
Chapter 2

Slice monogenic functions

2.1 Clifford algebras

Clifford algebras will be the setting in which we will work throughout this book.
They were introduced under the name of geometric algebras by Clifford in 1878.
Since then, several people have extensively studied them and nowadays there are,
in the literature, several possible ways to introduce Clifford algebras: for example
one can use exterior algebras, or present them as a quotient of a tensor algebra or
by means of a universal property (see [23], [31], [34], or [75] for a survey on the
various possible definitions). In this book, we will adopt an equivalent but more
direct approach, using generators and relations.

Definition 2.1.1. Given n elements e1, . . . , en, n = p + q, p, q ≥ 0, which will be
called imaginary units, together with the defining relations

e2i = +1, for i = 1, . . . , p,

e2i = −1, for i = p+ 1, . . . , n,

eiej + ejei = 0, i �= j.

Assume that

e1e2 . . . en �= ±1 if p− q ≡ 1(mod4). (2.1)

We will call (universal) Clifford algebra the algebra over R generated by e1, . . . , en
and we will denote it by Rp,q.

Remark 2.1.2. It is immediate that Rp,q, as a real vector space and has dimension
2n, n = p+ q.

An element in Rp,q, called a Clifford number, can be written as

a = a0 + a1e1 + . . .+ anen + a12e1e2 + . . .+ a123e1e2e3 + . . .+ a12...ne1e2 . . . en.
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18 Chapter 2. Slice monogenic functions

Denote by A an element in the power set ℘(1, . . . , n). If A = i1 . . . ir, then the
element ei1 . . . eir can be written as ei1...ir or, in short, eA. Thus, in a more compact
form, we can write a Clifford number as

a =
∑
A

aAeA.

Possibly using the defining relations, we will order the indices in A as i1 < . . . < ir.
When A = ∅ we set e∅ = 1.

We now give some examples of real Clifford algebras Rn of low dimension.

Example 2.1.3. First of all, we point out that the index n = 0 is allowed in the
definition, and in this case we obtain the real numbers. For n = 1 we have that
R0,1 is the algebra generated by e1 over R with the relation e21 = −1. Hence there
is an R-algebra isomorphism R0,1

∼= C where C denotes, as customary, the algebra
of complex numbers.

Example 2.1.4. For n = 2, the Clifford algebra R0,2 is generated by e1 and e2. This
real algebra is the so-called algebra of quaternions and it is usually denoted by
the symbol H. A quaternion q is traditionally written as q = x0 + ix1 + jx2 + kx3
where the imaginary units i, j, k anti-commute among them and satisfy i2 = j2 =
k2 = −1. With the identification

e1 → i, e2 → j,

(and the consequent e1e2 → k), it is immediate to identify R0,2 with H.

Example 2.1.5. We now compare the two Clifford algebras R1,1 generated by the
elements e1 and ε1 such that e21 = −1 and e22 = +1, and R2,0 generated by
the elements ε1 and ε2 both having square +1. These two Clifford algebras are
isomorphic. In fact, let us consider the matrices

η0 =

[
1 0
0 1

]
η1 =

[
0 1
1 0

]

η2 =

[
0 −1
1 0

]
η3 =

[
1 0
0 −1

]
.

They form a basis for the vector space M(2,R) of 2× 2 real matrices. The map

ϕ : R1,1 �→M(2,R)

defined by ϕ(e1) = η2, ϕ(e2) = η1 can be extended to an isomorphism for which
ϕ(1) = η0, and ϕ(e2e1) = η3. The map

ψ : R2,0 �→M(2,R)

defined by ψ(ε1) = η1, ψ(ε2) = η3 can be extended to an isomorphism for which
ψ(1) = η0, ψ(ε1ε2) = η2. Thus the Clifford algebras R1,1 and R2,0 are isomorphic
but, as the reader can verify, they are not isomorphic to R0,2.
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The case of R0,n will be the only case we will use in this book. For this reason,
we will write Rn instead of R0,n.

Definition 2.1.6. Let k ∈ N and 0 ≤ k ≤ n. The linear subspace of Rn generated
by the

(
n
k

)
elements of the form eA = ei1 . . . eik , i� ∈ {1, . . . , n}, i1 < . . . < ik, will

be denoted by Rk
n. The elements in Rk

n are called k-vectors.

For k = 0, the subspace R0
n is identified with the space of scalars R; for k = 1

we have the subspace R1
n of 1-vectors, also called vectors for short and denoted by

x, with basis {e1, . . . , en}; an element (x1, x2, . . . , xn) ∈ Rn can be identified with
a vector x ∈ R1

n in the Clifford algebra using the map:

(x1, x2, . . . , xn) �→ x = x1e1 + . . .+ xnen.

The subspace R2
n consists of 2-vectors or bivectors, and has basis {eij =

eiej, i < j}. In general, for any subset A = {i1, . . . , ik} of N = {1, . . . , n} of
cardinality |A| = k, the elements eA = ei1 . . . eik , i1 < . . . < ik, form a basis for
the
(
n
k

)
-dimensional vector space Rk

n of the k-vectors. Every element belonging to
R0

n ⊕ R1
n is a sum of a scalar and a vector. It is called paravector. An element

(x0, x1, . . . , xn) ∈ Rn+1 can be identified with a paravector x ∈ R0
n ⊕ R1

n by the
map:

(x0, x1, . . . , xn) �→ x = x0 + x1e1 + . . .+ xnen.

Note also that every element a ∈ Rn may also be uniquely written as

a = [a]0 + [a]1 + . . .+ [a]k + . . .+ [a]n

where [·]k : Rn → Rk
n denotes the projection of Rn onto the space of k-vectors.

Finally, a can be written in the form

a = a+ + a−

where [a]+ = [a]0 + [a]2 + . . . , and [a]− = [a]1 + [a]3 + . . . . We hence have a direct
sum decomposition

Rn = Rn,+ ⊕ Rn,−

where Rn,+ is the even subalgebra generated by the bivectors eij , while Rn,−
contains all the elements a that may be written in the form a = −e1(e1a), e1a ∈
Rn,+. Note that Rn,− is not an algebra while Rn,+ is an algebra isomorphic to
Rn−1.

Among the elements in the Clifford algebra Rn, we can consider the product
of all the imaginary units ei:

Definition 2.1.7. The product eN := e1 . . . en is called pseudoscalar.

Remark 2.1.8. If n is odd the pseudoscalar commutes with any element of the
Clifford algebra Rn since it can be verified that

ejeN = eNej,
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while when n is even eN anticommutes with any imaginary unit in the Clifford
algebra:

ejeN = −eNej .

As a consequence of the remark, we immediately have the following result:

Proposition 2.1.9. The center of a Clifford algebra Rn is R for n even, while it is
R⊕ eNR = {x+ eNy | x, y ∈ R} for n odd.

Proposition 2.1.10. The Clifford algebra Rn, n ≥ 3, contains zero divisors.

Proof. Since n ≥ 3, Rn contains the element e123. We have

(1 − e123)(1 + e123) = 1− e123 + e123 − e123e123 = 1− e2123 = 0. �

In a Clifford algebra it is possible to introduce several involutions, but for
our purposes we will simply consider the so-called conjugation:

Definition 2.1.11. Let a, b ∈ Rn. The conjugation is defined by

ēj = −ej, j = 1, . . . , n, ab = b̄ā.

As a consequence of the definition, for any a ∈ Rn, a =
∑
aAeA, we have

ā =
∑

aAēA = [a]0 − [a]1 − [a]2 + [a]3 + [a]4 − . . .

i.e., for any a ∈ Rk
n we have the 4-periodicity

ā = a for k ≡ 0, 3 mod 4,

ā = −a for k ≡ 1, 2 mod 4.

The following properties of the conjugation can be easily verified by direct com-
putation:

Proposition 2.1.12. The conjugation of Clifford numbers satisfies:

(1) ¯̄a = a for all a ∈ Rn;

(2) a+ b = ā+ b̄ for all a, b ∈ Rn;

(3) a+ ā = 2[a]0 for all paravectors a.

The conjugation allows us to introduce an inner product defined on the real
linear space of Clifford numbers:

Proposition 2.1.13. Let a, b ∈ Rn. Then

〈a, b〉 := [āb]0 = [bā]0 = [b̄a]0,

is a positive definite inner product on Rn.
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Proof. Let a =
∑

A aAeA, b =
∑

B bBeB. We have

āb = (
∑
A

aAeA)(
∑
B

bBeB) =
∑
A,B

aAbB ēAeB

and since ēAeA = (−1)|A|(|A|+1)/2eAeA = 1 we obtain

āb =
∑
A

aAbA +
∑
A �=B

aAbB ēAeB

and so [āb]0 =
∑

A aAbA. Thus [āb]0 coincides with the scalar product of the
vectors in R2n corresponding to the real components of a and b and it defines a
scalar product. The fact that it coincides with [bā]0 and [b̄a]0 can be proved by
similar computations. �

We note that the inner product defined by Proposition 2.1.13 behaves like a
scalar product on the space of vectors and, if x and y are two vectors we have

〈x, y〉 = 1

2
(xy + yx).

The wedge product of two vectors x and y is defined by

x ∧ y =
1

2
(xy − yx).

Note that the wedge product represents the directed and oriented surface measure
of the parallelogram individuated by x and y. It is also immediate that the product
of two vectors can be written as

x y =
1

2
(xy + yx) +

1

2
(xy − yx) = 〈x, y〉+ x ∧ y. (2.2)

Note also that, in the case of vectors, the scalar product can be written as

〈x, y〉 =
n∑

j=1

xiyi,

and, if by |x| we denote the Euclidean norm of a vector x, we have

|x| =
√
〈x, x〉 (2.3)

which is the length of the vector x.
We will say that two nonzero vectors x, y are orthogonal if 〈x, y〉 = 0. As

customary, a basis {u1, . . . us} of a subspace U of the Euclidean space Rn is said
to be orthonormal if |ui| = 1 and 〈ui, uj〉 = 0 for every ui, uj, such that ui �= uj.
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In general, given an element a =
∑

A aAeA ∈ Rn we can define its modulus
as

|a| = (
∑
A

a2A)
1
2 .

The proof of Proposition 2.1.13 shows that

|a|2 = [aā]0 = 〈a, a〉,

thus generalizing formula (2.3) to the case of a general Clifford number. We have
the following properties:

Proposition 2.1.14. The modulus of Clifford numbers satisfies:

(1) |λa| = |λ| |a| for all λ ∈ R, a ∈ Rn;

(2) ||x| − |y|| ≤ |x− y| ≤ |x|+ |y|;
However, the modulus is not multiplicative, as shown in the next result.

Proposition 2.1.15. For any two elements a, b ∈ Rn we have

|ab| ≤ Cn|a| |b|

where Cn is a constant depending only on the dimension of the Clifford algebra
Rn. Moreover, we have Cn ≤ 2n/2.

Remark 2.1.16. The modulus is multiplicative in the case of complex numbers
and quaternions. To have a multiplicative modulus when enlarging the field of
real numbers one has to abandon the notion of order to get C and then the
notion of commutativity to get H. There is another possibility to enlarge further
the dimension: by abandoning associativity one obtains the (division) algebra of
octonions. In fact, Hurwitz’ theorem shows that the only algebras over the real
field with multiplicative modulus are the field of real numbers, the field of complex
numbers, the quaternion skew field and the alternative algebra of octonions.

Inside a Clifford algebra there is the possibility, in some special cases, to
have that the modulus is multiplicative. These cases are described in the following
result:

Proposition 2.1.17. Let b ∈ Rn be such that bb̄ = |b|2. Then

|ab| = |a||b|.

Proof. Consider |ab|. We have:

|ab|2 = [abab]0 = [abb̄ā]0 = [a|b|2ā]0 = [aā]0|b|2 = |a|2|b|2. �

Note that the result holds, in particular, when a is paravector x. Moreover
any nonzero paravector x admits an inverse, the so-called Kelvin inverse, defined
by

x−1 =
x̄

|x|2 .
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2.2 Slice monogenic functions: definition and properties

As mentioned in Section 2.1, an element (x1, x2, . . . , xn) ∈ Rn can be identified
with a vector x = x1e1+ . . .+xnen ∈ R1

n while an element (x0, x1, . . . , xn) ∈ Rn+1

can be identified with the paravector

x = x0 + x1e1 + . . .+ xnen = x0 + x ∈ R0
n ⊕ R1

n.

In the sequel, with an abuse of notation, we will write x ∈ Rn and x ∈ Rn+1. Thus,
if U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be interpreted as
a function of the paravector x. Note also that an element x will be often denoted
as

x = Re[x] + x,

to emphasize its real and vector part, respectively.
The theory of slice monogenic functions was first developed in [26] where the

authors study a new notion of monogenicity for functions from Rn+1 to Rn. It is
worth noting, however, that the exposition we propose here offers a significantly
improved theory, and reorganizes the ideas of [26] in a new more powerful fashion
as in [15], [18], [27], [28], [29], [53].

To introduce the theory of slice monogenic functions, we need some definitions
and notation.

Definition 2.2.1. We will denote by S the set of unit vectors:

S = {x = e1x1 + . . .+ enxn ∈ Rn+1 | x21 + . . .+ x2n = 1}.

From a geometric point of view, S is an (n−1)-sphere in the Euclidean space
of vectors Rn and if I ∈ S, then I2 = −1.

The two-dimensional real subspace of Rn+1 generated by 1 and I is the plane
R + IR. It will be denoted by CI , in fact it is isomorphic to the complex plane.
Note that the isomorphism between the vector space CI and C is also an algebra
isomorphism, thus CI will be referred to as a “complex plane”.

An element in CI will be denoted by u + Iv. Conversely, given a paravector
x, it will be possible to write it as an element in a suitable complex plane CI . In

fact, either x is a real number, or we can write it as x = Re[x] +
x

|x| |x|. Since

Re[x], |x| are real numbers and
x

|x| is a unit vector, we have written the given

paravector as x = u+ Ixv, with u = Re[x], v = |x| and Ix =
x

|x| .

Definition 2.2.2. Let U ⊆ Rn+1 be an open set and let f : U → Rn be a real
differentiable function. Let I ∈ S and let fI be the restriction of f to the complex
plane CI and denote by u + Iv an element on CI . We say that f is a left slice
monogenic (for short s-monogenic) function if, for every I ∈ S, we have

1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u+ Iv) =

1

2

(
∂

∂u
fI(u + Iv) + I

∂

∂v
fI(u+ Iv)

)
= 0
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on U ∩ CI . We will denote by M(U) the set of left s-monogenic functions on the
open set U or by ML(U) when confusion may arise. We say that f is a right slice
monogenic (for short right s-monogenic) function if, for every I ∈ S, we have

1

2

(
∂

∂u
+

∂

∂v
I

)
fI(u+ Iv) =

1

2

(
∂

∂u
fI(u+ Iv) +

∂

∂v
fI(u+ Iv)I

)
= 0,

on U ∩ CI . We will denote by MR(U) the set of right s-monogenic functions on
the open set U .

Remark 2.2.3. The theory of right s-monogenic functions is equivalent to the
theory of (left) s-monogenic functions. In the sequel, we will mainly consider
s-monogenicity on the left, but we will introduce some basic tools for right s-
monogenic functions in order to treat the functional calculus for n-tuples of non-
commuting operators.

Definition 2.2.4. We define the notion of I-derivative by means of the operator:

∂I :=
1

2

(
∂

∂u
− I

∂

∂v

)
.

For consistency, we will denote by ∂I the operator 1
2

(
∂
∂u + I ∂

∂v

)
.

Using the notation we have just introduced, the condition of left s-mono-
genicity will be expressed, in short, by

∂If = 0.

Right s-monogenicity will be expressed, with an abuse of notation, by

f∂I = 0.

Remark 2.2.5. It is easy to verify that the (left) s-monogenic functions on U ⊆
Rn+1 form a right Rn-module. In fact it is trivial that if f, g ∈ M(U), then
for every I ∈ S one has ∂IfI = ∂IgI = 0, thus ∂I(f + g)I = 0. Moreover, for
any a ∈ Rn we have ∂I(fIa) = (∂If)a = 0. Analogously, the right s-monogenic
functions on U ⊆ Rn+1 form a left Rn-module.

Definition 2.2.6. Let U be an open set in Rn+1 and let f : U → Rn be an s-
monogenic function. Its s-derivative ∂s is defined as

∂s(f) =

{
∂I(f)(x) x = u+ Iv, v �= 0,
∂uf(u) u ∈ R.

(2.4)

Note that the definition of s-derivative is well posed because it is applied
only to s-monogenic functions. Moreover, for such functions, it coincides with the
partial derivative with respect to the scalar component u, in fact we have:

∂s(f)(u+ Iv) = ∂I(fI)(u+ Iv) = ∂u(fI)(u+ Iv). (2.5)
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Note incidentally that

∂u(fI)(u+ Iv) = ∂u(f)(u+ Iv).

Proposition 2.2.7. Let U be an open set in Rn+1 and let f : U → Rn be an s-
monogenic function. The s-derivative ∂sf of f is an s-monogenic function, more-
over

∂ms f(u+ Iv) =
∂mf

∂um
(u + Iv).

Proof. The first part of the statement follows from

∂I(∂sf(u+ Iv)) = ∂s(∂If(u+ Iv)) = 0. (2.6)

The second part follows from (2.5). �
We now provide some examples of s-monogenic functions. It is interesting to

note that in the classical theory of monogenic functions (see [7], [34]) the mono-
mials, and thus the polynomials, in the paravector variable are not monogenic
functions. However polynomials (and also converging power series) in the paravec-
tor variable turn out to be s-monogenic functions, provided that the coefficients
are written on the right.

