
Chapter 2

The Laplace Transform

In this chapter the emphasis of the discussion shifts from Laplace integrals f̂(λ) and

d̂F (λ) to the Laplace transform L : f �→ f̂ and to the Laplace-Stieltjes transform

LS : F �→ d̂F . The Laplace transform is considered first as an operator acting on
L∞(R+, X) and the Laplace-Stieltjes transform as an operator on

Lip0(R+, X) :=

{
F : R+ → X : F (0) = 0, ‖F‖Lip0(R+,X) :=

sup
t,s≥0

‖F (t)− F (s)‖
|t− s| <∞

}
.

These domains of L and LS are relatively easy to deal with and have immediate
and important applications to abstract differential and integral equations.

The following observation is the key to one of the basic structures of Laplace
transform theory. If f ∈ L∞(R+, X), then t �→ F (t) :=

∫ t

0
f(s) ds belongs to

Lip0(R+, X) and

L(f)(λ) =
∫ ∞

0

e−λtf(t) dt =

∫ ∞

0

e−λt dF (t) = TF (e−λ),

where TF : g �→ ∫∞
0

g(s)dF (s) is a bounded linear operator from L1(R+) into

X, and where e−λ denotes the exponential function t �→ e−λt. The operator
TF is fundamental to Laplace transform theory. In Section 2.1 it is shown that
ΦS : F �→ TF is an isometric isomorphism between Lip0(R+, X) and L(L1(R+), X)
(Riesz-Stieltjes representation theorem). This representation is crucial for the fol-
lowing reason. The main purpose of Laplace transform theory is to translate prop-
erties of the generating function F into properties of the resulting function λ �→
r(λ) =

∫∞
0

e−λt dF (t) and vice versa. Since F (t) = TFχ[0,t] =
∫∞
0

χ[0,t](s) dF (s)

and r(λ) = TF e−λ =
∫∞
0

e−λs dF (s), the generating function F as well as the
resulting function r are evaluations of the same bounded linear operator acting on
different total subsets of L1(R+).
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In Section 2.2, the range of the Laplace-Stieltjes transform acting on
Lip0(R+, X) is characterized. It is shown that a function r : R+ → X has a
Laplace-Stieltjes representation r = LS(F ) for some F ∈ Lip0(R+, X) if and only
if r is a C∞-function whose Taylor coefficients satisfy the estimate

‖r‖W := sup
n∈N0

sup
λ>0

λn+1

n!
‖r(n)(λ)‖ <∞. (2.1)

This can be rephrased by saying that the Laplace-Stieltjes transform is an isometric
isomorphism between the Banach spaces Lip0(R+, X) and

C∞W ((0,∞), X) := {r ∈ C∞((0,∞), X) : ‖r‖W <∞}.
If the Banach space X has the Radon-Nikodym property (see Section 1.2), then
(and only then) “Widder’s growth conditions” (2.1) are necessary and sufficient for
r to have a Laplace representation r = L(f) for some f ∈ L∞(R+, X); i.e., Banach
spaces with the Radon-Nikodym property are precisely those Banach spaces in
which the Laplace transform is an isometric isomorphism between L∞(R+, X) and
C∞W ((0,∞), X). For X = C, this is a classical result usually known as “Widder’s
Theorem”.

If r = LS(F ) for some F ∈ Lip0(R+, X), then the inverse Laplace-Stieltjes
transform has many different representations. A few of them, such as

F (t) =
1

2πi

∫
Γ

eλt
r(λ)

λ
dλ = lim

n→∞

∞∑
j=1

(−1)j+1etnjr(nj)

= lim
k→∞

(−1)k 1

k!

(
k

t

)k+1
dk

dtk

(
r(λ)

λ

) ∣∣∣∣
λ=k/t

,

will be proved in Section 2.3.
In Section 2.4, the results of the previous sections are extended to functions

with exponential growth at infinity; i.e., we investigate the Laplace transform
acting on functions f with ess supt≥0 ‖e−ωtf(t)‖ <∞.

In applications it is usually impossible to verify whether or not a given
function r satisfies Widder’s growth conditions (2.1). Thus, in Sections 2.5 and
2.6 some complex growth conditions are discussed which are necessary (and in
a certain sense sufficient) for a holomorphic function r : {Reλ > ω} → X to
have a Laplace representation. In Section 2.5, the growth condition considered is
supReλ>ω ‖λ1+br(λ)‖ <∞ for some b > 0.

In Section 2.6, we discuss functions r which are holomorphic in a sector
Σ := {| arg(λ)| < π

2 + ε} and satisfy supλ∈Σ ‖λr(λ)‖ < ∞. We will see that
any such r is the Laplace transform of a function which is holomorphic in the
sector {| arg(λ)| < ε}. The final class of functions which we will consider are the
completely monotonic ones; i.e., C∞-functions r with values in an ordered Banach
space such that (−1)nr(n)(λ) ≥ 0 for all n ∈ N0 and λ > ω. In the scalar case,
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Bernstein’s theorem states that a function r is completely monotonic if and only
if it is the Laplace-Stieltjes transform of an increasing function. In Section 2.7 we
investigate for which ordered Banach spaces Bernstein’s theorem holds.

2.1 Riesz-Stieltjes Representation

In the following sections the emphasis will be on the properties of the Laplace

transform L : f �→ f̂ and the Laplace-Stieltjes transform LS : F �→ d̂F . As is
the case with all linear operators, the choice of the domain is crucial. For the
Laplace-Stieltjes transform LS the most convenient choice of the domain space is

Lip0(R+, X) :=

{
F : R+ → X : F (0) = 0, ‖F‖Lip0(R+,X) :=

sup
t,s≥0

‖F (t)− F (s)‖
|t− s| <∞

}
.

If F (t) =
∫ t

0
f(s) ds for f ∈ L∞(R+, X), then F ∈ Lip0(R+, X) and∫ ∞

0

e−λt dF (t) =

∫ ∞

0

e−λtf(t) dt (λ > 0),

by Proposition 1.10.1. Thus, any result for LS acting on Lip0(R+, X) translates
into one for L acting on L∞(R+, X). However, since there are Banach spaces
in which not every Lipschitz continuous function is the antiderivative of an L∞-
function (see Section 1.2), the Laplace-Stieltjes transform is a true generalization
of the Laplace transform. It is the generalization needed to deal effectively with
Laplace transforms of vector-valued functions.

In this section we investigate the Riesz-Stieltjes operator ΦS which assigns
to F ∈ Lip0(R+, X) a bounded linear operator TF : L1(R+)→ X such that

TF f :=

∫ ∞

0

f(s) dF (s) := lim
τ→∞

∫ τ

0

f(s) dF (s),

when f ∈ L1(R+) is continuous. It will be shown that ΦS is an isometric isomor-
phism between Lip0(R+, X) and L(L1(R+), X), the space of all bounded linear
operators from the Banach space L1(R+) into X (Riesz-Stieltjes representation).
This observation is fundamental for the whole chapter. To see why the Riesz-
Stieltjes representation is such an important tool, observe that

F (t) = TFχ[0,t] (t ≥ 0) , and d̂F (λ) = TF e−λ (λ > 0).

Thus, if one knows F , then the operator TF is specified on the set of characteristic
functions χ[0,t] (t > 0), which is total in L1(R+). Therefore, TF and, in partic-

ular, the Laplace integrals TF e−λ = d̂F (λ) (λ > 0) are completely determined.
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Conversely, the Laplace integrals d̂F (λ) determine TF on the set of exponential
functions e−λ (λ > 0), which is also total in L1(R+) (Lemma 1.7.1). Hence, the

Laplace integrals d̂F (λ) determine the properties of TF and, in particular, the
properties of F (t) = TFχ[0,t] (t ≥ 0).

Theorem 2.1.1 (Riesz-Stieltjes Representation). There exists a unique isometric
isomorphism ΦS : F �→ TF from Lip0(R+, X) onto L(L1(R+), X) such that

TFχ[0,t] = F (t) (2.2)

for all t ≥ 0 and F ∈ Lip0(R+, X). Moreover,

TF g = lim
t→∞

∫ t

0

g(s) dF (s) :=

∫ ∞

0

g(s) dF (s) (2.3)

for all continuous functions g ∈ L1(R+).

Note that it is part of the claim that the improper integral in (2.3) converges.
We shall call the isomorphism ΦS the Riesz-Stieltjes operator.

Proof. Let D := span{χ[0,t) : t > 0}, the space of step functions, which is dense
in L1(R+). For each f ∈ D there exists a unique representation

f =
n∑

i=1

αiχ[ti−1,ti),

where 0 = t0 < t1 < . . . < tn, αi ∈ C (i = 1, . . . , n). Let F ∈ Lip0(R+, X). Define
TF : D → X by

TF (f) = TF

(
n∑

i=1

αiχ[ti−1,ti)

)
:=

n∑
i=1

αi(F (ti)− F (ti−1)).

Then,

‖TF (f)‖ ≤ ‖F‖Lip0(R+,X)

n∑
i=1

|αi|(ti − ti−1) = ‖F‖Lip0(R+,X)‖f‖1.

Hence, TF has a unique extension TF ∈ L(L1(R+), X). Moreover,

‖TF ‖ ≤ ‖F‖Lip0(R+,X).

Conversely, if T ∈ L(L1(R+), X), let F (t) := Tχ[0,t) for t ≥ 0. Then for
t > s ≥ 0,

‖F (t)− F (s)‖ = ‖Tχ[s,t)‖ ≤ ‖T‖ ‖χ[s,t)‖1 = ‖T‖(t− s).
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Thus, F ∈ Lip0(R+, X) and ‖F‖Lip0(R+,X) ≤ ‖T‖. It follows from the definitions
that T = TF and if T = TG then F = G. This shows that F �→ TF is an isometric
isomorphism.

Finally, let g ∈ L1(R+) be a continuous function and let F ∈ Lip0(R+, X).
Take t > 0, and let π be a partition of [0, t] with partitioning points 0 = t0 < t1 <
. . . < tn = t and intermediate points si ∈ [ti−1, ti]. Let

fπ :=
n∑

i=1

g(si)χ[ti−1,ti).

Thus, S(g, F, π) = TF (fπ). As |π| → 0, ‖fπ − gχ[0,t)‖1 → 0, so∫ t

0

g(s) dF (s) = TF (gχ[0,t)).

As t→∞, ‖gχ[0,t) − g‖1 → 0, so∫ ∞

0

g(s) dF (s) = TF (g).

We conclude this section by discussing convergence of functions and their
Laplace-Stieltjes transforms. In fact, the Laplace-Stieltjes transform allows us to
give a purely operator-theoretic proof of the following approximation theorem.
Note, however, that the essential implication (i) ⇒ (iv) can also be obtained with
the help of Theorem 1.7.5 (which may easily be strengthened by merely considering
convergence on a sequence of equidistant points).

Theorem 2.1.2. Let M > 0, Fn ∈ Lip0(R+, X) with ‖Fn‖Lip0(R+,X) ≤ M for all
n ∈ N, and rn = LS(Fn). The following are equivalent:

(i) There exist a, b > 0 such that limn→∞ rn(a+ kb) exists for all k ∈ N0.

(ii) There exists r ∈ C∞((0,∞), X) such that rn → r uniformly on compact
subsets of (0,∞).

(iii) limn→∞ Fn(t) exists for all t ≥ 0.

(iv) There exists F ∈ Lip0(R+, X) such that Fn → F uniformly on compact
subsets of R+.

Moreover, if r and F are as in (ii) and (iv), then r = LS(F ).

Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1, there exist Tn ∈
L(L1(R+), X) such that ‖Tn‖ = ‖Fn‖Lip0(R+,X) ≤ M, Tne−λ = rn(λ), and
Tnχ[0,t] = Fn(t) (n ∈ N, t ≥ 0, λ > 0). Each of the statements imply that the
uniformly bounded family of operators Tn converges on a total subset of L1(R+)
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(see also Lemma 1.7.1). By equicontinuity (see Proposition B.15), for any uni-
formly bounded sequence of operators, the topology of simple convergence on a
total subset equals the topology of simple convergence and the topology of uniform
convergence on compact subsets. Thus there exists T ∈ L(L1(R+), X) such that
Tng → Tg as n→∞ for all g ∈ L1(R+) (simple convergence). For all b > 0 the sets
Kb := {χ[0,t] : 0 ≤ t ≤ b} and Eb := {e−λ : 1

b ≤ λ ≤ b} are compact in L1(R+)
(continuous images of compact sets are compact). Hence, Tn → T uniformly on
Kb and Eb (uniform convergence on compact subsets). Now the statements follow
from the Riesz-Stieltjes representation.

2.2 A Real Representation Theorem

In this section the range of the Laplace-Stieltjes transform LS : F �→ d̂F acting

on Lip0(R+, X) will be characterized. Since λ �→ d̂F (λ) = λF̂ (λ) is holomorphic
and, by Proposition 1.7.2, functions like λ �→ (sinλ)x (x ∈ X) cannot be in the
range of LS , the range must be a proper subset of C∞((0,∞), X). The following
observations will lead to a complete description of the range.

Let F ∈ Lip0(R+, X) and TF := ΦS(F ), where ΦS is the Riesz-Stieltjes
operator of Section 2.1. Define

r(λ) := d̂F (λ) =

∫ ∞

0

e−λt dF (t) (λ > 0).

Then, by Theorem 1.10.6, r ∈ C∞((0,∞), X) and

r(n)(λ) =

∫ ∞

0

e−λt(−t)n dF (t) = TF kn,λ,

where kn,λ(t) := e−λt(−t)n (t ≥ 0, λ > 0, n ∈ N0). Since ‖kn,λ‖1 =
∫∞
0

e−λttn dt
= n!/λn+1 and ‖TF ‖ = ‖F‖Lip0(R+,X), it follows that

‖r(n)(λ)‖ ≤ ‖F‖Lip0(R+,X)n!/λ
n+1

for all n ∈ N0 and λ > 0. Thus, r is a C∞-function whose Taylor coefficients satisfy

‖r‖W := sup
λ>0,k∈N0

λk+1

k!
‖r(k)(λ)‖ ≤ ‖F‖Lip0(R+,X).

