Ekeland and H. Hofer in [68, 69] for subsets of R

2n. They were led to these in-
variants in their search for periodic solutions on convex energy surfaces and called
them symplectic capacities. The concept of a symplectic capacity was extended to
general symplectic manifolds by H. Hofer and E. Zehnder in [123]. The existence
proof of these invariants is based on a variational principle; it is not intuitive,
and will be postponed to the next chapter. Taking their existence for granted, the
aim of this chapter is rather to deduce the rigidity of some symplectic embed-
dings and, in addition, the rigidity of the symplectic nature of mappings under
limits in the supremum norm, which will give rise to the notion of a “symplectic
homeomorphism”.

Definition of symplectic capacity. We consider the class of all symplectic manifolds
(M,ω) possibly with boundary and of fixed dimension 2n. A symplectic capacity is
a map (M,ω) 
→ c(M,ω) which associates with every symplectic manifold (M,ω)
a nonnegative number or ∞, satisfying the following properties A1–A3.
A1. Monotonicity: c(M,ω) ≤ c(N, τ)
if there exists a symplectic embedding ϕ : (M,ω) → (N, τ).
A2. Conformality: c(M,αω) = |α|c(M,ω)
for all α ∈ R, α 	= 0.
A3. Nontriviality: c(B(1), ω0) = π = c(Z(1), ω0)
for the open unit ball B(1) and the open symplectic cylinder Z(1) in the standard
space (R2n, ω0). For convenience, we recall that with the symplectic coordinates
(x, y) ∈ R

2n,
B(r) =

{
(x, y) ∈ R

2n
∣∣∣ |x|2 + |y|2 < r2

}

and
Z(r) =

{
(x, y) ∈ R

2n
∣∣ x2

1 + y2
1 < r2

}
for r > 0. It is often convenient to replace (A3) by the following weaker axiom
(A3′):
A3′. Weak nontriviality: 0 < c

(
B(1), ω0

)
and c

(
Z(1), ω0

)
< ∞.

It should be pointed out that the axioms (A1)–(A3) do not determine a unique
capacity function. There are indeed many ways to construct capacity functions as
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52 Chapter 2 Symplectic capacities

we shall see later on. We first illustrate the concept and deduce some simple conse-
quences of the axioms (A1)–(A3). In the special case of 2-dimensional symplectic
manifolds, n = 1, the modulus of the total area

c(M,ω) := |
∫

M

ω |

is an example of a symplectic capacity function. It agrees with the Lebesgue mea-
sure in (R2, ω0). In contrast, if n > 1, then the symplectic invariant ( vol )

1
n is ex-

cluded by axiom (A3), since the cylinder has infinite volume. If ϕ : (M,ω) → (N,σ)
is a symplectic diffeomorphism between the two manifolds M and N , one applies
the monotonicity axiom to ϕ and ϕ−1 and concludes

c(M,ω) = c(N, σ).

Therefore, the capacity is indeed a symplectic invariant. Observe also that, by
means of the inclusion mapping, we have for open subsets of (M,ω) the mono-
tonicity property

U ⊂ V =⇒ c(U) ≤ c(V ).

In order to describe some simple examples in (R2n, ω0) we start with

Lemma 1. For U ⊂ (R2n, ω0) open and λ 	= 0,

c(λU) = λ2c(U).

Proof. This is a consequence of the conformality axiom. The diffeomorphism

ϕ : λU → U, x 
→ 1
λ

x

satisfies ϕ∗(λ2ω0) = λ2ϕ∗ω0 = ω0. Therefore, ϕ : (λU, ω0) → (U, λ2ω0) is symplec-
tic, so that c(λU, ω0) = c(U, λ2ω0) = λ2c(U, ω0) as claimed. �

For the open ball of radius r > 0 in R
2n we find, in particular

c(B(r)) = r2c
(
B(1)

)
= πr2.(2.1)

Since B(r) ⊂ B(r) ⊂ B(r + ε) for every ε > 0 we conclude by monotonicity that
c(B(r)) = πr2. We see that in the special case of (R2, ω0)

c
(
B(r)

)
= c

(
B(r)

)
= area

(
B(r)

)

agrees with the Lebesgue measure of the disc. This can be used to show that the
capacity agrees with the Lebesgue measure for a large class of sets in R

2, as has
been observed by K.F. Siburg [194].
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Proposition 1. If D ⊂ R
2 is a compact and connected domain with smooth bound-

ary, then
c(D,ω0) = area (D).

Proof. By removing finitely many compact curves from D, we find a simply con-
nected domain D0 ⊂ D satisfying m(D0) = m(D), which in view of the uni-
formization theorem is diffeomorphic to the unit disc B(1) ⊂ R

2. Therefore, there
exists a ρ > 0 and a diffeomorphism ϕ : B(ρ) → D0 satisfying, in addition,
m(B(ρ)) = m(D0). Given ε > 0 we find r < ρ such that D1 := ϕ(B(r)) ⊂ D0 sat-
isfies m(D1) ≥ m(D)− ε. By the theorem of Dacorogna-Moser there is, therefore,
a measure preserving diffeomorphism ψ : B(r) → D1. Since this ψ is symplectic
we can estimate using the monotonicity, the invariance under symplectic diffeo-
morphisms and the normalization

m(D) − ε ≤ m(D1) = m
(
B(r)

)
= c

(
B(r)

)
= c(D1) ≤ c(D).