Example 2.2.8. The monomials xnan, an ∈ Rn are s-monogenic, thus also the
polynomials

∑N
n=0 x

nan are s-monogenic. Note that these polynomials have co-
efficients written on the right: indeed, polynomials with left coefficients are not,
in general, s-monogenic. To avoid confusion, we will call polynomials of the form∑N

n=0 x
nan s-monogenic polynomials. Moreover, as we will see in the sequel, any

power series
∑

n≥0 x
nan is s-monogenic in its domain of convergence.

Remark 2.2.9. Note that the complex plane C = R1 can be seen both as R2 and as
R1. It is immediate, from Definition 2.2.2, that the space of holomorphic functions
f : C → C coincides with the space of s-monogenic functions from R2 to R1. For
this reason we will consider the case n > 1 (obviously, all the results that we will
prove are valid also in the case n = 1).

Proposition 2.2.10. Let I = I1 ∈ S. It is possible to choose I2, . . . , In ∈ S such that
I1, . . . , In form an orthonormal basis for the Clifford algebra Rn i.e., they satisfy
the defining relations IrIs + IsIr = −2δrs.

Proof. First of all, note that since x ∧ y = −y ∧ x, formula (2.2) gives

x y + y x = 2〈x, y〉.

Then it sufficient to select the vectors Ir in a way such that 〈Ir , Ir〉 = −1 and
〈Is, Ir〉 = 0, for s = 1, . . . , n, r = 2, . . . , n. Since Ir =

∑n
�=1 xr�e� the two condi-

tions translate into

〈Ir, Ir〉 = −
n∑

�=1

x2r�
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and

〈Is, Ir〉 = −
n∑

�=1

xs�xr�.

By identifying each vector Ir with its components (x1, . . . , xn) ∈ Rn we conclude
using the Gram–Schmidt algorithm. �

A simple and yet extremely important feature of s-monogenic functions is
that their restrictions to a complex plane CI can be written as a suitable linear
combination of 2n−1 holomorphic functions, as proved in the following:

Lemma 2.2.11 (Splitting Lemma). Let U ⊆ Rn+1 be an open set. Let f : U → Rn

be an s-monogenic function. For every I = I1 ∈ S let I2, . . . , In be a completion to
a basis of Rn satisfying the defining relations IrIs+IsIr = −2δrs. Then there exist
2n−1 holomorphic functions FA : U ∩ CI → CI such that for every z = u+ Iv,

fI(z) =

n−1∑
|A|=0

FA(z)IA, IA = Ii1 . . . Iis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0,
I∅ = 1.

Proof. Let z = u+Iv. Since f is Rn-valued, there are functions FA : U ∩CI → CI

such that

fI(z) =

n−1∑
|A|=0

FA(z)IA =

n−1∑
|A|=0

(fA + gAI)IA.

We now need to show that the functions FA are holomorphic. Since f is s-
monogenic we have that its restriction to CI satisfies(

∂

∂u
+ I

∂

∂v

)
fI(u+ Iv) = 0

and so ∑(
∂

∂u
+ I

∂

∂v

)
(fA + gAI)IA

=
∂

∂u
fA + I

∂

∂v
fA +

∂

∂u
gAI −

∂

∂v
gA = 0.

Since the imaginary units commute with any real-valued function, we obtain the
system: ⎧⎪⎪⎨⎪⎪⎩

∂

∂u
fA − ∂

∂v
gA = 0,

∂

∂v
fA +

∂

∂u
gA = 0

for all multi-indices A. Therefore all the functions FA = fA + gAI satisfy the
standard Cauchy–Riemann system and so they are holomorphic. �
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Example 2.2.12. To clarify our result, we consider explicitly the case of R4-valued
functions. A function f : U ⊆ R5 → R4 can be written as

f =f0 + f1I1 + f2I2 + f3I3 + f4I4 + f12I12 + f13I13 + f14I14 + f23I23

+ f24I24 + f34I34 + f123I123 + f124I124 + f134I134 + f234I234 + f1234I1234

and grouping as prescribed in the statement of the Lemma, we obtain

f = (f0 + f1I1) + (f2 + f12I1)I2 + (f3 + f13I1)I3 + (f4 + f14I1)I4

+ (f23 + f123I1)I23 + (f24 + f124I1)I24 + (f34 + f134I1)I34

+ (f234 + f1234I1)I234.

To develop a meaningful theory of s-monogenic functions we need some ad-
ditional hypotheses on the open sets on which they are defined. For example, the
natural class of open sets in which we can prove the Identity Principle is given
by the domains whose intersection with any complex plane CI is connected. We
introduce these domains in the following definition:

Definition 2.2.13. Let U ⊆ Rn+1 be a domain. We say that U is a slice domain
(s-domain for short) if U ∩R is nonempty and if U ∩CI is a domain in CI for all
I ∈ S.

In this class of domains it is possible to prove the following Identity Principle:

Theorem 2.2.14 (Identity Principle). Let U be an s-domain in Rn+1. Let f : U →
Rn be an s-monogenic function, and let Z be its zero set. If there is an imaginary
unit I such that CI ∩ Z has an accumulation point, then f ≡ 0 on U .

Proof. Let us consider the restriction fI of f to the plane CI , for I ∈ S. By the
Splitting Lemma we have

fI(z) =

n−1∑
|A|=0

FA(z)IA

with FA : U ∩CI → CI holomorphic for every multi-index A and z = u+Iv. Since
CI ∩ Z has an accumulation point, we deduce that all the functions FA vanish
identically on U ∩ CI and thus fI = 0 on U ∩ CI . In particular fI vanishes in
the points of U on the real axis. Any other plane CI′ is such that fI′ vanishes on
U ∩ R which has an accumulation point. If we apply the Splitting Lemma to fI′ ,
we can write fI′ =

∑
A′ FA′IA′ and thus its components FA′ vanish on U ∩R and

thus they vanish identically on U ∩ CI′ . This fact implies that also fI′ vanish on
CI′ , thus f ≡ 0 on U . �

Analogously to what happens in the complex case, we can prove the following
consequence of the Identity Principle.



28 Chapter 2. Slice monogenic functions

Corollary 2.2.15. Let U be an s-domain in Rn+1. Let f, g : U → Rn be s-
monogenic functions. If there is an imaginary unit I such that f = g on a subset
of CI having an accumulation point, then f ≡ g on U .

Among the domains in Rn+1 there is a special subclass which is useful to
provide a Representation Formula for s-monogenic functions. In order to define
them, it is useful to suitably denote the (n− 1)-sphere associated to a paravector.

Let s = s0 + s = s0 + Is|s| ∈ Rn+1 be a paravector; we denote by [s ] the set

[s ] = {x ∈ Rn+1 | x = s0 + I|s|, I ∈ S}.

The set [s ] is either reduced to a real point or it is the (n− 1)-sphere defined by
s, i.e., the (n− 1)-dimensional sphere with center at the real point s0 and radius
|s|.

Remark 2.2.16. Observe that the relation: “x ∼ s if and only if x0 = s0 and
|x| = |s|” is an equivalence relation. Given a paravector s, its equivalence class
contains only the element s when s is a real number, while it contains infinitely
many elements when s is not real and corresponds to the (n − 1)-dimensional
sphere [s ].

Definition 2.2.17. Let U ⊆ Rn+1. We say that U is axially symmetric if, for all
s = u+ Iv ∈ U , the whole (n− 1)-sphere [s ] is contained in U .

Observe that axially symmetric sets are invariant under rotations that fix
the real axis.

In order to state the next result we need some notation. Given an element
x = x0 + x ∈ Rn+1 let us set

Ix =

⎧⎨⎩
x

|x| if x �= 0,

any element of S otherwise.

We have the following:

Theorem 2.2.18 (Representation Formula). Let U ⊆ Rn+1 be an axially symmetric
s-domain and let f be an s-monogenic function on U .

(1) For any vector x = u+ Ixv ∈ U the following formulas hold:

f(x) =
1

2

[
1− IxI

]
f(u+ Iv) +

1

2

[
1 + IxI

]
f(u− Iv) (2.7)

and

f(x) =
1

2

[
f(u+ Iv) + f(u− Iv) + IxI[f(u− Iv)− f(u+ Iv)]

]
. (2.8)
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(2) Moreover, the two quantities

α(u, v) :=
1

2
[f(u+ Iv) + f(u− Iv)] (2.9)

and

β(u, v) := I
1

2
[f(u− Iv)− f(u+ Iv)] (2.10)

do not depend on I ∈ S.

Proof. The result is trivial for real paravectors, in fact we have the identity

f(u) =
1

2

[
1− IxI

]
f(u) +

1

2

[
1 + IxI

]
f(u)

for any Ix ∈ S. If x �∈ R and if we write x = u+ Ixv we can set

φ(u + Ixv) :=
1

2

[
f(u+ Iv) + f(u− Iv) + IxI[f(u− Iv)− f(u+ Iv)]

]
,

and observe that if I = Ix we have

φ(u+ Ixv) = f(x).

Let us show that
(

∂
∂u + Ix

∂
∂v

)
φ(u+ Ixv) = 0 for all x ∈ U ∩CI . Indeed we have:

( ∂
∂u

+ Ix
∂

∂v

)
φ(u + Ixv)

=
1

2

[
1− IxI

] ∂
∂u
f(u+ Iv) +

1

2

[
1 + IxI

] ∂
∂u
f(u− Iv)

+
1

2
Ix

[
1− IxI

] ∂
∂v
f(u+ Iv) +

1

2
Ix

[
1 + IxI

] ∂
∂v
f(u− Iv).

Using the fact that f is s-monogenic, we can write( ∂
∂u

+ Ix
∂

∂v

)
φ(u+ Ixv)

=
1

2

[
1− IxI

]
(−I) ∂

∂v
f(u+ Iv) +

1

2

[
1 + IxI

]
I
∂

∂v
f(u− Iv)

+
1

2
Ix

[
1− IxI

] ∂
∂v
f(u+ Iv) +

1

2
Ix

[
1 + IxI

] ∂
∂v
f(u− Iv) = 0.

Since the function φ is s-monogenic and φ ≡ f on CI , then φ coincides with f
on U by the Identity Principle. The second part of the proof follows directly from
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(2.8). In fact we have

1

2
[f(u+ Iv) + f(u− Iv)]

=
1

2

{1
2

[
f(u+ Jv) + f(u− Jv)

]
+ I

1

2

[
J [f(u− Jv)− f(u+ Jv)]

]
+

1

2

[
f(u+ Jv) + f(u− Jv)

]
− I

1

2

[
J [f(u− Jv)− f(u+ Jv)]

]}
=

1

2

[
f(u+ Jv) + f(u− Jv)

]
and so α, and similarly β, depend on u, v only. �
Remark 2.2.19. Note that the operator ∂I is not a constant coefficients differential
operator since the imaginary unit I changes with the point u+Iv. This shows that
f per se does not satisfy a system of constant coefficients differential equations;
however, as the next corollary shows, its components α and β do, and they give
an s-monogenic function if they satisfy some additional conditions, see [87].

Corollary 2.2.20. Let U ⊆ Rn+1 be an axially symmetric s-domain, and D ⊆ R2

be such that u + Iv ∈ U whenever (u, v) ∈ D and let f : U → Rn. The function
f is an s-monogenic function if and only if there exist two differentiable functions
α, β : D ⊆ R2 → Rn satisfying α(u, v) = α(u,−v), β(u, v) = −β(u,−v) and the
Cauchy–Riemann system {

∂uα− ∂vβ = 0,

∂uβ + ∂vα = 0,
(2.11)

and such that
f(u+ Iv) = α(u, v) + Iβ(u, v). (2.12)

Proof. If f is s-monogenic, then we can apply Theorem 2.2.18 and we can set
α(u, v) and β(u, v) as in (2.9) and (2.10). Then f(u+Iv) = α(u, v)+Iβ(u, v), and
α(u, v) = α(u,−v), β(u, v) = β(u,−v) by their definitions. The proof of Theorem
2.2.18 shows that the pair α, β satisfies the Cauchy–Riemann system. The converse
is immediate: any function of the form f(u+Iv) = α(u, v)+Iβ(u, v) is well defined
on an axially symmetric open set. In fact,

f(u− Iv) = α(u,−v) + Iβ(u,−v) = α(u, v)− Iβ(u, v).

The fact that α and β satisfy the Cauchy–Riemann system guarantees that f is
an s-monogenic function. �

The Representation Formula has several interesting consequences.

Corollary 2.2.21. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn+1 be an s-monogenic function. For any choice of u, v ∈ R such that u+Iv ∈ U
there exist a, b ∈ Rn such that

f(u+ Iv) = a+ Ib, (2.13)
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for all I ∈ S. In particular, the image of the (n − 1)-sphere [u + Iv] is the set
{a+ Ib : I ∈ S}.

Proof. It is a direct application of Theorem 2.2.18. �

Another consequence of the Representation Formula is the fact that any
holomorphic map defined on a suitable domain can be uniquely extended to an
s-monogenic function:

Lemma 2.2.22 (Extension Lemma). Let J ∈ S and let D be a domain in CJ ,
symmetric with respect to the real axis and such that D ∩ R �= ∅. Let UD be the
axially symmetric s-domain defined by

UD =
⋃

u+Jv∈D, I∈S

(u+ Iv).

If f : D → CJ is holomorphic, then the function ext(f) : UD → Rn defined by

ext(f)(u+Iv) :=
1

2

[
f(u+Jv)+f(u−Jv)

]
+I

1

2

[
J [f(u−Jv)−f(u+Jv)]

]
(2.14)

is the unique s-monogenic extension of f to UD.
Similarly, let J2, . . . , Jn be a completion of J to an orthonormal basis of Rn

and let

f : D → Rn

defined by f =
∑n−1

|A|=0 FAJA, A ⊆ {2, . . . , n}, FA : D → CJ holomorphic. Then,

∂Jf(u + Jv) = 0 and the function obtained by extending each of its holomorphic
components FA is the unique s-monogenic extension of f to UD.

Proof. The fact that ext(f) is s-monogenic follows by the proof of Theorem 2.2.18.
When I = J in (2.14) we have that ext(f)(u + Jv) = f(u + Jv), and hence
ext(f) is the unique extension of f by the Identity Principle. The second part is
immediate. �

The second part of Theorem 2.2.18 shows that for every I,K ∈ S we have

f(u+ Iv) = α(u, v) + Iβ(u, v) and f(u+Kv) = α(u, v) +Kβ(u, v).

By subtracting the two expressions and assuming that I �= K, we have

α(u, v) = (I −K)−1[If(u+ Iv)−Kf(u+Kv)]

and

β(u, v) = (I −K)−1[f(u+ Iv)− f(u+Kv)].

Thus the Representation Formula admits the following generalization:
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Theorem 2.2.23 (Representation Formula, II). Let U ⊆ Rn+1 be an axially sym-
metric s-domain and let f be an s-monogenic function on U . For any vector
u+ Jv ∈ U the following formula holds:

f(u+ Jv) = (I −K)−1[If(u+ Iv)−Kf(u+Kv)] (2.15)

+ J(I −K)−1[f(u+ Iv)− f(u+Kv)].

As a consequence we have that the values of an s-monogenic function f on
an axially symmetric set U are uniquely determined by its values on the two half-
planes U ∩ C+

J , U ∩ C+
K through formula (2.15). Moreover we have the following

generalization of the extension lemma:

Lemma 2.2.24 (Extension Lemma, II). Let U be an s-domain in Rn+1 and let
f : U → Rn be an s-monogenic function. Let Ũ be the axially symmetric s-domain
defined by

Ũ =
⋃

u+Jv∈U, I∈S

(u+ Iv)

There exists a unique s-monogenic extension of f to the whole Ũ .

Proof. By construction, it is immediate that Ũ is an axially symmetric s-domain.
Observing that U is an open set, we consider another axially symmetric s-domain
W obtained as the union of all the open balls B(x, rx) ⊂ U with center at a point
on the real axis x ∈ U , i.e.,

W = ∪x∈U∩RB(x, rx).

The restriction of f to W is an s-monogenic function which can be uniquely ex-
tended to a function f̃ defined on a maximal, axially symmetric, s-domain set
Umax such that W ⊆ Umax ⊆ Ũ . Our goal is now to show that Umax coincides with
Ũ . Assume the contrary, and suppose that there exists y = y0 + Iy1 ∈ Ũ ∩ ∂Umax.
Since y ∈ Ũ , there exists J ∈ S such that y0 + Jy1 ∈ U and since U is open,
there is an open ball with center at y contained in U . So there exist K ∈ S and
ỹ = y0 + Ky1 such that the two discs ΔJ and ΔK of radius ε with center at y
and ỹ on the plane CJ , CK , respectively, are contained in U . Let us define

g̃(u+ Jv) := (I −K)−1[If(u+ Iv)−Kf(u+Kv)]

+ J(I −K)−1[f(u+ Iv)− f(u+Kv)]

on the set D = {x = u + Jv | (u − y0)
2 + (v − y1)

2 < ε}. Then the function
g̃ coincides with f̃ on D ∩ Umax. The function h defined by h(x) = f̃(x) for
x ∈ Umax and h(x) = g̃(x) for x ∈ D is the s-monogenic extension of f to the
axially symmetric open set D ∪ Umax contradicting the maximality of Umax. This
completes the proof. �
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2.3 Power series

As we have already observed in the previous section, polynomials in the paravector
variable x are s-monogenic. However, it is no longer true that a polynomial f(x)
of the form f(x) = (x − a)n, where a ∈ Rn is s-monogenic, in general. If a ∈ R,
however, then f(x) is s-monogenic and so are power series centered at a point on
the real axis, where they converge. In this section we will provide a detailed study
of s-monogenic functions which can be expanded into power series.