This shows that the Laplace-Stieltjes transform LS : F → d̂F maps Lip0(R+, X)
into the space

C∞W ((0,∞), X) := {r ∈ C∞((0,∞), X) : ‖r‖W <∞}.
In 1936, Widder showed that the Laplace transform maps L∞(R+,R) onto
C∞W ((0,∞),R). The following result is the vector-valued version of Widder’s clas-
sical theorem.
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Theorem 2.2.1 (Real Representation Theorem). The Laplace-Stieltjes transform
LS is an isometric isomorphism between Lip0(R+, X) and C∞W ((0,∞), X).

Proof. We have already shown that LS maps Lip0(R+, X) into C∞W ((0,∞), X) and

that ‖LS(F )‖W ≤ ‖F‖Lip0(R+,X). If LS(F ) = d̂F = 0 for some F ∈ Lip0(R+, X),

then TF e−λ =
∫∞
0

e−λt dF (t) = d̂F (λ) = 0 for all λ > 0. Since the exponential
functions e−λ (λ > 0) are total in L1(R+) (Lemma 1.7.1), it follows that TF = 0.
In particular, TFχ[0,t] = F (t) = 0 for all t ≥ 0. Thus, LS is one-to-one.

The hard part of the proof is to show that LS is onto. Let r ∈ C∞W ((0,∞), X).
Define Tk ∈ L(L1(R+), X) by

Tkf :=

∫ ∞

0

f(t)(−1)k 1

k!

(
k

t

)k+1

r(k)
(
k

t

)
dt (k ∈ N0).

The operators Tk are uniformly bounded by ‖r‖W since ‖Tkf‖ ≤ ‖r‖W ‖f‖1 for
all f ∈ L1(R+). We will show below that Tke−λ → r(λ) as k → ∞ for all λ > 0.
Since the exponential functions e−λ (λ > 0) are total in L1(R+) it then follows
from Proposition B.15 that there exists T ∈ L(L1(R+), X) with ‖T‖ ≤ ‖r‖W such
that Tkf → Tf for all f ∈ L1(R+). In particular,

r(λ) = lim
k→∞

Tke−λ = Te−λ.

The Riesz-Stieltjes Representation Theorem 2.1.1 then yields the existence of some
F ∈ Lip0(R+, X) with ‖F‖Lip0(R+,X) = ‖T‖ ≤ ‖r‖W such that Tg =

∫∞
0

g(t) dF (t)
for all continuous functions g ∈ L1(R+). Hence, for all λ > 0,

r(λ) = Te−λ =

∫ ∞

0

e−λt dF (t) = d̂F (λ).

Thus, LS is onto and ‖LS(F )‖W = ‖d̂F‖W = ‖F‖Lip0(R+,X) for F ∈ Lip0(R+, X).
It remains to be shown that Tke−λ → r(λ) as k →∞ for all λ > 0. Observe

that

Tke−λ =

∫ ∞

0

e−λt(−1)k 1

k!

(
k

t

)k+1

r(k)
(
k

t

)
dt

= (−1)k 1

(k − 1)!

∫ ∞

0

(
e−λk/uuk−1

)
r(k)(u) du

= (−1)k 1

(k − 1)!

[
k−1∑
j=0

(−1)j dj

duj

(
e−λk/uuk−1

)
r(k−j−1)(u)

∣∣∣∣∣
∞

u=0

+(−1)k
∫ ∞

0

dk

duk

(
e−λk/uuk−1

)
r(u) du

]
.

To discuss the derivatives of u �→ e−λk/uuk−1, define G(x, u) := e−x/u
(
u
x

)k−1
.

Then G(sx, su) = G(x, u) for all s > 0. Differentiating both sides of the last
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equality with respect to s and then setting s = 1 yields x∂G
∂x (x, u)+u∂G

∂u (x, u) = 0

or 1
x
∂G
∂u (x, u) = − 1

u
∂G
∂x (x, u). This implies that

∂

∂u

(
e−x/uu

k−1

xk

)
= − ∂

∂x

(
e−x/uu

k−2

xk−1

)
.

By induction on j, it follows that

∂j

∂uj

(
e−x/uu

k−1

xk

)
= (−1)j ∂j

∂xj

(
e−x/uu

k−j−1

xk−j

)
(0 ≤ j ≤ k),

or
∂j

∂uj

(
e−x/uuk−1

)
= (−1)jxkuk−j−1 ∂j

∂xj

(
e−x/u

xk−j

)
. (2.4)

Hence,

h(u) :=

k−1∑
j=0

(−1)j ∂j

∂uj

(
e−x/uuk−1

)
r(k−j−1)(u)

=
k−1∑
j=0

xk ∂j

∂xj

(
e−x/u

xk−j

)
uk−j−1r(k−j−1)(u).

Since

‖uk−j−1r(k−j−1)(u)‖ ≤ ‖r‖W (k − j − 1)!

u
,

one obtains that

‖h(u)‖ ≤
k−1∑
j=0

‖r‖W (k − j − 1)!

u
xk

∣∣∣∣ ∂j

∂xj

(
e−x/u

xk−j

)∣∣∣∣ .
It follows that limu→∞ h(u) = 0 = limu→0 h(u). Therefore, letting x = λk,

Tke−λ =
1

(k − 1)!

∫ ∞

0

dk

duk

(
e−λk/uuk−1

)
r(u) du.

Since by (2.4),

∂k

∂uk

(
e−x/uuk−1

)
= (−1)k x

k

u

∂k

∂xk

(
e−x/u

)
=

xk

uk+1
e−x/u,

it follows that

Tke−λ =
λkkk

(k − 1)!

∫ ∞

0

e−λk/u 1

uk+1
r(u) du

=
λkkk+1

k!

∫ ∞

0

e−λkttk−1r

(
1

t

)
dt.
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Define f(t) := 1
t r(

1
t ) and s := 1

λ . Then

Tke−λ =
s

k!

(
k

s

)k+1 ∫ ∞

0

e−kt/stkf(t) dt

= s(−1)k 1

k!

(
k

s

)k+1

f̂ (k)

(
k

s

)
.

Finally, one concludes from the Post-Widder Inversion Theorem 1.7.7 that

lim
k→∞

Tke−λ = sf(s) = r

(
1

s

)
= r(λ)

for all λ > 0.

For later use in Section 2.5, we observe that in the Widder conditions it is
not necessary to consider all values of k.

Proposition 2.2.2. Let r ∈ C∞((0,∞), X), and suppose that limλ→∞ r(λ) = 0 and

there exist M > 0 and infinitely many integers m such that supλ>0 ‖λ
m+1

m! r(m)(λ)‖
≤M . Then r ∈ C∞W ((0,∞), X) and ‖r‖W ≤M .

Proof. It suffices to show that if ‖r(m)(λ)‖ ≤ Mm!/λm+1, for all λ > 0, then
‖r(k)(λ)‖ ≤Mk!/λk+1 for all λ > 0 and 0 ≤ k < m. Let

r̃(λ) :=
(−1)m
(m− 1)!

∫ ∞

λ

(λ− μ)m−1r(m)(μ) dμ.

Note that the integral is absolutely convergent, r̃(m)(λ) = r(m)(λ), and the sub-
stitution t = λ/μ gives

‖r̃(λ)‖ ≤Mm

∫ ∞

λ

(μ− λ)m−1

μm+1
dμ =

Mm

λ

∫ 1

0

(1− t)m−1 dt =
M

λ
.

Hence r − r̃ is a polynomial and limλ→∞(r − r̃)(λ) = 0, so r = r̃. It follows that

‖r(k)(λ)‖ =

∥∥∥∥ (−1)m
(m− k − 1)!

∫ ∞

λ

(λ− μ)m−k−1r(m)(μ) dμ

∥∥∥∥
≤ Mm!

(m− k − 1)!

∫ ∞

λ

(μ− λ)m−k−1

μm+1
dμ

=
Mk!

λk+1

for λ > 0 and 0 ≤ k < m.

Now it will be shown that the Laplace transform is an isometric isomorphism
between L∞(R+, X) and C∞W ((0,∞), X) if and only if the Banach space X has the
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Radon-Nikodym property. Recall from Section 1.2 that X has the Radon-Nikodym
property if every F ∈ Lip0(R+, X) is differentiable a.e., or equivalently if every
absolutely continuous function F : R+ → X is differentiable a.e. As shown in
Theorem 1.2.6 and Corollary 1.2.7, every separable dual space (for example, l1)
and every reflexive Banach space have the Radon-Nikodym property. However,
L1(R+) and c0 do not have the property (Propositions 1.2.9 and 1.2.10).

Theorem 2.2.3. Let X be a Banach space. The following are equivalent:

(i) X has the Radon-Nikodym property.

(ii) The Laplace transform L : f �→ f̂ is an isometric isomorphism between
L∞(R+, X) and C∞W ((0,∞), X).

(iii) The Riesz operator Φ : f �→ Rf , Rfg :=
∫∞
0

g(t)f(t) dt is an isometric
isomorphism between L∞(R+, X) and L(L1(R+), X).

Proof. Define the normalized antiderivative I : L∞(R+, X) → Lip0(R+, X) by

I(f) := F , F (t) :=
∫ t

0
f(s) ds (t ≥ 0). Then I is one-to-one and ‖I(f)‖Lip0(R+,X) ≤

‖f‖∞ for all f ∈ L∞(R+, X). If I is onto, thenX has the Radon-Nikodym property
(see Proposition 1.2.2). Conversely, if X has the Radon-Nikodym property and
F ∈ Lip0(R+, X) then f(t) := F ′(t) exists for almost all t ≥ 0. Since f(t) =

limh→0
F (t+h)−F (t)

h a.e., one concludes that ‖f‖∞ ≤ ‖F‖Lip0(R+,X). In particular,
f ∈ L∞(R+, X) and by Proposition 1.2.3, F = I(f). Thus X has the Radon-
Nikodym property if and only if I is an isometric isomorphism.

The Riesz-Stieltjes operator ΦS : F �→ TF , where TF g =
∫∞
0

g(t) dF (t) for
all continuous g ∈ L1(R+), is an isometric isomorphism between Lip0(R+, X) and
L(L1(R+), X), and the Laplace-Stieltjes transform

LS : F �→ d̂F , d̂F (λ) =

∫ ∞

0

e−λt dF (t),

is an isometric isomorphism between Lip0(R+, X) and C∞W ((0,∞), X). When F =
I(f), TF g =

∫∞
0

g(t)f(t) dt for all g ∈ L1(R+), by Proposition 1.9.11 and conti-
nuity in L1-norm. Now the statements follow from the fact that Φ = ΦS ◦ I and
L = LS ◦ I on L∞(R+, X).

Example 2.2.4. a) Consider X = L1(R+). Let F (t) := χ[0,t] (t ≥ 0) and r(λ) :=

e−λ (Reλ > 0), where e−λ(t) = e−λt. Then F ∈ Lip0(R+, L
1(R+)) and

r(λ) =

∫ ∞

0

e−λt dF (t) = d̂F (λ).

Since F is nowhere differentiable (see Proposition 1.2.10), there does not exist
f ∈ L∞(R+, L

1(R+)) such that

r(λ) =

∫ ∞

0

e−λtf(t) dt.
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b) Consider C0(R+) as a subspace of L∞(R+). Define F : R+ → C0(R+) by
F (t)(s) := (t − s)χ[0,t](s), and f : R+ → L∞(R+) by f(t) := χ[0,t]. Then F ∈
Lip0(R+, C0(R+)) and F (t) =

∫ t

0
f(s) ds as a Riemann integral in L∞(R+), but F

is nowhere differentiable and f is not measurable (see Examples 1.2.8 and 1.9.7).
Moreover,

1

λ
e−λ =

∫ ∞

0

e−λt dF (t) =

∫ ∞

0

e−λtf(t) dt

as (improper) Riemann-Stieltjes and Riemann integrals, but λ �→ 1
λe−λ is not the

Laplace transform of any function in L1(R+, L
∞(R+)).

2.3 Real and Complex Inversion

We have shown in Section 2.2 that the Laplace-Stieltjes transform LS is an iso-
metric isomorphism between Lip0(R+, X) and C∞W ((0,∞), X). In this section we
will derive several representations of the inverse Laplace-Stieltjes transform L−1

S .

Theorem 2.3.1 (Post-Widder Inversion). Let F ∈ Lip0(R+, X), r = LS(F ), and
t > 0. Then

F (t) = lim
k→∞

(−1)k 1

k!

(
k

t

)k+1
dk

dλk

(
r(λ)

λ

) ∣∣∣∣
λ=k/t

.

Proof. Since ω(F ) ≤ 0 and F (0) = 0, it follows from (1.22) that

r(λ)

λ
=

∫ ∞

0

e−λtF (t) dt

for all λ > 0, where the integral is an absolutely convergent Bochner integral. Now
the statement follows from Theorem 1.7.7.

Applying Leibniz’s rule (f · r)(k) = ∑k
j=0

(
k
j

)
f (k−j)r(j) to f(λ) := 1

λ and

r one can rewrite the Post-Widder inversion of the Laplace-Stieltjes transform as

F (t) = lim
k→∞

k∑
j=0

(−1)j 1
j!

(
k

t

)j

r(j)
(
k

t

)
(t > 0). (2.5)

Compared to the Post-Widder inversion, it is remarkable that in the following
Phragmén-Doetsch inversion formula only the values r(k) for large k ∈ N are
needed and that the convergence is uniform for all t ≥ 0.

Theorem 2.3.2 (Phragmén-Doetsch Inversion). Let F ∈ Lip0(R+, X) and r =
LS(F ). Then ∥∥∥∥∥∥F (t)−

∞∑
j=1

(−1)j+1

j!
etkjr(kj)

∥∥∥∥∥∥ ≤ c

k
‖r‖W

for all t ≥ 0 and k ∈ N, where c ≈ 1.0159..., and ‖r‖W = ‖F‖Lip0(R+,X).
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Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1 and the Real Rep-
resentation Theorem 2.2.1, there exists T ∈ L(L1(R+), X) such that r(λ) =∫∞
0

e−λt dF (t) = Te−λ (λ > 0), Tχ[0,t] = F (t) (t ≥ 0) and ‖T‖ = ‖r‖W =
‖F‖Lip0(R+,X). Thus,∥∥∥∥∥∥F (t)−

∞∑
j=1

(−1)j+1

j!
etkjr(kj)

∥∥∥∥∥∥ ≤ ‖T‖
∥∥∥∥∥∥χ[0,t] −

∞∑
j=1

(−1)j+1 1

j!
etkje−kj

∥∥∥∥∥∥
1

.

