
10. Pricing Derivatives on a Single
Interest-Rate Curve

Increasingly, problems do not rule out practice, but support it. Instead of
finding that practice is too difficult, that we have too many problems, we
see that the problems themselves are the jewels, and we devote ourselves to
be with them in a way we never dreamt of before.
Charlotte Joko Beck, “Nothing Special: Living Zen”, 1995, HarperCollins.

In this chapter, we present a sample of financial products we believe to be
representative of a large portion of the interest-rate market. We will use dif-
ferent models (mostly the LFM and the G2++ model) for different problems,
and try to clarify the advantages of each model. All the discounted payoffs
will be calculated at time t = 0.

Before starting, we remark upon the possible use of an approximated LI-
BOR market model (LFM) for pricing some of the products we will consider.

It is possible to freeze part of the drift of the LFM dynamics so as to
obtain a geometric Brownian motion. This is what was done for example
in Section 6.14 to derive approximated formulas for terminal correlations.
In that section, we derived such a dynamics under the Tγ-forward-adjusted
measure Qγ :

dFk(t) = µ̄γ,k(t)Fk(t) dt + σk(t)Fk(t) dZk(t) , (10.1)

where

µγ,k(t) := −
γ

∑

j=k+1

ρk,jτjσj(t)Fj(0)
1 + τjFj(0)

, k < γ ,

µγ,γ(t) := 0 , k = γ ,

µγ,k(t) :=
k

∑

j=γ+1

ρk,jτjσj(t)Fj(0)
1 + τjFj(0)

, k > γ ,

µ̄γ,k(t) := σk(t)µγ,k(t).

This dynamics gives access, in some cases, to a number of techniques which
have been developed for the basic Black and Scholes setup, for example, in
equity and FX markets. Moreover, this “freezing-part-of-the-drift” technique
can be combined with drift interpolation so as to allow for rates that are not
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in the fundamental (spanning) family corresponding to the particular LFM
being implemented.

We detail this possible “interpolate and freeze (part of the) drift” ap-
proach in case of accrual swaps in Section 10.11.1, but the method is rather
general and, when used in combination with other possible approximations,
can be used for other products.

Finally, even if one keeps on using Monte Carlo evaluation, the frozen-
drift approximation leads to a process (geometric Brownian motion) that is
much easier to propagate in time and requires no small discretization step
in the propagation, allowing instead for “one-shot” simulation also over long
periods of time.

In the following, we assume we are given a set of dates Tα, . . . , Ti . . . , Tβ+1
with associated year fractions τα, . . . , τi . . . , τβ+1.

10.1 In-Advance Swaps

An in-advance swap is an IRS that resets at dates Tα+1, . . . , Tβ and pays at
the same dates, with unit notional amount and with fixed-leg rate K. More
precisely, the discounted payoff of an in-advance swap (of “payer” type) can
be expressed via

β
∑

i=α+1

D(0, Ti)τi+1(Fi+1(Ti)−K).

The value of such a contract is, therefore,

IAS = E

[ β
∑

i=α+1

D(0, Ti)τi+1(Fi+1(Ti)−K)

]

,

where we omit arguments in the “IAS” notation for brevity.
Before calculating the expectations, it is convenient to make some ad-

justments. We shall use the following identity (obtained easily via iterated
conditioning, as seen in Proposition 2.8.1):

E[XD(0, T )] = E
[

XD(0, S)
P (T, S)

]

for all 0 < T < S, (10.2)

where X is a T -measurable random variable.
To value the above contract, notice that
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E

{ β
∑

i=α+1

D(0, Ti)τi+1(Fi+1(Ti)−K)

}

= E

{ β
∑

i=α+1

D(0, Ti)
[

1
P (Ti, Ti+1)

− (1 + τi+1K)
]

}

= E

{ β
∑

i=α+1

[

D(0, Ti+1)
P (Ti, Ti+1)2

−D(0, Ti)(1 + τi+1K)
]

}

=
β

∑

i=α+1

{

P (0, Ti+1)Ei+1
[

1
P (Ti, Ti+1)2

]

− P (0, Ti)(1 + τi+1K)
}

=
β

∑

i=α+1

{

P (0, Ti+1)Ei+1 [

(1 + τi+1Fi+1(Ti))2
]

− P (0, Ti)(1 + τi+1K)
}

.

Computing the expected value is an easy task, since we know that, under
Qi+1, Fi+1 has the driftless (martingale) lognormal dynamics

dFi+1(t) = σi+1(t)Fi+1(t)dZi+1(t) ,

so that, remembering the resulting lognormal distribution of F 2
i+1(Ti), one

has

Ei+1 (

F 2
i+1(Ti)

)

= F 2
i+1(0) exp

[

∫ Ti

0
σ2

i+1(t)dt

]

= F 2
i+1(0) exp(v2

i+1)

where the v’s have been defined in (6.18) and are deduced from cap prices.
We obtain

IAS =
β

∑

i=α+1

{P (0, Ti+1)
[

1 + 2τi+1Fi+1(0) + τ2
i+1F

2
i+1(0) exp(v2

i+1)
]

−(1 + τi+1K)P (0, Ti)}. (10.3)

Contrary to the plain-vanilla case, this price depends on the volatility of for-
ward rates through the caplet volatilities v. Notice however that correlations
between different rates are not involved in this product, as one expects from
the additive and “one-rate-per-time” nature of the payoff.

10.2 In-Advance Caps

An in-advance cap is composed by caplets resetting at dates Tα+1, . . . , Tβ

and paying at the same dates, with unit notional amount and strike rate K.



380 10. Pricing Derivatives on a Single Interest-Rate Curve

More precisely, the discounted payoff of an in-advance cap can be expressed
via

β
∑

i=α+1

D(0, Ti)τi+1(Fi+1(Ti)−K)+.

The value of such a contract is, therefore,

IAC = E

[ β
∑

i=α+1

D(0, Ti)τi+1(Fi+1(Ti)−K)+
]

.

The payoff is the same as in the case of in-advance swaps, except for the
positive-part operator.

10.2.1 A First Analytical Formula (LFM)

We apply the same reasoning we used for in-advance swaps, obtaining:

IAC =
β

∑

i=α+1

P (0, Ti+1)Ei+1 [

(1 + τi+1Fi+1(Ti))(Fi+1(Ti)−K)+
]

=
β

∑

i=α+1

P (0, Ti+1)
(

Ei+1[(Fi+1(Ti)−K)+]

+τi+1Ei+1 [

Fi+1(Ti)(Fi+1(Ti)−K)+
])

=
β

∑

i=α+1

P (0, Ti+1) [Bl(K, Fi+1(0), vi+1) + τi+1g(K, Fi+1(0), vi+1)] ,

g(K,F, v) := F 2 exp[v2]Φ
(

3v
2
− 1

v
ln

K
F

)

− FK Φ
(

v
2
− 1

v
ln

K
F

)

,

where “Bl” and v have been defined in (1.26), (6.18) and above. In-advance
caps do not depend on the correlation of different rates but just on the caplet
volatilities v, as one expects again from the additive and “one-rate-per-time”
nature of the payoff.

10.2.2 A Second Analytical Formula (G2++)

The above expectations can also be easily computed under the Gaussian
G2++ model, by exploiting the lognormal distribution of bond prices. After
lengthy but straightforward calculations we obtain:
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IAC =
β

∑

i=α+1

P (0, Ti)





P (0, Ti)
P (0, Ti+1)

eΣ(Ti,Ti+1)2Φ





ln P (0,Ti)eKiP (0,Ti+1)
+ 3

2Σ(Ti, Ti+1)2

Σ(Ti, Ti+1)





− ˜KiΦ





ln P (0,Ti)eKiP (0,Ti+1)
+ 1

2Σ(Ti, Ti+1)2

Σ(Ti, Ti+1)







 ,

where ˜Ki = 1 + Kτi and

Σ(T, S)2 =
σ2

2a3

[

1− e−a(S−T )
]2[

1− e−2aT ]

+
η2

2b3

[

1− e−b(S−T )
]2[

1− e−2bT ]

+ 2ρ
ση

ab(a + b)

[

1− e−a(S−T )
] [

1− e−b(S−T )
] [

1− e−(a+b)T
]

.

10.3 Autocaps

We adopt the same notation, terminology and conventions as in Section 6.4,
and take α = 0. An autocap is similar to a cap, but at most γ ≤ β caplets
can be exercised, and they have to be automatically exercised when in the
money. Therefore, the discounted payoff can be written as

β
∑

i=1

τi [F (Ti−1;Ti−1, Ti)−K]+D(0, Ti) 1{Ai},

Ai = {at most γ among F1(T0), . . . , Fi(Ti−1) are larger than K},

where 1{A} denotes the indicator function for the set A.
The pricing of this contract can be obtained by considering the risk-

neutral expectation E of its discounted payoff:

E

[ β
∑

i=1

τi(Fi(Ti−1)−K)+D(0, Ti) 1{Ai}

]

= P (0, Tβ)
β

∑

i=1

τiEβ
[

(Fi(Ti−1)−K)+ 1{Ai}
P (Ti, Tβ)

]

,

where we have used (10.2) (equivalently, the remarks of Section 2.8).
Notice that the Ai term depends not only on the forward rate Fi(Ti−1),

but also on F1(T0), ..., Fi−1(Ti−2). Therefore, a “path-dependent” feature is
introduced in the contract. If we attempt to price this contract by a Monte
Carlo method, in order to compute the discounted payoff we need to generate
paths under Qβ for the vector (whose dimension decreases over time)

Fβ(t)(t), . . . , Fβ(t) ,
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where we recall that t ∈ (Tβ(t)−2, Tβ(t)−1]. These paths can be deduced
from discretizing the dynamics (6.14). In our setting, such dynamics reads
(k = β(t), β(t) + 1, . . . , β)

dFk(t) = −σk(t)Fk(t)
β

∑

j=k+1

ρk,jτjσj(t)Fj(t)
1 + τjFj(t)

dt + σk(t)Fk(t)dZβ
k (t). (10.4)

Taking logs and using the Milstein scheme, analogously to what was done for
swaptions in Section 6.10, yields the desired simulated paths:

ln F∆t
k (t + ∆t) = ln F∆t

k (t)− σk(t)
β

∑

j=k+1

ρk,jτjσj(t)F∆t
j (t)

1 + τjF∆t
j (t)

∆t− σk(t)2

2
∆t

+σk(t)(Zβ
k (t + ∆t)− Zβ

k (t)). (10.5)

Actually, here too, one can improve the scheme by resorting to more refined
shocks, in the spirit of Remark 6.10.1.