Proposition 2.3.1. If B = B(0, R) ⊆ Rn+1 is a ball centered in 0 with radius
R > 0, then f : B → Rn is an s-monogenic function if and only if f has a series
expansion of the form

f(x) =
∑
m≥0

xm 1

m!

∂mf

∂um
(0) (2.16)

converging on B.

Proof. If a function admits a series expansion as in (2.16) it is obviously s-mono-
genic where the series converges. The converse requires the Splitting Lemma. Con-
sider an element I = I1 ∈ S and the corresponding plane CI . Let Δ ⊂ CI be a
disc with center in the origin and radius r < R and let us set z = u + Iv. The
restriction of f to the plane CI can be written as fI(z) =

∑
FA(z)IA. Since every

function FA(z) is holomorphic, it admits an integral representation via the Cauchy
formula, i.e.,

FA(z) =
1

2πI

∫
∂Δ(0,r)

FA(ζ)

ζ − z
dζ,

for any z ∈ Δ and therefore

fI(z) =
n−1∑
|A|=0

(
1

2πI

∫
∂Δ(0,r)

FA(ζ)

ζ − z
dζ

)
IA.

Now observe that ζ and z commute because they lie on the same plane CI , so we
can expand the denominator in each integral in power series, as in the classical
case:

FA(z) =
1

2πI

∫
∂Δ(0,r)

∑
m≥0

(
z

ζ

)m
FA(ζ)

ζ
dζ

=
∑
m≥0

zm
∫
∂Δ(0,r)

∑
m≥0

FA(ζ)

ζm+1
dζ

=
∑
m≥0

zm
1

m!

∂mFA

∂zm
(0).
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Plugging this expression into fI(z) =
∑
FA(z)IA we obtain

fI(z) =

n−1∑
|A|=0

∑
m≥0

zm
1

m!

∂mFA

∂zm
(0)IA =

∑
m≥0

zm
1

m!

∂mf

∂zm
(0),

and using the definition of s-derivative together with Proposition 2.2.7, we get

∑
m≥0

zm
1

m!

1

2

(
∂

∂u
− I

∂

∂v

)m

f(0) =
∑
m≥0

zm
1

m!

∂m

∂um
f(0).

Finally observe that the coefficients of the power series do not depend on the
choice of the unit I, thus fI(z) is the restriction to CI of the function defined in
(2.16) and the statement follows. �

The following two results can be proved as in the complex case:

Proposition 2.3.2. The s-derivative of a power series∑
n≥0

xnan, an ∈ Rn

equals ∑
n≥0

nxn−1an

and has the same radius of convergence of the original series.

Corollary 2.3.3. Let f : B → Rn be an s-monogenic function. Then f ≡ 0 on B
if and only if ∂ns f(0) = 0 for all n ∈ N.

The next proposition shows that s-monogenic functions whose power series
expansion have real coefficients play a privileged role.

Proposition 2.3.4. The product of two functions f, g : B(0, R) → Rn such that the
series expansion of f has real coefficients is an s-monogenic function. Moreover,
the composition of f with an s-monogenic function h : B(0, R′) → Rn is an s-
monogenic function whenever the composition is defined.

Proof. Let

f(x) =
∑
m≥0

xmam,

g(x) =
∑
m≥0

xmbm,

h(x) =
∑
m≥0

xmcm,
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be s-monogenic functions with am ∈ R, bm, cm ∈ Rn. Since real coefficients com-
mute with the variable x we have

(fg)(x) =
∑
s≥0

xs(a0bs + a1bs−1 + . . .+ asb0).

Now consider (h ◦ f)(x) = h(f(x)); we have

h(f(x)) =
∑
m≥0

(
∑
r≥0

xrar)
mcm.

Since the coefficients ar commute with the variables we can group them on the
right and the statement follows. �

Corollary 2.3.5. Let f : U → Rn be an s-monogenic function. Then the function
f(x − y0), y0 ∈ R, is an s-monogenic function in the open set U ′ = {x′ = x −
y0, x ∈ U}.

Proposition 2.3.6. Let B = B(y0, R) ⊆ Rn+1 be the ball centered in y0 ∈ R with
radius R > 0, then f : B → Rn is an s-monogenic function if and only if it has
a series expansion of the form

f(x) =
∑
m≥0

(x− y0)
m 1

m!

∂mf

∂um
(y0). (2.17)

Proof. Consider the transformation of coordinates z = x− y0. Since the function
f(z) is s-monogenic in a ball centered in the origin with radius R > 0, we can
apply Proposition 2.3.1. Using the inverse transformation x = z + y0, we obtain
the statement. �

The result extends to s-domains as follows:

Corollary 2.3.7. Let f be an s-monogenic function on an s-domain U ⊆ Rn+1.
Then for any point on the real axis y0 in U , the function f can be represented in
power series

f(x) =
∑
n≥0

(x− y0)
n 1

n!

∂nf

∂un
(y0)

on the ball B(y0, R), where R = Ry0 is the largest positive real number such that
B(y0, R) is contained in U .

Proof. Since f is s-monogenic in y0, then, for every I ∈ S, f can be expanded in
power series on the disc ΔI = B(y0, RI) of radius RI on the plane CI . The radius
R turns out to be minI∈SRI which is nonzero because y0 is an internal point in
U . �
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Corollary 2.3.8. Let f : B(y0, R) → Rn be an s-monogenic function. If there exists
I ∈ S such that f(CI) ⊆ CI , then the series expansion of f ,

f(x) =
∑
n≥0

(x− y0)
n 1

n!

∂nf

∂un
(y0),

has all its coefficients in CI . Consequently, if there are two different units I, J ∈ S

such that f(CI) ⊆ CI and f(CJ) ⊆ CJ , then the coefficients are real.

Proof. If I ∈ S is such that f(CI) ⊆ CI , then for any real number y0 we have

f(y0) = fI(y0) ∈ CI . Therefore
∂nf

∂un
(y0) ∈ CI for any n ∈ N, y0 ∈ R, and the

conclusion follows. The second part is immediate. �

We now introduce a product among s-monogenic polynomials which preserves
the s-monogenicity:

Definition 2.3.9. Let f(x) =
∑n

i=0 x
iai and g(x) =

∑m
i=0 x

ibi, for ai, bi ∈ Rn. We
define the s-monogenic product of f and g as

f ∗ g(x) :=
n+m∑
j=0

xjcj

with cj =
∑

i+k=j aibk. We will denote by f∗n the product f ∗ . . . ∗ f , n-times.

This product is computed by taking the coefficients of the polynomials on
the right, as in the case in which the variables and the coefficients commute and
coincides with the standard product of polynomials with coefficients in a division
algebra (see [71]). We adopt this definition also in this setting and we extend it to
the case of the product of series. If f(x) =

∑
i≥0 x

iai and g(x) =
∑

i≥0 x
ibi are

s-monogenic series, we define their s-monogenic product as

f ∗ g(x) :=
∑
j≥0

xjcj

with cj =
∑

i+k=j aibk. Note that when the coefficients of a polynomial or a series
f are real numbers, the s-monogenic product coincides with the usual product,
i.e., f ∗ g = fg (see Proposition 2.3.4). This product will be generalized in the
sequel to s-monogenic functions which are not necessarily power series.

We conclude this section by showing that s-monogenic functions are infinitely
differentiable:

Proposition 2.3.10. An s-monogenic function f : U → Rn on an axially symmetric
s-domain U ⊆ Rn+1 is infinitely differentiable on U .

Proof. The differentiability of f on the real axis follows from Corollary 2.3.7 since
for any point of the real axis there is a ball in which the function f can be expressed
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in power series. To prove differentiability outside the real axis consider formula

(2.7) and write x as x = x0 + x = x0 +
x

|x|x:

f(x) =
1

2

[
f(x0 + I|x|) + f(x0 − I|x|) + x

|x|I[f(x0 − I|x|)− f(x0 + I|x|]
]
.

The function f is s-monogenic and hence, by definition, its restriction fI to CI is
infinitely differentiable on U ∩CI for any I ∈ S. It is therefore obvious that f can
be obtained as a composition of the functions fI , x0, x =

∑
� e�x�, and |x|, which

are all infinitely differentiable outside the real axis with respect to the variables
x�, � = 0, . . . , n. This concludes the proof. �

2.4 Cauchy integral formula, I

A main result in the theory of s-monogenic functions is an analog of the Cauchy
integral formula. We will present two versions of such a Cauchy formula: the one
discussed in this section is less general than the second version, but it is enough
to prove several properties of s-monogenic functions.

Theorem 2.4.1. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. If x ∈ U , then

f(x) =
1

2π

∫
∂Δx(a,r)

(ζ − x)−1 dζIxf(ζ)

where dζIx := −dζIx and a ∈ R, r > 0 are such that

Δx(a, r) = {u+ Ixv | (u− a)2 + v2 ≤ r2} ⊂ CIx

contains x and is contained in U .

Proof. With no loss of generality, we will assume a = 0. Consider the integral

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxf(ξ).

Set Ix := I1, complete to a basis I1, . . . , In of the Clifford algebra Rn, satisfying
the defining relations IrIs + IsIr = −2δrs. Using the Splitting Lemma, we can
write the restriction of f to CIx as fIx =

∑
A FAIA. We have

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxfIx(ξ)

=
1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIx
∑
A

FA(ξ)IA
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=
∑
A

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxFA(ξ)IA

=
∑
A

FA(x)IA

= f(x). �
Remark 2.4.2. Let B1 = B(0, R1), B2 = B(0, R2) be two balls centered at the
origin and with radii 0 < R1 < R2. The same argument used in the previous proof
shows that if a function f is s-monogenic in a neighborhood of the annular domain
B2 \B1, then for any x ∈ B2 \B1, it satisfies

f(x) =
1

2π

∫
∂(B2∩CIx )

(ζ − x)−1 dζIxf(ζ)

− 1

2π

∫
∂(B1∩CIx )

(ζ − x)−1 dζIxf(ζ).

Remark 2.4.3. The function Iy(x) := (x − y)−1 corresponding to the Cauchy
kernel in Theorem 2.4.1 is not s-monogenic on Rn+1 \ {y}, unless y = y0 ∈ R. In
particular, the function

I0(x) = x−1 =
x̄

|x|2 (2.18)

is s-monogenic in Rn+1 \ {0}.
Theorem 2.4.4 (Cauchy formula outside a ball). Let B = B(0, R) and let Bc =
Rn+1 \ B. Let f : Bc → Rn be an s-monogenic function with limx→∞ f(x) = a.
If x ∈ Bc, then

f(x) = a− 1

2π

∫
∂Δx(0,r)

(ζ − x)−1 dζIxf(ζ)

where 0 < R < r < |x| and the complement of the set Δx(0, r) is contained in Bc

and contains x.

Proof. The proof is based on the Splitting Lemma and on the analogous result for
holomorphic functions of a complex variable. Let x ∈ Rn+1 \B and let Ix be the
corresponding imaginary unit. Consider r′ > r > R, and the discs Δ = Δx(0, r),
Δ′ = Δx(0, r

′) on the plane CIx having radius r and r′ respectively and such that
x ∈ Δ′. Since f is s-monogenic on Δ′ \Δ we can apply the Cauchy formula to the
set Δ′ \Δ to compute f(x). We obtain

f(x) =
1

2π

∫
∂Δ′\∂Δ

(ξ − x)−1dξIxf(ξ)

=
1

2π

∫
∂Δ′

(ξ − x)−1dξIxf(ξ)

− 1

2π

∫
∂Δ

(ξ − x)−1dξIxf(ξ).
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Let us set I1 := Ix and complete to an orthonormal basis I1, . . . , In of the Clifford
algebra Rn. The Splitting Lemma gives fIx =

∑
A FAIA and we can write

f(x) =
1

2π

∫
∂Δ′

(ξ − x)−1dξIxf(ξ)

− 1

2π

∫
∂Δ

(ξ − x)−1dξIxf(ξ)

=
∑
A

1

2π

∫
∂Δ′

(ξ − x)−1dξIxFA(ξ)IA

−
∑
A

1

2π

∫
∂Δ

(ξ − x)−1dξIxFA(ξ)IA.

Let us now consider a single component FA at a time. By computing the integral
on ∂Δ′ in spherical coordinates, and by letting r′ → ∞, we obtain that the integral
equals aA = limr′→∞ FA, and therefore:

FA(x) = aA − 1

2π

∫
∂Δ

(ξ − x)−1dξIxFA(ξ).

Taking the sum of the various components multiplied with the corresponding units
IA we get the statement with a =

∑
A aAIA. �

Theorem 2.4.5 (Cauchy estimates). Let U ⊆ Rn+1 be an axially symmetric s-
domain and let f : U → Rn be an s-monogenic function. Let y0 ∈ U ∩ R, I ∈ S,
and r > 0 be such that ΔI(y0, r) = {(u+ Iv) : (u− y0)

2 + v2 ≤ r2} is contained in
U ∩CI . If MI = max{|f(x)| : x ∈ ∂ΔI(y0, r)} and if M = inf{MI : I ∈ S}, then

1

n!

∣∣∣∣∂nf∂un
(y0)

∣∣∣∣ ≤ M

rn
, n ≥ 0.

Proof. For any I ∈ S, it is possible to write

1

n!

∂nf

∂un
(y0) =

1

2πI

∫
∂ΔI(y0,r)

dζ

(ζ − y0)n+1
f(ζ).

Therefore, for any I ∈ S we can write the following sequence of inequalities:

1

n!

∣∣∣∣∂nf∂un
(y0)

∣∣∣∣ ≤ 1

2π

∫
∂ΔI(y0,r)

|f(ζ)|
rn+1

dζ

≤ 1

2π

∫
∂ΔI(y0,r)

MI

rn+1
dζ =

MI

rn
.

By taking the infimum, for I ∈ S, of the right-hand side of the inequality we prove
the assertion. �

Using the previous result it is immediate to show the following
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Theorem 2.4.6 (Liouville). Let f : Rn+1 → Rn be an entire s-monogenic function.
If f is bounded, then f is constant on Rn+1.

Proof. Suppose that |f | ≤M on Rn+1. By the previous theorem we have:

1

n!

∣∣∣∣∂nf∂un
(0)

∣∣∣∣ ≤ M

rn
, n ≥ 0,

and by letting r → +∞ we obtain

∂nf

∂un
(0) = 0

for any n > 0, which implies f(x) = c, with c ∈ Rn. �

Corollary 2.4.7. Let f : Rn+1 → Rn be an entire s-monogenic function. If
limx→∞ f exists, then f is constant on Rn+1.

Theorem 2.4.8. Let U be an open set in Rn+1. If f : U → Rn is an s-monogenic
function, then ∫

∂Δ

dxf(x) = 0

for any disc Δ ⊂ U ∩ CI with center in a point on the real axis.

Proof. This result is an easy consequence of the analogous result for holomorphic
functions of one complex variable and of the Splitting Lemma. �

Conversely, we have the following result:

Theorem 2.4.9. Let U be an axially symmetric s-domain and let f : U → Rn be
a real differentiable function. Assume that∫

γI

dxf(x) = 0

for any closed, piecewise C1 curve γI contained in U ∩ CI and homotopic to a
point. Then f is an s-monogenic function.

Proof. This is a consequence of the classical Morera’s theorem and of the definition
of s-monogenic function. �

Proposition 2.4.10. Let f : B(0, R) → Rn be the s-monogenic function expressed
by the series

∑
xmam converging on B. Then the composition of the functions f

and I0 = x−1 is s-monogenic on Rn+1 \B(0, 1/R) and it can be expressed by the
series

∑
x−mam converging on Rn+1 \B(0, 1/R).

Proof. Proposition 2.3.4 implies that f ◦ I0 is an s-monogenic function on Rn+1 \
B(0, 1/R). The statement follows from the analogous result for holomorphic func-
tions in one complex variable. �
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Theorem 2.4.11 (Laurent series). Let f be an s-monogenic function in a spherical
shell A = {x ∈ Rn+1 | R1 < |x| < R2}, 0 < R1 < R2. Then f admits the unique
Laurent expansion

f(x) =
∑
m≥0

xmam +
∑
m≥1

x−mbm (2.19)

where

am =
1

m!
∂ms f(0), bm =

1

2π

∫
∂(B(0,R′

1)∩CIx )

ζm−1dζIxf(ζ).

The two series in (2.19) converge in the open ball B(0, R2) and in Rn+1\B(0, R1),
respectively.

Proof. Let x ∈ A, then there exist two positive real numbers R′
1, R

′
2 such that

A′ = {x ∈ Rn+1 | R′
1 < |x| < R′

2} ⊂ A, and x ∈ A′. Using the Cauchy integral
formula, we can write

f(x) =
1

2π

∫
∂(A′∩CIx )

(ζ − x)−1 dζIxf(ζ) = f1(x) + f2(x)

where

f1(x) =
1

2π

∫
∂(B(0,R′

2)∩CIx )

(ζ − x)−1 dζIxf(ζ)

and

f2(x) = − 1

2π

∫
∂(B(0,R′

1)∩CIx )

(ζ − x)−1 dζIxf(ζ).