On the other hand, there exists a diffeomorphism ϕ : D → B(R)\{ finitely many
open discs of total measure ≤ ε}. Choosing R appropriately we can assume, again
by Dacorogna and Moser’s theorem, that ϕ is symplectic so that

c(D) ≤ c
(
B(R)

)
= πR2 ≤ m(D) + ε.

To sum up: m(D)−ε ≤ c(D) ≤ m(D)+ε for every ε > 0 and the result follows. �
Clearly,

0 < c(U) < ∞

for every open and bounded set in (R2n, ω0), since U contains a small ball and is
contained in a large ball. A similar argument as for B(r) above shows for symplectic
cylinders that

c(Z(r)) = πr2.(2.2)

Therefore, if an open set U satisfies

B(r) ⊂ U ⊂ Z(r)

for some r > 0, we find by the monotonicity that πr2 = c(B(r)) ≤ c(U) ≤
c(Z(r)) = πr2 and hence

c(U) = πr2. (Fig. 2.1)

This demonstrates that very different (in shape, size, measure and topology)
open sets can have the same capacity, if n > 1. Recall that the ellipsoids E ⊂ R

2n

introduced in the previous chapter are characterized by the (linear) symplectic
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U

B(r)

r
Z(r)

Fig. 2.1

invariants r1(E) ≤ r2(E) ≤ . . . ≤ rn(E). Applying a linear symplectic map which
preserves the capacities we may assume, in view of Theorem 9 of Chapter 1, that

B(r1) ⊂ E ⊂ Z(r1) ,

where r1 = r1(E). We conclude that the capacity of an ellipsoid E is then deter-
mined by the smallest linear symplectic invariant r1(E).

Proposition 2. The capacity of an ellipsoid E in (R2n, ω0) is given by

c(E) = πr1(E)2 .

We see that every capacity c extends the smallest linear invariants πr1(E)2

of ellipsoids E and the question arises, whether the linear invariants πrj(E)2 for
j > 1 also have extensions to invariants in the nonlinear case. We shall come back
to this question later on. Symplectic cylinders are “based” on symplectic 2-planes.
They are very different from cylinders “based” on isotropic 2-planes on which the
2-form ω0 vanishes, as for example Z1(r) =

{
(x, y) ∈ R

2n
∣∣ x2

1 + x2
2 < r2

}
. We

claim that
c(Z1(r)) = +∞, for all r > 0.

This is easily seen as follows. For every ball B(N ) there is a linear symplectic
embedding ϕ : B(N ) → Z1(r). Therefore, πN2 = c(B(N )) ≤ c(Z1(r)). This holds
true for every N and the claim follows.

In order to generalize this example we recall some definitions. If V ⊂ R
2n is a

linear subspace, its symplectic complement V ⊥ is defined by

V ⊥ =
{
x ∈ R

2n | ω0 (v, x) = 0 for all v ∈ V
}

.

Clearly (V ⊥)⊥ = V and dim V ⊥ = dim R
2n − dim V , since ω0 is nondegenerate.

A linear subspace V is called isotropic if V ⊂ V ⊥, that is ω(v1, v2) = 0 for all v1

and v2 ∈ V .

Proposition 3. Assume Ω ⊂ R
2n is an open bounded nonempty set and assume

W ⊂ R
2n is a linear subspace with codim W = 2. Consider the cylinder Ω + W ,

then
c(Ω + W ) = +∞ if W⊥ is isotropic

0 < c(Ω + W ) < ∞ if W⊥ is not isotropic.
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Proof. We may assume that Ω contains the origin. Observe that dim W⊥ = 2.
Therefore, in the second case, W⊥ is a symplectic subspace and R

2n = W⊥ ⊕ W .
Choosing a symplectic basis (e1, f1) in W⊥ we can, therefore, assume by a linear
symplectic change of coordinates that

W = {(x, y) | x1 = y1 = 0} .

Since Ω is bounded, we have for z ∈ Ω + W , that x2
1 + y2

1 < N2 for some N ;
consequently Ω+W ⊂ B2(N )×R

2n−2, and hence c(Ω+W ) ≤ c(B2(N )×R
2n−2) =

πN2 < ∞ by (2.2). This proves the second statement. To prove the first statement
we can assume that

W = {(x, y) | x1 = x2 = 0} .

There exists α > 0, so that the point (x, y) ∈ Ω + W if x2
1 + x2

2 < α2. Hence every
ball B(R) can be symplectically embedded in Ω + W : simply define the linear
symplectic map ϕ by ϕ(x, y) = (εx, 1

εy); then ϕ(B(R)) ⊂ Ω + W provided ε > 0
is sufficiently small. Consequently, by the monotonicity of a capacity, c(Ω×W ) ≥
c(B(R)) = πR2. This holds true for every R > 0 so that c(Ω + W ) = +∞ as
claimed. �

In view of the monotonicity property, the symplectic invariants c(M,ω) repre-
sent, in particular, obstructions of symplectic embeddings. An immediate conse-
quence of the axioms is the celebrated squeezing theorem of Gromov [107] which
gave rise to the concept of a capacity.