10.4 Caps with Deferred Caplets

These are caps for which all caplets payments occur at the final time Tβ . The
discounted payoff is, therefore,

β
∑

i=1

τi(Fi(Ti−1)−K)+D(0, Tβ) .

The pricing of this “deferred” cap can be obtained by considering the risk-
neutral expectation E of its discounted payoff:

E

[ β
∑

i=1

τi(Fi(Ti−1)−K)+D(0, Tβ)

]

= P (0, Tβ)
β

∑

i=1

τiEβ [

(Fi(Ti−1)−K)+
]

.

The expected value can be computed through a Monte Carlo method based
on the discretized Qβ dynamics (10.5).

10.4.1 A First Analytical Formula (LFM)

The above formula requires to compute the expected values

Eβ [

(Fi(Ti−1)−K)+
]

.

This is a case where the LFM with partially frozen drift can be of help in
deriving analytical approximations. Indeed, consider the approximate LFM
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dynamics (10.1) with γ = β. Then, the above expectation is easily computed
as a Black and Scholes call-option price (see Appendix B):

exp

(

∫ Ti−1

0
µ̄β,i(t)dt

)

Fi(0) Φ





ln Fi(0)
K +

∫ Ti−1

0

[

µ̄β,i(t) + σ2
i (t)
2

]

dt
√

∫ Ti−1

0 σ2
i (t)dt





−KΦ





ln Fi(0)
K +

∫ Ti−1

0

[

µ̄β,i(t)− σ2
i (t)
2

]

dt
√

∫ Ti−1

0 σ2
i (t)dt



 .

Replacing the expectation with such expression in the above summation, we
obtain an analytical formula for the price of the cap with deferred caplets.

10.4.2 A Second Analytical Formula (G2++)

The expectations
Eβ [

(Fi(Ti−1)−K)+
]

can also be easily computed under the Gaussian G2++ model, by again ex-
ploiting the lognormal distribution of bond prices. After lengthy but straight-
forward calculations we obtain:

1
τi





P (0, Ti−1)
P (0, Ti)

eψ(0,Ti−1,Ti,Tβ ,1)Φ





ln P (0,Ti−1)eKP (0,Ti)
+ ψ(0, Ti−1, Ti, Tβ , 3

2 )
√

ψ(Ti−1, Ti, Ti, 2)





− ˜KΦ





ln P (0,Ti−1)eKP (0,Ti)
+ ψ(0, Ti−1, Ti, Tβ , 1

2 )
√

ψ(Ti−1, Ti, Ti, 2)







 ,

where ˜K := 1 + τiK and

ψ(T, S, τ, λ)

:=
σ2

2a3

[

1− e−a(S−T )
]

[

1− e−2aT ]

[

e−a(τ−T ) − 1 + λ− λe−a(S−T )
]

+
η2

2b3

[

1− e−b(S−T )
]

[

1− e−2bT ]

[

e−b(τ−T ) − 1 + λ− λe−b(S−T )
]

+
ρση

ab(a + b)

[

1− e−a(S−T )
][

1− e−(a+b)T
][

e−b(τ−T ) − 1 + λ− λe−b(S−T )
]

+
ρση

ab(a + b)

[

1− e−b(S−T )
][

1− e−(a+b)T
][

e−a(τ−T ) − 1 + λ− λe−a(S−T )
]

.

Notice that, using the previous notation, we can write ψ(Ti−1, Ti, Ti, 2) =
Σ(Ti−1, Ti)2.
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10.5 Ratchets (One-Way Floaters)

We give a short description of one-way floaters in the following. We assume
a unit nominal amount.

• Institution A pays to B (a percentage γ of) a reference floating rate (plus
a constant spread S) at dates T = {T1, . . . , Tβ}. Formally, at time Ti

institution A pays to B

(γFi(Ti−1) + S)τi .

• Institution B pays to A a coupon that is given by the reference rate plus
a spread X at dates T , floored and capped respectively by the previous
coupon and by the previous coupon plus an increment Y . Formally, at time
Ti with i > 1, institution B pays to A the coupon

ci =







(Fi(Ti−1) + X)τi if ci−1 ≤ (Fi(Ti−1) + X)τi ≤ ci−1 + Y,
ci−1 if (Fi(Ti−1) + X)τi < ci−1,

ci−1 + Y if (Fi(Ti−1) + X)τi > ci−1 + Y,

At the first payment time T1, institution B pays to A the coupon

(F1(T0) + X)τ1.

The discounted payoff as seen from institution A is

β
∑

i=1

D(0, Ti) [ci − (γFi(Ti−1) + S)τi]

and the value to A of the contract is the risk-neutral expectation

E

{ β
∑

i=1

D(0, Ti) [ci − (γFi(Ti−1) + S)τi]

}

= P (0, Tβ)
β

∑

i=1

Eβ
[

ci − (γFi(Ti−1) + S)τi

P (Ti, Tβ)

]

.

Since the forward-rate dynamics under Qβ of

Fβ(t)(t), . . . , Fβ(t)

is known as from (10.4), a Monte Carlo pricing can be carried out in the
usual manner.



10.6 Constant-Maturity Swaps (CMS) 385

10.6 Constant-Maturity Swaps (CMS)

10.6.1 CMS with the LFM

A constant-maturity swap is a financial product structured as follows. We
assume a unit nominal amount. Let us denote by T = {T0, . . . , Tn} a set of
payment dates at which coupons are to be paid. We assume, for simplicity,
such dates to be one-year spaced.

• At time Ti−1 (in some variants at time Ti), i ≥ 1, institution A pays
to B the c-year swap rate resetting at time Ti−1. Formally, at time Ti−1
institution A pays to B

Si−1,i−1+c(Ti−1) τi ,

where, as usual,

Si−1,i−1+c(t) =
P (t, Ti−1)− P (t, Ti−1+c)

∑i−1+c
k=i τkP (t, Tk)

. (10.6)

• Institution B pays to A a fixed rate K.

The net value of the contract to B at time 0 is

E

(

n
∑

i=1

D(0, Ti−1)(Si−1,i−1+c(Ti−1)−K)τi

)

=
n

∑

i=1

τiP (0, Ti−1)
[

Ei−1 (Si−1,i−1+c(Ti−1))−K
]

=
n

∑

i=1

τi

(

P (0, Tn)En
(

Si−1,i−1+c(Ti−1)
P (Ti−1, Tn)

)

−KP (0, Ti−1)
)

. (10.7)

We need only compute either

Ei−1 [Si−1,i−1+c(Ti−1)] or En[Si−1,i−1+c(Ti−1)/P (Ti−1, Tn)]

for all i’s. At first sight, one might think to discretize equation (6.38) for
the dynamics of the forward swap rate and compute the required expecta-
tion through a Monte Carlo simulation. However, notice that forward rates
appear in the drift mα of such equation, so that we are forced to evolve
forward rates anyway. As a consequence, we can use equation (10.6) jointly
with Monte Carlo simulated forward-rate dynamics, and do away with the
dynamics (6.38), thus directly recovering the swap rate Si−1,i−1+c(Ti−1) from
the Ti−1 values of the (Monte Carlo generated) spanning forward rates

Fi(Ti−1), Fi+1(Ti−1), . . . , Fi−1+c(Ti−1).

Analogously to the autocaps case, such forward rates can be generated ac-
cording to the usual discretized (Milstein) dynamics (10.5) based on Gaussian
shocks and under the unique measure Qn.
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10.6.2 CMS with the G2++ Model

It is possible to price a CMS with the G2++ model (4.4). See the related
Section 11.2.2 on quanto CMS’s in the next chapter. We do not repeat things
here, since the CMS pricing procedure can be easily deduced from the pro-
cedure for the more general quanto-CMS case.

10.7 The Convexity Adjustment and Applications to
CMS

10.7.1 Natural and Unnatural Time Lags

As with so many things, it was simply a matter of time.
The Time Trapper, Zero Hour – End of an Era, LSH 61, 1994, DC Comics

To appropriately introduce the convexity-adjustment technique, we quickly
recall the pricing formulas for swaps. We begin by a plain-vanilla swap with
natural time lag.

Consider an IRS that resets at dates Tα, Tα+1, . . . , Tβ−1 and pays at dates
Tα+1, . . . , Tβ , with unit notional amount. The fact that the payment indexed
by the LIBOR rate resetting at time Ti for the maturity Ti+1 occurs precisely
at time Ti+1 is referred to as a “natural time lag”. This renders the swap price
independent of the volatility of rates. Indeed, let us consider only the variable
swap leg. The discounted value of this leg can be expressed either via the swap
rate or via forward rates. In effect, the discounted payoff is given by

D(0, Tα)Sα,β(Tα)
β

∑

i=α+1

τiP (Tα, Ti),

which is equivalent to

β
∑

i=α+1

D(0, Ti)τiFi(Ti−1).

The value of such a leg is easily computed in both cases as

E

[ β
∑

i=α+1

D(0, Ti)τiFi(Ti−1)

]

=
β

∑

i=α+1

P (0, Ti)τiEi [Fi(Ti−1)]

=
β

∑

i=α+1

P (0, Ti)τiFi(0) =
β

∑

i=α+1

[P (0, Ti−1)− P (0, Ti)]

= P (0, Tα)− P (0, Tβ).



10.7 The Convexity Adjustment and Applications to CMS 387

From the last formula notice that, as is well known, neither volatility nor
correlation of rates affect this financial product.

Now, let us reconsider in-advance swaps. Consider the variable leg of an
IRS that resets at dates Tα+1, . . . , Tβ and pays at the same dates, with unit
notional amount. We say this swap has an “unnatural time lag”. This term is
justified by seeing that the price of such a leg depends on volatility. Indeed,
see formula (10.3) with K = 0.

Contrary to the plain-vanilla case, the in-advance-swap price depends on
the volatility of forward rates through their average volatilities v, which are
usually deduced inverting cap prices through Black’s formula.

The “natural/unnatural” terminology reflects the above calculations. A
natural time lag for the variable leg of a swap makes the value of such a leg
independent of the rates volatility. On the contrary, an unnatural time lag
makes the value of the variable leg volatility dependent.

As a corollary, we can derive the corresponding formulas for forward-rate
agreements. Suppose we are now at time 0, and at time T2 the contract pays
the LIBOR rate resetting at time T1 < T2 and maturing at T2. As usual, we
denote this rate by L(T1, T2) = F2(T1) and we denote by τ the year fraction
between T1 and T2. The contract value is therefore, consistently with the
general FRA notation previously established,

−FRA(0, T1, T2, 0) = E[D(0, T2)τF2(T1)]

= P (0, T2)τE2[F2(T1)] = P (0, T2)τF2(0)

= P (0, T1)− P (0, T2).