The first integral is associated to the first series in the Laurent expansion, by
Proposition 2.3.1. Let us consider the second integral, set I1 = Ix and let us use
the Splitting Lemma and write f2 as

∑
A FAIA. Now we can reason as in the case

of functions in one complex variable, and consider the single components of f2(x).
In Rn+1 \B(0, R′

1), we have

FA(x) = − 1

2π

∫
∂(B(0,R′

1)∩CIx )

(ζ − x)−1 dζIxFA(ζ)

=
1

2π

∫
∂(B(0,R′

1)∩CIx )

∑
m≥0

x−m−1ζmdζIxFA(ζ)

where we have used the fact that on the plane CIx the variables ζ and x commute.
Now, using the uniform convergence of the series we can write

FA(x) =
∑
m≥0

x−m−1 1

2π

∫
∂(B(0,R′

1)∩CIx )

ζmdζIxFA(ζ) =
∑
m≥0

x−m−1bm+1,A
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where

bm+1,A := bm+1,Ix;A =
1

2π

∫
∂(B(0,R′

1)∩CIx )

ζmdζIxFA(ζ).

Finally, we obtain:

f̃2(x) =
∑
A

FA(x)IA =
∑
m≥0

∑
A

x−m−1bm+1,AIA.

Note that f̃2(x) coincides with f2(x) on the plane CIx , thus they coincide every-
where and the coefficients bm+1,A do not depend on the choice of the imaginary
unit Ix. The statement follows. �

2.5 Zeros of slice monogenic functions

As it is well known, the Fundamental Theorem of Algebra does not hold in Rn for
n ≥ 3, thus we cannot guarantee that a polynomial in the paravector variable x
has a zero, not even if it is a degree-one polynomial. The following examples are
instructive to show what can happen in a Clifford algebra.

Example 2.5.1. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
xe1 − e2 ∈ Rn[x]. The only zero of p is e1e2 which does not belong to Rn+1.

Example 2.5.2. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
x2 − x(e1e2 − 2e1) + 2e2 ∈ Rn[x]. It can be easily verified that p vanishes for
x = −2e1 and x = − 1

5 (4e1 + 3e1e2). However, only x = −2e1 is a zero of p in
Rn+1.

Example 2.5.3. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
x2 − x(e1 + 2e2) + 2e1e2 ∈ Rn[x]. It can be easily verified that both x = e1 and
x = 1

5 (8e1 + 6e2) are zeros of p in Rn+1.

It is nevertheless interesting to attempt to characterize the set of zeros for
those polynomials for which such a set is not empty. Let us start by showing that
each (n− 1)-sphere [s] is characterized by a second degree equation.

Proposition 2.5.4. Let s = s0 + s ∈ Rn+1. Consider the equation

x2 − 2Re[s]x+ |s |2 = 0. (2.20)

Then, x = x0 + x ∈ Rn+1 is a solution if and only if x ∈ [s ].

Proof. The result is immediate when s = s0 ∈ R. Let us suppose that s �∈ R.
It is immediate that x ∈ [s] is a solution. Conversely, let x be a solution, i.e.,
(x0 + x)2 − 2Re[s](x0 + x) + |s |2 = 0. A direct computation shows that this is
possible if and only if x = 0 or x0 = s0. The first possibility does not give any
solution, while the second gives |x| = |s |, i.e., the equivalence class of s. �
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An obvious consequence of the proposition, which will be useful in the sequel,
is that any paravector s satisfies the identity

s2 − 2Re[s]s+ |s|2 = 0. (2.21)

As a consequence of the Representation Formula II, we obtain the following
immediate result on the zeros of an s-monogenic function:

Proposition 2.5.5. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f :
U → Rn+1 be an s-monogenic function. If f(u + Iv) = f(u +Kv) = 0 for some
I,K ∈ S, I �= K, then f vanishes on the entire (n− 1)-sphere [u+ Iv].

In particular, we have

Corollary 2.5.6. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn+1 be an s-monogenic function. If f(u + Iv) = f(u − Iv) = 0 for some I ∈ S,
then f vanishes on the entire (n− 1)-sphere [u+ Iv].

In other words, the zero set of an s-monogenic function having two zeros on a
certain (n− 1)-sphere contains the entire sphere. There are s-monogenic functions
whose zero set is made only by the union of isolated (n−1)-spheres (in particular,
points on the real axis). Among these functions there are power series with real
coefficient, as proved in the following:

Proposition 2.5.7. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f :
U → Rn be an s-monogenic function. If f has a series representation

f(x) =
∑
m≥0

(x− y0)
mam

with real coefficients am, at some point on the real axis y0 ∈ U , then every real
zero is isolated. If u0 + v0I0, for some I0 ∈ S, is a nonreal zero, then u0 + v0I is
a zero for any I ∈ S. In particular, if f �≡ 0, the zero set of f is either empty or
it is the union of isolated points (belonging to R) and isolated (n− 1)-spheres.

Proof. We will first prove that for all I ∈ S we have f(U∩CI) ⊆ U∩CI . This fact is
true in a suitable disc B∩CI ⊂ CI containing y0, since the series f(x) =

∑
m≥0(x−

y0)
mam converging on B, has real coefficients by hypothesis. The Splitting Lemma

on the plane CI implies that fI(u+Iv) = F (u+Iv) in that disc on CI . Therefore,
FA = 0 for A �= ∅ on B ∩ CI and by the Identity Principle for holomorphic
functions we obtain that all the holomorphic functions FA are identically zero
on U ∩ CI for A �= ∅. Hence f(U ∩ CI) ⊆ U ∩ CI for all I ∈ S from which it
follows that f(u) ∈ R for all u ∈ U ∩ R. By the Identity Principle we get that
f(u+ I0v) ≡ F (u+ I0v) on U ∩CI0 and, being F (u) real-valued for all u ∈ U ∩R,
we have that F (u+ I0v) = F (u− I0v) on U ∩ CI0 . Since

0 = f(u0 + I0v0) = F (u0 + I0v0) = F (u0 − I0v0)
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it turns out that
F (u0 − I0v0) = f(u0 − I0v0) = 0.

The statement follows from Corollary 2.5.6. The fact that the real zeros and the
spheres are isolated follows from the Identity Principle. �

As a consequence, we get a description of the zero set of a polynomial with
real coefficients in the paravector variable:

Corollary 2.5.8. Let p be a polynomial in the paravector variable x with real coef-
ficients. Then the zero set of p is the union of isolated points (belonging to R) and
isolated (n− 1)-spheres.

Remark 2.5.9. As we have already pointed out, in the case n = 1 the set of
s-monogenic functions coincide with the set of holomorphic functions in one com-
plex variable (by identifying R2 with C). Proposition 2.5.7 corresponds to the
well-known result saying that the zeros of a holomorphic function whose series
expansion has real coefficients has isolated zeros which are either real or complex
conjugates.

To show that any s-monogenic function has zero set consisting of a union of
isolated (n− 1)-spheres (which might be reduced to a point on the real axis) and
isolated points, we associate to each s-monogenic function defined on an axially
symmetric s-domain U , an auxiliary function defined on U and denoted by fσ.
The function fσ has two main properties: on one hand it vanishes on the zero set
of f , on the other hand, it defines a holomorphic function which takes elements
from U ∩ CI to CI for all I ∈ S.

The idea used to construct the function fσ is based on the observation that,
given a vector with 2n−1 complex components wA, the vector with components
wAw̄A is zero if and only if wA = 0 for all A. Now note that the Splitting Lemma
allows to write the restriction fI of an s-monogenic function f in terms of a vector
of 2n−1 holomorphic functions FA : U ∩ CI → CI as

fI(z) =
∑
A

FA(z)IA.

Consider the vector with components FA(z)FA(z̄). The components are obviously
holomorphic and if FA(z0) = 0 also FA(z0)FA(z̄0) = 0. We then define the function
fσ
I : U ∩ CI → CI by

fσ
I (z) =

∑
A

FA(z)FA(z̄).

Using the Extension Lemma 2.2.22, we can extend the function fσI to an s-
monogenic function defined on U :

Definition 2.5.10. Let U ⊂ Rn+1 be an axially symmetric s-domain and let f :
U → Rn be an s-monogenic function. Let I ∈ S and let

fσ
I (z) =

∑
A

FA(z)FA(z̄).
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We define fσ : U → Rn by:

fσ(x) := ext(fσ
I )(x).

We have the following property:

Lemma 2.5.11. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. Then f vanishes identically on U if and only if
fσ vanishes identically on U .

Proof. When f ≡ 0, it is immediate that fσ ≡ 0. Conversely, consider the re-
striction fI of f to a plane CI , which, by the Splitting Lemma, can be written
as fI(z) =

∑
A FA(z)IA where FA : U ∩ CI → CI are holomorphic functions.

Then the functions FA admit series expansion at any point of U ∩ CI . Consider
y0 ∈ U ∩ CI belonging to the real axis and the series expansion of FA at a point
y0:

FA(z) =
∑
m≥0

(z − y0)
maAm, aAm ∈ CI

which holds in a suitable disc Δ(y0, R) ⊆ U ∩ CI of radius R and centered in
y0 ∈ R. Then, on Δ(y0, R), we have

FA(z̄) =
∑
m≥0

(z − y0)
māAm.

Moreover on Δ(y0, R) we can write

fσ
I (z) =

∑
A

FA(z)FA(z̄)

=
∑
A

∑
m≥0

(z − y0)
mcAm =

∑
m≥0

(z − y0)
m(
∑
A

cAm),

where

cAm =

m∑
i=0

aAiāA m−i.

Now, if fσ ≡ 0, then fσ
I ≡ 0. So, in the disc Δ(y0, R) we have that

∑
A cA0 =∑

A |aA0|2 = 0 so aA0 = 0 for all multi-indices A. Now, by induction, assume that
aAi = 0 for i = 0, 1, . . . , k−1, k ≥ 1 for all multi-indices A. Consider the coefficient∑

A

cA 2k =
∑
A

2k∑
i=0

aAiāA 2k−i

which is zero because fσ
I ≡ 0. By assumption we have aAiāA 2k−i = 0 when

i = 0, . . . , k − 1 since aAi = 0 and aAiāA 2k−i = 0 when i = k + 1, . . . , 2k since
āA 2k−i = 0. Thus,

∑
A cA 2k =

∑
A |aAk|2 is zero if and only if aAk = 0 for all

multi-indices A. We conclude that fσ
I ≡ 0 in the disc Δ(y0, R) ∩ CI implies that

all the coefficients aAi vanish, thus also fI vanishes identically on the same disc.
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By the Identity Principle f vanishes identically. �

The zero set of fσ is described in the following result:

Lemma 2.5.12. Let U ⊆ Rn+1 be an axially symmetric s-domain, let f : U →
Rn be an s-monogenic function, and let f �≡ 0. If there exists I ∈ S for which
fσ(u0 + Iv0) = 0, then fσ(u0 + Jv0) = 0 for all J ∈ S. Moreover, the zero set of
fσ consists of isolated (n − 1)-spheres (which might reduce to points on the real
axis).

Proof. Consider the restriction fσ
I of fσ to the plane CI . We have:

fσ
I (z̄) =

∑
A

FA(z̄)FA(z) =
∑
A

FA(z̄)FA(z) = fσ
I (z),

thus fσ
I (u0 + Iu0) = 0 if and only if fσ

I (u0 − Iu0) = 0. So, if fσ(u0 + Iv0) = 0,
then, by the Representation Formula, fσ(u0 + Ju0) = 0 for all J ∈ S. The second
part of the statement follows by the Identity Principle: if the (n − 1)-spheres of
zeros were not isolated, on each plane we would get accumulation points of zeros
and thus fσ would be identically zero by the Identity Principle which contradicts
the fact that fσ �≡ 0 by Lemma 2.5.11. �

Lemma 2.5.13. Let U ⊆ Rn be an axially symmetric s-domain and let f : U → Rn

be an s-monogenic function. If u+ Iv is a zero of f , then it is also a zero of fσ.

Proof. The restriction of f to the plane CI can be written, by the Splitting Lemma,
as fI(z) =

∑
A FA(z)IA. The condition f(u + Iv) = 0 implies that, on the plane

CI it is also FA(u + Iv) = 0 for all A. Thus fσ
I (u + Iv) = 0 and the statement

follows. �

We are now in a position to prove the following theorem which describes the
zero set of an s-monogenic function defined on an axially symmetric s-domain.

Theorem 2.5.14 (Structure of the Zero Set). Let U ⊆ Rn+1 be an axially symmetric
s-domain and let f : U → Rn be an s-monogenic function. Suppose that f does
not vanish identically. Then if the zero set of f is nonempty, it consists of the
union of isolated (n− 1)-spheres and/or isolated points.

Proof. Suppose that the zero set of f is nonempty and that f does not vanish
identically, thus also fσ does not vanish identically by Lemma 2.5.11. By Lemma
2.5.13 any zero of f is a zero of fσ, i.e., denoting by Zfσ and Zf the zero set of
fσ and f respectively, we have Zf ⊆ Zfσ . If Zf contains two points on an (n−1)-
sphere [s], then Zf contains the whole sphere. Indeed, suppose that u0+ Iv0, u0+
Jv0 ∈ [s], I �= J , and f(u0 + Iv0) = f(u0 + Jv0) = 0. Then by the Representation
Formula we get

f(u0 + Jv0) =
1

2
[1 + JI]f(u0 − Iv0) = 0.
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The element 1 + JI = (−I + J)I is invertible since it is product of two invertible
elements, thus f(u0 − Iv0) = 0 and the statement follows from Proposition 2.5.6.

When a sphere belongs to Zf , then it is isolated. Indeed, let x0 be a point
on this sphere. If there were a sequence {xn} of zeros, xn �∈ [u0 + I0v0], such
that xn → x0, then the corresponding spheres [xn] would belong to Zfσ , which is
absurd by Lemma 2.5.12.

Similarly, suppose that Zf contains a point x0 = u0+Jv0, without containing
the sphere u0 + Iv0, I ∈ S generated by it. Then we have to show that the point
u0+I0v0 is isolated. Indeed, if there were a sequence {xn} of zeros, xn �∈ [u0+Jv0]
(otherwise the whole sphere [u0 + Jv0] would belong to Zf ), such that xn → x0,
then the corresponding spheres would belong to Zfσ which is absurd by Lemma
2.5.12. �

Remark 2.5.15. The result already obtained in Proposition 2.5.5 can be obtained
also as a consequence of the previous theorem. In fact, given a converging power
series

∑
m≥0 x

mam, am ∈ Rn, if there are two different elements in a given equiv-
alence class [s], which are solutions to the equation∑

m≥0

xmam = 0,

then all the elements in the equivalence class are solutions.

We close this section with an immediate corollary of the previous theorem,
which yields a nice description of the zero set of a polynomial:

Corollary 2.5.16. Let p(x) be a polynomial in Rn[x], with right coefficients, which
does not vanish identically. Then, if the zero set of p is nonempty, it consists of
isolated points or isolated (n− 1)-spheres.

2.6 The slice monogenic product

It is immediate to see that the product of two s-monogenic functions is not, in
general, s-monogenic. Nevertheless, as we indicated in Section 2.3, it is possible to
define a product among s-monogenic power series by mimicking the process used
to define a product of polynomials in skew fields. We can extend this idea to the
case of s-monogenic functions defined on axially symmetric s-domains, to define
an s-monogenic product. Let U ⊆ Rn+1 be an axially symmetric s-domain and let
f, g : U → Rn be s-monogenic functions. For any I ∈ S set I = I1 and consider a
completion to a basis {I1, . . . , In} of Rn such that IiIj+IjIi = −2δij. The Splitting
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Lemma guarantees the existence of holomorphic functions FA, GA : U ∩CI → CI

such that, for all z = u+ Iv ∈ U ∩ CI ,

fI(z) =
∑
A

FA(z)IA, gI(z) =
∑
B

GB(z)IB,

where A,B are subsets of {2, . . . , n} and, by definition, I∅ = 1. We define the
function fI ∗ gI : U ∩CI → Rn as

fI ∗ gI(z) =
∑

|A|even
(−1)

|A|
2 FA(z)GA(z) +

∑
|A|odd

(−1)
|A|+1

2 FA(z)GA(z̄) (2.22)

+
∑

|A|even,B �=A

FA(z)GB(z)IAIB +
∑

|A|odd,B �=A

FA(z)GB(z̄)IAIB .

Then fI ∗gI(z) is obviously a holomorphic map on CI , i.e., ∂I(fI ∗gI)(z) = 0, and
hence its unique s-monogenic extension to U , according to the Extension Lemma
2.2.22, is given by

f ∗ g(x) := ext(fI ∗ gI)(x).
Definition 2.6.1. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f, g :
U → Rn be s-monogenic functions. The function

f ∗ g(x) = ext(fI ∗ gI)(x)

defined as the extension of (2.22) is called the s-monogenic product of f and g.
This product is also called the ∗-product of f and g.

Remark 2.6.2. It is immediate to verify that the ∗-product is associative, distribu-
tive but, in general, not commutative.