Theorem 1. (Gromov’s squeezing theorem) There is a symplectic embedding ϕ :
B(r) → Z(R) if and only if R ≥ r.

Proof. If ϕ is a symplectic embedding, then using the monotonicity property of
the capacity, together with (2.1) and (2.2), we have

πr2 = c
(
B(r)

)
≤ c

(
Z(R)

)
= πR2,

and the theorem follows. �
The next result also illustrates the difference between volume preserving and

symplectic diffeomorphisms. We consider in (R4, ω0) with symplectic coordinates
(x1, y1, x2, y2) the product of symplectic open 2-balls B(r1) × B(r2). By a linear
symplectic map we can assume that r1 ≤ r2.

Proposition 4. There is a symplectic diffeomorphism ϕ : B(r1)×B(r2) → B(s1)×
B(s2) if and only if r1 = s1 and r2 = s2.

Note that, in contrast, there is a linear volume preserving diffeomorphism ψ :
B(1) × B(1) → B(r) × B( 1

r
) for every r > 0. As r → 0, we evidently have




c
(
B(r) × B

(
1
r

))
→ 0

vol
(
B(r) × B

(
1
r

))
= const.



56 Chapter 2 Symplectic capacities

Proof. Since r1 ≤ r2 we can use the diffeomorphism ϕ to define the symplectic
embedding B4(r1) → B(r1) × B(r2)

ϕ→ B(s1) × B(s2) → B(s1) × R
2 = Z(s1),

where the first and last mappings are the inclusion mappings. By the monotonicity
of c, we conclude s1 ≥ r1. Applying the same argument to ϕ−1, we find r1 ≥ s1,
so that r1 = s1. Now ϕ is volume preserving; hence r1r2 = s1s2 and the result
follows. �

Clearly, if one assumes that ϕ is smooth up to the boundary, then the conditions
on the radii follow simply from the invariance of the actions |A(∂B(rj))| = πr2

j

under symplectic diffeomorphism. One might expect the same rigidity as in Propo-
sition 4 to hold also in the general case of a product of n open symplectic 2-balls in
R

2n. This is indeed the case, but does not follow from the capacity function c alone.
Actually, the proof given in [52] is rather subtle and uses the symplectic homology
theory, as developed by A. Floer and H. Hofer in [90], see also K. Cieliebak, A.
Floer, H. Hofer and K. Wysocki [52]. Finally the restrictions for symplectic em-
beddings of ellipsoids mentioned in the previous chapter follow immediately from
Proposition 2.

Proposition 5. Assume E and F are two ellipsoids in (R2n, ω0). If ϕ : E → F is a
symplectic embedding, then

r1(E) ≤ r1(F ) .

The existence of one capacity function permits the construction of many other
capacity functions.

As an illustration we shall prove that the Gromov-width D(M,ω) which ap-
pears in Gromov’s work [107] and which was explained in the introduction is a
symplectic capacity satisfying (A1)–(A3). Recall that there is always a symplectic
embedding ϕ : (B(ε), ω0) → (M,ω) for ε small by Darboux’s theorem and define

D(M,ω) = sup
{
πr2

∣∣∣ there is a
symplectic embedding ϕ :

(
B(r), ω0

)
→ (M,ω)

}
.

Theorem 2. The Gromov-width D(M,ω) is a symplectic capacity. Moreover

D(M,ω) ≤ c(M,ω)

for every capacity function c.
Because a compact symplectic manifold (M,ω) has a finite volume we conclude

D(M,ω) < ∞ for compact manifolds. This is in contrast to the special capacity
function c0 constructed in the next chapter which can take on the value ∞ for
certain compact manifolds.

Proof. We have already verified the monotonicity axiom (A1) in the introduction.
In order to verify the conformality axiom (A2), that D(M,αω) = |α|D(M,ω) for
α 	= 0, it is sufficient to show that to every symplectic embedding

ϕ :
(
B(r), ω0

)
→ (M,αω),
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there corresponds a symplectic embedding

ϕ̂ :
(
B
( r√

|α|

)
, ω0

)
→ (M,ω),

and conversely, so that by definition of D, we conclude that D(M,αω) =
|α|D(M,ω). If ϕ : (B(r), ω0) → (M,αω) is a symplectic embedding, then
ϕ∗(αω) = ω0 so that

ϕ∗ω =
1
α

ω0.

Abbreviating ρ = r√
|α|

we define the diffeomorphism ψ : B(ρ) → B(r) by setting

ψ(x) =
√

|α| · x and find

ψ∗
( 1

α
ω0

)
=

|α|
α

ω0.

Thus, if α > 0, the map ϕ̂ = ϕ ◦ ψ : (B(ρ), ω0) → (M,ω) is the desired sym-
plectic embedding. If α < 0 we first introduce the symplectic diffeomorphism
ψ0 : (B(ρ), ω0) → (B(ρ),−ω0) by setting ψ0(u, v) = (−u, v) for all (u, v) ∈ R

2n,
and find the desired embedding ϕ̂ = ϕ ◦ ψ ◦ ψ0 : (B(ρ), ω0) → (M,ω).