If we have an in-advance FRA, this time the contract pays at time T1 the
LIBOR rate resetting at the same time T1 < T2 and maturing at T2. By
reasoning in an analogous way to the case of in-advance swaps, we obtain

IAFRA = P (0, T2)
[

1 + 2τF2(0) + τ2F 2
2 (0) exp(v2

2(T1))
]

− P (0, T1)

= P (0, T1)
[

1 +
τ F2(0) + τ2F 2

2 (0) exp(v2
2(T1))

1 + τF2(0)

]

− P (0, T1)

= P (0, T2)τF2(0)
(

1 + τF2(0) exp(v2
2(T1))

)

≈ P (0, T2)τF2(0)
(

1 + τF2(0) + τv2
2(T1)F2(0)

)

= P (0, T1)τF2(0) + P (0, T2)τ2F 2
2 (0)v2

2(T1) (10.8)

10.7.2 The Convexity-Adjustment Technique

The time is out of joint. O cursed spite,
That ever I was born to set it right
Hamlet, I.5

The convexity-adjustment technique can be attempted any time there is an
unnatural time lag. We consider its application to a single payment.
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Assume a swap rate is involved, and that the payment τiSα,β(Ti−k) is due
at time Ti, i− k ≤ i ≤ α < β.

Remark 10.7.1. (CMS) This is typical of constant-maturity swaps (CMS)
where we have i = α and k = 1 or k = 0. This is the case where the convexity
adjustment works well and is also supported by the output of more sophisti-
cated models like, for instance, the G2++ model. If k is large, the correction
can be quite wrong. Therefore, in such cases, the correction discussed here
should be considered with care.

We are far from the “usual” IRS case, because the rate being exchanged
at each payment instant is a swap rate rather than a LIBOR rate.

A first adjustment

The forward swap rate Sα,β is originally defined as related to an IRS that
pays at times α + 1, . . . , β: Sα,β(T ) at time T , T ≤ Tα, is the fixed rate such
that the fixed leg of the above IRS has value equal to that of the floating leg.
In case of reimbursement of the notional amount, such a value at time T is
always P (T, Tα) (see Definition 1.5.2 and the subsequent comments), so that
we can write (“FL” stands for “floating leg”)

FLα,β(T ) = P (T, Tα) = Sα,β(T )
β

∑

i=α+1

τiP (T, Ti) + P (T, Tβ) .

Now rewrite the same expression with the discount factors coming from a
flat yield curve fixed at a level y (annually compounded) at time Tα, (“FFL”
stands for Flat Floating Leg):

FFLα,β(T ; y) = Sα,β(T )
β

∑

i=α+1

τi
P (T, Tα)
(1 + y)τα,i

+
P (T, Tα)

(1 + y)τα,β
,

where τα,i denotes the year fraction between Tα and Ti.
If one allows for the first-order expansion

δSα,β(T ) = (1 + Sα,β(T ))δ − 1 ,

and takes Ti = iδ, τα,i = (i− α)δ and τi = δ, it is easy to see that the above
flat floating leg coincides with P (T, Tα) only for y = Sα,β(T ),

FFLα,β(T ; Sα,β(T )) = P (T, Tα).

Therefore, the value of y around which the flat-curve approximation is to
be considered is the forward swap rate Sα,β(T ), in that it is the flat rate
that agrees with the non-flat case as far as the price of the floating leg is
concerned:
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FFLα,β(T ; Sα,β(T )) = FLα,β(T ).

Consider now the expectation

ET
0 [P (0, T )FFLα,β(T ; Sα,β(T ))− FFLα,β(0;Sα,β(0))] (10.9)

= ET
0

[

P (0, T )
P (T, Tα)
P (T, T )

− P (0, Tα)
]

= 0 .

At this point, we proceed by defining the following quantity Φα,β(y) through
a slight approximation of the argument of the above expectation, where we
assume P (0, T )P (T, Tα) ≈ P (0, Tα):

P (0, T )FFLα,β(T, y) ≈ Sα,β(T )
β

∑

i=α+1

τi
P (0, Tα)

(1 + y)τα,i
+

P (0, Tα)
(1 + y)τα,β

=: Φα,β(T, y).

We expand Φ through a second-order Taylor expansion around y = Sα,β(0),
we evaluate the resulting expression at y = Sα,β(T ), we then solve for
Sα,β(T )− Sα,β(0) and introduce a further approximation:

Sα,β(T )− Sα,β(0) ≈ Φα,β(T, Sα,β(T ))− Φα,β(T, Sα,β(0))
Φ′α,β(T, Sα,β(0))

(10.10)

− (Sα,β(T )− Sα,β(0))2

2
Φ′′α,β(T, Sα,β(0))
Φ′α,β(T, Sα,β(0))

≈ Φα,β(T, Sα,β(T ))− Φα,β(0, Sα,β(0))
Φ′α,β(0, Sα,β(0))

− (Sα,β(T )− Sα,β(0))2

2
Φ′′α,β(0, Sα,β(0))
Φ′α,β(0, Sα,β(0))

,

where the superscript ′ denotes partial derivative with respect to y.
Now take expectation on both sides under the measure QT . The first term

on the right-hand side has expectation zero, due to equation (10.9).
We further assume that we can approximate the true QT -dynamics of

Sα,β by its lognormal Qα,β-dynamics (6.36), an approximation that has been
shown to work well in most situations for the LFM when T is close to Tα

(see the tests on the distributions of the swap rate described at the end of
Section 8.2 and the related results in Section 8.3). We obtain:

ET
0

[

(Sα,β(T )− Sα,β(0))2
]

≈ Eα,β
0

[

(Sα,β(T )− Sα,β(0))2
]

= Sα,β(0)2(ev2
α,β(T ) − 1) ≈ S2

α,β(0) v2
α,β(T ),

where

v2
α,β(T ) =

∫ T

0
(σ(α,β)(t))2 dt
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is the average variance of the forward swap rate in the interval [0, T ] times
the interval length. Now, we can evaluate (10.10) by taking expectation on
both sides:

ET
0 [Sα,β(T )] ≈ Sα,β(0)− 1

2S2
α,β(0)v2

α,β(T )
Φ′′α,β(0, Sα,β(0))
Φ′α,β(0, Sα,β(0))

. (10.11)

A second adjustment

A second adjustment we can consider is based on neglecting the final reim-
bursement of the notional amount in the above IRS. We thus define Ψ as Φ
without notional reimbursement,

Ψα,β(y) := Sα,β(T )
β

∑

i=α+1

τi
P (0, Tα)

(1 + y)τα,i
.

Assuming that also

ET
0 [Ψα,β(Sα,β(T ))− Ψα,β(Sα,β(0))] ≈ 0,

as for Φ when taking expectations on both sides of (10.10), and using again
a second-order expansion, it follows that

ET
0 [Sα,β(T )] ≈ Sα,β(0)− 1

2S2
α,β(0)v2

α,β(T )
Ψ ′′α,β(Sα,β(0))
Ψ ′α,β(Sα,β(0))

, (10.12)

where the ratio Ψ ′′α,β(Sα,β(0))/Ψ ′α,β(Sα,β(0)) is independent of T .
This is the formula that is usually considered in the market for convexity

adjustments (especially for CMS), see for example Hull (1997), in particular
formula (16.13) and the related Example 16.8. The approximation works well
when T is not too far away from Tα, as implied by the “QT vs Qα,β” dynamics
approximation for the forward swap rate.

Let us now apply this formula to specific situations.

Floating leg with swap-rate-indexed payments

Suppose we need to compute the present value of our generic payment,

E[τiD(0, Ti)Sα,β(Ti−k)] .

Move under the Ti-forward measure, to obtain

P (0, Ti)Ei[τiSα,β(Ti−k)] .

The first rougher approximation is to treat the measure Qi as if it were the
swap measure Qα,β , under which S can be modeled through the lognormal
martingale
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dSα,β(t) = σ(α,β)(t)Sα,β(t) dWt .

Under this approximation, we would then have

E[τiD(0, Ti)Sα,β(Ti−k)] ≈ τiP (0, Ti)Sα,β(0).

The convexity adjustment (10.12) leads to the following modification of this
last formula:

E[τiD(0, Ti)Sα,β(Ti−k)]

= τiP (0, Ti)Ei[Sα,β(Ti−k)] ≈ τiP (0, Ti)Ei−k[Sα,β(Ti−k)]

≈ τiP (0, Ti)

[

Sα,β(0)− 1
2S2

α,β(0)v2
α,β(Ti−k)

Ψ ′′α,β(Sα,β(0))
Ψ ′α,β(Sα,β(0))

]

.

As anticipated in Remark 10.7.1, this approximation turns out to work well
only for small values of k. Therefore, if k is large, the correction should be
considered with due care.

We now check that, in case of an in-advance FRA, this formula is con-
sistent with the value found earlier by exact evaluation. We take α = i = 1,
k = 0, β = 2 and τ1,2 = τ , so that Sα,β(t) = F (t; T1, T2) and

Ψ1,2(y) =
C

(1 + τy)
,

with C a suitable constant, and where we have used simple compounding
instead of annual compounding. Notice that

Ψ ′′1,2(y)
Ψ ′1,2(y)

=
−2τ

(1 + τy)
,

so that the convexity-adjustment formula (10.12) yields

τP (0, T1)
[

F2(0) + τ
F 2

2 (0)v2
2(T1)

1 + τF2(0)

]

= τP (0, T1)F2(0) + τ2P (0, T2)F 2
2 (0)v2

2(T1),

which is the same result found, at first order in v2
2 , by exact evaluation

in (10.8).

10.7.3 Deducing a Simple Lognormal Dynamics from the
Adjustment

We can easily adjust the approximate driftless dynamics

dSα,β(t) = σ(α,β)(t)Sα,β(t) dWt ,
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for which
ET

0 [Sα,β(Ti−k)] = Sα,β(0) ,

to a new dynamics

dSα,β(t) = µα,βSα,β(t) dt + σ(α,β)(t)Sα,β(t) dWt , (10.13)

for which

ET
0 [Sα,β(Ti−k)] = Sα,β(0)− 1

2S2
α,β(0)v2

α,β(Ti−k)
Ψ ′′α,β(Sα,β(0))
Ψ ′α,β(Sα,β(0))

,

consistently with the convexity-adjustment evaluation. Since the dynam-
ics (10.13) produces

ET
0 [Sα,β(Ti−k)] = Sα,β(0) exp(µα,βTi−k) ≈ Sα,β(0)(1 + µα,βTi−k),

at first order in µα,βTi−k, it suffices to set

µα,β = − 1
2Sα,β(0)

v2
α,β(Ti−k)

Ti−k

Ψ ′′α,β(Sα,β(0))
Ψ ′α,β(Sα,β(0))

.