The following example shows the dramatic difference between polynomials in
a division algebra and polynomials in a Clifford algebra. Even a simple result such
as deg(p1 ∗ p2) = deg(p1)+deg(p2) fails (we can only conclude that deg(p1 ∗ p2) ≤
deg(p1) + deg(p2)) and it is impossible to deduce the zeros of the product from
the zeros of the factors. This is in stark contrast with the case of polynomials in
division algebras, where it is possible to obtain explicit formulas to deduce the
zeros of f ∗ g from the zeros of f and g (see, e.g., [71]).

Example 2.6.3. Consider the two polynomials p1(x) = 1+x(1−e1e2e3) and p2(x) =
1+x(1+e1e2e3) ∈ R3[x]. None of them has roots in R4 because (1±e1e2e3) are zero
divisors. Their product p1∗p2(x) = (1+x(1−e1e2e3))∗(1+x(1+e1e2e3)) = 1+2x
is a degree-one polynomial and has the real number −1/2 as its root.

The s-monogenic product is however an important tool to obtain s-monogenic
functions. In particular, it allows us to define the inverse of an s-monogenic function
with respect to the ∗-product. As we have already mentioned, not all the Clifford
numbers admit an inverse with respect to the product in the Clifford algebra



2.6. The slice monogenic product 49

Rn. Those Clifford numbers a ∈ Rn for which aā is a real nonzero number admit
inverse a−1 = ā(aā)−1. In particular the existence of the inverse can be guaranteed
for all nonzero vectors. Similarly, for s-monogenic functions we can guarantee
the existence of an inverse with respect to the ∗-product, if we suitably restrict
their codomains. To introduce the notion of inverse we need some preliminary
definitions.

Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U → Rn be an
s-monogenic function. Let us consider the restriction fI(z) of f to the plane CI

and it usual representation (given by the Splitting Lemma)

fI(z) =
∑
A

FA(z)IA.

Let us define the function f c
I : U ∩ CI → CI as

f c
I (z) :=

∑
A

F c
A(z)IA (2.23)

=
∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA −
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA,

where the equivalence ≡ is intended as ≡ (mod4), i.e., the congruence modulo 4.
Since any function FA is obviously holomorphic it can be uniquely extended to an
s-monogenic function on U , according to the Extension Lemma 2.2.22. Thus we
can give the following definition:

Definition 2.6.4. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. The function

f c(x) = ext(f c
I )(x)

is called the s-monogenic conjugate of f .

This definition of conjugate behaves, for power series and thus for polynomi-
als, as the conjugation on the coefficients as proven in the next result:

Proposition 2.6.5. Let f : B(y0, R) → Rn be an s-monogenic function on an open
ball in Rn+1 centered at a point on the real axis y0. If

f(x) =
∑
m≥0

(x− y0)
mam,

then, for am ∈ Rn, we have

f c(x) =
∑
m≥0

(x− y0)
mām.
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Proof. We will suppose without loss of generality that y0 = 0. By Corollary 2.3.7,
given any I ∈ S, the coefficients of the power series expansion of f can be obtained
as the coefficients of the power series of fI . By the Splitting Lemma with respect to
an orthonormal completion of I to a basis of Rn, for all z = u+ Iv ∈ B(0, R)∩CI

we have

fI(z) =
∑
A

FA(z)IA =
∑
A

∑
m≥0

zm
1

m!

(∂mFA

∂um
(0)
)
IA =

∑
m≥0

zm
1

m!
∂ms f(0)

and hence the relation

f c
I (z) =

∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA −
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA (2.24)

=
∑
m≥0

zm

m!

( ∑
|A|≡0

∂mFA

∂um
(0)−

∑
|A|≡1

∂mFA

∂um
(0)−

∑
|A|≡2

∂mFA

∂um
(0) +

∑
|A|≡3

∂mFA

∂um
(0)
)
IA

(2.25)

=
∑
m≥0

zm
1

m!
∂ms f(0), (2.26)

where the equivalence ≡ is intended as the congruence modulo 4, proves the as-
sertion. �

Using the notion of ∗-multiplication of s-monogenic functions, it is possible to
associate to any s-monogenic function f its “symmetrization” or “normal form”,
denoted by fs. We will show that all the zeros of f s are (n− 1)-spheres (possibly
reduced to a point on the real axis) and that if x is a zero of f (isolated or not),
then the (n− 1)-sphere [x] is a zero of fs.

Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U → Rn be an
s-monogenic function. As usual, using the Splitting Lemma we can write

fI(z) =
∑
A

FA(z)IA;

here we will use the notation [fI ]0 to denote the “scalar” part of the function
fI , i.e., the part whose coefficient in the Splitting Lemma is I∅ = 1. With this
notation, we define the function f s : U ∩ CI → CI as

f s
I := [fI ∗ f c

I ]0 (2.27)

=
[
(
∑
B

FB(z)IB)(
∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA

−
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA)
]
0
.
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We have

fI ∗ f c
I =

∑
|B|even,|A|≡0

FB(z)FA(z̄)IBIA −
∑

|B|even,|A|≡1

FB(z)FA(z)IBIA

−
∑

|B|even,|A|≡2

FB(z)FA(z̄)IBIA +
∑

|B|even,|A|≡3

FB(z)FA(z)IBIA

+
∑

|B|odd,|A|≡0

FB(z)FA(z)IBIA −
∑

|B|odd,|A|≡1

FB(z)FA(z̄)IBIA

−
∑

|B|odd,|A|≡2

FB(z)FA(z)IBIA +
∑

|B|odd,|A|≡3

FB(z)FA(z̄)IBIA.

The terms from which the scalar part arises are the ones with A = B, i.e.,

[fI ∗ f c
I ]0 =

∑
|A|≡0

FA(z)FA(z̄)I
2
A −

∑
|A|≡2

FA(z)FA(z̄)I
2
A

−
∑
|A|≡1

FA(z)FA(z̄)I
2
A +

∑
|A|≡3

FA(z)FA(z̄)I
2
A =
∑
A

FA(z)FA(z̄).

Then fs
I is obviously holomorphic and hence its unique s-monogenic extension to

U defined by
f s(x) := ext(f s

I )(x)

is s-monogenic.

Definition 2.6.6. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. The function

fs(x) = ext(f s
I )(x)

defined by the extension of fs
I = [fI ∗ f c

I ]0 from U ∩ CI to the whole U is called
the symmetrization of f .

Remark 2.6.7. Notice that formula (2.27) yields that, for all I ∈ S, f s(U ∩CI) ⊆
CI .

Remark 2.6.8. Note that the function fσ introduced in Definition 2.5.10 to study
the zero set of an s-monogenic function coincides with fs for all s-monogenic
functions f .

It is now easy to verify the following facts.

Proposition 2.6.9. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f, g ∈
M(U). Then

f sg = fs ∗ g = g ∗ fs.

Moreover, if Zfs is the zero set of f s, then

(f s)−1g = (f s)−1 ∗ g = g ∗ (fs)−1 on U \ Zfs .
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Proof. Since fs(U∩CI) ⊆ CI , the series expansion of fs
I in a small ball with center

at a real point has real coefficients so, in that ball, we have fs
I gI = f s

I ∗gI = gI ∗f s
I .

By the Identity Principle f s
I ∗ gI = fs

I gI = gI ∗ f s
I on U ∩ CI and so, by the

Extension Lemma, fs ∗ g = g ∗ fs. Reasoning in the same way with the function
(f s)−1, whose restriction to CI takes (U \ Zfs) ∩ CI to CI , we get the final part
of the statement. �
Definition 2.6.10. Let U ⊆ Rn+1 be an axially symmetric s-domain. Let f : U →
Rn be an s-monogenic function such, that for some I ∈ S its restriction fI to the
complex plane CI satisfies the condition

fI ∗ f c
I has values in CI .

We define the function:
f−∗ := ext((f s

I )
−1f c

I )

where fs
I = [fI ∗ f c

I ]0 = fI ∗ f c
I , and we will call it s-monogenic inverse of the

function f .

The next proposition shows that the function f−∗ is the inverse of f with
respect to the ∗-product:
Proposition 2.6.11. Let U ⊆ Rn+1 be an axially symmetric s-domain. Let f : U →
Rn be an s-monogenic function such that for some I ∈ S we have fI ∗f c

I has values
in CI . Then on U \ Zfs we have:

f−∗ ∗ f = f ∗ f−∗ = 1.

Proof. To prove the statement it is sufficient to show that on the plane CI we
have:

fI ∗ (f s
I )

−1f c
I = (f s

I )
−1f c

I ∗ fI = 1.

Using associativity and Proposition 2.6.9, we easily compute:

fI ∗ ((fs
I )

−1 ∗ f c
I ) = (fs

I )
−1 ∗ fI ∗ f c

I = f s
I
−1 ∗ (f s

I ) = 1,

and
((f s

I )
−1 ∗ f c

I ) ∗ fI = (f s
I )

−1 ∗ f c
I ∗ fI = (f s

I )
−1 ∗ fs

I = 1.

The result now follows from the Extension Lemma 2.2.22. �
Example 2.6.12. Consider the function f(x) = x− s defined on Rn+1. As it is well
known, the inverse (x − s)−1 is not an s-monogenic function, unless s ∈ R. Since
the function

(fI ∗ f c
I )(z) = (z − s)(z − s) = z2 − 2Re[s]z + |s|2

has real coefficients and thus has values in CI , we can consider the s-monogenic
inverse of f . According to Definition 2.6.10, f−∗ is defined for x �∈ [s], and it is
the function

f−∗(x) = (x2 − 2Re[s]x+ |s|2)−1(x− s).
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As we will see in the next section, the expression (x2 − 2Re[s]x + |s|2)−1(x − s)
cannot be simplified, unless s ∈ R and in this case it coincides with (x− s)−1, i.e.,
the standard inverse of f .

Example 2.6.13. The notions of s-monogenic inverse and s-monogenic multiplica-
tion allow us to introduce s-monogenic quotients (left and right) of s-monogenic
functions. Let f, g : U ⊆ Rn+1 → Rn be two s-monogenic functions. On U \ Zgs

we can define the functions

g−∗ ∗ f and f ∗ g−∗.

Let us consider the function g−∗ ∗ f (the other case can be treated in a similar
way): by definition it is the extension of

g−∗
I ∗ fI = (gsI)

−1gcI ∗ fI ,

which is an Rn-valued function satisfying

∂I((g
s
I)

−1gcI ∗ fI) = 0

and such that Zgs ∩ CI consists of isolated points.

2.7 Slice monogenic Cauchy kernel

We begin this section with the following crucial definition, which is the starting
point to find a Cauchy formula with s-monogenic kernel.

Definition 2.7.1. Let x, s ∈ Rn+1. We call

S−1(s,x) :=
∑
n≥0

xns−1−n

the noncommutative Cauchy kernel series.

Remark 2.7.2. The noncommutative Cauchy kernel series is convergent for |x| <
|s|.

Theorem 2.7.3. Let x, s ∈ Rn+1 be such that xs �= sx. Then, the function

S(s,x) = −(x− s)−1(x2 − 2Re[s]x+ |s|2),

is the inverse of the noncommutative Cauchy kernel series.

Proof. Let us verify that

−(x− s)−1(x2 − 2Re[s]x+ |s|2)
∑
n≥0

xns−1−n = 1.
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We therefore obtain

(−|s|2 − x2 + 2Re[s]x)
∑
n≥0

xns−1−n = s+ x− 2 Re[s]. (2.28)

Observing that −|s|2 − x2 + 2Re[s]x commutes with xn we can rewrite this last
equation as ∑

n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n = s+ x− 2 Re[s].

Now the left-hand side can be written as∑
n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n

= (−|s|2 − x2 + 2Re[s]x)s−1 + x1(−|s|2 − x2 + 2Re[s]x)s−2

+ x2(−|s|2 − x2 + 2Re[s]x)s−3 + . . .

= −
(
|s|2s−1 + x(−2Re[s]s+ |s|2)s−2 + x2(s2 − 2Re[s]s+ |s|2)s−3

+ x3(s2 − 2Re[s]s+ |s|2)s−4 + . . .
)
.

Using the identity (2.20)

s2 − 2Re[s]s+ |s|2 = 0

we get ∑
n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n = −|s|2s−1 + xs2s−2

= −|s|2s−1 + x = −sss−1 + x = −s+ x = s− 2 Re[s] + x

which equals the right-hand side of (2.28). �

When x, s commute, the function S(s,x) becomes

S(s,x) = −(x− s)−1(x2 − 2xRe[s] + |s|2) = −(x− s)−1(x− s)(x− s) = s− x

which is, trivially, the inverse of the standard sum of the Cauchy kernel series
S−1(s,x) =

∑
n≥0 x

ns−1−n = (s − x)−1.
As a direct consequence of this observation and of the previous result, we

can explicitly write the sum of the noncommutative Cauchy kernel series:

Theorem 2.7.4. Let x, s ∈ Rn+1 be such that xs �= sx. Then∑
n≥0

xns−1−n = −(x2 − 2Re[s]x+ |s|2)−1(x− s),
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for |x| < |s|. If xs = sx, then∑
n≥0

xns−1−n = (s− x)−1,

for |x| < |s|.
Definition 2.7.5. We will call the expression

S−1(s,x) = −(x2 − 2Re[s]x+ |s|2)−1(x− s), (2.29)

defined for x2 − 2Re[s]x+ |s|2 �= 0, the noncommutative Cauchy kernel.

Remark 2.7.6. With an abuse of notation we have used the same symbol S−1(s,x)
to denote the noncommutative Cauchy kernel series and the noncommutative
Cauchy kernel. This notation will not create confusion in the following since from
the context it will be clear which object we are considering.

Note that the noncommutative Cauchy kernel is defined on a set which is
larger than the set {(x, s) : |x| < |s|} where the noncommutative Cauchy kernel
series is convergent.

Remark 2.7.7. We now observe that the expression

(x2 − 2Re[s]x+ |s|2)−1(x− s)

involves an inverse which does not exist if we set x = s; indeed, in this case we
have

s2 − 2Re[s]s+ |s|2 = 0.

One may wonder if the factor (x− s̄) can be simplified. The next theorem shows
that this is not possible and the function

(x2 − 2Re[s]x+ |s|2)−1(x− s)

cannot be extended to a continuous function in x = s.

Theorem 2.7.8. Let S−1(s,x) be the noncommutative Cauchy kernel and let xs �=
sx. Then S−1(s,x) is irreducible and limx→s S

−1(s,x) does not exist.

Proof. We prove that we cannot find a degree-one polynomial Q(x) such that

x2 − 2Re[s]x+ |s|2 = (s+ x− 2Re[s])Q(x).

The existence of Q(x) would allow the simplification

S−1(s,x) = Q−1(x)(s + x− 2Re[s])−1(s + x− 2Re[s]) = Q−1(x).

We proceed as follows: first of all note that Q(x) has to be a monic polynomial of
degree one, so we set

Q(x) = x− r
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where r = r0 +
∑n

j=1 rjej. The equality

(s+ x− 2 Re[s])(x − r) = x2 − 2Re[s]x+ |s|2

gives
sx− sr− xr + 2Re[s]r− |s|2 = 0.

Solving for r, we get

r = (s + x− 2 Re[s])−1(sx− |s|2),

which depends on x. Let us now prove that the limit does not exist. Let e =
ε0 +

∑n
j=1 εjej , and consider

S−1(s, s+ e) = ((s + e)2 − 2(s+ e)Re[s] + |s|2)−1e

= ((s+ e)2 − 2(s+ e)Re[s] + |s|2)−1e

= (se+ es + e2 − 2eRe[s])−1e

= (e−1(se+ es+ e2 − 2eRe[s]))−1

= (e−1se+ s+ e− 2Re[s]))−1.

If we now let e → 0, we obtain that the term e−1se does not have a limit because
the element

e−1se =
e

|e|2 se

has scalar components of the type
εiεjs�
|e|2 with i, j, � ∈ {0, 1, 2, 3}, which do not

have limit. �
Proposition 2.7.9. The function S−1(s,x) is left s-monogenic in the variable x and
right s-monogenic in the variable s in its domain of definition.

Proof. The proof follows by direct computations. Consider any I ∈ S and set
x = u+ Iv. We have:

∂

∂u
S−1(s, u+ Iv)

= ((u + Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2u+ 2Iv − 2Re[s])(u+ Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1,

∂

∂v
S−1(s, u+ Iv)

= ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2uI − 2v − 2Re[s]I)(u + Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1I,
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so we obtain:

∂

∂u
S−1(s, u+ Iv) + I

∂

∂v
S−1(s, u+ Iv)

= ((u + Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2u+ 2Iv − 2Re[s])(u + Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1

+ ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(−2u− 2vI + 2Re[s])(u+ Iv − s̄)

+ ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1 = 0.

Let us now set s = u + Iv. Then S−1(u + Iv,x) = F (u, v,x)(x − u + Iv) where
F (u, v,x) is a function involving x, the real variables u, v but not the imaginary
unit I. Then we have:

∂

∂u
S−1(u + Iv,x) = (x2 − 2xu+ u2 + v2)−2(−2x+ 2u)(x− u+ Iv)

+ (x2 − 2xu+ u2 + v2)−1,

∂

∂v
S−1(u+Iv,x) = (x2−2xu+u2+v2)−22v(x−u+Iv)−(x2−2xu+u2+v2)−1I.