The verification of D(B(r), ω0) = πr2 is easy. If ϕ : B(R) → B(r) is a symplec-
tic embedding, we conclude R ≤ r since ϕ is volume preserving. On the other hand
the identity map induces a symplectic embedding B(r) → B(r) so that the claim
follows. Since there exists a symplectic embedding ϕ : B(R) → Z(r) if and only
if r ≥ R by Gromov’s squeezing theorem, we conclude that D(Z(r), ω0) = πr2,
hence the Gromov-width satisfies also the nontriviality axiom (A3). In order to
prove the last statement of the theorem, we assume c(M,ω) to be any capacity.
If ϕ : B(r) → M is a symplectic embedding we conclude by monotonicity that
πr2 = c(B(r), ω0) ≤ c(M,ω). Taking the supremum, we find D(M,ω) ≤ c(M,ω)
as claimed in the theorem. �

To a given capacity c one can associate its inner capacity č, defined as follows:

č(M,ω) = sup
{
c(U, ω) | U ⊂ M open and U ⊂ M\∂M

}
.

Correspondingly, we introduce the following

Definition. A capacity c has inner regularity at M if

č(M,ω) = c(M,ω).

Proposition 6. The function č is a capacity having inner regularity and it satisfies
č ≤ c. In addition, if d is any capacity having inner regularity and satisfying d ≤ c,
then d ≤ č.
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Proof. The proof follows readily from the definitions and the axioms for capacity.
Assume, for example, that d is a symplectic capacity satisfying d ≤ c and having
inner regularity.
Then

ď(M) = sup
{
d(U)| U ⊂ M, U ⊂ M\∂M

}

≤ sup
{
c(U)| U ⊂ M, U ⊂ M\∂M

}

= č(M) ,

as claimed. �
Because it is the smallest capacity, the Gromov-width D(M,ω) has inner reg-

ularity; another example having this property is the capacity c0 introduced in
Chapter 3. If we consider subsets of a given manifold we can also define the con-
cept of outer regularity (relative to the manifold). The outer capacity of a set is
defined as the infimum taken over the capacities of open neighborhoods of the
closure of the given set. We shall return to this concept in the next section.

2.2 Rigidity of symplectic diffeomorphisms

We consider a sequence ψj :R2n→R
2n of symplectic diffeomorphisms in (R2n,ω0).

By definition, the first derivatives satisfy the identity

ψ′
j(x)T J ψ′

j(x) = J , x ∈ R
2n.

Therefore, if the sequence ψj converges in C1 then the limit ψ(x) = lim ψj(x) is
also a symplectic map. By contrast, we shall now assume that the sequence ψj

only converges locally uniformly to a map

ψ(x) = lim
j→∞

ψj(x),

which is, therefore, a continuous map. Since detψ′
j(x) = 1 for every x, we find, in

view of the transformation formula for integrals, that∫
f
(
ψ(x)

)
dx =

∫
f(x) dx(2.3)

for all f ∈ C∞
c (R2n), so that ψ is measure preserving. Assume now that ψ is

differentiable, then evidently detψ′(x) = ±1. However it is a striking phenomenon
that ψ is even symplectic,

ψ′(x)T Jψ′(x) = J,

if it is assumed to be differentiable. Hence the symplectic nature survives under
topological limits.
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Theorem 3. Let ϕj : B(1) → (R2n, ω0) be a sequence of symplectic embeddings
converging locally uniformly to a map ϕ : B(1) → R

2n. If ϕ is differentiable at
x = 0, then ϕ′(0) = A is a symplectic map, i.e., A∗ω0 = ω0.

We see that, in general, a volume preserving diffeomorphism cannot be ap-
proximated by symplectic diffeomorphisms in the C0-topology. By using, locally,
Darboux charts we deduce immediately from Theorem 3

Theorem 4. (Eliashberg, Gromov) The group of symplectic diffeomorphisms of a
compact symplectic manifold (M,ω) is C0-closed in the group of all diffeomor-
phisms of M .

In the early seventies M. Gromov proved the alternative that the group of sym-
plectic diffeomorphisms either is C0-closed in the group of all diffeomorphisms or
its C0-closure is the group of volume preserving diffeomorphisms. That symplec-
tic diffeomorphisms can be distinguished from volume preserving diffeomorphisms
by global properties which are stable under C0-limits was announced in the early
eighties by Y. Eliashberg in his preprint “Rigidity of symplectic and contact struc-
ture”, (1981) [78], which in full form has not been published. Proofs are partially
contained in Eliashberg [71], 1987. Gromov gave a proof of Theorem 4 in [107]
using the techniques of pseudoholomorphic curves. Both Eliashberg und Gromov
deduced the C0-stability from non embedding results. In his book [108] Gromov
uses so-called Nash-Moser techniques of hard implicit function theorems, while
Eliashberg [71], 1987, uses an analogue of Theorem 3. Following the strategy of
I. Ekeland and H. Hofer in [68], we shall show next, that Theorem 3 is an easy
consequence of the existence of any capacity function c.

It is convenient in the following to extend the capacity to all subsets of R
2n.

To do so we take a capacity function c given on the open subsets U ⊂ R
2n and

define for an arbitrary subset A ⊂ R
2n:

c(A) = inf
{
c(U)

∣∣A ⊂ U and U open
}

.