Define pk,t(s) := 1− e−ek(t−s)

=
∑∞

j=1(−1)j+1 1
j!e

tkje−kj(s). Then,

‖χ[0,t] − pk,t‖1 =

∫ t

0

|pk,t(s)− 1| ds+
∫ ∞

t

|pk,t(s)| ds

=

∫ t

0

e−ek(t−s)

ds+

∫ ∞

t

(
1− e−ek(t−s)

)
ds

=
1

k

∫ ekt

1

e−u

u
du+

1

k

∫ 1

0

1− e−u

u
du

≤ 1

k

(∫ ∞

1

e−u

u
du+

∫ 1

0

1− e−u

u
du

)
for all t ≥ 0 and k ∈ N. Now the claim follows from the fact that

∫∞
1

1
ue
−u du +∫ 1

0
1−e−u

u du = −2Ei(−1) + γ ≈ 1.0159..., where Ei(z) is the exponential integral
and γ is Euler’s constant (see [Leb72, Section 3.1]).

The following corollary shows that the Phragmén-Doetsch inversion is invari-
ant under exponentially decaying perturbations for small values of t.

Corollary 2.3.3. Let F ∈ Lip0(R+, X), r = LS(F ), and q(λ) = r(λ)+a(λ) (λ > 0),
where a : (0,∞) → X is a function such that lim supn→∞

1
n log ‖a(n)‖ ≤ −T for

some T > 0. Then

F (t) = lim
k→∞

∞∑
j=1

(−1)j+1

j!
etkjq(kj)

for all 0 ≤ t < T .

Proof. Let 0 < T0 < T and choose k0 such that ‖a(k)‖ ≤ e−T0k for all k ≥ k0.
Then, ∥∥∥∥F (t)−

∞∑
j=1

(−1)j+1

j!
etkjq(kj)

∥∥∥∥
≤

∥∥∥∥F (t)−
∞∑
j=1

(−1)j+1

j!
etkjr(kj)

∥∥∥∥+

∥∥∥∥ ∞∑
j=1

(−1)j+1

j!
etkja(kj)

∥∥∥∥
≤ 2

k
‖r‖W +

∞∑
j=1

1

j!
etkje−T0kj ≤ 2

k
‖r‖W + ee

−(T0−t)k − 1.



2.3. REAL AND COMPLEX INVERSION 75

The Post-Widder inversion and the Phragmén-Doetsch inversion are called
real inversions of the Laplace-Stieltjes transform since they use only properties
of r(λ) for large real λ. For the following complex inversion formula we use the
fact that if r(λ) =

∫∞
0

e−λt dF (t) (λ > 0) for some F ∈ Lip0(R+, X), then r
admits a holomorphic extension for Reλ > 0 which we denote by the same sym-
bol (see Theorem 1.10.6). We shall give here a proof based on the Riesz-Stieltjes
representation, but we shall give another, rather simple, proof in Section 4.2.

Theorem 2.3.4 (Complex Inversion). Let F ∈ Lip0(R+, X) and r = LS(F ). Then

F (t) = lim
k→∞

1

2πi

∫ c+ik

c−ik

eλt
r(λ)

λ
dλ,

where the limit is uniform for t ∈ [0, a] for any a > 0, and c > 0 is arbitrary.

Proof. By the Riesz-Stieltjes Representation Theorem 2.1.1, there exists T ∈
L(L1(R+), X) such that r(λ) = Te−λ (Reλ > 0) and F (t) = Tχ[0,t] (t ≥ 0).
Thus,∥∥∥∥∥F (t)− 1

2πi

∫ c+ik

c−ik

eλt
r(λ)

λ
dλ

∥∥∥∥∥ ≤ ‖T‖
∥∥∥∥∥χ[0,t] − 1

2πi

∫ c+ik

c−ik

eλt
e−λ

λ
dλ

∥∥∥∥∥
1

.

Now the statement follows from the next lemma.

Lemma 2.3.5. Let t ≥ 0 and a, c > 0. Then the functions

hk,t :=
1

2πi

∫ c+ik

c−ik

eλt
e−λ

λ
dλ

converge towards χ[0,t] in L1(R+) as n→∞, uniformly for t ∈ [0, a].

Proof. Let ‖hk,t − χ[0,t]‖1 = Ak + Bk , where Ak :=
∫ t

0
|hk,t(s) − 1| ds and Bk :=∫∞

t
|hk,t(s)| ds. We show first that limk→∞Ak = 0. The residue of the function

λ �→ eλ(t−s)/λ at the point 0 is 1. By Cauchy’s theorem,

hk,t(s)− 1 =
1

2πi

(∫
Γ+

−
∫
Γ−
−
∫
Γ0

)
eλ(t−s)

λ
dλ,

where Γ± := {λ : λ = u± ik; 0 ≤ u ≤ c}, Γ0 := {λ : λ = keiu; π/2 ≤ u ≤ 3π/2}.
Along Γ+, and similarly along Γ−, it follows from 0 ≤ s ≤ t that∣∣∣∣∣

∫
Γ+

eλ(t−s)

λ
dλ

∣∣∣∣∣ =
∣∣∣∣∫ c

0

e(u+ik)(t−s)

u+ ik
du

∣∣∣∣ ≤ c
ec(t−s)

k
.

Along Γ0, for 0 ≤ s < t,∣∣∣∣∫
Γ0

eλ(t−s)

λ
dλ

∣∣∣∣ =
∣∣∣∣∣
∫ 3π/2

π/2

ek(t−s)eiu du

∣∣∣∣∣ ≤
∫ 3π/2

π/2

ek(t−s) cosu du.
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Hence,

Ak =

∫ t

0

|hk,t(t− s)− 1| ds

≤
∫ t

0

(
cecs

πk
+

1

2π

∫ 3π/2

π/2

eks cosu du

)
ds

→ 0

as k → ∞, uniformly for t ∈ [0, a] for all a > 0, by the monotone convergence
theorem, or by explicit estimation.

In order to estimate Bk, we define Γ̃± := {λ : λ = u± ik ; c ≤ u ≤ k}, Γ̃0 :=
{λ : λ = k

√
2eiu ; −π/4 ≤ u ≤ π/4}. By Cauchy’s theorem,

hk,t(s) =
1

2πi

(
−
∫
˜Γ+

+

∫
˜Γ−

+

∫
˜Γ0

)
eλ(t−s)

λ
dλ.

Along Γ̃+, and similarly along Γ̃−, it follows from s− t ≥ 0 that∣∣∣∣∣
∫
˜Γ+

eλ(t−s)

λ
dλ

∣∣∣∣∣ =

∣∣∣∣∣
∫ k

c

e(u+ik)(t−s)

u+ ik
du

∣∣∣∣∣ ≤ 1

k

∫ k

c

e−u(s−t) du

=
e−c(s−t) − e−k(s−t)

k(s− t)
.

Along Γ̃0,∣∣∣∣∫
˜Γ0

eλ(t−s)

λ
dλ

∣∣∣∣ =

∣∣∣∣∣
∫ π/4

−π/4

ek
√
2(t−s)eiu du

∣∣∣∣∣ ≤
∫ π/4

−π/4

ek
√
2(t−s) cosu du

= 2

∫ π/4

0

ek
√
2(t−s) cos(u) du ≤ π

2
ek
√
2(t−s) cos(π/4) =

π

2
e−k(s−t).

Hence, for all t ≥ 0,∫ ∞

t

|hk,t(s)| ds ≤ 1

π

∫ ∞

t

e−c(s−t) − e−k(s−t)

k(s− t)
ds +

1

4

∫ ∞

t

e−k(s−t) ds

=
1

π

∫ ∞

0

zk(s) ds+
1

4k
,

where zk(s) := 1
ks (e

−cs − e−ks) ≤ e−cs for k ≥ c by the mean value theorem
applied to e−x over [cs, ks]. By the dominated convergence theorem, or by explicit
estimation, Bk → 0 as k →∞, uniformly for t ∈ [0, a] for all a > 0.
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2.4 Transforms of Exponentially Bounded Functions

So far in this chapter, Laplace transforms have been considered for bounded or
globally Lipschitz continuous functions. We shall now adapt the results of the
previous sections to functions with exponential growth at infinity, by an elemen-
tary “shifting” procedure (see Proposition 1.6.1 a) and Proposition 1.10.3). More
precisely, for ω ∈ R we consider the Laplace-Stieltjes transform acting on

Lipω(R+, X) :=

{
G : R+ → X : G(0) = 0,

‖G‖Lipω(R+,X) := sup
t>s≥0

‖G(t)−G(s)‖∫ t

s
eωr dr

<∞
}

and the Laplace transform acting on

L∞ω (R+, X) :=

{
g ∈ L1

loc(R+, X) : ‖g‖ω,∞ := ess sup
t≥0

‖e−ωtg(t)‖ <∞
}
.

It is easy to see that

‖G‖Lipω(R+,X) =

⎧⎪⎪⎨⎪⎪⎩
sup0≤s<t

‖G(t)−G(s)‖
(t− s)eωt

if ω ≥ 0,

sup0≤s<t

‖G(t)−G(s)‖
(t− s)eωs

if ω ≤ 0.

It is clear that the multiplication operator Mω : g �→ e−ω·g(·) is an isometric
isomorphism between L∞ω (R+, X) and L∞(R+, X), and we now set up the corre-
sponding isomorphism between Lipω(R+, X) and Lip0(R+, X).

For G ∈ Lipω(R+, X) and f ∈ BSVloc(R+), it follows from the definition of
the Riemann-Stieltjes integral that∥∥∥∥∥

∫ b

a

f(t) dG(t)

∥∥∥∥∥ ≤ ‖G‖Lipω(R+,X)

∫ b

a

|f(t)|eωt dt (0 ≤ a ≤ b). (2.6)

Let

(IωG)(t) :=

∫ t

0

e−ωs dG(s).

Then (2.6) implies that

IωG ∈ Lip0(R+, X) and ‖IωG‖Lip0(R+,X) ≤ ‖G‖Lipω(R+,X).

Similarly if F ∈ Lip0(R+, X) and

(JωF )(t) :=

∫ t

0

eωs dF (s),
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then JωF ∈ Lipω(R+, X) and ‖JωF‖Lipω(R+,X) ≤ ‖F‖Lip0(R+,X). Moreover, JωIωG
= G and IωJωF = F , by Proposition 1.9.10. Hence, Iω is an isometric isomorphism
of Lipω(R+, X) onto Lip0(R+, X).

Note that if G ∈ L∞ω (R+, X) then ω(G) ≤ ω and abs(dG) ≤ ω by Theorem
1.10.5. Thus, the Laplace-Stieltjes transform

(LS,ωG)(λ) := d̂G(λ) =

∫ ∞

0

e−λt dG(t)

exists for λ > ω. By Proposition 1.10.3,

(LS,ωG)(λ) = (LSIωG)(λ− ω). (2.7)

Let

C∞W ((ω,∞), X) :=

{
r ∈ C∞((ω,∞), X) :

‖r‖W := sup
λ>ω,k∈N0

(λ− ω)k+1

k!
‖r(k)(λ)‖ <∞

}
.

This is a Banach space, and it is clear that the shift Sω : r �→ r(· − ω) is an
isometric isomorphism of C∞W ((0,∞), X) onto C∞W ((ω,∞), X). The equation (2.7)
may be written as LS,ω = Sω ◦ LS ◦ Iω.

Now we can give the following reformulation of the Real Representation The-
orem 2.2.1.

Theorem 2.4.1. Let ω ∈ R. The Laplace-Stieltjes transform is an isometric iso-
morphism of Lipω(R+, X) onto C∞W ((ω,∞), X). In particular, for M > 0 and
r ∈ C∞W ((ω,∞), X), the following are equivalent:

(i) ‖(λ− ω)k+1 1
k!r

(k)(λ)‖ ≤M (λ > ω, k ∈ N0).

(ii) There exists G : R+ → X satisfying G(0) = 0 and ‖G(t + h) − G(t)‖ ≤
M

∫ t+h

t
eωr dr (t, h ≥ 0), such that r(λ) =

∫∞
0

e−λt dG(t) for all λ > ω.

Proposition 1.6.1 a) gives

Lω = Sω ◦ L ◦Mω

where L and Lω are the Laplace transforms on L∞(R+, X) and L∞ω (R+, X). Hence
Theorem 2.2.3 can be reformulated as follows.

Theorem 2.4.2. Let M > 0, ω ∈ R. If X has the Radon-Nikodym property then
for any r ∈ C∞W ((ω,∞), X) the following are equivalent:

(i) ‖(λ− ω)k+1 1
k!r

(k)(λ)‖ ≤M (λ > ω, k ∈ N0).

(ii) There exists g ∈ L1
loc(R+, X) with ‖g(t)‖ ≤ Meωt for almost all t ≥ 0 such

that r(λ) =
∫∞
0

e−λtg(t) dt for all λ > ω.
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As in Theorem 2.1.1 one shows that there exists an isometric isomorphism
ΦS,ω between the spaces Lipω(R+, X) and L(L1

ω(R+), X), where

L1
ω(R+) :=

{
h ∈ L1

loc(R+) : ‖h‖ω,1 :=

∫ ∞

0

eωt|h(t)| dt <∞
}
.

The isomorphism ΦS,ω assigns to every function G ∈ Lipω(R+, X) an operator
T ∈ L(L1

ω(R+), X) with ‖T‖ = ‖G‖Lipω(R+,X) such that

Th =

∫ ∞

0

h(t) dG(t)

for all continuous functions h ∈ L1
ω(R+), Tχ[0,t] = G(t) for all t ≥ 0, and Te−λ =

d̂G(λ) if Reλ > ω.
The inversion theorems in Section 2.3 all remain valid, with almost no changes

in the proofs (the version of Theorem 2.3.4 for Lipω(R+, X) can be deduced directly

from the case ω = 0 by using the isomorphism Iω). Thus, if r = d̂F for some
F ∈ Lipω(R+, X), then

F (t) = lim
k→∞

(−1)k 1

k!

(
k

t

)k+1
dk

dλk

(
r(λ)

λ

) ∣∣∣∣
λ=k/t

. (2.8)

If c > max(ω, 0), then

F (t) = lim
k→∞

1

2πi

∫ c+ik

c−ik

eλt
r(λ)

λ
dλ, (2.9)

where the limit exists uniformly on compact subsets of R+. Finally,

F (t) = lim
k→∞

∞∑
j=1

(−1)j+1 1

j!
etkjr(kj), (2.10)

where the limit exists uniformly on R+.
The following is a consequence of the Phragmén-Doetsch inversion (2.10).