Notice that in case the instantaneous forward-swap-rate volatility σα,β is
assumed to be constant, we have

v2
α,β(Ti−k)

Ti−k
= (σα,β)2.

This approximation is however rather rough and should not be used to eval-
uate nonlinear payoffs, unless a considerable amount of testing has been per-
formed and acceptable errors are found.

10.7.4 Application to CMS

We have seen before that a constant-maturity swap has a floating leg that
pays at times Tα+1, . . . , Tβ the swap rates

Sα,α+c(Tα), Sα+1,α+1+c(Tα+1), . . . , Sβ−1,β−1+c(Tβ−1) .

Therefore, at each payment instant Tα+k+1, such leg pays a certain pre-
specified c-year swap rate resetting at the previous instant Tα+k. In some
variants, instead, it pays at Tα+k+1 a certain pre-specified swap rate resetting
at the same instant. We will consider here the first version.

The value of the generic CMS payment is given by

E [D(0, Ti+1)τi+1Si,i+c(Ti)] = τi+1P (0, Ti+1)Ei+1Si,i+c(Ti)

≈ τi+1P (0, Ti+1)

[

Si,i+c(0)− 1
2S2

i,i+c(0)v2
i,i+c(Ti)

Ψ ′′i,i+c(Si,i+c(0))
Ψ ′i,i+c(Si,i+c(0))

]

,
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see also Example 16.8 in Hull (1997). The CMS price is then obtained by
adding terms for i ranging from α to β − 1. Recall that the adjustment
used here has been derived under a number of approximations. As such, it
can be improved. Indeed, the classical adjustment has been found to be not
completely satisfactory by some traders, especially in some market situations
involving volatility smiles. For a recent work on CMS adjustments see for
example Pugachevsky (2001).

10.7.5 Forward Rate Resetting Unnaturally and Average-Rate
Swaps

We consider now the following problem, which can have several applications.
Consider two time instants s, u and a payment date T , s < u < T . Assume
we have a contract that pays at time T the spot LIBOR rate resetting at
time s for the maturity u:

L(s, u) = F (s; s, u).

In case T = u we have a natural time lag. Indeed, the contract value at time
0 is the risk-neutral expectation of the discounted payoff

E0[D(0, T )F (s; s, T )] = P (0, T )ET
0 [F (s; s, T )] = P (0, T )F (0; s, T )

and does not depend on volatility specifications.
If T > u, the above formula no longer holds. However, we can still evaluate

the contract as follows.
Consider the no-arbitrage forward-rate dynamics for F (t) = F (t; s, u)

under the T -forward-adjusted measure QT :

dF (t) = −σs,uσu,T τ(u, T )F (t)
F (t; u, T )

1 + τ(u, T )F (t;u, T )
dt + σs,uF (t) dWT

t ,

where σs,u is the instantaneous volatility of F (t) = F (t; s, u) and σu,T is
the instantaneous volatility of F (t;u, T ), and both are assumed to be con-
stant (otherwise they can be replaced with the square roots of the average
variances of F (t; s, u) and F (t;u, T ), respectively, over [0, s]). The quantity
τ(a, b) denotes in general the time between dates a and b in years.

We assume unit correlation between F (t; s, u) and F (t; u, T ), since usually
T and u are close. If this is not the case, a ρ parameter can be included in
the drift of the above process.

With the usual deterministic-percentage-drift approximation we can write

dF (t) = −σs,uσu,T τ(u, T )F (t)
F (0; u, T )

1 + τ(u, T )F (0; u, T )
dt + σs,uF (t) dWT

t .

This new process has lognormal distribution under the T -forward measure
and it can be easily seen that its expected value, conditional on the informa-
tion available at time 0, under the T -forward measure, is
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ET
0 [F (s; s, u)] = F (0; s, u) exp

(

−τ(u, T )σs,uσu,T s
F (0; u, T )

1 + τ(u, T )F (0; u, T )

)

.

We are now able to price the discounted payoff

E0[D(0, T )L(s, u)] = P (0, T )ET
0 [F (s; s, u)]

= P (0, T )F (0; s, u) exp
(

−τ(u, T )σs,uσu,T s
F (0; u, T )

1 + τ(u, T )F (0; u, T )

)

.

As an example, consider a contract that pays at a future time T the average
value of the 3-month (3m) LIBOR rates in the days t1 < t2 < . . . < tn,
tn < T , with δi denoting the year fraction between ti and ti + 3m. This is a
possible example of a leg of an average-rate swap.

If the notional is N , the contract price is

E0

[

D(0, T )
∑n

i=1 δiNL(ti, ti + 3m)
n

]

=
P (0, T )

n
N

n
∑

i=1

δiET
0 [F (ti; ti, ti + 3m)]

and is given by
P (0, T )

n
N

n
∑

i=1

δiF (0; ti, ti + 3m)

· exp
[

−σti,ti+3mσti+3m,T ti
τ(ti + 3m,T )F (0; ti + 3m,T )

1 + τ(ti + 3m,T )F (0; ti + 3m,T )

]

.

Notice that the correction to the “brute-force” formula

P (0, T )
n

N
n

∑

i=1

δiF (0; ti, ti + 3m)

is multiplicative for each term and is given by the exponentials. The correc-
tion effect is to (slightly) reduce the “brute-force” value, since the exponents
are negative. The correction might be not negligible for large values of the
volatilities.

The difficulty in applying the above formula lies in the fact that the
forward rate F (0; ti +3m,T ) can be rather atypical as for expiry or maturity
dates. Therefore, apart from few exceptions, its volatility cannot be recovered
exactly from market cap prices. However, a synthetic volatility deduced from
volatilities of “smaller” forward rates nested in F (0; ti+3m,T ) can be used for
this purpose, or arguments similar to those of Section 6.16 can be employed.

At a first stage, the above formula can be used to have a feeling on the
order of magnitude of the adjustment due to second-order effects, and to
decide whether these should be taken into account or not.
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10.8 Captions and Floortions

A caption is an option that gives its holder the right to enter at a future time
Tγ a cap whose first caplet resets at date Tα ≥ Tγ and whose subsequent
caplets reset at times Tα+1, . . . , Tβ−1 with Tβ the last payment date. The
strike rate for this cap will be denoted by K. The price the holder of the
caption will pay for this future cap is fixed as the caption strike and will be
denoted by X. We can therefore express the caption payoff as a call payoff
on the underlying cap.

We assume a unit notional amount. The Tγ value of the underlying cap
described above is given by the usual Black formula (see for instance Sec-
tion 6.4.3), computed at time Tγ instead of time 0,

β
∑

i=α+1

τiP (Tγ , Ti) Bl(K, Fi(Tγ),
√

Ti−1 − Tγ V (Tγ , Ti−1)),

where the average volatility V (·, ·) was defined in Section 6.5.
The caption discounted payoff, expressed as a call payoff, can be written

as

D(0, Tγ)

{ β
∑

i=α+1

τiP (Tγ , Ti) Bl(K, Fi(Tγ),
√

Ti−1 − Tγ V (Tγ , Ti−1))−X

}+

.

The caption value is given by the risk-neutral expectation of this payoff,
which in turn is given by

P (0, Tγ)Eγ

{ β
∑

i=α+1

τiP (Tγ , Ti) Bl(K, Fi(Tγ),
√

Ti−1−Tγ V (Tγ , Ti−1))−X

}+

.

Once again, the expected value can be computed through a Monte Carlo
method, given the simulated values of

Fγ+1(Tγ), Fγ+2(Tγ), . . . , Fβ(Tγ)

under Qγ , obtained through the usual discretized Milstein dynamics (10.5).

10.9 Zero-Coupon Swaptions

In this section we introduce zero-coupon swaptions and explain an approxi-
mated analytical method to price them. A payer (receiver) zero-coupon swap-
tion is a contract giving the right to enter a payer (receiver) zero-coupon
IRS at a future time. A zero-coupon IRS is an IRS where a single fixed
payment is due at the unique (final) payment date Tβ for the fixed leg in
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exchange for a stream of usual floating payments τiL(Ti−1, Ti) at times Ti in
Tα+1, Tα+2, . . . , Tβ (usual floating leg). In formulas, the discounted payoff of
a payer zero-coupon IRS is, at time t ≤ Tα:

D(t, Tα)

[ β
∑

i=α+1

P (Tα, Ti)τiFi(Tα)− P (Tα, Tβ)τα,βK

]

,

where τα,β is the year fraction between Tα and Tβ . The analogous payoff for
a receiver zero-coupon IRS is obviously given by the opposite quantity.

Taking risk-neutral expectation, we obtain easily the contract value as

P (t, Tα)− P (t, Tβ)− τα,βKP (t, Tβ),

which is the typical value of a floating leg minus the value of a fixed leg with
a single final payment.

The value of the strike rate K that renders the contract fair is obtained
by equating to zero the above value and solving in K. One obtains K =
F (t; Tα, Tβ). Indeed, we could have reasoned as follows. The value of the
swap is independent of the number of payments on the floating leg, since
the floating leg always values at par, no matter the number of payments
(see Section 1.5.2 and the related remarks). Therefore, we might as well have
taken a floating leg paying only in Tβ the amount τα,βL(Tα, Tβ). This would
have given us again a standard swaption, standard in the sense that the two
legs of the underlying IRS have the same payment dates (collapsing to Tβ)
and the unique reset date Tα. In such a one-payment case, the swap rate
collapses to a forward rate, so that we should not be surprised to find out
that the forward swap rate in this particular case is simply a forward rate.

An option to enter a payer zero-coupon IRS is a payer zero-coupon swap-
tion, and the related payoff is

D(t, Tα)

[ β
∑

i=α+1

P (Tα, Ti)τiFi(Tα)− P (Tα, Tβ)τα,βK

]+

,

or, equivalently, by expressing the F ’s in terms of discount factors,

D(t, Tα) [1− P (Tα, Tβ)− P (Tα, Tβ)τα,βK]+ ,

which in turn can be written as

D(t, Tα)τα,βP (Tα, Tβ) [F (Tα; Tα, Tβ)−K]+ .