It follows that

∂

∂u
S−1(u+ Iv,x) +

∂

∂y
S−1(u+ Iv,x)I

= (x2 − 2xu+ u2 + v2)−2(−2x+ 2u)(x− u+ Iv)− (x2 − 2xu+ u2 + v2)−1

+ (x2 − 2xu+ u2 + v2)−22v(x− u+ Iv)I − (x2 − 2xu+ u2 + v2)−1

= 2(x2 − 2xu+ u2 + v2)−2(x2 − 2xu+ u2 + v2)− 2(x2 − 2xu+ u2 + v2)−1

= 0. �

This result is obviously trivial when S−1(s,x) coincides with the Cauchy
kernel series. However, as we have pointed out after Definition 2.29, the function
S−1(s,x) is defined on a set which is larger than the domain of convergence of the
series and therefore the direct argument in the preceding proof is necessary.

We now state some equalities which are important to prove further properties
of the Cauchy kernel function.

Proposition 2.7.10. Let x, s ∈ Rn+1 be such that x �= s̄. Then the following identity
holds:

(x− s)−1s(x− s)− x = −(s− x̄)x(s − x̄)−1 + s,

or, equivalently,

−(x− s)−1(x2 − 2xRe[s] + |s|2) = (s2 − 2Re[x]s + |x|2)(s− x̄)−1; (2.30)

finally, if x �∈ [s] we have

−(x2 − 2Re[s]x+ |s|2)−1(x − s) = (s − x)(s2 − 2Re[x]s + |x|2)−1. (2.31)
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Proof. One may prove the identities by direct computations. Let us prove (2.31).
To show that the formula is an identity, we multiply by (x2 − 2Re[s]x + |s|2) on
the left and by (s2 − Re[x]s + |x|2) on the right. We obtain:

x2s− 2Re[s]xs + 2Re[s]|x|2 − x|s|2 = −xs2 + 2Re[x]xs − 2Re[x]|s|2 + s|x|2

which becomes

(x2 − Re[x] + |x|2)s = −x(s2 − Re[s] + |s|2)

that is an identity by (2.21). Note that (2.31) holds for x �∈ [s], which is equivalent
to s �∈ [x]. The identity (2.30) can be proven by taking the inverse of (2.31) and it
holds for x �= s. Easy computations show the validity of the remaining identity. �

We now consider the function S−1(s,x) = S−1
s (x) as a function of x. Clearly,

its singularities are the entire (n − 1)-sphere [s] which reduces to the point {s}
when s is real. The next result analyzes in detail the singularities of S−1

s (x) on
each plane CI when s �∈ R.

Proposition 2.7.11. Let s ∈ Rn+1\R. If I �= Is, then the function S−1(s,x) =
S−1
s (x) has two singularities Re[s]± I|s| on the plane CI . On the plane CIs , the

restriction of S−1
s (x), i.e., (x− s)−1, has only one singularity at the point s.

Proof. Suppose s ∈ Rn+1\R and consider S−1
s (x) = (s2−2Re[x]s+ |x|2)−1(s−x).

The singularities of S−1
s (x) corresponds to the roots of s2 − 2Re[x]s + |x|2 = 0.

This equation can be written by splitting real and imaginary parts as

Re[s]2 − |s|2 − 2Re[s]Re[x] + |x|2 = 0,

(Re[s]− Re[x])s = 0.

The assumption s �= 0 implies Re[x] = Re[s] and so |x| = |s|, i.e., the roots
correspond to the (n − 1)-sphere [s]. Consider now the plane CI . When I �= Is,
CI intersect the (n − 1)-sphere [s] in Re[s] ± I|s| while, when I = Is, x and s
commute, so

S−1
s (x) = −(x− s)−1(x − s̄)−1(x− s̄) = −(x− s)−1

and x is the only singularity of the restriction of S−1
s (x) to the plane CIs . �

Remark 2.7.12. The previous proposition states that the restriction of S−1(s,x)
to the plane CIs , has a removable singularity at the point x = s̄. However, equality
(2.31) and the proof of Theorem 2.7.8 show that the function S−1(s,x) still has a
singularity at the point x = s̄.

The kernel S−1(s,x) is a left s-monogenic function in x and a right s-
monogenic function in s so, in principle, it cannot be used in both the Cauchy
formulas for left and for right s-monogenic functions. Thus one has to establish
which kernel has to be used for a Cauchy formula for right s-monogenic functions.
Note that the series expansion of a kernel which is right (resp. left) s-monogenic
in the variable x (resp. s) is of the following form
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Definition 2.7.13. Let x, s ∈ Rn+1. We call

S−1
R (s,x) :=

∑
n≥0

s−n−1xn, (2.32)

the right noncommutative Cauchy kernel series.

Remark 2.7.14. The right noncommutative Cauchy kernel series is convergent for
|x| < |s|.

We have the following:

Proposition 2.7.15. The sum of the series (2.32) is given by the function

S−1
R (s,x) = −(x− s̄)(x2 − 2Re[s]x+ |s|2)−1, (2.33)

which is defined for x �∈ [s]. Moreover, S−1
R (s,x) is right (resp. left) s-monogenic

in the variable x (resp. s).

Proof. It follows the same lines of the proof of Theorem 2.7.4. We just sketch some
of the computations. The statement is proved if we show that, for |x| < |s|, we
have

(
∑
n≥0

s−n−1xn)(x2 − 2Re[s]x+ |s|2) = −(x− s̄). (2.34)

By computing the product at the left-hand side of (2.34), we obtain:

s−1x2 − 2s−1Re[s]x+ s−1|s|2 + s−2x3 − 2s−2Re[s]x2 + s−2x|s|2 + . . .

= −2s−1Re[s]x+ s−1|s|2 + s−2x|s|2 +
∑
n≥2

s−(n+1)(s2 − 2Re[s]s+ |s|2)xn

= −2s−1Re[s]x+ s−1|s|2 + s−2x|s|2

= s−2(−2Re[s] + s)sx+ s−1ss̄ = −x+ s̄.

The fact that function S−1
R (s,x), which is defined for x �∈ [s], is left s-monogenic

in the variable s and right s-monogenic in the variable x can be proved by a direct
computation. This concludes the proof. �
Definition 2.7.16. We will call the expression

S−1
R (s,x) = −(x− s̄)(x2 − 2Re[s]x+ |s|2)−1, (2.35)

defined for x2 − 2xRe[s] + |s|2 �= 0, the right noncommutative Cauchy kernel.

Remark 2.7.17. Analogous considerations as in Remarks 2.7.6 and 2.7.7 and in
Theorem 2.7.8 can be done for the right noncommutative Cauchy kernel S−1

R (s,x).

Proposition 2.7.18. Suppose that x and s ∈ Rn+1 are such that x �∈ [s]. The
following identity holds:

S−1
R (s,x) = (s2−2Re[x]s+|x|2)−1(s−x̄) = −(x−s̄)(x2−2Re[s]x+|s|2)−1. (2.36)
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Proof. One may prove the identity by direct computations (compare with the
proof of Proposition 2.7.10). �
Remark 2.7.19. The identities (2.31) and (2.36) can be proved not only by direct
computation but also in a longer way which can be of some interest. We sketch the
lines of this alternative proof. Consider the function f(x) = s− x. It is such that
fI ∗f c

I has values in CI thus it admits an s-monogenic inverse (see Example 2.6.12).
One may construct its s-monogenic inverse with respect to the two variables x and
s on the left and on the right. If one constructs, e.g., the left inverse with respect
to x, see Definition 2.6.10, one gets

(x2 − 2Re[s]x+ |s|2)−1(s̄− x).

By direct computation it follows that this function is right s-monogenic with re-
spect to s, thus it must coincide, by the Identity Principle, with the right s-
monogenic inverse of (s− x) with respect to s, i.e.,

(s− x̄)(s2 − 2Re[x]s+ |x|2)−1

thus relation (2.31) holds. Note that we have not provided the construction of the
right s-monogenic inverse of a function f , but it is not difficult to check that, when
it exists, it coincides with the extension of the function f c

I (fI ∗ f c
I )

−1. Similarly,
one can construct the left s-monogenic inverse of s−x with respect to s, then one
shows that it is right s-monogenic with respect to x and so it follows that it must
coincide with the right s-monogenic inverse with respect to x, thus equality (2.36)
holds.

By comparing the Cauchy kernel functions S−1(s,x) and S−1
R (s,x), we con-

clude that the two functions are different, thus the kernel to be used for the Cauchy
formula for right s-monogenic functions is not the kernel S−1(s,x) used for left
s-monogenic functions. However we have the following relation.

Proposition 2.7.20. Let x, s ∈ Rn+1. The following identity holds:

S−1(x, s) = −S−1
R (s,x), for x �∈ [s].

Proof. The identities (2.31) and (2.36) show that by exchanging the role of the
variables x and s we get S−1(x, s) = −S−1

R (s,x). �

2.8 Cauchy integral formula, II

In this section we prove a Cauchy formula for an s-monogenic function with s-
monogenic kernel which is more general than the one proved in Section 2.4. In
fact, the formula does not depend on the plane in which the integration path is
chosen.

Let us recall the well-known Stokes’ theorem in the complex plane (see for
example [2]).
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Theorem 2.8.1. Let C be a bounded open set in C such that its boundary ∂C is a
finite union of continuously differentiable Jordan curves. If f ∈ C1(C), then∫

∂C

fdz =

∫
C

df ∧ dz = 2i

∫
C

∂f

∂z̄
dx ∧ dy.

When considering Rn-valued functions, the Stokes’ theorem can be rephrased
as follows:

Lemma 2.8.2. Let DI be a bounded open set on a plane CI such that its boundary
∂DI is a finite union of continuously differentiable Jordan curves. Let f , g ∈
C1(DI) be Rn-valued functions. Then∫

∂DI

g(s)dsIf(s) = 2

∫
DI

((g(s)∂̄I)f(s) + g(s)(∂̄If(s)))dσ

where s = u+ Iv is the variable on CI , dsI = −Ids, dσ = du ∧ dv.
Proof. Let us choose n− 1 imaginary units I2, . . . , In such that I, I2, . . . , In form
an orthonormal basis of Rn satisfying the defining relations IrIs + IsIr = −2δrs.
Then it is possible to write

f(s) =

n−1∑
|A|=0

FA(s)IA,

g(s) =

n−1∑
|A|=0

IAGA(s),

where s ∈ CI , IA = Ii1 . . . Iis , A = i1 . . . is is a subset of {2, . . . , n} and FA(s),
GA(s) have values in the complex plane CI . We have∫

∂DI

g(s)dsIf(s) =

∫
∂DI

( n−1∑
|A|=0

IAGA(s)
)
dsI

( n−1∑
|B|=0

FB(s)IB

)

=

n−1∑
|A|=0,|B|=0

IA

(∫
∂DI

GA(s)dsIFB(s)
)
IB .

We now use the usual Stokes’ theorem in the complex plane CI and we write∫
∂DI

g(s)dsIf(s) =

n−1∑
|A|=0,|B|=0

IA

(∫
DI

∂

∂s̄
(GA(s)FB(s))ds̄ ∧ dsI

)
IB

= 2

n−1∑
|A|=0,|B|=0

IA

(∫
DI

(∂u + I∂v)(GA(s)FB(s))dσ
)
IB ;
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we recall that I commutes with FA and GB which have values in CI , and that dσ
is real, thus we obtain∫

∂DI

g(s)dsIf(s) = 2
n−1∑

|A|,|B|=0

( ∫
DI

IA(∂u(GA) + ∂v(GA)I)FBIBdσ

+

∫
DI

IAGA(∂uFB + I∂vFB)IBdσ
)

= 2

∫
DI

n−1∑
|A|,|B|=0

IA(GA∂I)FBIBdσ

+ 2

∫
DI

n−1∑
|A|,|B|=0

IAGA(∂IFB)IBdσ

= 2

∫
DI

((g(s)∂̄I)f(s) + g(s)(∂̄If(s)))dσ

and we get the statement. �
An immediate consequence of the above lemma is the following:

Corollary 2.8.3. Let f and g be left s-monogenic and right s-monogenic functions,
respectively, defined on an open set U . For any I ∈ S and any open bounded set DI

in U ∩ CI whose boundary is a finite union of continuously differentiable Jordan
curves, we have ∫

∂DI

g(s)dsIf(s) = 0.

Theorem 2.8.4 (The Cauchy formula with s-monogenic kernel). Let U ⊂ Rn+1

be an axially symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of
continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for
I ∈ S. If f is a (left) s-monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI)

S−1(s,x)dsIf(s) (2.37)

where S−1(s,x) is defined in (2.29) and the integral does not depend on U and on
the imaginary unit I ∈ S.

If f is a right s-monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI)

f(s)dsIS
−1
R (s,x) (2.38)

= − 1

2π

∫
∂(U∩CI )

f(s)dsIS
−1(x, s) (2.39)

where S−1
R (s,x) is defined in (2.35) and the integral (2.38) does not depend on the

choice of the imaginary unit I ∈ S and on U .
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Proof. First of all, the integral at the right-hand side of (2.37) does not depend on
the open set U : this follows from the fact that S−1(s,x) is right s-monogenic in s,
and Corollary 2.8.3. Let us show that the integral (2.37) does not depend on the
choice of the imaginary unit I ∈ S. The zeros of the function x2 − 2s0x+ |s|2 = 0
consist either of a real point x or a 2-sphere [x]. On CIx we find only the point x
as a singularity and the result follows from the Cauchy formula on the plane CIx .
When the singularity is a real number, the integral reduces again to the Cauchy
integral of complex analysis. If the zero is not real, on any complex plane CI we
find the two zeros s1,2 = x0 ± I|x|. In this case, we calculate the residues in the
points s1 and s2 on the plane CI for I �= Ix. Let us start with s1 by setting the
positions

s = x0 + I|x|+ εeIθ,

s0 = x0 + ε cos θ,

s = x0 − I|x|+ εe−Iθ,

dsI = −[εIeIθ]Idθ = εeIθdθ,

and
|s|2 = x20 + 2x0ε cos θ + ε2 + |x|2 + 2ε sin θ|x|.

We have

2πIε1 =

∫ 2π

0

−(−2xε cosθ + 2x0ε cos θ + ε2 + 2ε sin θ|x|)−1

· (x− [x0 − I|x|+ εe−Iθ])εeIθdθf(x0 + I|x|+ εeIθ),

and for ε→ 0 we get

2πI01

=

∫ 2π

0

(2x cos θ − 2x0 cos θ − 2 sin θ|x|)−1(x+ I|x|)eIθdθf(x0 + I|x|)

=
1

2

∫ 2π

0

(x cos θ − sin θ|x|)−1(x+ I|x|)eIθdθf(x0 + I|x|)

= − 1

2|x|2
∫ 2π

0

(x cos θ + sin θ|x|)(x+ I|x|)[cos θ + I sin θ]dθf(x0 + I|x|)

= − 1

2|x|2
∫ 2π

0

[(x)2 cos θ + sin θ|x|x+ xI|x| cos θ

+ sin θ|x|2I][cos θ + I sin θ]dθf(x0 + I|x|).
With some calculations we obtain

2πI01 = − 1

2|x|2
∫ 2π

0

[
(x)2 + xI|x| cos2 θ + sin2 θ|x|xI

]
dθf(x0 + I|x|)

= − 1

2|x|2
[
2π(x)2 + πxI|x|+ π|x|xI

]
f(x0 + I|x|)
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=
π

|x|
[
|x| − xI

]
f(x0 + I|x|).

Recalling that x/|x| = Ix we get the first residue

I01 =
1

2

[
1− IxI

]
f(x0 + I|x|).

With analogous calculations we prove that the residue in s2 is

I02 =
1

2

[
1 + IxI

]
f(x0 − I|x|).

So by the residues theorem we get

1

2π

∫
∂(U∩CI )

S−1(s,x)dsIf(s) = I01 + I02 .

The statement now follows from the Representation Formula. Formula (2.38) can
be deduced with similar arguments while formula (2.39) is a consequence of Propo-
sition 2.7.20. �

We conclude this section with the formula for the derivatives of an s-mono-
genic function using the s-monogenic Cauchy kernel.

Theorem 2.8.5 (Derivatives using the s-monogenic Cauchy kernel). Let U ⊂ Rn+1

be an axially symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of
continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for
I ∈ S. Let f be an s-monogenic function on an open set that contains U and set
x = x0 + x, s = s0 + s. Then

∂nx0
f(x) =

n!

2π

∫
∂(U∩CI )

(x2 − 2s0x+ |s|2)−n−1(x− s)∗(n+1)dsIf(s)

=
n!

2π

∫
∂(U∩CI )

[S−1(s,x)(x − s)−1]n+1(x− s)∗(n+1)dsIf(s) (2.40)

where

(x− s)∗n =

n∑
k=0

n!

(n− k)!k!
xn−ksk, (2.41)

and S−1(s,x) is defined in (2.29). Moreover, the integral does not depend on U
and on the imaginary unit I ∈ S.

Proof. First of all, we recall that the s-derivative defined in (2.4) coincides, for
s-monogenic functions, with the partial derivative with respect to the scalar coor-
dinate x0. To compute ∂nx0

f(x), we can compute the derivative of the integrand,
since f and its derivatives with respect to x0 are continuous functions on ∂(U∩CI).
Thus we get

∂nx0
f(x) =

1

2π

∫
∂(U∩CI )

∂nx0
[S−1(s,x)]dsIf(s).
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To prove the statement, it is sufficient to compute ∂nx0
[S−1(s,x)] by recurrence.