Proposition 2.4.3. Let ε > 0 and f ∈ L1
loc(R+, X) with abs(f) <∞. The following

are equivalent.

(i) lim supλ→∞
1
λ log ‖f̂(λ)‖ ≤ −ε.

(ii) f = 0 a.e. on [0, ε].

Proof. Let F (t) :=
∫ t

0
f(s) ds and G(t) :=

∫ t

0
F (s) ds. Since abs(f) < ∞, ω(F ) <

∞ by Theorem 1.4.3 and hence G ∈ Lipω(R+, X) for some ω ∈ R. By Corollary
1.6.5 and Proposition 1.10.1,

f̂(λ) = λF̂ (λ) = λd̂G(λ) = λ2Ĝ(λ)
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for Reλ > ω. Define

r(λ) :=
1

λ
f̂(λ) = F̂ (λ) = d̂G(λ)

for λ > ω. If (i) holds, then lim supλ→∞
1
λ log ‖r(λ)‖ ≤ −ε. Let 0 < ξ < ε. Then

there exist M,λ0 > 0 such that ‖r(λ)‖ ≤ Me−λξ for all λ > λ0. Let t ∈ [0, ξ).
Then, for λ0 < k ∈ N,∥∥∥∥∥∥

∞∑
j=1

(−1)j+1

j!
etkjr(kj)

∥∥∥∥∥∥ ≤M
∞∑
j=1

1

j!
e(t−ξ)kj = M

(
ee

(t−ξ)k − 1
)
→ 0

as k → ∞. Since r = d̂G, it follows from (2.10) that G = 0 on [0, ξ) for all
0 < ξ < ε. Thus, G = 0 on [0, ε] and hence f = 0 a.e. on [0, ε], by Proposition
1.2.2. This proves that (i) ⇒ (ii).

Suppose that (ii) holds. Then F = 0 on [0, ε]. Thus

r(λ) =

∫ ∞

0

e−λtF (t) dt =

∫ ∞

ε

e−λtF (t) dt = e−λε

∫ ∞

0

e−λtF (t+ ε) dt.

Since t �→ F (t+ε) is exponentially bounded, it follows that ‖ ∫∞
0

e−λtF (t+ε) dt‖ ≤
C for some C > 0 and therefore ‖r(λ)‖ ≤ Ce−ελ for all sufficiently large λ. This
proves that (ii) ⇒ (i).

If f ∈ L1
loc(R+, X) with abs(f) <∞, then it follows from Corollary 1.6.5 and

the exponential boundedness of F that there exist M,λ0 > 0 such that ‖f̂(λ)‖ ≤
M for all λ > λ0. Thus, lim supλ→∞

1
λ log ‖f̂(λ)‖ ≤ 0. This and the previous

proposition yield the following corollary.

Corollary 2.4.4. Let f ∈ L1
loc(R+, X) with abs(f) < ∞. Then the following are

equivalent:

(i) lim supλ→∞
1
λ log ‖f̂(λ)‖ = 0.

(ii) For every ε > 0, the restriction of f to [0, ε] does not vanish a.e.

2.5 Complex Conditions

It was shown in the previous section that a holomorphic function q : {Reλ > ω} →
X has a Laplace-Stieltjes or multiplied Laplace representation

q(λ) =

∫ ∞

0

e−λt dF (t) = λ

∫ ∞

0

e−λtF (t) dt

if there exists a constant M > 0 such that the Taylor coefficients 1
k!q

(k)(λ) are
bounded by M/(λ− ω)k+1 for all λ > ω and k ∈ N0. Since only properties of the
function q along the real half-line (ω,∞) are involved, Widder’s growth conditions
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are also referred to as “real conditions”. In many instances, these real conditions
are too difficult to be checked because all derivatives of q have to be considered,
whereas the growth of q in a complex half-plane Reλ > ω can be estimated. In
these cases one can apply the following representation theorem.

Theorem 2.5.1 (Complex Representation). Let ω ≥ 0, let q : {Reλ > ω} → X
be a holomorphic function with supReλ>ω ‖λq(λ)‖ <∞ and let b > 0. Then there

exists f ∈ C(R+, X) with supt>0 ‖e−ωtt−bf(t)‖ < ∞ such that q(λ) = λbf̂(λ) for
Reλ > ω.

Proof. Let α > ω and define

f(t) := lim
R→∞

1

2πi

∫ α+iR

α−iR

eλt
q(λ)

λb
dλ =

1

2π

∫ ∞

−∞
e(α+ir)t q(α+ ir)

(α+ ir)b
dr.

Observe that the latter integral is absolutely convergent, by the assumption on q, so
the limit exists uniformly for t in compact subsets of R+. Hence, f is continuous on
R+. By applying Cauchy’s theorem over rectangles with vertices α±iR, β±iR, and
using the assumption on q, it is easy to see that the definition of f is independent
of α > ω.

For α > ω and R > 0, let Γα,R be the path consisting of the vertical half-line
{α + ir : r < −R}, the semicircle {α + Reiθ : −π

2 ≤ θ ≤ π
2 }, and the half-line

{α+ ir : r > R}. By Cauchy’s theorem,

f(t) =
1

2πi

∫
Γα,R

eλt
q(λ)

λb
dλ

=
1

2π

∫ −R

−∞
e(α+ir)t q(α+ ir)

(α+ ir)b
dr

+
1

2π

∫ π/2

−π/2

e(α+Reiθ)t q(α+Reiθ)

(α+Reiθ)b
Reiθ dθ

+
1

2π

∫ ∞

R

e(α+ir)t q(α+ ir)

(α+ ir)b
dr.

Hence,

‖f(t)‖ ≤ Meαt

π

∫ ∞

R

dr

rb+1
+

M

2π

∫ π/2

−π/2

e(α+R cos θ)t

Rb
dθ

=
Meαt

πbRb
+

Meαt

πRb

∫ π/2

0

eRt cos θ dθ,

whereM := supReλ>ω ‖λq(λ)‖. Choosing R = 1/t, we obtain that ‖f(t)‖ ≤ Ctbeαt

for some C independent of α > ω. Hence, ‖f(t)‖ ≤ Ctbeωt.
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Given λ with Reλ > ω, choose ω < α < Reλ. By the dominated convergence
theorem and Fubini’s theorem,∫ ∞

0

e−λtf(t) dt = lim
R→∞

∫ ∞

0

e−λt 1

2πi

∫ α+iR

α−iR

ezt
q(z)

zb
dz dt

= lim
R→∞

1

2πi

∫ α+iR

α−iR

q(z)

(λ− z)zb
dz.

By Cauchy’s residue theorem around the path consisting of the semicircle {α +
Reiθ : −π/2 ≤ θ ≤ π/2} and the line-segment {α+ ir : −R ≤ r ≤ R},

1

2πi

∫ α+iR

α−iR

q(z)

(λ− z)zb
dz =

1

2π

∫ π/2

−π/2

q(α+Reiθ)Reiθ

(λ− α−Reiθ)(α+Reiθ)b
dθ +

q(λ)

λb

→ q(λ)

λb

as R→∞, using the assumption on q.

We mention that Theorem 2.5.1 does not hold for b = 0. In fact, Desch and
Prüss [DP93] construct a scalar-valued holomorphic function q on C+ satisfying

sup
Reλ>0

‖q(λ)‖(1 + |λ|) <∞

such that q is not the Laplace transform of a function f ∈ L∞loc(0,∞).
On the other hand, if λq(λ) and λ2q′(λ) are bounded on the right half-plane,

then q is the Laplace transform of a bounded continuous function, as we show in
the following corollary.

Corollary 2.5.2 (Prüss). Let q : {Reλ > 0} → X be holomorphic. If there exists
M > 0 such that ‖λq(λ)‖ ≤ M and ‖λ2q′(λ)‖ ≤ M for Reλ > 0, then there
exists a bounded function f ∈ C((0,∞), X) such that q(λ) =

∫∞
0

e−λtf(t) dt for
Reλ > 0. In particular, q ∈ C∞W ((0,∞), X).

Proof. It follows from Theorem 2.5.1 that there are functions fi ∈ C(R+, X) (i =
0, 1) and C > 0 such that ‖fi(t)‖ ≤ Ct for t > 0,

q(λ) = λ

∫ ∞

0

e−λtf0(t) dt, and λq′(λ) = λ

∫ ∞

0

e−λtf1(t) dt

for Reλ > 0. By Theorem 1.5.1,

q′(λ) =
∫ ∞

0

e−λtf0(t) dt− λ

∫ ∞

0

e−λttf0(t) dt =

∫ ∞

0

e−λtf1(t) dt.

Integration by parts (or Corollary 1.6.5) yields

λ

∫ ∞

0

e−λt

(∫ t

0

f0(s) ds− tf0(t)

)
dt = λ

∫ ∞

0

e−λt

∫ t

0

f1(s) ds dt.
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Since the Laplace transform is one-to-one, it follows that tf0(t) =
∫ t

0
f0(s) ds −∫ t

0
f1(s) ds. Thus, f0 ∈ C1((0,∞), X) and tf ′0(t) = −f1(t). Therefore, ‖f ′0(t)‖ ≤ C

for all t > 0 and

q(λ) = λ

∫ ∞

0

e−λtf0(t) dt =

∫ ∞

0

e−λtf ′0(t) dt (Reλ > 0).

Remark 2.5.3. If f ∈ L∞((0,∞), X), then r = f̂ is holomorphic on the right
half-plane and

‖λr(λ)‖ ≤ |λ|
Reλ

‖f‖∞,

‖λ2r′(λ)‖ ≤
( |λ|
Reλ

)2

‖f‖∞ (Reλ > 0).

In particular, λr(λ) and λ2r′(λ) are bounded on each sector Σα = {reiγ : r >
0, |γ| < α} where α ∈ (0, π/2). In Corollary 2.5.2 the estimate is required uni-
formly on the right half-plane, which is more. On the other hand, continuity is
obtained as an additional result.

We close this section with a characterization of Laplace transforms of func-
tions in L1

loc(R+, X) with ‖f(t)‖ ≤ Mtn for some M,n ≥ 0 and almost all t ≥ 0
(if X has the Radon-Nikodym property) or the Laplace-Stieltjes transforms of

functions H : R+ → X with H(0) = 0 and ‖H(t)−H(s)‖ ≤ M
∫ t

s
rn dr for some

M > 0 and all 0 ≤ s ≤ t (for general X).

Corollary 2.5.4. Let M > 0, n ∈ N0, and r ∈ C∞((0,∞), X). The following are
equivalent:

(i) ‖λk+n+1

(k+n)! r
(k)(λ)‖ ≤M (λ > 0, k ∈ N0).

(ii) There exists H : R+ → X satisfying H(0) = 0 and ‖H(t) − H(s)‖ ≤
M

∫ t

s
rn dr (0 ≤ s ≤ t), such that r(λ) =

∫∞
0

e−λt dH(t) for all λ > 0.

Proof. By the Real Representation Theorem 2.2.1, the statement holds for n = 0.
Therefore, let n ≥ 1. To show that (i) implies (ii), define

m(λ) := (−1)n
∫ ∞

λ

1

(n− 1)!
(u− λ)n−1r(u) du

for λ > 0. Then, m(k)(λ) = r(k−n)(λ) for all k ≥ n and λ > 0. Since ‖λk+1

k! m(k)(λ)‖
= ‖λk+1

k! r(k−n)(λ)‖ ≤ M for all λ > 0 and k ≥ n, it follows from Proposition
2.2.2 that m ∈ C∞W ((0,∞), X) and ‖m‖W ≤ M . By Theorem 2.2.1, there exists
G : R+ → X with G(0) = 0 and ‖G(t)−G(s)‖ ≤M |t− s| for all t, s ≥ 0 such that
m(λ) =

∫∞
0

e−λt dG(t) for all λ > 0. By Theorem 1.5.1 and Proposition 1.9.10,

r(λ) = m(n)(λ) =

∫ ∞

0

e−λt(−t)n dG(t) =

∫ ∞

0

e−λt dH(t),
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whereH(t) :=
∫ t

0
(−s)n dG(s). Now the statement (ii) follows from ‖H(t)−H(s)‖ =

‖ ∫ t

s
(−r)n dG(r)‖ ≤M

∫ t

s
rn dr for all 0 ≤ s ≤ t.

To show that (ii) implies (i), let x∗ ∈ X∗. The function x∗ ◦ H is lo-
cally Lipschitz continuous, hence absolutely continuous and differentiable a.e. If
h(t) := d

dt 〈H(t), x∗〉, then |h(t)| ≤ Mtn‖x∗‖ and 〈r(λ), x∗〉 = ∫∞
0

e−λth(t) dt, by
Proposition 1.9.11. Hence,∣∣∣∣〈 λk+n+1

(k + n)!
r(k)(λ), x∗

〉∣∣∣∣ =

∣∣∣∣ λk+n+1

(k + n)!

∫ ∞

0

e−λt(−t)kh(t) dt
∣∣∣∣

≤ M‖x∗‖.

Now (i) follows from the Hahn-Banach theorem.

2.6 Laplace Transforms of Holomorphic Functions

In this section those functions are characterized which are Laplace transforms of
holomorphic, exponentially bounded functions defined on some open sector Σα :=
{reiγ : r > 0,−α < γ < α} for some 0 < α ≤ π/2. The closure of Σα is denoted
by Σα. We shall use the same notation for 0 < α < π. Note that Σπ

2
= C+ :=

{Reλ > 0}.
Theorem 2.6.1 (Analytic Representation). Let 0 < α ≤ π

2 , ω ∈ R and q : (ω,∞)
→ X. The following are equivalent:

(i) There is a holomorphic function f : Σα → X such that supz∈Σβ
‖e−ωzf(z)‖

<∞ for all 0 < β < α and q(λ) = f̂(λ) for all λ > ω.

(ii) The function q has a holomorphic extension q̃ : ω + Σα+π
2
→ X such that

supλ∈ω+Σγ+π
2

‖(λ− ω)q̃(λ)‖ <∞ for all 0 < γ < α.