Notice that, from the point of view of the payoff structure, this is merely a
caplet. As such, it can be priced easily through Black’s formula for caplets.
The problem, however, is that such a formula requires the integrated percent-
age volatility of the forward rate F (·; Tα, Tβ), which is a forward rate over a
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non-standard period. Indeed, F (·; Tα, Tβ) is not in our usual family of span-
ning forward rates, unless we are in the trivial case β = α+1. Therefore, since
the market provides us (through standard caps and swaptions) with volatility
data for standard forward rates, we need a formula for deriving the integrated
percentage volatility of the forward rate F (·; Tα, Tβ) from volatility data of
the standard forward rates Fα+1, . . . , Fβ . The reasoning is once again based
on the “freezing the drift” procedure, leading to an approximately lognormal
dynamics for our standard forward rates.

Denote for simplicity F (t) := F (t; Tα, Tβ) and τ := τα,β .
We begin by noticing that, through straightforward algebra, we have

(write everything in terms of discount factors to check)

1 + τF (t) =
β

∏

j=α+1

(1 + τjFj(t)).

It follows that

ln(1 + τF (t)) =
β

∑

j=α+1

ln(1 + τjFj(t)),

so that

d ln(1 + τF (t)) =
β

∑

j=α+1

d ln(1 + τjFj(t)) =
β

∑

j=α+1

τjdFj(t)
1 + τjFj(t)

+ (. . .)dt.

Now, since

dF (t) =
1 + τF (t)

τ
d ln(1 + τF (t)) + (. . .)dt,

we obtain from the above expression

dF (t) =
1 + τF (t)

τ

β
∑

j=α+1

τjdFj(t)
1 + τjFj(t)

+ (. . .)dt.

Take variance (conditional on the information up to time t) on both sides:

Var
(

dF (t)
F (t)

)

=
[

1 + τF (t)
τF (t)

]2 β
∑

i,j=α+1

τiτjρi,jσi(t)σj(t)Fi(t)Fj(t)
(1 + τiFi(t))(1 + τjFj(t))

dt.

Now freeze all t′s to zero except for the σ’s, and integrate over [0, Tα]:

(vzc
α,β)2 :=

[

1 + τF (0)
τF (0)

]2 β
∑

i,j=α+1

τiτjρi,jFi(0)Fj(0)
(1 + τiFi(0))(1 + τjFj(0))

∫ Tα

0
σi(t)σj(t)dt.

To price the zero-coupon swaption it is then enough to put this quantity
into the related Black’s formula:
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ZCPS = τP (0, Tβ)Bl(K, F (0), vzc
α,β).

We can check the accuracy of this formula against the usual Monte Carlo
pricing based on the exact dynamics of the forward rates. In the tests all
swaptions are at-the-money. We have done this under the data of case (3.a)
of the volatility tests of Section 8.2, and in other situations. Under the data of
Section 8.2, we considered first the case Tα = 2y, Tβ = 19y. We obtained the
implied volatility vzcMC

α,β /
√

Tα by inverting the Monte Carlo price through
Black’s formula:

MCZCPS = τP (0, Tβ)Bl(F (0), F (0), vzcMC
α,β ).

We found, in this case:

vzcMC
α,β√

Tα
= 0.1410,

vzc
α,β√
Tα

= 0.1455.

A two-side 98% window for the Monte Carlo volatility defined as in Section 8.2
is in this case [0.1404 0.1416]. Our algebraic approximation falls out of the
98% window, but of a small amount if compared with the distance from the
volatility of the corresponding plain-vanilla European swaption. In fact, the
standard at-the-money plain-vanilla swaption with the same initial reset date
and final payment date, whose algebraic approximation has been found to be
accurate in Section 8.2, has volatility

vLFM
α,β√
Tα

= 0.0997.

We have also considered the case Tα = 10y, Tβ = 19y. We obtained

vzcMC
α,β√

Tα
= 0.1081,

vzc
α,β√
Tα

= 0.1114.

Now a two-side 98% window for the Monte Carlo volatility defined as in
Section 8.2 is [0.1076 0.1086]. Again, our algebraic approximation falls out
of the 98% window of a small amount when compared with the discrepancy
with respect to the corresponding standard swaption, resulting in a volatility

vLFM
α,β√
Tα

= 0.0897.

In the two examples above we notice that the at-the-money standard swaption
has always a lower volatility (and hence price) than the corresponding at-
the-money zero-coupon swaption. We may wonder whether this is a general
feature. Indeed, we have the following.

Remark 10.9.1. (Comparison between zero-coupon swaptions and
corresponding standard swaptions). A first remark is due for a compar-
ison between the zero-coupon swaption volatility vzc

α,β and the corresponding
European-swaption approximation vLFM

α,β . If we rewrite the latter as
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(vLFM
α,β )2 =

β
∑

i,j=α+1

ρi,jλiλj

∫ Tα

0
σi(t)σj(t)dt, λi =

wi(0)Fi(0)
Sα,β(0)

,

it is easy to check that

(vzc
α,β)2 =

β
∑

i,j=α+1

ρi,jµiµj

∫ Tα

0
σi(t)σj(t)dt,

where

µi =
P (0, Tα)
P (0, Ti)

λi ≥ λi,

the discrepancy increasing with the payment index i. It follows that, for
positive correlations, the zero-coupon swaption volatility is always larger than
the corresponding plain vanilla swaption volatility, the difference increasing
with the tenor Tβ − Tα, for each given Tα.

A final remark concerns the possibility to price zero-coupon swaptions
with other models.

Remark 10.9.2. (Pricing zero-coupon swaptions with other models).
Zero-coupon swaptions can be priced analytically under all short-rate models
admitting explicit formulas for European options on zero-coupon bonds and,
accordingly, for caplets. For instance, under the CIR++ model (3.76) we can
use formula (3.79), whereas under the G2++ model (4.4) we can resort to
formula (4.29).

10.10 Eurodollar Futures

A Eurodollar-futures contract gives its owner the payoff

X (1− L(S1, S2))

at the future time S1 < S2, where X is a notional amount, and the year
fraction between S1 and S2 is denoted by τ . The fair price of this contract
at time t is

Vt = Et[X (1− L(S1, S2))] = X (1−Et[L(S1, S2)]) (10.14)

= X
(

1 +
1
τ
− 1

τ
Et

[

1
P (S1, S2)

])

,

and takes into account continuous rebalancing (see for example Sandmann
and Sondermann (1997) and their reference to the related work of Cox In-
gersoll and Ross).

The problem is computing the expectation
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Et

[

1
P (S1, S2)

]

= Et

[

P (S1, S1)
P (S1, S2)

]

.

If we were under the S2-forward-adjusted measure this would be simply

P (0, S1)
P (0, S2)

= 1 + τF (0; S1, S2) ,

and the price would reduce to

X(1− F (0; S1, S2)).

Instead, we need the expectation under the risk-neutral measure.
Since we need to compute

Et[L(S1, S2)] = Et[F (S1; S1, S2)],

the result will depend on the interest-rate model we are using.

10.10.1 The Shifted Two-Factor Vasicek G2++ Model

We can use the two-additive-factor Gaussian model described in Chapter 4.
Consistently with the notation adopted there, recall that

P (t, T ) =
PM (0, T )
PM (0, t)

exp{A(t, T )},

A(t, T ) =
1
2
[V (t, T )− V (0, T ) + V (0, t)]− 1− e−a(T−t)

a
x(t)

− 1− e−b(T−t)

b
y(t),

with V defined as in(4.10), so that

Et

[

1
P (T1, T2)

]

=
PM (0, T1)
PM (0, T2)

Et [exp {−A(T1, T2)}]

=
PM (0, T1)
PM (0, T2)

exp
{

−1
2
[V (T1, T2)− V (0, T2) + V (0, T1)]

+
1− e−a(T2−T1)

a
x(t)e−a(T1−t)

+
1− e−b(T2−T1)

b
y(t)e−b(T1−t)
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+
(

1− e−a(T2−T1)

a

)2
σ2

4a

[

1− e−2a(T1−t)
]

+
(

1− e−b(T2−T1)

b

)2
η2

4b

[

1− e−2b(T1−t)
]

+
(1− e−a(T2−T1))(1− e−b(T2−T1))

ab

·ρ ση
a + b

[

1− e−(a+b)(T1−t)
]

}

.

By substituting this algebraic formula in (10.14) one has the value of the
Eurodollar-futures contract. Notice that if this is evaluated at time 0, since
x0 = y0 = t = 0 the above formula simplifies a little. Typically X = 100 and
τ = 0.25.

We have then considered a set of parameters coming from a typical
calibration of the G2++ model to swaptions volatilities and to the zero-
coupon curve of the Euro market. The values of these parameters are:
a = 0.0234; b = 0.0015; σ = 0.0081429; η = 0.0020949; ρ = −0.2536.

We have finally computed prices for increasing maturities T1 (from three
months to ten years), while keeping T2 = T1 + 0.25, and we considered the
differences

Spread(T1) := E0[L(T1, T1 + 0.25)]− F (0;T1, T1 + 0.25)

as T1 increases. Such differences, in basis points (hundredths of a percentage
point), are shown in Figure 10.1 below.
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Fig. 10.1. Spread(T1) in basis points plotted against T1

The (upward concave) qualitative behaviour of the correction agrees with
what is usually experienced in the market.
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10.10.2 Eurodollar Futures with the LFM

Since we need to compute

Et[L(S1, S2)] = Et[F (S1;S1, S2)],

we need the dynamics of the forward rate F (·;S1, S2) under the risk-neutral
measure. This can be obtained starting from the martingale dynamics under
the numeraire P (·, S2) and moving to the bank-account numeraire via the
“change of numeraire toolkit”. This new dynamics involves the bond-price
dynamics of P (·, S2), which in turn can be expressed in terms of spanning
forward rates. Therefore, in the relevant dynamics, correlation and volatilities
of all spanning forward rates are involved. Subsequently, the forward-rates
dynamics need be discretized and a Monte Carlo method can be applied to
compute the relevant expectation under the risk-neutral measure.

In detail, assume we have a set of expiry/maturity dates {T0, T1, . . . , TM}
for a family of spanning forward rates, with TM−1 = S1 and TM = S2. As we
explained in Section 6.3, the forward-rate dynamics under the risk-neutral
measure is given by (6.16).

Here, we would need to model the instantaneous forward rate f in the
initial interval (t, Tβ(t)−1] to close the equations, but if we discretize these
equations (for the logarithm of F ’s) with a Milstein scheme exactly at the
time instants {T0, T1, . . . , TM}, we are in no need to model f . One sees easily
that this is the same as discretizing the LFM dynamics (6.17) under the spot
LIBOR measure whose numeraire is the discretely-rebalanced bank account.
As usual, a Monte Carlo method, based on the jointly Gaussian distributions
of the shocks for different components, can be applied to propagate all F ′s
up to time TM−1 = S1 in order to evaluate the final expectation

E0[FM (TM−1)] = E0[F (S1;S1, S2)] .