Then the monotonicity property

A ⊂ B =⇒ c(A) ≤ c(B)

holds true for all subsets of R
2n. From the symplectic invariance of the capacity

on open sets, one deduces the invariance

c
(
ϕ(A)

)
= c(A)

under every symplectic embedding ϕ defined on an open neighborhood of A.

Proof of Theorem 3. Without loss of generality we shall assume in the following
that ϕ(0) = 0. We first claim that the linear map ϕ′(0) = A is an isomorphism.
Indeed, because ϕ is differentiable at 0, we have ϕ(x) = Ax + O(|x|), so that for
the open balls Bε of radius ε > 0 and centered at 0,

m
(
ϕ(Bε)

)

m(Bε)
−→ |det A| as ε → 0 .
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On the other hand, because the symplectic diffeomorphisms ϕj are volume preserv-
ing and ϕj → ϕ uniformly, we have m(ϕ(Bε)) = m(Bε) and hence |det A| = 1, so
that A is an isomorphism, as claimed. We shall see later on (Lemma 3) that A is an
isomorphism under weaker assumption: instead of requiring ϕj to be symplectic,
we shall merely require these mappings to preserve a given capacity function.

Next we claim that to prove Theorem 3, it is sufficient to show that

A∗ω0 = λω0 for some λ �= 0 .(2.4)

Indeed, with ϕj we can also consider the symplectic embeddings (ϕj , id) : B(1) ×
R

2n → (R2n × R
2n, ω0 ⊕ ω0) and hence conclude for the derivative at (0, 0), given

by Ā = (A, 1), that also Ā∗(ω0 ⊕ ω0) = µ(ω0 ⊕ ω0) for some µ �= 0. On the other
hand, in view of (2.4), Ā∗(ω0 ⊕ ω0) = (λω0) ⊕ ω0 and consequently µ = 1 = λ, as
required in Theorem 4, proving our claim. In order to prove (2.4) we make use of
the following algebraic lemma due to Y. Eliashberg [71].

Lemma 2. Assume A is a linear isomorphism satisfying A∗ω0 �= λω0. Then for
every a > 0 there are symplectic matrices U and V such that U−1AV has the
form

U−1AV =




a
0

0
a

0

∗ ∗


 ,

with respect to the splitting of R
2n = R

2 ⊕ R
2n−2 into symplectic subspaces.

Postponing the proof of the lemma, we first show that A∗ω0 = λω0 for some λ �=
0. Arguing by contradiction, we assume that A∗ω0 �= λω0 and apply the lemma.
Defining the symplectic maps ψj := U−1ϕjV in the neighborhood of the origin,
we conclude that ψj → ψ := U−1ϕV locally uniformly, and ψ′(0) = U−1AV .
Choosing a suitable constant a in the lemma, we have U−1AV (B(1)) ⊂ Z( 1

8
) and

hence U−1ψV (B(ε)) ⊂ Z( ε
4) provided ε is sufficiently small. Because ψj → ψ

locally uniformly, U−1ψjV (B(ε)) ⊂ Z( ε
2
) if j is sufficiently large and ε sufficiently

small. Since U−1ψjV is symplectic, we conclude by the invariance and monotonic-
ity property of a capacity that c(U−1ψjV (B(ε))) = c(B(ε)) ≤ c(Z( ε

2)), which
contradicts the nontriviality Axiom (A3). We have proved the statement in (2.4)
and it remains to prove Lemma 2.

Proof of Lemma 2. Let B be the symplectic adjoint of A satisfying

ω0(Ax, y) = ω0(x, By)

for all x, y, and abbreviate ω = B∗ω0. Then ω �= λω0, as is easily verified using
the fact that A is an isomorphism. We claim that there is an x such that ω(x, ·) �=
λω0(x, ·) for every λ. Arguing by contradiction, we assume that for every x, there
exists a λ(x) ∈ R satisfying ω(x, ·) = λ(x)ω0(x, ·). If x �= 0 there exists ξ such



2.2 Rigidity of symplectic diffeomorphisms 61

that ω0(ξ, x) �= 0, since ω0 is nondegenerate. This remains true for all y in a
neighborhood U(x) of x. Hence

λ(ξ) ω0(ξ, y) = ω(ξ, y) = −ω(y, ξ)

= −λ(y)ω0(y, ξ)

= λ(y)ω0(ξ, y),

which implies that λ(ξ) = λ(y) for y in a neighborhood of x. Since R
2n\{0} is

connected and since the function λ(x) on R
2n\{0} is locally constant, it is constant.

Therefore ω(x, ·) = λω0(x, ·) for x �= 0 and hence for every x. This contradicts the
assumption that ω �= λω0 and proves our claim. Consequently there exists an x
such that the linear map (ω0(x, ·), ω(x, ·)) : R

2n → R
2 is surjective. For a given

a > 0, we therefore find an y satisfying

ω0(x, y) = 1 and ω(x, y) = a2.

Recalling ω(x, y) = ω0(Bx,By), we can choose two symplectic bases (e1, f1, . . .)
and (e′1, f ′

1, . . .) such that e1 = x, f1 = y and e′1 = 1
aBx, f ′

1 = 1
aBy. In these bases

Be1 = ae′1, Bf1 = af ′
1.