Proof. Assume that (i) holds. Let 0 < β < α. Then there exists M > 0 such that
‖f(z)‖ ≤M |eωz| for all z ∈ Σβ \ {0}. Define paths Γ± by Γ± := {se±iβ : 0 ≤ s <
∞}. By Cauchy’s theorem,

q(λ) =

∫ ∞

0

e−λtf(t) dt =

∫
Γ±

e−λzf(z)dz

= e±iβ

∫ ∞

0

e−λse±iβ

f(se±iβ) ds (2.11)

for all λ > ω. Let 0 < ε < π
2 − β, and let λ ∈ C with −π

2 − β + ε < arg(λ− ω) <
π
2 −β−ε. Then −π

2 +ε < arg((λ−ω)eiβ) < π
2 −ε, so Re((λ−ω)eiβ) ≥ |λ−ω| sin ε.

It follows that

‖e−λseiβf(seiβ)‖ ≤Me−s|λ−ω| sin ε.



2.6. LAPLACE TRANSFORMS OF HOLOMORPHIC FUNCTIONS 85

Consequently, the integral

q+(λ) := eiβ
∫ ∞

0

e−λseiβf(seiβ) ds

is absolutely convergent and defines a holomorphic function in the region −π
2 −

β + ε < arg(λ− ω) < π
2 − β − ε, with ‖(λ− ω)q+(λ)‖ ≤M/ sin ε. Similarly,

q−(λ) := e−iβ

∫ ∞

0

e−λse−iβ

f(se−iβ) ds

defines a holomorphic function in the region −π
2 +β+ ε < arg(λ−ω) < π

2 +β− ε,
with ‖(λ − ω)q−(λ)‖ ≤ M/ sin ε. By (2.11), both q+ and q− are extensions of q,
and together they define a holomorphic extension q̃ to ω + Σπ

2 +β−ε, satisfying
‖(λ − ω)q̃(λ)‖ ≤ M/ sin ε in the sector. Since β < α and 0 < ε < π

2 − β are
arbitrary, this proves (ii).

Assume that (ii) holds. Let 0 < γ < α and δ > 0. There exists M > 0 such
that ‖(λ− ω)q̃(λ)‖ ≤M for all λ ∈ (ω +Σγ+π

2
) \ {ω}. Consider an oriented path

Γ (depending on γ and δ) consisting of

Γ± :=
{
ω + re±i(γ+π/2) : δ ≤ r

}
and Γ0 :=

{
ω + δeiθ : −γ − π

2 ≤ θ ≤ γ + π
2

}
.

Let 0 < ε < γ and consider z ∈ Σγ−ε. For λ = ω + re±i(γ+π/2) ∈ Γ±,

Re(λz) = ωRe z + r|z| cos(arg z ± (γ + π/2))

≤ ωRe z − r|z| sin ε.

Hence,

‖eλz q̃(λ)‖ ≤ eωRe ze−r|z| sin εM

r
(λ ∈ Γ±). (2.12)

This shows that

f(z) :=
1

2πi

∫
Γ

eλz q̃(λ) dλ (2.13)

is absolutely convergent, uniformly for z in compact subsets of Σγ , and therefore
defines a holomorphic function in Σγ . By Cauchy’s theorem, this function is in-
dependent of δ > 0, and also independent of γ < α so long as arg z < γ (here we
use the assumption on q̃ to estimate the integral of eλz q̃(λ) over arcs {ω + Reiθ :
γ1 +

π
2 ≤ |θ| ≤ γ2 +

π
2 }). Hence (2.13) defines a holomorphic function f ∈ Σα.

To estimate f(z), we choose δ = |z|−1, and choose γ and ε such that γ < α
and | arg z| < γ − ε. On Γ0, λ = ω + |z|−1eiθ (−γ − π/2 ≤ θ ≤ γ + π/2), so∥∥∥∥ 1

2πi

∫
Γ0

eλz q̃(λ) dλ

∥∥∥∥ ≤ 1

2π

∫ γ+π/2

−γ−π/2

eωRe zecos(arg z+θ)M dθ

≤ Me1+ωRe z. (2.14)
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On Γ±, λ = ω + re±i(γ+π/2), and the estimate (2.12) gives∥∥∥∥∥ 1

2πi

∫
Γ±

eλz q̃(λ) dλ

∥∥∥∥∥ ≤ 1

2π

∫ ∞

|z|−1

eωRe ze−r|z| sin εM

r
dr

=
MeωRe z

2π

∫ ∞

1

e−r sin ε

r
dr

≤ MeωRe z

2π sin ε
. (2.15)

Now (2.14) and (2.15) establish that

sup
z∈Σγ−ε

‖e−ωzf(z)‖ <∞

for any 0 < ε < γ < α.
Next we will show that f̂(λ) = q(λ) whenever λ > ω. Given such λ, choose

0 < δ < λ− ω, and 0 < γ < α. Then λ is to the right of the path Γ, and Fubini’s
theorem and Cauchy’s residue theorem imply that

f̂(λ) =

∫ ∞

0

e−λt 1

2πi

∫
Γ

eμtq̃(μ) dμ dt

=
1

2πi

∫
Γ

q̃(μ)

λ− μ
dμ

= q̃(λ) + lim
R→∞

1

2πi

∫
˜ΓR

q̃(μ)

λ− μ
dμ,

where Γ̃R := {ω +Reiθ : −γ − π/2 ≤ θ ≤ γ + π/2}. Then∥∥∥∥∫
˜ΓR

q̃(μ)

λ− μ
dμ

∥∥∥∥ ≤
∫ γ+π/2

−γ−π/2

M

|ω +Reiθ − λ| dθ
→ 0

as R→∞. This proves that f̂(λ) = q(λ).

When f is as in Theorem 2.6.1 (i), it is an easy consequence of Cauchy’s
integral formula for derivatives that

sup
z∈Σβ

∥∥∥zke−ωzf (k)(z)
∥∥∥ <∞

for all 0 < β < α.
Recall from Sections 1.4 and 1.5 that, for f ∈ L1

loc(R+, X),

ω(f) := inf
{
ω ∈ R : sup

t≥0
‖e−ωtf(t)‖ <∞

}
,

abs(f) := inf
{
Reλ : f̂(λ) exists

}
,

hol(f̂) := inf
{
ω ∈ R : f̂ has a holomorphic extension for Reλ > ω

}
.
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Moreover, hol(f̂) ≤ abs(f) ≤ ω(f). We will now show that equalities hold when f
is holomorphic and exponentially bounded on a sector.

Theorem 2.6.2. Let 0 < α < π/2, let f : Σα → X be holomorphic, and suppose that

there exists ω ∈ R such that supz∈Σα
‖e−ωzf(z)‖ < ∞. Then hol(f̂) = abs(f) =

ω(f).

Proof. By Theorem 2.6.1, there exists γ > 0 such that f̂ has a holomorphic exten-
sion (also denoted by f̂) to ω+Σγ+π/2 and C := supλ∈Σγ+π/2

‖(λ−ω)f̂(λ)‖ <∞.

By definition of hol(f̂), f̂ also has a holomorphic extension to hol(f̂) + Σπ/2 =

{Reλ > hol(f̂)}.
Let ω′ > hol(f̂). There exists γ′ > 0 such that

ω′ +Σγ′+π/2 ⊆ (ω +Σγ+π/2) ∪ (hol(f̂) + Σπ/2).

Hence, f̂ is holomorphic on ω′ +Σγ′+π/2 and continuous on the closure. Let

U :=
{
λ ∈ (ω′ +Σγ′+π/2) ∩ (ω +Σγ+π/2) : |λ− ω′| < 2|λ− ω|} .

If λ ∈ U , then ‖(λ − ω′)f̂(λ)‖ ≤ 2C. Moreover, (ω′ + Σγ′+π/2) \ U is compact.

Hence, supλ∈ω′+Σγ′+π/2
‖(λ−ω′)f̂(λ)‖ <∞. It follows from Theorem 2.6.1, and the

fact that the Laplace transform is one-to-one, that supz∈Σβ
‖e−ω′zf(z)‖ < ∞ for

some β > 0, and in particular, ω(f) ≤ ω′. Since this holds whenever ω′ > hol(f̂),

it follows that ω(f) ≤ hol(f̂), completing the proof.

In the remainder of this section we will consider asymptotic behaviour of f(t)
as t → ∞ and as t → 0. In the case of holomorphic functions defined on a sector
it can be described completely in terms of the Laplace transform. This is not the
case in general, and in Chapter 4 a systematic treatment of this question will be
given. However, here we can use contour arguments directly on the basis of the
representation formula (2.13).

First we show that asymptotic behaviour along one ray and on the whole
sector are equivalent. This is a consequence of Vitali’s theorem (Theorem A.5).

Proposition 2.6.3. Let 0 < α ≤ π and let f : Σα → X be holomorphic such that

sup
z∈Σβ

‖f(z)‖ <∞

for all 0 < β < α. Let x ∈ X.

a) If limt→∞ f(t) = x, then lim |z|→∞
z∈Σβ

f(z) = x for all 0 < β < α.

b) If limt↓0 f(t) = x, then lim |z|→0
z∈Σβ

f(z) = x for all 0 < β < α.
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Proof. a) Let fk(z) = f(kz). It follows from Vitali’s theorem that limk→∞ fk(z) =
x uniformly on compact subsets of Σα. Let 0 < β < α. Let ε > 0. There exists
k0 ∈ N such that ‖fk(z) − x‖ ≤ ε whenever z ∈ Σβ , 1 ≤ |z| ≤ 2, k ≥ k0. Let
z ∈ Σβ , |z| ≥ k0. Choose k ∈ N such that k ≤ |z| < k + 1. Then

‖f(z)− x‖ = ‖fk(z/k)− x‖ ≤ ε.

This proves a).
b) This follows by applying a) to the function z �→ f(z−1).

Now we consider the asymptotic behaviour of f(t) as t→∞ and t ↓ 0.
Theorem 2.6.4 (Tauberian Theorem). Consider the situation of Theorem 2.6.1,
and let x ∈ X.

a) One has limt↓0 f(t) = x if and only if limλ→∞ λq(λ) = x.

b) Assume that ω = 0. Then limt→∞ f(t) = x if and only if limλ↓0 λq(λ) = x.

Proof. We can assume that ω = 0 for both cases a) and b) by replacing f(z) by
e−ωzf(z) otherwise. Replacing f(t) by f(t) − x, we can also assume that x = 0.
For simplicity, we shall denote the function q̃ of Theorem 2.6.1 by q.

Assume that limλ→∞ λq(λ) = x. Let 0 < γ < α. By Proposition 2.6.3,
lim |λ|→∞

λ∈Σγ+π/2

λq(λ) = x. Let ε > 0. There exists δ0 > 0 such that ‖λq(λ)‖ ≤ ε

whenever |λ| ≥ δ0, λ ∈ Σγ+π
2
. Let 0 < t ≤ 1/δ0. Now we choose the contour Γ as

in the proof of Theorem 2.6.1, (ii) ⇒ (i), with δ = 1/t. Then∥∥∥∥ 1

2πi

∫
Γ0

eλtq(λ) dλ

∥∥∥∥ =

∥∥∥∥∥ 1

2πi

∫ γ+π/2

−γ−π/2

ee
iθ

q

(
eiθ

t

)
ieiθ

t
dθ

∥∥∥∥∥
≤ ε

2π

∫ γ+π/2

−γ−π/2

ecos θ dθ

≤ ε e,

and ∥∥∥∥∥ 1

2πi

∫
Γ±

eλtq(λ) dλ

∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∫ ∞

1/t

et·re
±i(γ+π/2)

q(re±i(γ+π/2))re±i(γ+π/2) dr

r

∥∥∥∥∥
=

∥∥∥∥ 1

2πi

∫ ∞

1

ese
±i(γ+π/2)

q(
s

t
e±(γ+π/2))

s

t
e±i(γ+π/2) ds

s

∥∥∥∥
→ 0

as t ↓ 0 by the dominated convergence theorem. It follows from the representation
(2.13) that lim supt↓0 ‖f(t)‖ ≤ ε e.
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The converse implication is easy and does not depend on holomorphy. Assume
that limt↓0 ‖f(t)‖ = 0. Let ε > 0. There exists τ > 0 such that ‖f(t)‖ ≤ ε for all
t ∈ [0, τ ]. Then

lim sup
λ→∞

‖λq(λ)‖ ≤ lim sup
λ→∞

{
‖λ

∫ τ

0

e−λtf(t) dt‖+ ‖λ
∫ ∞

τ

e−λtf(t) dt‖
}

≤ ε+ lim sup
λ→∞

λ

∫ ∞

τ

e−λtMeωt dt

= ε+ lim sup
λ→∞

M
λ

λ− ω
e−(λ−ω)τ = ε,

where ω > ω(f) and M is suitable. This completes the proof of a).

The assertion b) is proved in the same way as a).

2.7 Completely Monotonic Functions

Throughout this section, X will be an ordered Banach space with normal cone (see
Appendix C). Let f : R+ → X be increasing. Then f is of bounded semivariation
on each interval [0, τ ], by Proposition 1.9.1. Assume that ω(f) < ∞. Then the
Laplace-Stieltjes transform

d̂f(λ) = lim
τ→∞

∫ τ

0

e−λt df(t) =:

∫ ∞

0

e−λt df(t) (2.16)

converges on the half-plane {Reλ > abs(df)}, and defines a holomorphic function

d̂f on {Reλ > abs(df)}. Recall from Theorem 1.10.5 that abs(df) <∞ if and only
if ω(f) <∞.

Theorem 2.7.1. Let f : R+ → X be an increasing function. Assume that −∞ <

abs(df) <∞. Then abs(df) is a singularity of d̂f .

Proof. Replacing f(t) by
∫ t

0
e− abs(df)s df(s), we can assume that abs(df) = 0.

Assume that d̂f has a holomorphic extension to a neighbourhood of 0. Then there
exists δ > 0 such that

d̂f(−δ) =
∞∑

n=0

(−1)n(1 + δ)n
(d̂f)(n)(1)

n!
.

Let x∗ ∈ X∗
+. Then

〈d̂f(−δ), x∗〉 =
∞∑

n=0

(1 + δ)n

n!

∫ ∞

0

e−ttn d〈f(t), x∗〉.
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Since all expressions are positive we may interchange the sum and the integral and
obtain ∫ ∞

0

eδt d〈f(t), x∗〉 =

∫ ∞

0

e−te(1+δ)t d〈f(t), x∗〉

=
∞∑

n=0

(1 + δ)n

n!

∫ ∞

0

e−ttn d〈f(t), x∗〉

= 〈d̂f(−δ), x∗〉 <∞.

Since X∗
+ spans X∗ (see Proposition C.2), it follows that abs(x∗ ◦ f) ≤ −δ for

all x∗ ∈ X∗. It follows from (1.25) that abs(df) ≤ −δ, which contradicts the
assumption.