Again, we can freeze part of the drift in the Spot-LIBOR-measure dynam-
ics (6.17) thus obtaining

dFk(t) = σk(t)Fk(t)
k

∑

j=β(t)

τj ρj,k σj(t)Fj(0)
1 + τjFj(0)

dt + σk(t) Fk(t) dZd
k(t) ,

which is a geometric Brownian motion. Under this dynamics, the above ex-
pected value is easily computed in terms of the now deterministic percentage
drift.

10.11 LFM Pricing with “In-Between” Spot Rates

Let us assume the current time to be t = 0, and let us denote by T =
{T0, . . . , Tn} a set of payment dates, at which coupons of a certain financial
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instrument are to be paid. Such dates are assumed to be equally δ-spaced
for simplicity. We also denote by G = {g1, . . . , gm} the set of future dates at
which a reference rate (typically the six-month LIBOR rate) is quoted in the
market up to time Tn.

We denote by L(t) the relevant reference rate at time t with maturity
t + δ. Forward-rate dynamics will be considered under the forward-adjusted
measure Qn corresponding to the final payment time Tn.

Consider a financial product whose payoff depends on the (for example
daily) evolution of the reference rate L in each reset/payment interval.

In order to Monte Carlo price this product based on the forward-rate
dynamics of the LFM, we need to recover at any time t the reference rate,
which we assume to be the δ spot rate L(t) = F (t; t, t + δ), from the family
of spanning forward rates at our disposal at times Tβ(t)−2 and Tβ(t)−1, i.e. at
the dates in T that are closest to the current time t: Tβ(t)−2 < t ≤ Tβ(t)−1.
In particular, we have both

L(Tβ(t)−2) = Fβ(t)−1(Tβ(t)−2)

and
L(Tβ(t)−1) = Fβ(t)(Tβ(t)−1) .

How do we obtain L(t) from L(Tβ(t)−2) and L(Tβ(t)−1)? We have faced this
problem earlier in Sections 6.17.1 and 6.17.2, proposing both a “drift inter-
polation” and a “bridging” technique.

We now present some particular products depending on “in-between”
rates, and we will tacitly assume that “in-between” rates have been obtained
through one of these methods.

10.11.1 Accrual Swaps

We give a short description of accrual swaps in the following. We assume a
unit nominal amount.

• Institution A pays to B (a percentage γ of) the reference rate L (plus a
spread S) at dates T . Formally, at time Ti institution A pays to B

(γL(Ti−1) + S)τi ,

where τi is the year fraction between the payment dates Ti−1 and Ti.
• Institution B pays to A, at time Ti, a percentage α of the reference rate

plus a spread Q, times the relative number of days between Ti−1 and Ti
where the reference rate L was in the corridor L1 ≤ L ≤ L2. Formally, at
time Ti, institution B pays to A the coupon

c(Ti) = (αL(Ti−1) + Q) τi

∑

g∈G∩[Ti−1,Ti) 1{L1 ≤ L(g) ≤ L2}
#{G

⋂

[Ti−1, Ti)}
, (10.15)

where, as usual, # denotes the number of elements of a set (cardinality).
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When the simulated paths for L are available, we are able to evaluate the
accrual swap. The discounted payoff as seen from institution A is

n
∑

i=1

D(0, Ti)τi

[

(αL(Ti−1) + Q)

∑

g∈G∩[Ti−1,Ti) 1{L1 ≤ L(g) ≤ L2}
#{G

⋂

[Ti−1, Ti)}

− (γL(Ti−1) + S)

]

,

so that the value to A of the accrual swap is the risk-neutral expectation

E

{

n
∑

i=1

D(0, Ti)τi

[

(α L(Ti−1) + Q)

∑

g∈G∩[Ti−1,Ti) 1{L1 ≤ L(g) ≤ L2}
#{G

⋂

[Ti−1, Ti)}

−(γL(Ti−1) + S)

]}

= P (0, Tn)
n

∑

i=1

τiEn

{

1
P (Ti, Tn)

·

[

(α L(Ti−1) + Q)

∑

g∈G∩[Ti−1,Ti) 1{L1 ≤ L(g) ≤ L2}
#{G

⋂

[Ti−1, Ti)}
− (γL(Ti−1) + S)

]}

Both the forward-rate dynamics and the related approximated L dynamics
under Qn are known and a Monte Carlo pricing can be carried out.

Analytical Formula for Accrual Swaps

Alternatively, we may study an analytical formula based on a drift approx-
imation in the LIBOR market model, similar to the one used in deriving
approximated swaptions volatilities and terminal correlations in Chapter 6.
We proceed as follows.

We concentrate on the non-trivial leg, paid by B to A. Let us focus on
the single discounted payment occurring at time Ti. It will suffice to add
up all contributions after each one has been priced. We have seen above the
payment at time Ti to be given by (10.15). Instead of expressing every coupon
under the terminal measure, let us write

E0[D(0, Ti)c(Ti)] = P (0, Ti)Ei
0[c(Ti)].

Our task is then reduced to computing the expected value Ei
0[c(Ti)], which,

in turn, amounts to computing, by additive decomposition, expected values
such as

Ei
0[L(Ti−1) 1{L1 ≤ L(u) ≤ L2}], Ei

0[1{L1 ≤ L(u) ≤ L2}]



10.11 LFM Pricing with “In-Between” Spot Rates 405

under the Ti-forward-adjusted measure Qi and for Ti−1 ≤ u < Ti. These may
be rewritten in terms of forward rates as

Ei
0[Fi(Ti−1) 1{L1 ≤ F (u; u, u + δ) ≤ L2}], Qi{L1 ≤ F (u; u, u + δ) ≤ L2},

where we have expressed the expected value of an indicator function directly
as a probability.

Now, in order to handle such expressions we consider approximated
forward-rate dynamics. Actually, no approximation is needed for Fi under
Qi, since its drift is zero and we have a nice geometric Brownian motion. In-
stead, we act on the dynamics of F (t; u, u+δ). Since F (·; u, u+δ) is not in our
fundamental family of forward rates, we use the drift-interpolation technique
seen in Section 6.17.1. If we set Fu(t) = F (t; u, u+ δ) for brevity, by applying
formula (6.69), with partially frozen coefficients and a few rearrangements,
we obtain (notice that Ti ≤ u + δ < Ti+1)

dFu(t) = µ(t)Fu(t) dt + σ(t; u, u + δ)Fu(t) dZi(t),

µ(t) :=
(u + δ − Ti)Fi+1(0)

1 + τi+1Fi+1(0)
σ(t; u, u + δ)ρi,i+1σi+1(t) (10.16)

where σ(t;u, u+ δ) is the instantaneous volatility of the related forward rate,
and is usually obtained by some kind of interpolation from the “standard
rates” volatilities σk’s.

Our approximation has produced a fundamental effect. The process (10.16)
is now a geometric Brownian motion, and we can apply a standard “Black
and Scholes technology” to our pricing problem.

Let us recall the following Black and Scholes fundamental setup. Assume
we are given two asset prices following correlated geometric Brownian motions
under the relevant measure,

dSt = µ1(t)St dt + v1(t)St dZ1(t),

dAt = µ2(t)At dt + v2(t)At dZ2(t), dZ1 dZ2 = ρ dt

(all coefficients being deterministic). We can easily calculate, through labo-
rious but straightforward computations, for T < u,

E0[S(T ) 1{L1 ≤ A(u) ≤ L2}] = S(0) exp

(

∫ T

0
µ1(s)ds

)

·

[

Φ

(

ln(L2/A(0))−
∫ u
0

(

µ2(s)− v2(s)2

2

)

ds− ρ
∫ T
0 v1(s)v2(s)ds

√

∫ u
0 v2(s)2ds

)

−Φ

(

ln(L1/A(0))−
∫ u
0

(

µ2(s)− v2(s)2

2

)

ds− ρ
∫ T
0 v1(s)v2(s)ds

√

∫ u
0 v2(s)2ds

)]

.
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We can apply this formula to our case, by setting T = Ti−1, S(t) = Fi(t),
A(t) = Fu(t), µ1(t) = 0, µ2(t) = µ(t), v1(t) = σi+1(t), v2(t) = σ(t; u, u + δ),
ρ = ρi,i+1. This provides us with the terms

Ei
0[Fi(Ti−1) 1{L1 ≤ F (u; u, u + δ) ≤ L2}],

where the impact of correlation is evident. On the other hand, we may com-
pute

E0[1{L1 ≤ A(u) ≤ L2}] =

[

Φ

(

ln(L2/A(0))−
∫ u
0

(

µ2(s)− v2(s)2

2

)

ds
√

∫ u
0 v2(s)2ds

)

−Φ

(

ln(L1/A(0))−
∫ u
0

(

µ2(s)− v2(s)2

2

)

ds
√

∫ u
0 v2(s)2ds

)]

,

from which terms
Qi{L1 ≤ F (u;u, u + δ) ≤ L2}

are readily computed. Now, putting all the pieces together, we obtain the
accrual-swap price. The “frozen drift” approximation guarantees us that for
short maturities this formula should work well. However, we have seen that
the drift “freezing approximation” above usually does not take us far away
from the lognormal distribution even for large maturities, as we have observed
in the density plots given in Chapter 8. Problems might only occur with
pathological or very large volatilities.

Finally, we would like to point out that the “freezing part of the drift”
method can usually be used to transform the distributionally unknown LFM
dynamics into the geometric-Brownian-motion dynamics of the basic Black
and Scholes lognormal setup. As a consequence, this method can be of help
in all cases where forward rates play the role of underlying assets under
the relevant measure and where the basic Black and Scholes setup leads to
analytical formulas. Before adopting the thus derived approximated formulas,
however, one should test them against a Monte Carlo pricing, carried out
through the true LFM dynamics, in a sufficiently large number of market
situations.

10.11.2 Trigger Swaps

A trigger swap is an interest-rate swap periodically paying a certain reference
rate against a fixed payment. This swap “comes to life” or “terminates” when
a certain index rate hits a prespecified level. It is somehow similar to barrier
options in the FX or equity markets. Usually, the two rates coincide, but the
index rate is observed at a higher frequency than the payment frequency. For
example, the index rate and the reference rate can both coincide with the
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six-month LIBOR rate, which can be observed daily for the indexing and
every six months for the payments.

There are four standard basic types of trigger swaps: Down and Out (DO),
Up and Out (UO), Down and In (DI), Up and In (UI). Let the prespecified
level be H.

• DO: The initial index rate is above H. The swap terminates its payments
(“goes OUT”) as soon as the index rate hits the level H (from above, i.e.
going “DOWN”).