Consider the derivative of ∂x0S
−1(s,x):

∂x0S
−1(s,x)

= −(x2 − 2s0x+ |s|2)−2(2x− 2s0)(x − s)− (x2 − 2s0x+ |s|2)−1

= (x2 − 2s0x+ |s|2)−2[2x2 − 2xs− 2s0x+ 2s0s− x2 + 2s0x− |s|2]
= (x2 − 2s0x+ |s|2)−2[x2 − 2xs+ s2] = (x2 − 2s0x+ |s|2)−2(x− s)∗2.

We now assume

∂nx0
S−1(s,x) = (−1)n+1n!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗(n+1),

and we compute ∂n+1
x0

S−1(s,x). We have

∂n+1
x0

S−1(s,x) = ∂x0 [(−1)n+1n!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗(n+1)]

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)(2x− 2s0)(x − s)∗(n+1)

+ (−1)n+1(n+ 1)!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗n

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)[(2x− 2s0)(x− s̄)

− (x2 − 2s0x+ |s|2)] ∗ (x− s̄)∗n;

here we have used the fact that the s-monogenic product coincides with the usual
one when the coefficients are real numbers, so

∂n+1
x0

S−1(s,x)

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)[x2 − 2xs̄+ s̄2] ∗ (x− s̄)∗n.

We get the last equality in (2.40) by recalling that

S−1(s,x)(x− s)−1 = (x2 − 2s0x+ |s|2)−1. �

Theorem 2.8.6 (Cauchy formula II outside an axially symmetric s-domain). Let
U ⊂ Rn+1 be a bounded axially symmetric s-domain and assume that U c =
Rn+1 \ U is connected. Let f : U c → Rn be a left s-monogenic function with
limx→∞ f(x) = a. If x ∈ U c, then

f(x) = a− 1

2π

∫
∂(V ∩CI)

S−1(s,x) dsIf(s),

where V is an axially symmetric s-domain containing U such that ∂(V ∩ CI) is
a union of a finite number of continuously differentiable Jordan curves for every
I ∈ S. Moreover, the integral does not depend on V and on the imaginary unit
I ∈ S.
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Proof. Let x ∈ U c. Then there exists r > 0 and a real point α such that the ball
B = B(α, r) satisfies B ⊃ U and x ∈ B. Let V be an axially symmetric s-domain
containing U such that ∂(V ∩ CI) is a union of a finite number of continuously
differentiable Jordan curves for every I ∈ S. Then f is s-monogenic on B \ V and
we can apply the Cauchy formula to compute f(x). We obtain

f(x) =
1

2π

∫
∂((B\V )∩CI)

S−1(s,x)dsIf(s)

=
1

2π

∫
∂(B∩CI)

S−1(s,x)dsIf(s)−
1

2π

∫
∂(V ∩CI)

S−1(s,x)dsIf(s).

By setting the positions
s = α+ reIθ

we can compute the integral on ∂(B∩CI) in the standard way, and letting r → ∞
we obtain that the integral equals a = limr→∞ f , therefore,

f(x) = a− 1

2π

∫
∂(V ∩CI )

S−1(s,x)dsIf(s).

The integral does not depend on V and on the imaginary unit I ∈ S, thanks to
the Cauchy formula on bounded axially symmetric s-domains. �

We finally obtain a version of the Borel-Pompeiu formula.

Theorem 2.8.7 (Borel-Pompeiu formula). Let U ⊂ Rn+1 be an axially symmetric
open bounded set such that ∂(U ∩CI) is a union of a finite number of continuously
differentiable Jordan curves for every I ∈ S. Let f : U → Rn+1 be a function of
class C1 and set dsI = −Ids. For every x ∈ U , x = u+ Ixv and I ∈ S, we have

1

2

[
1− IxI

]
f(u+ Iv) +

1

2

[
1 + IxI

]
f(u− Iv) (2.42)

=
1

2π

( ∫
∂(U∩CI)

S−1(s,x)dsIf(s) +

∫
U∩CI

S−1(s,x)∂If(s)dsI ∧ ds̄
)
.

In particular, when I = Ix we have

f(x) =
1

2π

(∫
∂(U∩CIx )

S−1(s,x)dsIxf(s) (2.43)

+

∫
U∩CIx

S−1(s,x)∂Ixf(s)dsIx ∧ ds̄
)
.

Proof. Let us set x = u+ Ixv and let us define

Uε = {s = u′ + Isv
′ ∈ U | |(u + Iv)− (u′ + Iv′)| > ε ∀I ∈ S}

where ε is a positive number less than the distance from the (n− 1)-sphere u+Sv
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defined by x to the complement of U . The zeros of the function x2−2Re[s]x+|s|2 =
0 consist either of a point on the real axis, or an (n − 1)-sphere u + Iv. On CIx

we find only the point x as a singularity and the result follows from the Pompeiu
formula on the complex plane CIx . When the singularity is a real number, S−1

is the standard Cauchy kernel and again the statement follows from the Pompeiu
formula on the complex plane CI for every I ∈ S. If the zero is not real, on any
complex plane CI we find two zeros s1,2 = x0± I|x|. Thus ∂Uε = ∂U −∂B1−∂B2

where ∂Bi is the boundary of ball Bi with center si and radius ε.
From Lemma 2.8.2 applied to the functions S−1(s,x), f(s) and since S−1(s,x)

is right s-monogenic in the variable s, we obtain

1

2π

∫
Uε∩CI

S−1(s,x)∂If(s)dsI ∧ ds̄+
1

2π

∫
∂(U∩CI )

S−1(s,x)dsIf(s)

= Iε1(x) + Iε2(x)

where

Iε1(x) :=
1

2π

∫
∂(B1∩CI)

S−1(s,x)dsIf(s),

Iε2(x) :=
1

2π

∫
∂(B2∩CI)

S−1(s,x)dsIf(s).

With similar computations as in the proof of Theorem 2.8.4, by letting ε→ 0 and
after some computations we get

I01(x) =
1

2

[
1− IxI

]
f(x0 + I|x|).

Similarly, the integral related to s2 turns out to be

I02(x) =
1

2

[
1 + IxI

]
f(x0 − I|x|).

So we get

I01(x) + I02(x) =
1

2

[
1− IqI

]
f(x0 + I|x|) + 1

2

[
1 + IxI

]
f(x0 − I|x|),

and this concludes the proof. �
Remark 2.8.8. Note that formula (2.43) is not surprising and in fact is the exact
analog of the Borel-Pompeiu formula in the complex case. Formula (2.42) on the
other hand, highlights a new phenomenon: given a point x and an imaginary unit
I ∈ S there are exactly two points in CI on the same sphere of x and formula
(2.42) shows how to obtain an integral representation of f at those points.

Remark 2.8.9. The Cauchy formula in Theorem 2.8.4 follows as an immediate
consequence of the Borel-Pompeiu formula and of the Representation Formula.
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2.9 Duality Theorems

In this section we prove the algebraic isomorphism between the Rn-module of
functionals acting on G(K) := ind limU MR(U) where K is a connected axially
symmetric compact set such that its intersection with every complex plane CI

remains connected, and the Rn-module of s-monogenic functions defined in the
complement of K and vanishing at infinity. The results we obtain are the analogs,
in this setting, of those obtained by Köthe in [67] and generalized by Grothendieck,
see [57].

Consider the set C∞(U,Rn) of infinitely differentiable functions defined on
an open set U ⊆ Rn+1 with values in Rn. This set is an Rn-bimodule with respect
to the standard sum of functions and multiplication of a function by a Clifford
number. To endow C∞(U,Rn) with a locally convex topology, we follow [7] and
consider an increasing sequence of compact sets {Kj}j∈N, Kj ⊂ Rn+1, such that

K0 � K1 � . . . , U = ∪∞
j=0Kj,

and we introduce the family of seminorms {pj,r, j, r ∈ N} defined by

pj,r(f) := sup
|α|≤r

sup
x∈Kj

|∂αf(x)|, f ∈ C∞(U,Rn),

where

∂α =
∂α0

∂xα0
0

. . .
∂αn

∂xαn
n
, |α| =

n∑
i=0

αi.

This topology coincides with the product topology
∏

A C∞(U,R) where A is a
multi-index which can be identified with an element in the power set of {1, . . . , n}.
Thus we have the following result:

Theorem 2.9.1. The set C∞(U,Rn) is a Fréchet Rn-bimodule.

Proposition 2.9.2. Let U be an open set in Rn+1. The sets MR(U) (resp. ML(U))
are Fréchet left (resp. right) Rn-modules with respect to the topology of uniform
convergence over compact sets.

Proof. The set C∞(U) with the topology of uniform convergence on compact sets
is a Fréchet bimodule. The sets MR(U) and ML(U) are closed submodules of
C∞(U). Indeed, if we choose a sequence {fm}m∈N ⊂ MR(U), then, by definition,
for every I ∈ S we have that the function fm satisfies ∂Ifm,I(u+Iv) = 0 on U∩CI .
Let f be the limit function of {fm}m∈N in C∞(U). The restriction of f ∈ C∞(U)
to a plane CI is the limit of the restrictions fm,I thus, by the uniform convergence
of the derivatives of {fm,I}, it satisfies ∂IfI(u + Iv) = 0 on U ∩ CI . This proves
that MR(U) is a Fréchet module with the topology induced by the topology of
C∞(U). The same argument applies to ML(U). �
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Remark 2.9.3. The same argument used in the proof shows also that MR(U) and
ML(U) are Montel modules, since they are closed submodules of C∞(U) which is
a Montel Rn-bimodule.

Definition 2.9.4. Let K ⊂ Rn+1 be a compact set. We define a set of germs of
functions defined by

G(K) := ind lim
Uopen⊃K

MR(U).

In the sequel, we will use the same letter ϕ both to denote an element ϕ ∈
G(K) and an s-monogenic extension of ϕ to some neighborhood U ⊆ Rn+1 of K.
Because of Proposition 2.9.2, G(K) is a limit of Fréchet Rn-modules, and it is
naturally endowed with an LF–topology: a seminorm on G(K) is every seminorm
that is continuous on every MR(U). Even though G(K) is not a Fréchet Rn-
module itself, it is possible to characterize its topology in terms of convergence of
sequences as in the following result:

Proposition 2.9.5. Let K ⊂ Rn+1 be a compact set. A sequence {ϕj} of germs in
G(K) converges to a germ ϕ ∈ G(K), if ϕj(x) converges uniformly to ϕ(x) in a
neighborhood U ⊂ Rn+1 of K.

Proof. It is a consequence of the definition of inductive limit topology of G(K). �

Definition 2.9.6. We call a connected compact set K such that K ∩ R �= ∅ and its
intersection K ∩ CI is connected for all I ∈ S an s-compact set.

Let K be an s-compact set in R
n+1

:= Rn+1 ∪ {∞}.
We denote by ML∞(R

n+1 \K) the right Rn-module of left s-monogenic func-

tions on R
n+1 \K which vanish at infinity.

Theorem 2.9.7. Let K be an axially symmetric s-compact set in Rn+1. There is
an Rn-module isomorphism

(G(K))′ ∼= ML
∞(R

n+1\K)

where (G(K))′ is the set of left Rn–linear continuous functionals on G(K).

Proof. Let us define a map T : ML
∞(R

n+1\K) → (G(K))′. For any function

f ∈ ML
∞(R

n+1\K) we construct a functional μ = μf . Let g ∈ G(K) and let
us denote by the same symbol g also its s-monogenic extension to an axially
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symmetric s-domain U ⊃ K. Let us fix an element I ∈ S and define

〈μf , g〉 :=
∫
∂(U∩CI )

g(s)dsIf(s). (2.44)

We have to show that the definition does not depend on the choice of U and on the
extension g. If we replace U by another axially symmetric s-domain V containing
K we have ∫

∂(U∩CI )

g(s)dsIf(s)−
∫
∂(V ∩CI)

g(s)dsIf(s)

=

∫
∂((U\V )∩CI)

g(s)dsIf(s) = 0

by Lemma 2.8.2; indeed f, g are s-monogenic functions on the left and on the
right, respectively, on U \ V . If we replace g by another extension, the value of
integral (2.44) is not affected since all the extensions of g coincide on small open
sets containing K. The map μf is left Rn-linear and continuous on G(K) by its
definition. Thus the map T defined by

T (f) = μf ,

is well defined and right Rn-linear. Let us now show that there is a map T ′ which
is the inverse of T . Let us consider any μ ∈ (G(K))′, and define the function

F(x) := − 1

2π
〈μ, S−1(s,x)〉. (2.45)

Note that μ acts on the variable s and S−1(s,x) is right s-monogenic with respect
to it. Since μ is a linear functional, we have

∂̄IFI(x) = − 1

2π
∂̄I〈μ, S−1(s, u+ Iv)〉

= − 1

2π
〈μ, ∂̄IS−1(s, u+ Iv)〉 = 0, ∀I ∈ S.

Thus the function F(x) is left s-monogenic for x �∈ [s], s ∈ K so, by the hypothesis
on K, it is s-monogenic on the complement of K and vanishes at infinity, i.e.,

F ∈ ML
∞(R

n+1 \K). Define now

T ′ : (G(K))′ → ML
∞(R

n+1\K), T ′(μ) = F.

The map T ′ is well defined and right Rn-linear. Let us show that T ′ is a right
inverse of T , i.e., that T · T ′ = id(G(K))′ . Let μ ∈ (G(K))′ and consider T ′(μ) = F.
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The functional T (T ′(μ)) acts on right s-monogenic functions as follows:

〈T (T ′(μ)), g〉 = 〈T (F), g〉 =
∫
∂(U∩CI)

g(x)dxIF(x)

= − 1

2π

∫
∂(U∩CI)

g(x)dxI〈μ, S−1(s,x)〉

= 〈μ,− 1

2π

∫
∂(U∩CI)

g(x)dxIS
−1(s,x)〉

= 〈μ, 1

2π

∫
∂(U∩CI )

g(x)dxIS
−1
R (x, s)〉 = 〈μ, g〉,

so we get T (T ′(μ)) = μ. Let us now show that T ′ is a left inverse of T , i.e., that

T ′ · T = idML∞(R
n+1\K)

. Consider f ∈ ML∞(R
n+1\K), the functional T (f) = μf

defined in (2.44) and T ′(μf ). By Theorem 2.8.6 and the fact that f vanishes at
infinity, we have

T ′(T (f)) = T ′(μf ) = − 1

2π
〈μf , S

−1(s,x)〉

= − 1

2π

∫
∂(U∩CI)

S−1(s,x)dsIf(s) = f(x),

that is T ′(T (f)) = f . This concludes the proof. �
In analogy with the complex case, we give the following definition.

Definition 2.9.8. The function

F(x) := − 1

2π
〈μ, S−1(s,x)〉

is called the Fantappié indicatrix of the functional μ ∈ (G(K))′.

One could be tempted to dualize Theorem 2.9.7 by simply taking the dual
of the sets in its statement. Since

(G(K))′ ∼= ML
∞(R

n+1\K),

one could take the dual on both sides and obtain

(G(K))′′ ∼= (ML
∞(R

n+1\K))′,

and attempt to conclude that

G(K) ∼= (ML
∞(R

n+1\K))′

by using some reflexivity property of G. This approach, however, is premature,
and at this stage we need to give a direct proof of such an isomorphism. In the
next section, we will show how to make such an attempt rigorous.
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Theorem 2.9.9. Let K be an axially symmetric s-compact set in Rn+1. Then there
is an Rn-module isomorphism

(ML
∞(R

n+1\K))′ ∼= G(K).

Proof. Fix any g ∈ G(K) and consider, for every f ∈ ML
∞(R

n+1\K), the integral

〈φg, f〉 :=
∫
∂(U∩CI)

g(s)dsIf(s) (2.46)

where U denotes an axially symmetric s-domain containing K and where we have
fixed I ∈ S. For any g ∈ G(K), the integral (2.46) defines a continuous right linear

Rn–functional φg on ML
∞(R

n+1\K). Therefore we have a map

T : G(K) −→ (ML
∞(R

n+1\K))′,

defined by setting T (g) = φg for any fixed g ∈ G(K). The map is injective:
if g1 �= g2, then the functionals φg1 , φg2 (defined by g1 and g2) are different.
Indeed, let x ∈ K and consider the action of the two functionals on the function

S−1
R (s,x) = S−1

R,x(s) ∈ ML∞(R
n+1\K); then we have

1

2π
〈φg1 , S−1

R (s,x)〉 = 1

2π

∫
∂(U∩CI )

g1(s)dsIS
−1
R (s,x) = g1(x),

and
1

2π
〈φg2 , S−1

R (s,x)〉 = 1

2π

∫
∂(U∩CI )

g2(s)dsIS
−1
R (s,x) = g2(x),

hence we have a one-to-one mapping:

T : G(K) −→ (ML
∞(R

n+1\K))′.

To conclude the proof it is sufficient to show that T admits a right inverse. Let

φ : ML
∞(R

n+1\K) → Rn

be a continuous right Rn–linear map, acting continuously on ML∞(R
n+1\K) with

its natural topology. It allows us to define

ψ(x) =
1

2π
〈φ, S−1

R (s,x)〉, (2.47)

where the functional φ acts on the variable s. The function ψ(x) is right s-
monogenic, as one can check directly, hence ψ ∈ G(K). Let

T ′ : (ML
∞(R

n+1\K))′ → G(K)
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be the map defined by

T ′(φ) =
1

2π
〈φ, S−1

R (s,x)〉 = ψ(x).