Corollary 2.7.2. Let f ∈ L1
loc(R+, X) such that f(t) ≥ 0 a.e. Assume that −∞ <

abs(f) <∞. Then abs(f) is a singularity of f̂ . Hence, hol(f̂) = abs(f).

Proof. This is immediate from Proposition 1.10.1 and Theorem 2.7.1.

Our aim is to characterize functions of the form d̂f where f : R+ → X is
increasing. Then

(−1)nd̂f (n)
(λ) =

∫ ∞

0

e−λttn df(t) ≥ 0

for all n ∈ N0, λ > ω. Thus d̂f is completely monotonic in the sense of the following
definition.

Definition 2.7.3. A function r : (ω,∞) → X is completely monotonic if r is
infinitely differentiable and

(−1)nr(n)(λ) ≥ 0 for all λ > ω, n ∈ N0. (2.17)

In the following, we shall assume that ω = 0 for simplicity (otherwise, we

can replace r(λ) by r(λ + ω) and f(t) by
∫ t

0
e−ωs df(s)). Recall that by Theorem

1.10.5 abs(df) ≤ 0 if and only if ω(f) ≤ 0.

Definition 2.7.4. We say that Bernstein’s theorem holds in X if for every com-
pletely monotonic function r : (0,∞) → X there exists an increasing function

f : R+ → X such that ω(f) ≤ 0 and r(λ) = d̂f(λ) for all λ > 0.

Bernstein’s theorem does hold in X = R; this is just Bernstein’s classical
theorem from 1928 [Ber28]. Here we will prove it, as a special case of Theorem
2.7.7, with the help of the Real Representation Theorem 2.2.1.

Definition 2.7.5. The space X has the interpolation property if, given two sequences
(xn)n∈N, (yn)n∈N in X such that

xn ≤ xn+1 ≤ yn+1 ≤ yn (n ∈ N) (2.18)
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there exists z ∈ X such that

xn ≤ z ≤ yn for all n ∈ N. (2.19)

Examples 2.7.6. a) Assume that X = Y ∗ where Y is an ordered Banach space with
normal cone. Then X has the interpolation property.

Proof. Let x∗n ≤ x∗n+1 ≤ y∗n+1 ≤ y∗n (n ∈ N). Replacing x∗n by x∗n − x∗1 and y∗n by
y∗n − x∗1 we can assume that x∗n ≥ 0. Define z∗ ∈ X∗ by 〈x, z∗〉 = supn∈N〈x, x∗n〉.
Then z∗ is linear and positive, and hence continuous (see Appendix C).

b) If X is reflexive, then X has the interpolation property. This follows from a).

c) Each von Neumann algebra (i.e., a ∗-subalgebra of L(H) which is closed in
the strong operator topology, where H is a Hilbert space) has the interpolation
property. This follows from a) and [Ped89, Theorem 4.6.17].

d) Every σ-order complete Banach lattice (i.e., a Banach lattice in which each
countable order-bounded set has a supremum) has the interpolation property.

e) If X has order continuous norm (i.e., each decreasing positive sequence con-
verges) then X has the interpolation property.

f) The space C[0, 1] does not have the interpolation property.

See the Notes for further comments on the interpolation property.

Now we can formulate the following characterization, which is the main result
of this section.

Theorem 2.7.7. Bernstein’s theorem holds in X if and only if X has the interpo-
lation property.

The proof of Theorem 2.7.7 will be carried out in several steps. On the way
we will prove a characterization of completely monotonic functions which is valid
without restrictions on the space. First, we study convex functions.

Let J ⊂ R be an interval. A function F : J → X is called convex if

F (λs+ (1− λ)t) ≤ λF (s) + (1− λ)F (t)

for all s, t ∈ J, 0 < λ < 1. Many order properties of convex functions carry over
from the scalar case since for x ∈ X we have

x ≥ 0 if and only if 〈x, x∗〉 ≥ 0 for all x∗ ∈ X∗
+.

For example, a twice differentiable function F is convex if and only if F ′′ ≥ 0.

Lemma 2.7.8. Let [a, b] be a closed interval in the interior of J and let F : J → X
be convex. Then F is Lipschitz continuous on [a, b]. Moreover, if F (J) ⊂ X+ and
F (a) = 0, then F is increasing on [a, b].
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Proof. Let c < a, d > b such that [c, d] ⊂ J . Then for a ≤ t < s ≤ b,

F (a)− F (c)

a− c
≤ F (s)− F (t)

s− t
≤ F (d)− F (b)

d− b
.

Since the cone is normal this implies that F is Lipschitz continuous on [a, b]. The
second assertion is easy to see.

We notice in particular that every convex function defined on an open interval
is continuous.

Let −∞ < a < b ≤ ∞ and let f : [a, b) → X+ be increasing. Then f is
Riemann integrable on [a, t] whenever a ≤ t < b (see Corollary 1.9.6). Let

F (t) :=

∫ t

a

f(s) ds (a ≤ t < b). (2.20)

Then F : [a, b)→ X+ is convex.

If X has the interpolation property, then the following converse result holds.

Proposition 2.7.9. Assume that X has the interpolation property. Let F : [a, b)→
X+ be convex such that F (a) = 0, where −∞ < a < b ≤ ∞. Then there exists an
increasing function f : [a, b)→ X+ such that (2.20) holds.

Proof. The following two properties follow from convexity:

a) Let a ≤ s < b. Then the difference quotient

1

h
(F (s+ h)− F (s))

is positive and increasing for h ∈ (0, b− s).

b) Let a ≤ s < s+ h ≤ t < t+ k < b. Then

1

h
(F (s+ h)− F (s)) ≤ 1

k
(F (t+ k)− F (t)) . (2.21)

Put f(a) = 0. It follows from the interpolation property, a) and b) that for each
t ∈ (a, b) there exists f(t) ∈ X such that

1

h
(F (s+ h)− F (s)) ≤ f(t) ≤ 1

k
(F (t+ k)− F (t)) (2.22)

whenever a ≤ s < s + h ≤ t < t + k < b. It follows from (2.21) and (2.22) that
f : [a, b)→ X+ is increasing.

Let G(t) :=
∫ t

a
f(s) ds. We show that F = G. Let a < t < b. Let a ≤ t0 <

t1 < . . . < tn = t be a partition of [a, t]. Setting hi := ti − ti−1, we obtain from
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(2.22) that

n∑
i=1

f(ti−1)(ti − ti−1) ≤
n∑

i=1

1

hi
(F (ti−1 + hi)− F (ti−1))hi

=

n∑
i=1

(F (ti)− F (ti−1))

= F (t)− F (a) = F (t).

It follows from the definition of the Riemann integral that G(t) ≤ F (t). Also by
(2.22),

n∑
i=1

f(ti)(ti − ti−1) ≥
n∑

i=1

F (ti)− F (ti−1)

ti − ti−1
(ti − ti−1)

= F (t).

Hence G(t) ≥ F (t).

Next, we prove a converse version of Proposition 2.7.9.

Proposition 2.7.10. Assume that for every convex function F : R+ → X+ with
F (0) = 0 and ω(F ) = 0 there exists an increasing function f : R+ → X+ such

that F (t) =
∫ t

0
f(s) ds (t ≥ 0). Then X has the interpolation property.

Proof. Let xn ≤ xn+1 ≤ yn+1 ≤ yn (n ∈ N). We can assume that x1 ≥ 0 (replacing
xn by xn − x1 and yn by yn − x1 otherwise). Define f : R+ → X by

f(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xn if t ∈ [n−1

n , n
n+1 ); n ≥ 1,

yn if t ∈ [n+1
n , n

n−1 ); n ≥ 2,

y1 if t ∈ [2,∞),

0 if t = 1.

Then f ∈ L1
loc(R+, X). Let F (t) :=

∫ t

0
f(s) ds. Then F : R+ → X+ is convex and

F (0) = 0. By assumption, there exists an increasing function g : R+ → X such

that F (t) =
∫ t

0
g(s) ds (t ≥ 0). Then

F (t− h)− F (t)

−h ≤ g(t) ≤ F (t+ h)− F (t)

h

for all t > 0 and h > 0 small enough. It follows that g(t) = F ′(t) whenever F
is differentiable at t. Consequently, g(t) = xn if t ∈ (n−1

n , n
n+1 ) and g(t) = yn if

t ∈ (n+1
n , n

n−1 ). Hence, xn ≤ g(1) ≤ yn. Thus, z := g(1) interpolates between the
two sequences.

For completeness, we also give the usual representation of convex functions
as a corollary of Proposition 2.7.9.
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Corollary 2.7.11. Assume that X has the interpolation property. Let F : (a, b)→ X
be convex, and let c ∈ (a, b). Then there exist x ∈ X and an increasing function
f : (a, b)→ X such that

F (t) = F (c) + (t− c)x+

∫ t

c

f(s) ds

for all t ∈ (a, b).

Proof. We may assume that c = 0. It follows from convexity that

1

t
(F (0)− F (−t)) ≤ 1

s
(F (s)− F (0))

whenever 0 < s < b, 0 < t < −a. Moreover, the left-hand difference quotient is
decreasing in t, and the right-hand one is increasing in s. By the interpolation
property, there exists x ∈ X such that

1

t
(F (0)− F (−t)) ≤ x ≤ 1

s
(F (s)− F (0))

for all 0 < t < −a, 0 < s < b. In particular, the function

G(t) := F (t)− F (0)− tx (t ∈ (a, b))

is positive, convex and satisfies G(0) = 0.
By Proposition 2.7.9, there exist increasing functions f1 : [0, b) → X+ and

f2 : [0,−a)→ X+ such that

G(t) =

∫ t

0

f1(s) ds for t ∈ [0, b) and

G(−t) =

∫ t

0

f2(s) ds for t ∈ [0,−a).

We can assume that f1(0) = f2(0) = 0. Let f(t) := f1(t) for t ∈ [0, b) and

f(t) := −f2(−t) for t ∈ (a, 0). Then f is increasing and G(t) =
∫ t

0
f(s) ds for all

t ∈ (a, b).

Now we will study completely monotonic functions. We need the following
formulas (2.23) and (2.24) (the latter is merely needed for n = 1 and n = 2). In

the remainder of this section we shall sometimes use loose notation such as r(λ)
λ to

denote the function λ �→ r(λ)
λ , and

(
r(λ)
λ

)′
and

(
r(λ)
λ

)(n)

to denote its derivatives

of orders 1 and n.

Lemma 2.7.12. Let r ∈ C∞((0,∞), X). Then

(−1)n
n!

λn+1

(
r(λ)

λ

)(n)

=
n∑

m=0

(−1)m
m!

λmr(m)(λ) (2.23)
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and (
λk+n

(
r(λ)

λn

)(k)
)(n)

= λkr(k+n)(λ) (2.24)

for all λ > 0, k, n ∈ N0. In particular, if r is completely monotonic, then λ �→
r(λ)/λ is also completely monotonic.

Proof. The first formula (2.23) is immediate from Leibniz’s rule. It follows that if
r is completely monotonic, then λ �→ r(λ)/λ is also completely monotonic.

We show by induction over n that (2.24) holds for all k ∈ N0. It is obvious
for n = 0. Moreover,

λkr(k+1)(λ) = λk

(
λ
r(λ)

λ

)(k+1)

= λk

{
λ

(
r(λ)

λ

)(k+1)

+ (k + 1)

(
r(λ)

λ

)(k)
}

=

(
λk+1

(
r(λ)

λ

)(k)
)′

for λ > 0. This shows that (2.24) holds for n = 1.
Now assume that (2.24) holds for a fixed n ∈ N and k ∈ N0. Then, applying

(2.24) to r′ yields

λkr(k+n+1)(λ) =

(
λk+n

(
r′(λ)
λn

)(k)
)(n)

(2.25)

for λ > 0. Observe that(
λk+n+1(r(λ)/λn+1)(k)

)′
=

(
λn · λk+1(r(λ)/λn+1)(k)

)′
= nλn−1

(
λk+1(r(λ)/λn+1)(k)

)
+ λn

(
λk+1(r(λ)/λn+1)(k)

)′
= nλn−1

(
λk+1(r(λ)/λn+1)(k)

)
+ λnλk(r(λ)/λn)(k+1),

by applying (2.24) for n = 1 to the function r(λ)/λn instead of r. Hence,(
λk+n+1(r(λ)/λn+1)(k)

)′
= nλn+k

(
r(λ)/λn+1

)(k)
+ λn+k

(
r′(λ)/λn − nr(λ)/λn+1

)(k)
= λn+k (r′(λ)/λn)

(k)

for λ > 0. It follows from (2.25) that(
λk+n+1(r(λ)/λn+1)(k)

)(n+1)

=
(
λn+k(r′(λ)/λn)(k)

)(n)

= λkr(λ)(k+n+1).

Thus, (2.24) holds when n is replaced by n+ 1.
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Proposition 2.7.13. Let F ∈ Lip0(R+, X) and let

r(λ) = λd̂F (λ) = λ

∫ ∞

0

e−λt dF (t) (λ > 0).

Then r is completely monotonic if and only if F is convex and F (t) ≥ 0 (t ≥ 0).

Proof. Assume that r is completely monotonic. Note that r(λ)
λ =

∫∞
0

e−λt dF (t).
Thus, by the Post-Widder formula (Theorem 2.3.1), for t > 0 we have F (t) =
limk→∞ Fk(t), where

Fk(t) := Gk(k/t), Gk(λ) :=
(−1)k
k!

λk+1
(
r(λ)/λ2

)(k)
.

By Lemma 2.7.12, λ �→ r(λ)/λ2 is completely monotonic, and it follows that

Fk(t) ≥ 0. We show that Fk is convex; i.e., that F ′′k (t) = −
(
kt−2G′k(k/t)

)′ ≥ 0.

Let H(λ) := −λ2kG′k(kλ). Then F ′′k (t) =
d
dtH(1/t) = −t−2H ′(1/t). Thus it

suffices to show that H ′(λ) ≤ 0 or equivalently 2λkG′k(kλ) + λ2k2G′′k(kλ) ≥ 0 for
λ > 0. Letting μ := kλ we have to show that

(μGk(μ))
′′
= 2G′k(μ) + μG′′k(μ) ≥ 0 (μ > 0).

This is true since (2.24) for n = 2 gives

(μGk(μ))
′′ =

(−1)k
k!