• UO: The initial index rate is below H. The swap terminates its payments
(“goes OUT”) as soon as the index rate hits the level H (from below, i.e.
going “UP”).

• DI: The initial index rate is above H. The swap starts its payments (“goes
IN”) as soon as the index rate hits the level H (from above, i.e. going
“DOWN”).

• UI: The initial index rate is below H. The swap starts its payments (“goes
IN”) as soon as the index rate hits the level H (from below, i.e. going
“UP”).

The payoff from a DO trigger swap can be expressed formally as follows. As
for accrual swaps, we assume the current time to be t = 0, and we denote
by T = {T0, . . . , Tn} a set of payment dates, at which payments occur. Such
dates are assumed to be equally δ-spaced. We also denote by G = {g1, . . . , gm}
the set of future dates at which the reference rate (typically the six-month
LIBOR rate) is quoted in the market up to time Tn.

We assume the index rate and reference rate to coincide. We denote by
L(t) the reference rate at the generic time instant t with maturity t + δ.
Forward-rate dynamics will be considered under the forward-adjusted mea-
sure Qn corresponding to the final payment time Tn.

We assume unit nominal amount. If the swap is still alive at time t = Ti−1,
then at time Ti the following will occur:

• Institution A pays to B the fixed rate K at time Ti if at all previous instants
in the interval (Ti−1, Ti] the index rate L is above the triggering barrier H.
Formally, if the swap is still alive at time Ti−1, at time Ti institution A
pays to B

Kτi

∏

g∈G∩(Ti−1,Ti]

1{L(g) > H}

= Kτi 1
{

min{L(g), g ∈ G ∩ (Ti−1, Ti]} > H
}

,

where τi is the year fraction between the payment dates Ti−1 and Ti.
• Institution B pays to A (a percentage α of) the reference rate L at the last

reset date Ti−1 (plus a spread Q) if at all previous instants of the interval
(Ti−1, Ti] the index rate L is above the triggering barrier H. Formally, at
time Ti institution B pays to A
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(αL(Ti−1) + Q) τi 1{min{L(g), g ∈ G ∩ (Ti−1, Ti]} > H}

The complete discounted payoff as seen from institution A can be expressed
as

n
∑

i=1

D(0, Ti) (αL(Ti−1) + Q−K) τi 1
{

min{L(g), g ∈ G ∩ (T0, Ti]} > H
}

and the contract value to institution A is

E

[

n
∑

i=1

D(0, Ti) (αL(Ti−1) + Q−K) τi 1
{

min{L(g), g ∈ G ∩ (T0, Ti]} > H
}

]

= P (0, Tn)
n

∑

i=1

τi En

[

(αL(Ti−1) + Q−K) 1
{

min{L(g), g ∈ . . .} > H
}

P (Ti, Tn)

]

.

Once again, it is enough to recover spot rates L(Ti) = Fi+1(Ti) and discount
factors P (Ti, Tn) by generating for all i’s spanning forward rates

Fi+1(Ti), Fi+2(Ti), . . . , Fn(Ti)

under Qn according to the usual discretized (Milstein) dynamics (analogously
to the autocaps case (10.5)), and apply either the “drift interpolation” or the
“bridging” technique of Sections 6.17.1 and 6.17.2 to recover in-between rates
L(g).

10.12 LFM Pricing with Early Exercise and Possible
Path Dependence

Here we shortly present Longstaff and Schwartz’s (2000) method for pricing
early-exercise (and possibly path-dependent) products through Monte Carlo
simulation in the LFM. Indeed, what we will present here can be intended as
a solution of the following two different and yet related problems.

1. How can we use Monte Carlo for early-exercise (non path-dependent)
products? This can be necessary when in presence of non-Markovian
dynamics or of large dimensionality of the underlying process, as we shall
see in a moment.

2. How can we price derivatives that show at the same time path dependence
and early-exercise features, even in the favorable cases of low dimension-
ality and Markovian dynamics?

In Chapter 3 we observed that the pricing of early-exercise products can
be carried out through binomial/trinomial trees, and that Monte Carlo is
instead suited to treat path-dependent products. Here, before proposing a
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recent promising extension of the Monte Carlo method, we shortly recall what
was already remarked there, in the beginning of Sections 3.11.2 and 3.11.3.

Trees can be used for early-exercise products when the fundamental un-
derlying variable is low-dimensional (say one or two-dimensional), as happens
typically with short-rate models. In such cases, the tree is the ideal instru-
ment, given its “backward-in-time” nature. We know the value of the payoff
in each final node, and move backward in time, by updating the value of
continuation through discounting. At each node of the tree we can compare
the backwardly propagated value of continuation with the payoff evaluated
at that node, and decide whether exercise is to be considered or not at that
point. After the exercise decision has been taken, the backward induction
restarts and we continue to propagate backwards the updated value. When
we reach the initial node of the tree, at time 0, we have (an approximation
of) the price of our early-exercise product. Thus trees are ideally suited to
“travel backward in time”.

The other family of products that is usually considered is the family of
“path-dependent” payoffs. Such products can be exercised only at a final
date, but their final payoffs depend on the history of the underlying variable
up to the final time, and not only on the value of the underlying variable at
maturity. For path-dependent products, the Monte Carlo method is ideally
suited, since it works through forward propagation in time of the underly-
ing variable, by simulating its transition density between dates where the
underlying-variable history matters to the final payoff. Monte Carlo is thus
ideally suited to “travel forward in time”.

In principle, trees have problems mainly in two situations. The first
case concerns high dimensionality. If the underlying variable follows a high-
dimensional process (in practice with dimension larger than two or three,
as in case of the LFM, for example), the tree is practically impossible to
consider, since the computational time grows roughly exponentially with the
dimension. Moreover, there are also difficulties in handling correlations and
other aspects, so that trees become extremely difficult to use.

The second case where trees have major problems is with path-dependent
products. When we try and propagate backwards the contract value from the
final nodes we are immediately in trouble, since to value the payoff at a given
node (and at any final node in particular) we need to know the past history
of the underlying variable. But this past history is not determined yet, since
we move backward in time. This method, therefore, is not applicable in a
standard way.

Actually, there are ad-hoc procedures to render trees able to price par-
ticular path-dependent products in the basic Black and Scholes setting, for
example barrier and lookback options. However, in general there is no consoli-
dated and realistic recipe on how using a tree for path-dependent payoffs, and
moreover, when dealing with interest-rate derivatives models, we are usually
outside the Black and Scholes framework.
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As for the Monte Carlo method, it does better with respect to high dimen-
sionality, in that computational time grows roughly linearly with the dimen-
sion, and it is also suited to parallel computing. However, there are problems
with early exercise. Since we propagate trajectories forward in time, we have
no means to know whether it is optimal to continue or to exercise at a certain
time. Therefore, Monte Carlo cannot be used, in its original formulation, for
the large range of products involving early exercise features.

However, Longstaff and Schwartz (2000) have proposed an approximated
method to make Monte Carlo techniques work also in presence of early-
exercise features. The resulting method is very promising, since it allows for
the pricing of instruments with high-dimensional underlying variables, path
dependence and early exercise at the same time.

Clearly, the method needs further testing beyond what shown in Longstaff
and Schwartz (2000), especially on practical cases concerning interest-rate
models. Still, test results in Longstaff and Schwartz (2000) look rather en-
couraging so as to justify a general exposition of the method and of its possible
developments even before extensive testing has been carried out. This gen-
erality, together with the potential of the method of not exceeding the true
value of the early-exercise contract, could result in a supremacy of Monte
Carlo over trees and finite-difference methods in general, especially if numer-
ically efficient Monte Carlo methods are brought into play.

Recently, research on improvements of the basic Monte Carlo setup, based
on weighted paths and other techniques have received considerable attention
in the literature, thus further strengthening the interest in the Longstaff and
Schwartz (2000) method.

We now review this method for a generic product whose final payoff de-
pends on a (possibly multi-dimensional) underlying variable X.

Assume we have a product that can be exercised at times t1, . . . , tN , whose
immediate-exercise value at each time tk depends on part of the history of an
underlying process X(t) up to time tk itself. Typically, the value can depend
on X(s1), . . . , X(sjk), where the times s1 < s2 < . . . < sjk ≤ tk are the
ones contributing to the immediate-exercise payoff at time tk. In detail, we
assume that, if exercised at time tk, the product pays immediately the Cash
flow from Exercise (CE) given by

CE(tk) := CE(tk;X(s1), . . . , X(sjk)).

This value has to be compared with the backwardly Cumulated discounted
cash flows from Continuation (CC) at the same time, namely the value of the
contract at tk when this has not been exercised before or at tk itself,

CC(tk) := CC(tk; X(s1), . . . , X(sjk)).

We assume we are computing prices under a generic numeraire asset U(t). In
their paper, Longstaff and Schwartz (2000) take the bank account as funda-
mental numeraire, and work under the risk-neutral measure.
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The method can be summarized through the following scheme:

1. Choose a number of paths, np.
2. (Choice of the basis functions). For each time tk, choose ik basis functions

φ1(tk, x1, . . . , xjk), . . . , φik(tk, x1, . . . , xjk)

that will be used in approximating the continuation value as a function
of the past and present values X(s1), X(s2), . . . , X(sjk) of the underlying
variable up to time tk (see step 7 below).

3. (Simulating the underlying variables). Simulate np paths for both the
underlying variable X and the numeraire U from time t1 to time tn.
Make sure of including the reset times s1, . . . , sjn among the dates at
which X and U are simulated. Typically, this simulation is “exact” if
the transition distributions of X and U are known, like, for example,
in the case of geometric Brownian motion or linear-Gaussian processes
as in Hull and White’s models. Alternatively, a numerical discretization
scheme for SDEs such as the Euler or Milstein schemes can be employed
if this transition density is not known. In any case, denote by

Xj(tk), U j(tk)

the simulated values of X and U respectively under the j-th scenario
at time tk. More generally, the superscript on a stochastic quantity will
denote the quantity itself under the scenario given by the superscript
index.

4. (Computing the payoff at final time). Set

CCj(tn) := CE(tn;Xj(s1), . . . , Xj(sjn)).

(The backwardly Cumulated discounted cash flow from Continuation at
final time is simply the exercise value at that time).

5. (Positioning the initial step at final time). Set k = n. We position our-
selves at the final exercise time. Now the iterative part of the scheme
begins.

6. (Consider only scenarios where the immediate-exercise value of the con-
tract is positive). Set

Ik−1 := {j ∈ {1, 2, . . . , np} : CE(tk−1;Xj(s1), . . . , Xj(sjk−1)) > 0}.