From 〈JAx, y〉 = 〈Jx, By〉 = 〈BT Jx, y〉 we read off A = −JBT J . Representing
now A in the new bases as a map from R

2n with basis (e1, f1, . . .) onto R
2n with

basis (e′1, f ′
1, . . .), we find the representation U−1AV of the desired form. The

symplectic matrices are defined by their column vectors as U = [e1, f1, . . .] and
V = [e′1, f ′

1, . . .]. �
We know that symplectic diffeomorphisms preserve the capacities. Theorem 3

can, therefore, be deduced from the following, even more surprising statement for
continuous mappings due to I. Ekeland and H. Hofer [68].

Theorem 5. Let c be a capacity. Assume ψj : B(1) → R
2n is a sequence of contin-

uous mappings satisfying
c(ψj(E)) = c(E)

for all (small) ellipsoids E ⊂ B(1) and converging locally uniformly to

ψ(x) = lim ψj(x).

If ψ is differentiable at 0, then ψ′(0) = A is either symplectic or antisymplectic:

A∗ω0 = ω0 or A∗ω0 = −ω0.

Note that the mappings are not required to be invertible.
In order to prove Theorem 5, we start with
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Lemma 3. Let c be a capacity. Consider a sequence ϕj of continuous mappings in
R

2n converging locally uniformly to the map ϕ. Assume that c(ϕj(E)) = c(E) for
the open ellipsoids for all j. If ϕ′(0) exists it is an isomorphism.

Proof. Arguing by contradiction, we assume that A is not surjective, so that A(R2n)
is contained in a hyperplane H. Composing, if necessary, with a linear symplectic
map we may assume that

A(R2n) ⊂ H = {(x, y)| x1 = 0} .(2.5)

Defining the linear symplectic map ψ by

ψ(x, y) =
( 1

α
x1, x2, . . . , xn, α y1, y2, . . . , yn

)

we can choose α > 0 so small that

ψA
(
B(1)

)
⊂ B2(

1
16

) × R
2n−2 = Z(

1
16

) ,

where the open 2-disc B2 on the right hand side is contained in the symplectic
plane with the coordinates {x1, y1}. Be definition of a derivative, we have |ψϕ(x)−
ψA(x)| ≤ a(|x|) |x| where a(s) → 0 as s → 0. Consequently

ψϕ
(
B(ε)

)
⊂ Z(

ε

4
)

if ε is sufficiently small. Since ψϕj converges locally uniformly to ψϕ,

ψϕj

(
B(ε)

)
⊂ Z(

ε

2
) ,

provided j is sufficiently large. By assumption ψϕj preserves the capacity and so
by monotonicity

c
(
B(ε)

)
= c

(
ψϕj(B(ε))

)
≤ c

(
Z(

ε

2
)
)

=
1
4
c
(
B(ε)

)
.

This contradiction shows that A is surjective. �
Proof of Theorem 5. We may assume that ψ(0) = 0. By Lemma 3, A = ψ′(0) is an
isomorphism and we shall prove first that A∗ω0 = λω0 for some λ �= 0. Arguing
by contradiction, we assume A∗ω0 �= λω0 and find (by Lemma 2) symplectic maps
U and V satisfying U−1AV (B(1)) ⊂ Z( 1

8 ). Proceeding now as in Theorem 4, we
define the sequence ϕj := U−1ψjV . Then ϕj → ϕ := U−1ψV locally uniformly,
and ϕ′(0) = U−1AV . Hence ϕ(B(ε)) ⊂ Z( ε

4 ) and consequently ϕj(B(ε)) ⊂ Z( ε
2 )

for j sufficiently large and ε > 0 sufficiently small. Since, by assumption on ψj ,
we have c(ϕj(B(ε))) = c(B(ε)), we infer by the monotonicity of a capacity that
c(B(ε)) ≤ c(Z( ε

2 )), contradicting Axiom (A3) for a capacity.
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We have demonstrated that A∗ω0 = λω0. By conformality a linear antisymplec-
tic map preserves the capacities. Composing the maps ψj and ψ with the symplec-

tic map B =
(

1√
λ
A
)−1

if λ > 0 and with the antisymplectic map B =
(

1√
−λ

A
)−1

if λ < 0, we are therefore reduced to the case

A = α 1, with α > 0

and we have to show that α = 1. If α < 1 there is a small ball and an α < r < 1
such that ψj(B(ε)) ⊂ B(rε) for j large. Since ψj preserves the capacities we find
c(B(ε)) = c(ψj(B(ε)) ≤ c(B(rε)) = r2c(B(ε)) which is a contradiction. In the
case α > 1 we shall show that

ψj (B(ε)) ⊃ B(rε)(2.6)

for some α > r > 1, ε small and j large, which leads to the contradiction
r2c(B(ε)) = c(B(rε)) ≤ c(B(ε)). Consequently, α = 1 as claimed in the theo-
rem.

To prove (2.6) we have to show that for every y ∈ B(rε) there exists an
x ∈ B(ε) solving ψj(x) = y. We use an index argument based on the Brouwer
mapping degree. Fix 1 < r < α. Then, in view of A(B(ε)) = B(αε),

deg(B(ε), A, y) = 1,

for y ∈ B(rε), and the proof follows if we can show that

deg(B(ε), ψj , y) = deg(B(ε), A, y).