(
μk+2(r(μ)/μ2)(k)

)′′
=

(−1)k
k!

μkr(k+2)(μ) ≥ 0 (μ > 0).

This proves one implication.
Conversely, suppose that F is convex and F (t) ≥ 0 for all t ≥ 0. Let x∗ ∈ X∗

+.
Then x∗ ◦ F is convex, positive and Lipschitz continuous. There is an increasing,
bounded function g : R+ → R+ such that g(t) = d

dt 〈F (t), x∗〉 a.e., and 〈F (t), x∗〉 =∫ t

0
g(s) ds for all t ≥ 0 (see Proposition 2.7.9). We may assume that g(0) = 0. By

Proposition 1.10.1 and (1.22),

〈r(λ), x∗〉 = λ〈d̂F (λ), x∗〉 = λĝ(λ) = d̂g(λ) (λ > 0).

Hence, x∗◦r is completely monotonic for all x∗ ∈ X∗
+ and therefore r is completely

monotonic.

Next we prove a representation theorem for completely monotonic functions
defined on R+ (and not merely (0,∞)).

Proposition 2.7.14. Let r ∈ C∞(R+, X) such that (−1)nr(n)(λ) ≥ 0 (λ ≥ 0). Then
there exists a convex function F ∈ Lip0(R+, X) such that F (t) ≥ 0 (t ≥ 0) and

r(λ) = λd̂F (λ) (λ > 0). (2.26)
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Proof. It follows from (2.23) that for k ∈ N and λ > 0,

pk(λ) :=
(−1)k
k!

λk+1

(
r(λ)

λ

)(k)

=
k∑

m=0

(−1)m
m!

λmr(m)(λ) ≥ 0.

Moreover, limλ↓0 pk(λ) = r(0). It follows from (2.24) for n = 1 that

p′k(λ) =
(−1)k
k!

λkr(k+1)(λ) ≤ 0 (λ > 0).

Thus 0 ≤ pk(λ) ≤ r(0) for all λ > 0. Since the cone is normal, this implies that the

function r(λ)
λ is in C∞W ((0,∞), X). By Theorem 2.2.1, there exists F ∈ Lip0(R+, X)

such that r(λ)
λ = d̂F (λ) (λ > 0). It follows from Proposition 2.7.13 that F is

positive and convex.

Theorem 2.7.15. A function r : (0,∞) → X is completely monotonic if and only
if there exists a convex function F : R+ → X+ satisfying F (0) = 0 and ω(F ) ≤ 0
such that

r(λ) = λ

∫ ∞

0

e−λt dF (t) (λ > 0). (2.27)

In that case, F is uniquely determined by r.

Proof. a) Assume that r is of the form (2.27). Let x∗ ∈ X∗
+. Then there exists an

increasing function f : R+ → R+ such that f(0) = 0 and

〈F (t), x∗〉 =
∫ t

0

f(s) ds (t ≥ 0).

Thus

〈r(λ), x∗〉 =
∫ ∞

0

e−λt df(t) (λ > 0).

Hence, 〈r(·), x∗〉 is completely monotonic and

〈(−1)nr(n)(λ), x∗〉 = (−1)n
(

d

dλ

)n

〈r(λ), x∗〉 ≥ 0.

Since x∗ ∈ X∗
+ is arbitrary, it follows that r is completely monotonic.

b) Conversely, let r be completely monotonic. By Proposition 2.7.14, there
exists a convex functionG ∈ Lip0(R+, X) such thatG(t) ≥ 0 (t ≥ 0) and r(λ+1) =
λ
∫∞
0

e−λt dG(t) (λ > 0). Let

F (t) :=

∫ t

0

(1− (t− s))es dG(s).
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Then F is positive and convex. In fact, let x∗ ∈ X∗
+. Then there exists an increas-

ing function g : R+ → R+ such that 〈G(t), x∗〉 =
∫ t

0
g(s) ds and g(0) = 0. By

Proposition 1.9.10, Fubini’s Theorem and (1.20),

〈F (t), x∗〉 =

∫ t

0

esg(s) ds−
∫ t

0

(t− s)esg(s) ds

=

∫ t

0

(
esg(s)−

∫ s

0

erg(r) dr

)
ds

=

∫ t

0

∫ s

0

er dg(r) ds (t ≥ 0).

Thus x∗ ◦ F is positive and convex for all x∗ ∈ X∗
+, so F is positive and convex.

By Proposition 1.10.1 and (1.22),

〈r(λ+ 1), x∗〉 = λĝ(λ) =

∫ ∞

0

e−λt dg(t)

for λ > 0. By Proposition 1.10.3, for λ > 1,

〈r(λ), x∗〉 =
∫ ∞

0

e−λtet dg(t) =

∫ ∞

0

e−λt df(t),

where

f(t) :=

∫ t

0

es dg(s) = etg(t)−
∫ t

0

esg(s) ds,

by (1.20). Since 〈F (t), x∗〉 =
∫ t

0
f(s) ds, it follows that r(λ) = λ

∫∞
0

e−λt dF (t)

for λ > 1. By Theorem 2.7.1, abs(dF ) is a singularity of d̂F . Moreover, applying
Proposition 2.7.14 to r(· + δ) shows that r has a holomorphic extension to {λ ∈
C : Reλ > δ} for all δ > 0, and hence to {λ ∈ C : Reλ > 0}. It follows from

the uniqueness of holomorphic extensions that abs(dF ) ≤ 0 and d̂F (λ) = r(λ) for
λ > 0. By Theorem 1.10.5, ω(F ) ≤ 0 (actually, ω(F ) = 0 unless r ≡ 0). Finally,
uniqueness of F follows from the Post-Widder formula (Theorem 2.3.1).

Theorem 2.7.16. Assume that X has the interpolation property. Let r : (0,∞)→ X
be completely monotonic. Then there exists an increasing function f : R+ → X+

such that f(0) = 0, ω(f) ≤ 0 and

r(λ) =

∫ ∞

0

e−λt df(t) (λ > 0).

Proof. By Theorem 2.7.15, there exists a convex function F : R+ → X+ satisfying
F (0) = 0 and ω(F ) ≤ 0 such that r(λ) = λ

∫∞
0

e−λt dF (t) for all λ > 0. By
Proposition 2.7.9, there exists an increasing function f : R+ → X+ such that
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F (t) =
∫ t

0
f(s) ds (t ≥ 0). We can assume that f(0) = 0. Let ω > 0. There exists

M ≥ 0 such that ‖F (t)‖ ≤Meωt. Since f is increasing we have

t

2
f(t/2) ≤

∫ t

t/2

f(s) ds ≤ F (t).

It follows that ω(f) ≤ 0 (actually, ω(f) = 0 unless r ≡ 0). By Proposition 1.10.2,∫ ∞

0

e−λt df(t) = λ

∫ ∞

0

e−λt dF (t) = r(λ) (λ > 0).

Now we can prove Theorem 2.7.7.

Proof of Theorem 2.7.7. One direction is given by Theorem 2.7.16. In order to prove
the other, assume that Bernstein’s theorem holds in X. We show thatX has the in-
terpolation property. Let F : R+ → X+ be convex such that F (0) = 0 and ω(F ) =

0. By Proposition 2.7.10, it suffices to show that F (t) =
∫ t

0
f(s) ds (t ≥ 0) for some

increasing function f : R+ → X. By Proposition 2.7.13, r(λ) := λ
∫∞
0

e−λt dF (t)
defines a completely monotonic function on (0,∞). By assumption, there exists
an increasing function f : R+ → X such that

r(λ) =

∫ ∞

0

e−λt df(t).

We may assume that f(0) = 0. Let H(t) :=
∫ t

0
f(s) ds. Using Proposition 1.10.2

and (1.22), λ2Ĥ(λ) = d̂f(λ) = r(λ) = λ2F̂ (λ) for all λ > 0. It follows from the
uniqueness theorem that H(t) = F (t) for all t ≥ 0.

If r : (0,∞) → X is completely monotonic, there may be many increasing

functions f : R+ → X+ such that r = d̂f . However, if X has order continuous
norm, then we may pick out a normalized version of f .

Let f : R+ → X be increasing and assume that X has order continuous norm.
For t ≥ 0 we define f(t+) = lims↓t f(s), and for t > 0 we let f(t−) = lims↑t f(s).
We say that f has a jump at t > 0 if f(t+) �= f(t−).

Lemma 2.7.17. Assume that X has order continuous norm and that f : R+ → X
is increasing. Then the number of jumps of f is countable.

Proof. Let τ > 0 and J := {t ∈ (0, τ) : f(t+) �= f(t−)}. Let ε > 0 and Jε :=
{t ∈ J : ‖f(t+) − f(t−)‖ ≥ ε}. We claim that Jε is finite. Otherwise there
exist tn ∈ Jε (n ∈ N), tn �= tm for n �= m. Let xn = f(tn+) − f(tn−). Then∑m

n=1 xn ≤ f(τ) − f(0) for all m ∈ N. Since X has order continuous norm, the
sum

∑∞
n=1 xn converges. Hence, ‖xn‖ → 0 as n → ∞. This is a contradiction.

Since J =
⋃

n∈N J1/n, it follows that J is countable.
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We continue to assume that X has order continuous norm. Let f : R+ → X
be increasing. We define the normalization f∗ : R+ → X of f by

f∗(t) =

{
f(0+) if t = 0,
1
2 (f(t+) + f(t−)) if t > 0.

The function f is called normalized if f = f∗.
It follows from the definition of the Riemann-Stieltjes integral that∫ t

0

g(s) df(s) =

∫ t

0

g(s) df∗(s)

for every t > 0 and every continuous function g : [0, t]→ C. In fact, one may take
a sequence of partitions (πn)n∈N with intermediate points which avoid the jumps
of f). Then S(g, f, πn) = S(g, f∗, πn) for all n ∈ N, and so∫ t

0

g(s) df(s) = lim
n→∞S(g, f, πn) = lim

n→∞S(g, f∗, πn) =

∫ t

0

g(s) df∗(s).

In conclusion, we obtain the following result.

Theorem 2.7.18 (Bernstein’s theorem). Assume that X has order continuous
norm. Let r : (0,∞) → X be completely monotonic. Then there exists a unique
normalized increasing function f : R+ → X such that f(0) = 0, ω(f) ≤ 0 and

r(λ) =

∫ ∞

0

e−λt df(t) (λ > 0).

Proof. Since X has the interpolation property, existence follows from Theorem
2.7.16. For uniqueness, suppose that r(λ) =

∫∞
0

e−λt df(t) (λ > 0). By Proposition

1.10.2, r(λ) = λ
∫∞
0

e−λt dF (t) (λ > 0) where F (t) :=
∫ t

0
f(s) ds. It follows from

Theorem 2.7.15 that F is uniquely determined by r. Since

F ′(t+) := lim
h↓0

1

h
(F (t+ h)− F (t)) = f(t+)

if t ≥ 0, and

F ′(t−) := lim
h↓0

1

h
(F (t)− F (t− h)) = f(t−)

if t > 0, the normalized function f is also unique.

2.8 Notes

Section 2.1
Representation of operators from a space of the form L1(Ω, μ) into a Banach space
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X by vector measures is a classical subject (see [DU77, Section III.1]). In view of the
applications to Cauchy problems, Stieltjes integrals seem more appropriate than vector
measures in our context. In the context of Laplace transform theory, the Riesz-Stieltjes
Representation Theorem 2.1.1 appeared in a paper of Hennig and Neubrander [HN93]
(see also [Neu94] and [BN94]). For a discussion of the representation of bounded linear
operators in L(Lp(R+), X) as functions of bounded p′-variation (1/p+ 1/p′ = 1, p′ > 1),
see the work of Weis [Wei93] and Vieten [Vie95].

Section 2.2
For real-valued functions, Theorem 2.2.1 was proved by Widder in 1936 [Wid36] (see also
[Wid41]). In trying to extend scalar-valued Laplace transform theory to vector-valued
functions, Hille [Hil48] remarks on several occasions that Widder’s theorem can be lifted
to infinite dimensions if the space is reflexive, but not in general (see [Hil48, p.213] or
[Miy56]). In fact, it was shown by Zaidman [Zai60] (see also [Are87b] or Theorem 2.2.3)
that Widder’s theorem extends to a Banach space X if and only if X has the Radon-
Nikodym property (for example, if X is reflexive). In 1965, Berens and Butzer [BB65]
gave necessary and sufficient complex conditions for the Laplace-Stieltjes representabil-
ity of functions in reflexive and uniformly convex Banach spaces. However, these results
were of limited applicability. In general, important classes of Banach spaces that appear
in studying evolution equations do not possess the Radon-Nikodym property. As a conse-
quence, in the 1960s and 1970s Laplace transform methods were applied mainly to special
vector-valued functions, like resolvents and semigroups, which have nice additional alge-
braic properties. In the theory of C0-semigroups the link between the generator A and
the semigroup T is given via the Laplace transform

(λ−A)−1x =

∫ ∞

0

e−λtT (t)x dt (x ∈ X).

The crucial algebraic property which made it possible to extend classical Laplace trans-
form results to this abstract setting is the algebraic semigroup law T (t+ s) = T (t)T (s),
(t, s ≥ 0). Hille and Phillips comment in the foreword to [HP57] that “.... in keeping
with the spirit of the times the algebraic tools now play a major role....” and that “.... the
Laplace-Stieltjes transform methods..... have not been replaced but rather supplemented by
the new tools.” The major disadvantage of the “algebraic approach” to linear evolution
equations becomes obvious if one compares the mathematical theories associated with
them (for example, semigroup theories, cosine families, the theory of integro-differential
equations, etc.). It is striking how similar the results and techniques are. Still, without
a Laplace transform theory for functions with values in arbitrary Banach spaces, every
type of linear evolution equation required its own theory because the algebraic properties
of the operator families changed from one case to another. In the late 1970s, in search
of a general analytic principle behind all these theories, the study of Laplace transforms
of functions with values in arbitrary Banach spaces was revitalized by Sova (see [Sov77]
up to [Sov82]). An important result for Laplace transforms in Banach spaces is Theorem
2.6.1, proved by Sova in 1979 [Sov79b], [Sov79c]. This analytic representation theorem is
behind every generation result for analytic solution families of linear evolution equations.