Now we have to show that T · T ′ = id
(ML∞(R

n+1\K))′ . Since

〈T (T ′(φ)), f〉 = 〈T (ψ), f〉 = 1

2π
〈T
(
〈φ, S−1

R (s,x)〉
)
, f〉

=
1

2π

∫
∂(U∩CI )

〈φ, S−1
R (s,x)〉dxIf(x)

= 〈φ,− 1

2π

∫
∂(U∩CI)

S−1(x, s)dxIf(x)〉,

by Theorem 2.8.6 we get

〈φ,− 1

2π

∫
∂(U∩CI)

S−1(x, s)dxIf(x)〉 = 〈φ, f〉,

which concludes the proof. �
Corollary 2.9.10. Let B = B(0, r) be the closed ball in Rn+1 centered at the origin

and with radius r > 0. The dual of ML
∞(R

n+1\B) is the set of all right s-monogenic
functions defined in a neighborhood of B.

2.10 Topological Duality Theorems

In the previous sections we have proved the two Rn-modules isomorphisms:

(G(K))′ ∼= ML
∞(R

n+1\K)

and
G(K) ∼= (ML

∞(R
n+1\K))′.

We now want to show that those isomorphisms are actually topological isomor-
phisms. To this end we need to introduce a special class of infinite-order differential
operators which is of independent interest. We recall that for s-monogenic func-
tions, the s-derivatives coincide with the partial derivative ∂u with respect to the
scalar part u of a paravector, so

F (∂s) = F (∂u) =
∑
m≥0

∂mu am.

Proposition 2.10.1. Let F (∂s) be defined as above and let f be a left s-monogenic
function in an axially symmetric s-domain U ⊆ Rn+1. The function F (∂s)f is a
left s-monogenic function in U if and only if

lim
m→+∞

m
√

|am|m! = 0. (2.48)
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Proof. Suppose that condition (2.48) holds, choose I ∈ S, and consider the re-
striction of f to the plane CI . By the Splitting Lemma, fI can be written as
fI(z) =

∑
A FA(z)IA, z = u + Iv and each holomorphic function FA can be ex-

panded into a power series at a point z0 ∈ CI . Thus fI(z) can be expanded into
a power series with center at z0 and, by the usual Cauchy estimates on the plane
CI , we also deduce that

1

m!

∣∣∣∣∂mf∂um
(z0)

∣∣∣∣ ≤ M

δm
, m ≥ 0, for |x− z0| ≤ δ.

Since |amm!| < ε for allm ∈ N, we deduce that the series
∑

m ∂ms f(x)am converges
locally uniformly on CI . It is immediate to verify that

∂I [F (∂s)fI(z)] = ∂I [
∑
m≥0

∂mu fI(z)am] =
∑
m≥0

∂mu ∂IfI(z)am = 0,

and since the choice of I is arbitrary we get that
∑

m≥0 ∂
m
u f(x)am is an s-

monogenic function.
Conversely, suppose by an absurdity that

∑
m≥0 ∂

m
s f(x)am is s-monogenic

but (2.48) does not hold. The result follows as in the complex case, see [63], Lemma
1.8.1. Indeed, suppose we negate (2.48). Then for some ε > 0 there is a subsequence
akj such that

kj

√
|akj |kj ! ≥ 2ε for all kj , kj → +∞.

We now apply F (∂s) to the s-monogenic function (x − y0)
−1, with y0 ∈ U ∩ R,

and we obtain

F (∂s)(x− y0)
−1 =

∑
k≥0

ak(−1)kk!

(x− y0 − ε)k+1
=
∑
k≥0

Fk(x). (2.49)

Consider |x− y0| ≤ ε, and assume, by taking if necessary a subsequence xj , that
xj → y0. Then we get

|Fk(xj)| ≥
(2ε)kj

|xj − y0 − ε|kj+1
≥ 1

2ε
,

thus for |x − y0| ≤ ε the series (2.49) does not converge locally uniformly which
contradicts the hypothesis. �
Proposition 2.10.2. Let U ⊆ Rn+1 be an axially symmetric s-domain. An operator
of the type F (∂s) acts continuously on ML(U), for any U .

Proof. If f ∈ ML(U) we know that the estimate for F (∂s)f depends only on the
maximum norm of f , so continuity follows. �
Theorem 2.10.3. Let K ⊆ Rn+1 be an axially symmetric s-compact set. The se-
quence {gk} converges to g ∈ G(K) if and only if the sequence {F (∂s)gk(x)}
converges pointwise on K for all F (∂s).
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Proof. Let gk be defined in an axially symmetric s-domain U containing K and
let gk,I =

∑
A Fk,A(z)IA be the restriction of gk to a plane CI obtained using the

Splitting Lemma 2.2.11. The convergence of gk to g in the topology of MR(U) is
equivalent to the convergence, for every multi-index A, of {Fk,A} to some func-
tion FA which is holomorphic in U ∩ CI . Theorem 4.1.10 in [63] shows that the
convergence of Fk,A is equivalent, for every A, to the pointwise convergence of
{F (∂s)Fk,A} for every F (∂s). This in turn is equivalent to the convergence of gk,I
on the plane CI . We conclude the proof by applying the Representation Formula
(2.7). �
Theorem 2.10.4. Let K ⊂ Rn+1 be an axially symmetric s-compact set. The iso-
morphism

(ML
∞(R

n+1\K))′ ∼= G(K).

is topological.

Proof. If gk → g in G(K) it means that gk → g uniformly in a neighborhood
of K. With respect to the duality defined by (2.46), we have 〈φgk , f〉 → 〈φg, f〉
uniformly when f varies in a bounded subset of ML∞(R

n+1\K), thus φgk → φg .

Conversely, suppose that φk → φ in (ML
∞(R

n+1\K))′, with its natural topol-
ogy. Then the functions

gk(x) =
1

2π
〈φk, S−1

R (s,x)〉

defined by (2.47) are right s-monogenic in a neighborhood U of K which can be
chosen to be an axially symmetric s-domain. Now we have to show that the se-
quence {gk} converges uniformly in some suitable neighborhood ofK. By Theorem
2.10.3 it is enough to prove that {F (∂u)gk} converges pointwise for all infinite-
order differential operators F (∂u) satisfying condition (2.48). From the continuity
of φk, fixing any x ∈ K, we have

F (∂u)gk(x) =
1

2π
〈φk, F (∂u)S−1

R (s,x)〉 → 1

2π
〈φ, F (∂u)S−1

R (s,x)〉

= F (∂u)〈φ,
1

2π
S−1
R (s,x)〉

and the statement follows by setting g(x) = 1
2π 〈φ, S

−1
R (s,x)〉. �

Corollary 2.10.5. Let K ⊂ Rn+1 be an axially symmetric s-compact set. The iso-
morphism

(G(K))′ ∼= ML
∞(R

n+1\K)

is topological.

Proof. We have pointed out that ML∞(R
n+1\K) is a Montel module thus it is

reflexive. So, by Theorem 2.10.4, the dual of G(K) is ML
∞(R

n+1\K) itself. �
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We conclude this section by looking at a very special case of a compact set,
namely K = {0}. Recall that s-monogenic functions outside the origin can be
represented by a Laurent-type series of the form

f(x) =
∑
m≥0

xmam +
∑
m≥1

x−mbm (2.50)

converging in a spherical shell

A = {x ∈ Rn+1 | R1 < |x| < R2}, 0 < R1 < R2.

This formula contains two series: one with positive powers of the variable, and
one with negative powers of the variable. It is clear that, in order for the Laurent
series to give a function which vanishes at infinity, the portion with positive powers
must vanish. Thus, we can say that s-monogenic functions outside the origin, which
vanish at infinity, are represented by Laurent series where only negative powers of
the variable appear. An additional condition is the consequence of the fact that
we are requiring the Laurent series to converge everywhere. For this to be true,
we need to ask that the series has radius of convergence equal to infinity, and this
yields, once again, condition (2.48). We can therefore state the following result:

Corollary 2.10.6. The Rn-module (G({0}))′ is isomorphic to the Rn-module of
infinite-order differential operators acting on s-monogenic functions.

2.11 Notes

Note 2.11.1. On the kernel S−1(s,x). Unlike the case of regular or monogenic
functions which are defined as the elements of the kernel of first-order differential
operators (the Cauchy Fueter operator for the case of regular functions and the
Dirac operator for the case of monogenic functions), it is not possible to consider
s-regular and s-monogenic functions as solutions of a globally defined operator.
Specifically, these functions are defined as those functions whose restrictions to
a family of planes satisfy a family of first-order operators on those planes. The
Cauchy kernel that we have constructed is, on each of those planes, the funda-
mental solution for the relevant operator; this justifies our choice of nomenclature,
even though strictly speaking this is somewhat of an abuse of notation because
the kernel is not the solution on R4 or Rn+1 of a globally-defined operator.

In fact, the fundamental solution to the equation

1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u + Iv) = δ(u+ Iv), I ∈ S, (2.51)

on the plane CI , where δ(u+ Iv) is the Dirac delta distribution, is (see [59])

fI(u+ Iv) =
1

π

1

u+ Iv
, I ∈ S. (2.52)
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By the Extension Lemma, we uniquely extend the function in (2.52) to the entire
space Rn+1 \ {0} to get

f(x) =
1

π

1

x
= − 1

π
S−1(0,x).

If the delta distribution is not centered at the origin but at a point α on the real
axis, the solution becomes

f(x− α) =
1

π

1

x− α
= − 1

π
S−1(α,x).

If α is not real, then the function (x − α)−1 is not s-monogenic, thus we have to
consider its s-monogenic inverse (x− α)−∗ which is precisely

(x− α)−∗ = −S−1(α,x).

Let us now consider another feature of the Cauchy kernel series. Let x, s ∈
Rn+1 such that xs �= sx and denote by S(s,x) the inverse of the noncommutative
Cauchy kernel series S−1(s,x). Our next goal is to show that the function S(s,x),
satisfying the equation

S2(s,x) + S(s,x)x − sS(s,x) = 0 (2.53)

is the inverse of the noncommutative Cauchy kernel series.

Lemma 2.11.2. Let x, s ∈ Rn+1. Then S(s,x) := s − x is a solution of equation
(2.53) if and only if s x = x s .

In general, when s, x do not commute, the equation (2.53) has another non-
trivial solution:

Theorem 2.11.3. Let x, s ∈ Rn+1 be such that xs �= sx. The equation (2.53) has
the nontrivial solution

S(s,x) = −(x− s)−1(x2 − 2Re[s]x+ |s|2).

Proof. Let us plug −(x− s)−1(x2 − 2Re[s]x+ |s|2) into (2.53) and show that

(x− s)−1(x2 − 2Re[s]x+ |s|2)(x− s)−1(x2 − 2Re[s]x+ |s|2)
− (x− s)−1(x2 − 2Re[s]x+ |s|2)x
+ s(x− s)−1(x2 − 2Re[s]x+ |s|2) = 0

is an identity. We multiply on the left by (x− s) and we get

(x2 − 2Re[s]x+ |s|2)(x − s)−1(x2 − 2Re[s]x+ |s|2) (2.54)

− (x2 − 2Re[s]x+ |s|2)x
+ (x− s)s(x− s)−1(x2 − 2Re[s]x+ |s|2) = 0.
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We observe that x and (x2 − 2Re[s]x+ |s|2) commute and that the element

u := (x2 − 2Re[s]x+ |s|2)

is invertible where it is nonzero. Indeed

uū = (x2 − 2Re[s]x+ |s|2)(x̄2 − 2Re[s]x̄+ |s|2)
= |x|4 − 2x|x|2Re[s] + x2|s|2 − 2x̄|x|2Re[s] + 4|x|2Re[s]2

− 2xRe[s]|s|2 + x̄2|s|2 − 2x̄Re[s]|s|2 + |s|4

= |x|4 − 2Re[x]|x|2Re[s]
+ (Re[s]2 − |s|2)|s|2 + 4|x|2Re[s]2 − 2Re[x]Re[s]|s|2 + |s|4

therefore uū ∈ R, thus the inverse of u is ū/|u|2. By multiplying equality (2.54)
by u−1 on the right, we obtain:

(x2 − 2Re[s]x+ |s|2)(x − s)−1 − x+ (x− s)s(x− s)−1 = 0.

We multiply by x− s on the right and we get the identity

−2Re[s]x+ xs+ xs = 0. �

Note 2.11.4. Historical notes and further readings. The study of s-monogenic
functions is a relatively new field of research: they were introduced in 2007 in [26]
(published two years later), in an effort to generalize the notion of slice regularity
(see [48], [49]) to the setting of Clifford algebras. Further properties of s-monogenic
functions which are collected in this book are treated in [18], [27], [28], [29]. The
Runge theorem is proved in [30] for a slightly different class of functions that,
however, coincide with the class of s-monogenic functions over axially symmetric
s-domains.

The most studied and well-known generalization of holomorphic functions to
the Clifford algebras setting is Clifford analysis, intended as the study of functions
in the kernel of the Dirac operator. It is nowadays a widely developed topic which
the reader can approach in the classical references [7] and [34]. More recent books,
which address in a less detailed way the topic of monogenic functions but give
some insights to further developments of the theory, are [23] and [31]. Finally, a
very friendly introduction to classical complex analysis and its higher-dimensional
generalizations containing also historical remarks is given in the textbook [58].
Clifford analysis is a very rich and well-developed theory which, however, does
not allow one to treat power series in the paravector variable and for this reason
other theories have been introduced. With no claim of completeness, we mention
for example the hyperholomorphic functions studied by Eriksson and Leutwiler
in [74], [38], [39], [40] and Cliffordian holomorphic functions introduced by Laville
and Ramadanoff [72], [73]. Slice monogenic functions admit power series expansion
in terms of the paravector variable, at least on discs centered at points on the real



2.11. Notes 79

axis, and this property will allow us to deal with a functional calculus for n-tuples
of linear operators (see the next chapter).

It is worth noticing, however, that the theory of s-monogenic functions is
not, strictly speaking, a generalization of the theory of holomorphic functions
of a complex variable: holomorphic functions, can be obtained as s-monogenic
functions for n = 1, see Remark 2.2.9, but given an s-monogenic function there is
no possibility to restrict its domain or codomain in order to obtain a holomorphic
function.

The s-monogenic functions, as well as s-regular functions in one quaternionic
variable, have several forerunners in the literature. Fueter in his paper [43], but
see also [33], [98], considered the problem of constructing regular functions (in the
sense of Cauchy–Fueter) starting from holomorphic functions. Thus he introduced
functions of the form

f(q) = α(q0, |Im(q)|) + Im(q)

|Im(q)|β(q0, |Im(q)|) (2.55)

where α, β are defined on the upper complex plane C+, have real values and α,
β satisfy the Cauchy–Riemann system. The function Δf , now called the Fueter
transform of f , is Cauchy–Fueter regular. Note that, in light of this result, the
function

∑
Δqnan is (Cauchy–Fueter) regular in q where it converges. This ap-

proach was generalized to functions of a paravector variable: it is sufficient to
rewrite (2.55) by replacing the quaternion q by a paravector x ∈ Rn+1 and Im(q)
by the vector x. If n is odd, it is possible to show that Δ(n−1)/2f is a monogenic
function in the sense of [7]. This result, known as Fueter’s mapping theorem, has
been proved by Sce in [94] and then generalized by Qian, see [87], when n is an even
number. Later on, Fueter’s theorem was generalized to the case in which a func-
tion f as above is multiplied by a monogenic homogeneous polynomial of degree
k, see [68], [83], [96] and to the case in which the function f is defined on an open
set U , not necessarily chosen in the upper complex plane, see [88]. This last result
is important because in this case a function of the form (2.55), with q replaced
by x, is s-monogenic in the sense of our definition, even though we are allowed to
consider α and β with values in the Clifford algebra Rn. Fueter’s mapping theorem
allows us to construct monogenic functions starting from s-monogenic functions,
moreover it allows us to show that the class of monogenic functions which comes
from s-monogenic ones corresponds to the axially monogenic functions (see [24]).

The class of functions (2.55), whose importance for Fueter’s mapping theorem
is clear, is also known in the literature as the class of radially holomorphic func-
tions, see for example [58]. They are also related to the so-called standard intrinsic
functions studied by Rinehart and then by Cullen, see [89], [32] respectively. These
studies were the starting point for a deep generalization carried out by Ghiloni and
Perotti in their paper [53]. In this paper, the authors study functions with values
in a real alternative algebra A which are slice functions, i.e., they are of the form
f(u, v) = α(u, v) + Iβ(u, v) where α(u,−v) = α(u, v) and β(u,−v) = −β(u, v), I
is an element chosen in a suitable subset of the algebra such that I2 = −1, (u, v)



80 Chapter 2. Slice monogenic functions

are real numbers which correspond to the “real part” and to the modulus of the
“imaginary part” of a variable chosen in a suitable subset of the algebra A. Then
by requiring that the pair of functions (α, β) satisfy the Cauchy–Riemann system,
one obtains the so-called slice regular functions according to [53] (compare with
Corollary 2.2.20). We do not enter into the details of this interesting construction:
it is sufficient to observe that the treatment is general enough to include, when
we consider open sets that are axially symmetric and which properly intersect the
real axis, the case of s-monogenic and s-regular functions treated in this book.

Finally, we point out that the study of zeros of polynomials of a paravector
variable, which we started in our work as a byproduct of the study of s-monogenic
functions, has been the topic of the researches of Qian and Yang, see [104]. More-
over, polynomials with coefficients in a Clifford algebra can also be treated with
the techniques developed by Ghiloni and Perotti, see the aforementioned papers
and [54].
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