In view of the homotopy invariance of the degree, it is sufficient to verify that
the homotopy h(t, x) = tψj(x) + (1 − t)Ax satisfies h(t, x) �= y if x ∈ ∂B(ε) and
0 ≤ t ≤ 1.

Recall ψ(0) = 0 and hence |ψ(x) − Ax| ≤ a(|x|)|x|, with a(s) → 0 as s → 0.
Since ψj → ψ uniformly on compact sets we have, for every σ > 0 and j ≥ j0(σ)

|ψj(x) − Ax| ≤ a(|x|)|x| + σ.(2.7)

Arguing by contradiction, we assume tψj(x) + (1 − t)Ax = y for x ∈ ∂B(ε) and
y ∈ B(rε). Then

t(ψj(x) − Ax) = y − Ax.

The right hand side is larger than |Ax| − |y| = αε − |y| ≥ (α − r)ε. The left hand
side, however is smaller than a(|ε|)ε + σ according to (2.7). Therefore, choosing
σ = a(|ε|)ε and ε sufficiently small we get a contradiction, hence proving that
h(t, x) �= y for all 0 ≤ t ≤ 1 and all x ∈ ∂B(ε). This finishes the proof of Theorem
5. �

As an interesting special case we conclude from Theorem 5 the following
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Corollary. A linear map A in R
2n preserving the capacities of ellipsoids, c(A(E)) =

c(E) is either symplectic or antisymplectic.

A∗ω0 = ω0 or A∗ω0 = −ω0.

Let c be any capacity function and consider a homeomorphism h of R
2n satis-

fying
c(h(E)) = c(E) for all (small) ellipsoids E.

Then, if h is in addition differentiable, we conclude from Theorem 5 that h is
a diffeomorphism which is either symplectic or antisymplectic, h′(x)∗ω0 = ±ω0.
This is analogous to a measure preserving homeomorphism, i.e., a homeomorphism
satisfying (2.3). Here we conclude that det h′(x) = ±1 in case h is differentiable.
We see that every capacity function c singles out the distinguished group of home-
omorphisms preserving the capacity of all open sets. The elements of this group of
homeomorphisms have the additional property that they are symplectic or anti-
symplectic in case they are differentiable. This group can, therefore, be viewed as
a topological version of the group of symplectic diffeomorphisms. It is not known
whether this group is closed under locally uniform limits. But the following weaker
results hold true.

Theorem 6. Assume hj : R
2n → R

2n is a sequence of homeomorphisms satisfying

c(hj(E)) = c(E)

for all (resp. all small) ellipsoids E. Assume hj converges locally uniformly to a
homeomorphism h of R

2n. Then

c(h(E)) = c(E)

for all (resp. all small) ellipsoids E.

Proof. Since h−1 ◦hj → id locally uniformly, we conclude for every ellipsoid E and
every 0 < ε < 1

h−1 ◦ hj((1 − ε)E) ⊂ E ⊂ h−1 ◦ hj((1 + ε)E),

if only j is sufficiently large. This topological fact is easily verified using the same
degree argument as above. Hence

hj((1 − ε)E) ⊂ h(E) ⊂ hj((1 + ε)E).

By monotonicity and conformality, (1−ε)2c(E) = c((1−ε)E) = c(hj((1−ε)E)) ≤
c(h(E)) ≤ c(hj((1 + ε)E)) = c((1 + ε)E) = (1 + ε)2c(E). In short

(1 − ε)2c(E) ≤ c(h(E)) ≤ (1 + ε)2c(E).

This holds true for every ε > 0 so that c(h(E)) = c(E) as desired. �
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In order to generalize this statement, we denote by O the family of open and
bounded sets of R

2n and associate with Ω ∈ O

č(Ω) = sup
{
c(U) |U open and U ⊂ Ω

}

ĉ(Ω) = inf
{
c(U) |U open and U ⊃ Ω

}
.

The distinguished family Oc of open sets is defined by the condition

Oc = {Ω ∈ O |ĉ (Ω) = č(Ω)} .

Proposition 7. Assume hj is a sequence of homeomorphisms of R
2n converging

locally uniformly to a homeomorphism h of R
2n. If c(hj(U)) = c(U) for all U ∈

O and all j, then c(h(Ω)) = c(Ω) for all Ω ∈ Oc.

Proof. If Ω ∈ Oc and ε > 0 we find Û , Ǔ ∈ O with Û ⊃ Ω and Ǔ ⊂ Ω satisfying

c(Û) ≤ c(Ω) + ε and c(Ǔ) ≥ c(Ω) − ε.

For j large we have by the above degree argument hj(Û) ⊃ h(Ω) ⊃ hj(Ǔ), and
hence using the monotonicity property of the capacity

c(Û) = c(hj(Û)) ≥ c(h(Ω)) ≥ c(hj(Ǔ)) = c(Ǔ),

so that c(Ω) + ε ≥ c(h(Ω)) ≥ c(Ω) − ε. This holds true for every ε > 0 and the
theorem is proved. �

Definition. A capacity c is called inner regular, respectively, outer regular if

c(U) = č(U) resp. if c(U) = ĉ(U)

for all U ∈ O.