The Real Representation Theorem 2.2.1 shows that the statement of Widder’s The-
orem extends to arbitrary Banach spaces if the Laplace transform is replaced by the
Laplace-Stieltjes transform. It is due to [Are87b] where it was deduced from the scalar
result by Widder [Wid41] by duality arguments. The proof of Theorem 2.2.1 given here is
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a modification of Widder’s original proof given in [Wid41]; see [HN93]. Further extensions
of these results are given in [Bob97a], [Bob97b], [Kis00], [Bob01] and [Cho02].

The characterization of the range of the Laplace-Stieltjes transform acting on
Lip0(R+, X) given in Theorem 2.2.1 is based on the Post-Widder inversion formula in
Theorem 1.7.7. Corresponding to other inversion formulas, equivalent descriptions can
be formulated. Employing the complex inversion formula (see [Sov80b], [BN94]), or the
Phragmén-Doetsch inversion (see [PC98]), one can prove that the following growth and
regularity conditions are equivalent.

Theorem 2.8.1. Let r : (0,∞) → X be continuous. The following are equivalent:

(i) r ∈ C∞((0,∞), X) and

sup
λ>0
k∈N0

∥∥∥∥λk+1

k!
r(k)(λ)

∥∥∥∥ < ∞.

(ii) limλ→∞ r(λ) = 0 and r has an extension to a holomorphic function r : {Reλ >
0} → X such that, for all γ > 0, supReλ>γ ‖r(λ)‖ < ∞ and

sup
s>0
k∈N0

∥∥∥∥ 1

2π

∫ ∞

−∞

r(γ + it)

(1− ist)k+2
dt

∥∥∥∥ < ∞.

(iii) supλ>0 ‖λr(λ)‖ < ∞ and

sup
λ>0
k∈N

∥∥∥∥∥
∞∑
j=1

(−1)j−1

(j − 1)!
ejkλr(jλ)

∥∥∥∥∥ < ∞.

For a discussion of the Lp-conditions∫ ∞

0

∥∥∥∥∥
(
k

t

)k+1
1

k!
r(k)

(
k

t

)∥∥∥∥∥
p

dt ≤ M for all k ≥ 0,

and their connection to the representability of r as the Laplace transform of a function of
bounded p-variation (p > 1), see [Wid41, Chapter VII], [Lev69], [Sov81a], [Wei93], and
[Vie95]. It is shown in [KMV03] that a function r ∈ C∞((0,∞), X) is the finite Laplace-
Stieltjes transform r(λ) =

∫ τ

0
e−λt dF (t) of a Lipschitz continuous function F : [0, τ ] → X

with ‖F (t)− F (s)‖ ≤ M |t− s| for all 0 ≤ t, s ≤ τ if and only if

sup
k∈N0

sup
λ>k/τ

∥∥∥∥λk+1

k!
r(k)(λ)

∥∥∥∥ ≤ M

and
sup
k∈N

sup
λ∈(0,k/τ)

∥∥∥τ−keλτr(k)(λ)
∥∥∥ < ∞.

Section 2.3
Theorem 2.3.2 goes back to Phragmén’s proof of the Uniqueness Theorem 1.7.3 (see
[Phr04]), and to Doetsch [Doe37] who recognized the usefulness of the formula as an
inversion procedure (see also [Doe50, Volume I, Section 8.1]). The Phragmén-Doetsch
inversion formula shows that a Laplace transformable function f is determined by the
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values of f̂(λn), where λn = n ≥ n0. An extension of the Phragmén-Doetsch inversion
to arbitrary Müntz sequences (λn) ⊂ R+ (i.e., λn+1 − λn ≥ 1 and

∑∞
n=1 λ

−1
n = ∞), has

been obtained by Bäumer [Bäu03] (see also [BLN99]). There does not seem to be any
inversion formula that holds for arbitrary uniqueness sequences (see Theorem 1.11.1).
Corollary 2.3.3 is taken from [BN96] and is one of the key ingredients in the theory of
asymptotic Laplace transforms (see [LN99], [LN01]). Whereas the complex inversion for-
mula in Theorem 2.3.4 (the proof given here is from [HN93]) is in general affected by
exponentially decaying perturbations of the Laplace transform, the following modifica-
tion, due to Lyubich [Lyu66], gives a complex inversion formula which holds locally even
if the transform undergoes such perturbations.

Theorem 2.8.2. Let τ > 0, ω > 0, F ∈ Lip0(R+, X), and q(λ) =
∫∞
0

e−λt dF (t) +
a(λ) (λ > 0), where a ∈ L1

loc(R+, X) is a function with lim supλ→∞
1
λ
log ‖a(λ)‖ ≤ −τ .

Then

H(μ) :=
1

2πi

∫ ∞

ω

eμt
q(t)

t
dt

is well defined for Reμ < 0, has a holomorphic continuation to the sliced half-plane
{μ : Reμ < τ} \ [0, τ), and

F (t) = lim
ε→0

(H(t+ iε)−H(t− iε)) for all t ∈ [0, τ).

Haase [Haa08] has given a different approach to Theorem 2.3.4 and Lemma 2.3.5.

Section 2.4
With the exception of Proposition 2.4.3 which is due to Doetsch (see [Doe50, Volume I,
Section 14.3]) and Corollary 2.4.4, the results are straightforward reformulations of the
main theorems of the sections 2.1–2.3. Using a Phragmén-Doetsch type inversion formula
along sequences (λn) ⊂ R+ with λn+1 − λn ≥ 1 and

∑∞
n=1 λ

−1
n = ∞ (Müntz sequences),

one can strengthen the statement of Proposition 2.4.3 as follows (see [Bäu03]).

Theorem 2.8.3. Let 0 ≤ τ and let f ∈ L1
loc(R+, X) with abs(f) < ∞. Then the following

are equivalent:

(i) f(t) = 0 almost everywhere on [0, τ ] and τ ∈ supp(f).

(ii) Every Müntz sequence (βn) satisfies lim supn→∞
1
βn

log ‖f̂(βn)‖ = −τ.

(iii) For every Müntz sequence (βn) there exists a Müntz subsequence (βnk ) such that

lim
k→∞

1

βnk

log ‖f̂(βnk )‖ = −τ.

(iv) There exists a Müntz sequence (βn) with lim supn→∞
1
βn

log ‖f̂(βn)‖ = −τ.

(v) lim supλ→∞
1
λ
log ‖f̂(λ)‖ = −τ .

As a consequence of these equivalences one obtains the following short proof of
Titchmarsh’s theorem (see [Bäu03], [BLN99] or [MB87, Section VI.7]).

Corollary 2.8.4 (Titchmarsh’s Theorem). Let k ∈ L1[0, τ ] with 0 ∈ supp(k) and f ∈
L1([0, τ ], X). If k � f = 0 on [0, τ ], then f = 0.
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Proof. We extend k and f by zero to R+. Then, by Proposition 2.4.3 and Corollary

2.4.4, lim supλ→∞
1
λ
log |k̂(λ)| = 0 and lim supλ→∞

1
λ
log ‖k̂ � f(λ)‖ ≤ −T . By taking

subsequences, it follows from the theorem above that there exists a Müntz sequence (βn)
such that limn→∞ 1

βn
log |k̂(βn)| = 0 and

−τ ≥ lim
n→∞

1

βn
log ‖k̂ � f(βn)‖ = lim

n→∞
1

βn
log |k̂(βn)|+ lim

n→∞
1

βn
log ‖f̂(βn)‖

= lim
n→∞

1

βn
log ‖f̂(βn)‖.

Thus, f = 0 on [0, τ ].

A function k ∈ L1
loc(R+) with abs(k) < ∞ is a regularizing function if

lim sup
λ→∞

1

λ
log |k̂(λ)| = 0,

or, equivalently, if 0 ∈ supp(k) (by Corollary 2.4.4). By the Titchmarsh-Foiaş theorem
(see [BLN99]), the condition 0 ∈ supp(k) is necessary and sufficient for the convolution
operator K : f → k ∗ f , (k ∗ f)(t) :=

∫ t

0
k(t − s)f(s) ds to be an injective operator on

C(R+, X) with dense range in the Fréchet space C∗(R+, X) of all continuous functions
g : R+ → X such that g(0) = 0, equipped with the seminorms ‖g‖n := supt∈[0,n] ‖g(t)‖.
Moreover, ‖f‖K,n := supt∈[0,n] ‖Kf(t)‖ defines a family of seminorms on C(R+, X) and

K extends to an isomorphism between the Fr echet completion C [k](R+, X) of C(R+, X)
with respect to that family of seminorms and the Fréchet space C∗(R+, X). Typical
examples of regularizing functions are

k(t) =
tb−1

Γ(b)
with k̂(λ) =

1

λb
(b > 0), or

kδ(t) =
1

2πi

∫
ω+iR

etλ−λδ

dλ with k̂δ(λ) = e−λδ

(0 < δ < 1).

Note that k1/2(t) =
1

2
√

π
t−3/2e−1/4t (see Lemma 1.6.7).

If k is a regularizing function, then the elements of the Fréchet space C [k](R+, X)
are called k-generalized functions. A k-generalized function u is said to be Laplace trans-
formable if the continuous function f := k ∗u ∈ C∗(R+, X) is Laplace transformable and
the Laplace transform of u is defined as

û(λ) :=
f̂(λ)

k̂(λ)
.

Let H = {λ : Reλ > ω} and m : H → C be holomorphic. A meromorphic function
q : H → X is said to have an m-multiplied Laplace representation if there exists f ∈
C∗(R+, X) with abs(f) ≤ ω such that mq = f̂ on H. If m = k̂ for some regularizing
function k, then the meromorphic function q has a Laplace representation q = û for
u = K−1f ∈ C [k](R+, X) (see [Bäu97], [BLN99], and [LN99]).

Section 2.5
Theorem 2.5.1 is a standard result of Laplace transform theory. Corollary 2.5.2 is due to
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Prüss [Prü93], the proof given here is from [BN94]. Corollary 2.5.4 is a special case of
results in [DVW02] (see also [DHW97]).

Theorem 2.5.1 can be interpreted in terms of k-generalized functions and Laplace
transforms (see the Notes of Section 2.4; we use the same notation here). Let q : H → X
be holomorphic with supλ∈H ‖λq(λ)‖ < ∞. As shown in Theorem 2.5.1, for all b > 0 there

exists f ∈ C∗(R+, X) such that q(λ) = λbf̂(λ) on H. Thus, q(λ) = û(λ) = f̂(λ)

k̂(λ)
, where

k(t) = 1
Γ(b)

tb−1 and u = K−1f ∈ C [k](R+, X) coincides with the b-th (distributional)
derivative of f . More generally, if q is a meromorphic function on some half-plane H with
values in X for which λ → λk̂0(λ)q(λ) is holomorphic on H and

sup
λ∈H

‖λk̂0(λ)q(λ)‖ < ∞

for some regularizing function k0, then it follows from Theorem 2.5.1 that there exists
f ∈ C∗(R+, X) such that 1

λ
k̂0(λ)q(λ) = k̂(λ)q(λ) = f̂(λ) or q(λ) = û(λ), where k :=

1 ∗ k0 and u ∈ C [k](R+, X) is a generalized function such that f = k ∗u. Notice that if ki
are regularizing functions and k1 ∗ k2 = k3, then C [k1](R+, X) is continuously embedded
in C [k3](R+, X). Thus, a faster growing q will have a less regular u such that q = û.

Section 2.6
Theorem 2.6.1 is due to Sova [Sov79b] and Theorem 2.6.2 is taken from [Neu89b].

Section 2.7.
In 1893, Stieltjes proved in a letter to Hermite that a bounded continuous function
f : R+ → R is positive if and only if f̂ (n)(λ) ≥ 0 for all n ∈ N0 and all λ sufficiently large
(see [BB05]). Bernstein proved his theorem in 1928 [Ber28].

The characterization of those ordered Banach spaces in which Bernstein’s theorem
(Theorem 2.7.7) holds is due to Arendt [Are94a].

The interpolation property is of particular interest for spaces of the form C(K),
where K is a compact space. Then it can be described in terms of K: the space C(K)
has the interpolation property if and only if K is an F -space (i.e., if A,B ⊂ K are open
and disjoint Fσ-sets, then A ∩ B = ∅). Note that C(K) is σ-order complete if and only
if K is quasi-stonean (i.e., if A ⊂ K is an open Fσ-set, then Ā is open). For example,
K := βN \N is a F -space which is not quasi-stonean (where βN denotes the Stone-Čech
compactification of N). Whereas every quasi-stonean space K is totally disconnected
(i.e. the connected component of each point x is {x}), there exist connected compact F -
spaces. One reason why these spaces have been studied is that C(K) has the Grothendieck
property (see Section 4.3) if K is an F -space. We refer to the article by Seever [See68]
for this and further information.

The interpolation property is also equivalent to two other vector-valued versions
of classical theorems; namely, Riesz’s representation theorem for positive functionals on
C[0, 1] and Hausdorff’s theorem on the moment problem. More precisely, the following
is proved in [Are94a].

Theorem 2.8.5. Let X be an ordered Banach space with normal cone. The following are
equivalent:

(i) X has the interpolation property.

(ii) For every positive T ∈ L(C[0, 1], X) there exists an increasing function f : [0, 1] →
X such that Tg =

∫ 1

0
g(t) df(t) for all g ∈ C[0, 1].
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(iii) For each completely monotonic sequence (xn)n∈N in X there exists an increasing
function f : [0, 1] → X such that xn =

∫ 1

0
tn df(t) (n ∈ N).

Here, a sequence x = (xn)n∈N is called completely monotonic if (−Δ)kx ≥ 0 for all k ∈ N
where Δ : XN → XN is given by Δx = (xn+1 − xn)n∈N.

Bernstein’s theorem in ordered Banach spaces with order continuous norm (The-
orem 2.7.18) is proved in [Are87a] with the help of the classical scalar theorem. A first
vector-valued version of Bernstein’s theorem is due to Bochner [Boc42]. But Bochner
considered convergence in order, whereas for our purposes norm convergence of Riemann-
Stieltjes sums and improper integrals is essential in order to make the results applicable
to operator theory. Here we deduce Bernstein’s theorem from the Real Representation
Theorem 2.2.1.

One can obtain Widder’s theorem (the scalar case of Theorem 2.2.1) as an easy
corollary of Bernstein’s classical result (see [Wid71, Section 6.8]). However this argument
is restricted to the scalar case. On the other hand, it is possible to deduce the vector-
valued version of Theorem 2.2.1 from the scalar case by a duality argument (see [Are87b]
and the Notes of Section 2.2).
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