Proposition 8. Assume the capacity c is inner regular or outer regular. Assume ϕj

and ϕ are homeomorphisms of R
2n and

ϕj → ϕ and ϕ−1
j → ϕ−1

locally uniformly. If c(ϕj(U)) = c(U) for all U ∈ O and all j, then also

c
(
ϕ(U)

)
= c(U) for all U ∈ O.
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Proof a) Assume c is inner regular and let Ω be open and bounded. Then if U
is open and U ⊂ Ω we have ϕj(U) ⊂ ϕ(Ω) if j is large and thus c(ϕj(U)) =
c(U) ≤ c(ϕ(Ω)) so that c(U) ≤ c(ϕ(Ω)). Hence, taking the supremum we find
c(Ω) ≤ c(ϕ(Ω)). Similarly one shows that c(Ω) ≤ c(ϕ−1(Ω)) for every open and
bounded set Ω. Consequently, since ϕ is a homeomorphism c(Ω) = c(ϕ−1◦ϕ(Ω)) ≥
c(ϕ(Ω)) ≥ c(Ω) and thus c(ϕ(Ω)) = c(Ω) as desired.

b) If c is outer regular and Ω is open and bounded we conclude for ε > 0
that ϕj(Ω) ⊂ Uε(ϕ(Ω)) if j is sufficiently large; here Uε = {x| dist (x, U) < ε}.
Therefore, c(Ω) = c(ϕj(Ω)) ≤ c(Uε(ϕ(Ω))) and taking the infimum on the right
hand side we find c(Ω) ≤ c(ϕ(Ω)). Arguing as in the part a) we conclude that
c(ϕ(Ω)) = c(Ω) for every Ω ∈ O. �

So far we have deduced from the existence of a symplectic capacity some sur-
prising phenomena about symplectic mappings. Nevertheless, the notion itself is
still rather mysterious and raises many questions. It is, for example, not known
whether the knowledge of the capacities of small sets is sufficient to understand the
capacity of larger sets. To be more precise, does, for example, a homeomorphism
preserving the capacity of small sets preserve the capacity of large sets?

We have no example of a homeomorphism which preserves one capacity but not
another. Neither do we know whether a homeomorphism preserving the capacity
of open sets, also preserves the Lebesgue measure of open sets. But it is easy to see
that a homeomorphism preserving all capacities of open sets is necessarily measure
preserving. In order to prove this we first define a special embedding capacity γ.
Introducing for r > 0 the open cube

Q(r) = (0, r)2n ⊂ R
2n,

having edges parallel to the coordinate axis, we define

γ(M,ω) : = sup
{

r2 | there is a symplectic embedding ϕ : Q(r) → M
}
.

Clearly γ is a capacity satisfying the Axioms (A1), (A2) and the weak nontriviality
condition (A3′). It is not normalized. One can prove, by using the n-th order
capacity function cn of Ekeland and Hofer in [69], that γ(B(r)) = 1

n
πr2, moreover

γ(Z(r)) = πr2.

Proposition 9. Assume h is a homeomorphism of R
2n satisfying

γ
(
h(Ω)

)
= γ(Ω)

for all Ω ∈ O. Then h preserves the Lebesgue measure µ of open sets, i.e.,

µ
(
h(Ω)

)
= µ(Ω)

for all Ω ∈ O.
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Proof. From the definition of γ we infer

µ
(
Q(r)

)
= r2n = γ

(
Q(r)

)n

.

Since every symplectic embedding is volume preserving we find for the capacity
γ(Ω) of the open and bounded set Ω ⊂ R

2n that

µ(Ω) ≥ sup
r

µ
(
Q(r)

)
= γ(Ω)n,

where the supremum is taken over those r, for which there is a symplectic embed-
ding Q(r) → Ω. If Q is any open cube having its edges parallel to the coordinate
axes we conclude that

µ(Q) = γ(Q)n = γ
(
h(Q)

)n

≤ µ
(
h(Q)

)
.

It follows that
µ(Ω) ≤ µ

(
h(Ω)

)
,

for every Ω ∈ O. Indeed assume Ω ∈ O; then given ε > 0 we find, in view of the
regularity of the Lebesgue measure, finitely many disjoint open cubes Qj contained
in Ω such that µ(Ω) − ε ≤

∑
µ(Qj). Hence by the estimate above

µ(Ω) − ε ≤
∑

µ
(
h(Qj)

)

= µ
(
h(
⋃
j

Qj)
)

≤ µ
(
h(Ω)

)
.

This holds true for every ε > 0 and the claim follows. By the same argument,
µ(Ω) ≤ µ(h−1(Ω)) and hence µ(Ω) ≤ µ(h(Ω)) ≤ µ(h−1 ◦ h(Ω)) = µ(Ω), proving
the proposition. �
Corollary. If a homeomorphism of R

2n preserves all the capacities of open sets in
R

2n, then it also preserves the Lebesgue measure.
All our considerations so far are based on the existence of a capacity not yet

established. In the next chapter we shall construct a very special capacity function
defined dynamically by means of Hamiltonian systems.
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