We thus focus only on scenarios where the exercise value is strictly posi-
tive at the current evaluation time tk−1;

7. (Regressing the discounted continuation value on the chosen basis func-
tions). In this step, we aim at approximating the discounted continuation
value at current time tk−1 as a linear combination of the basis functions

φ1(tk−1, x1, . . . , xjk−1), . . . , φik−1(tk−1, x1, . . . , xjk−1)
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through a regression, so as to estimate the combinators λ in

U j(tk−1)
U j(tk)

CCj(tk) =
ik−1
∑

h=1

λh(tk−1) φh(tk−1, Xj(s1), . . . , Xj(sjk−1)),

where j ∈ Ik−1.
On the left-hand side of the above equation, we have the continuation
value an instant later discounted back at current time tk−1 through
the chosen numeraire U . Notice that if the numeraire is the bank ac-
count B(t) = exp(rt), with deterministic constant r, as in Longstaff and
Schwartz (2000), then the U ’s ratio reduces to exp(−r(tk − tk−1)).
On the right-hand side of the same equation, we have a linear combina-
tion of the chosen basis functions, corresponding ideally to a truncated
L2 expansion. The step could be made exact with an infinite expansion
(ik−1 = ∞), when the conditional expectation defining the actual con-
tinuation value above behaves nicely in an L2 sense. See Longstaff and
Schwartz (2000) for further details.

8. Store the exercise flag (EF) over scenarios at time tk−1:

EF(j, tk−1) := 1

{

CE(tk−1; Xj(s1), . . . , Xj(sjk−1))

>
ik−1
∑

h=1

λh(tk−1) φh(tk−1, Xj(s1), . . . , Xj(sjk−1))

}

.

This flag is set to one when exercise is the convenient choice, and to
zero when continuation is in order. Again, 1{· · · } denotes the indicator
function of the set between curly brackets.
When EF(j, tk−1) is one, set all its subsequent values to zero, EF(j, th) :=
0 for all h > k − 1.

9. Set

CCj(tk−1) :=
U j(tk−1)
U j(tk)

CCj(tk) if EF(j, tk−1) = 0 (continuation),

and set

CCj(tk−1) :=CE(tk−1;Xj(s1), . . . , Xj(sjk−1)) if EF(j, tk−1)=1 (exercise)

10. If k = 0 stop, otherwise replace k with k − 1 and restart from point 6.

10.13 LFM: Pricing Bermudan Swaptions

Bermudan swaptions are options to enter an IRS not only at its first reset
date, but also at subsequent reset dates of the underlying IRS, at least in
some of the simplest formulations.
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Let again T = {T1, . . . , Tn} be a set of reset and payment dates. Recall
that we denote by PS(Ti, Tk, {Tk, . . . , Tn},K) the price at time Ti of a (payer)
swaption maturing at time Tk, which gives its holder the right to enter at
time Tk an interest-rate swap with first reset date Tk and payment dates
Tk+1, . . . , Tn at the fixed strike rate K. We will abbreviate this price by
PSk,n(Ti). This price is known as a function of the present value for basis
point Ck,n(Ti) and of the forward swap rate Sk,n(Ti) through Black’s formula
for swaptions.

Definition 10.13.1. (Bermudan Swaption). A (payer) Bermudan swap-
tion is a swaption characterized by three dates Tk < Th < Tn, giving its
holder the right to enter at any time Tl in-between Tk and Th (included) into
an interest-rate swap with first reset in Tl, last payment in Tn and fixed rate
K. Thus, the swap start and length depend on the instant Tl when the op-
tion is exercised. We denote by PBSk,h,n(Ti) the value of such a Bermudan
swaption at time Ti, with Ti ≤ Tk.1

Pricing Bermudan swaptions with the LFM has to be handled through
tailor-made methods, since the model is not ideally suited for the implemen-
tation of recombining lattices. A possible alternative to the tailor-made tech-
niques is the general Longstaff Schwartz “Monte Carlo Regression” (LSMC)
approach reviewed in Section (10.12), which is indeed quite general and usu-
ally results in good approximations. However, the method itself has to be
tailored (choice of the basis functions, ...) when applied to Bermudan swap-
tions in the LFM.

10.13.1 Longstaff and Schwartz’s Approach

As we just noticed, the LSMC method can be used to price Bermudan swap-
tions in the LFM. Longstaff and Schwartz (2000), however, tested the LSMC
method (in the section “valuing swaptions in a string model” of their paper)
by actually considering a version of the so called string model. In practice,
when working in a finite set of expiries/maturities, string models are often
equivalent to the LIBOR market model (LFM). For more details on string
models, see for example Santa Clara and Sornette (2001) or Longstaff, Santa
Clara and Schwartz (2001). In the specific application of string models we
are considering here, Longstaff and Schwartz (2000) used directly bond-prices
dynamics and bond-prices volatilities instead of forward-rates volatilities. For
completeness, we here illustrate their procedure.

A Bermudan swaption is considered, where the underlying swap starts at
the initial time with given reset and payment dates. The swaption’s holder
has the right to exercise the option at some fixed dates and enter the swap,
whose life span decreases as time moves forward.
1 There are other types of Bermudan swaptions, but for our purposes the type

described here suffices.
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The underlying swap, with a ten-year maturity, resets semi-annually, and
exercise can occur at any reset date after one year, one year included and ten
years excluded. There are therefore nineteen exercise dates. In propagating
the zero-coupon-bond prices,

P (·, 0.5y), P (·, 1y), P (·, 1.5y), . . . , P (·, 10y),

the LSMC method starts from the twenty-dimensional vector above, and the
dimension decreases by one each six months. The bond-price dynamics has
as percentage risk-neutral drift the risk-free rate, which is approximated with
the corresponding six-month continuously-compounded rate

r(t) ≈ −2 ln P (t, t + 0.5y),

thus closing the set of equations in P for the discretized approximate dynam-
ics once the volatility has been assigned. Indeed, the approximate dynamics
reads now

dP (t, Ti) = −2 ln P (t, t + 0.5y)P (t, Ti)dt + σPi(t)P (t, Ti)dZi(t), Ti = 0.5i,

i = 1, . . . , 20. When these equations are discretized at times Ti, we obtain a
closed set of equations, since the drift rate now involves a bond price in the
family.

The Zi’s are correlated Brownian motions under the risk-neutral measure.
In the simulation it is assumed that

dZidZj = exp(−k|i− j|)dt,

where k is a positive constant, and the Z vector is kept twenty-dimensional.
At the exercise time Ti, the basis functions of the algorithm are selected

as:

1, P (·, Ti), . . . , P (·, T20),
1− P (Ti, T20)

∑20
j=i+1 0.5P (Ti, Tj)

,

[

1− P (Ti, T20)
∑20

j=i+1 0.5P (Ti, Tj)

]2

,

[

1− P (Ti, T20)
∑20

j=i+1 0.5P (Ti, Tj)

]3

,

where the last three terms are simply the underlying swap rate Si,20(Ti) and
its second and third powers.

At the first exercise time (i = 3), there are 22 basis functions, their number
decreasing as time goes by. Longstaff and Schwartz state that adding further
functions does not change the option value, so that one can infer the valuation
to be correct, given that the approximated value never exceeds the real value.
See also the related discussion in Longstaff and Schwartz (2000).

Notice that Longstaff and Schwartz have assumed a deterministic bond-
price percentage volatility. This is not really consistent with the LFM distri-
bution for lognormal forward rates. Therefore, as already mentioned above,
the model analyzed in this section is not a LFM, from a theoretical point of
view.
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10.13.2 Carr and Yang’s Approach

Carr and Yang (1997) use simulations to develop a Markov-chain approxi-
mation for the valuation of Bermudan swaptions in the LFM. Their method
stems from the observation that, given the tenor structure

T1, . . . , Tn,

one can represent the whole yield curve along the structure by just knowing
the evolution of a chosen numeraire. Take for example the numeraire P (·, Tn),
associated with the terminal measure Qn. At a time Ti in the tenor structure,
the whole (Zero-bond) curve

P (Ti, Ti+1), P (Ti, Ti+2), . . . , P (Ti, Tn)

can be obtained as follows. Recall that by definition of numeraire we have

P (Ti, Tj)
P (Ti, Tn)

= En
Ti

[

P (Tj , Tj)
P (Tj , Tn)

]

,

or

P (Ti, Tj) = P (Ti, Tn) En
Ti

[

1
P (Tj , Tn)

]

, (10.17)

so that we can compute each P (Ti, Tj) by knowing the current value of the nu-
meraire P (·, Tn) and its distribution under its own measure Qn. The exercise
decision, at any instant, can thus be reduced to knowledge of the distribu-
tional properties of the single process P (·, Tn).

Based on this observation, Carr and Young (1997) found a way to con-
struct a Markov chain approximating the migration of P (·, Tn) in between ar-
eas of a selected partition of [0, 1]. Partitioning [0, 1] in I1(t), I2(t), . . . , Il(t)(t),
so that [0, 1] is given by the disjoint union of the sets I, the Markov chain is
constructed as follows.

First, simulate spanning forward-rate dynamics Fi+1(t)j , . . . , Fn(t)j under
several scenarios, each scenario denoted by a superscript j, up to a generic
time t = Ti. Second, obtain the numeraire bond price P (t, Tn)j from these
simulations under each scenario j. Third, define the transition matrix between
“state” h at time t = Ti and “state” k at time t + ∆ = Ti+1 as

ph,k(t) :=
#{j : P (t, Tn)j ∈ Ih(t) and P (t + ∆,Tn)j ∈ Ik(t)}

#{j : P (t, Tn)j ∈ Ih(t)}
.

Then one defines P̄h(t, Tn) as the average of the P (t, Tn)j ’s in Ih(t),

P̄h(t, Tn) :=

∑

j: P (t,Tn)j∈Ih(t) P (t, Tn)j

#{j : P (t, Tn)j ∈ Ih(t)}
.

Consider the chain X(t) with states {1, 2, . . . , l(t)} and probability ph,k(t) of
going from X(t) = h to X(t + ∆) = k. Our P̄h(t, Tn) can be considered as a
discrete-space approximation of the numeraire P (t, Tn) when X(t) = h.
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The chain X summarizes the true dynamics of P (t, Tn) into a Markov pro-
cess that can be used for approximately simulating P (t, Tn). We can therefore
simulate the whole yield curve in the spirit of the relationship (10.17). Then
backward induction becomes possible by using the Markov chain instead of
the original paths for the numeraire.

We move backwards in time by means of the process P̄X(t)(t, Tn) in place
of the process P (t, Tn), with P̄X(t)(t, Tn) that assumes only a finite set of
possible values at each instant. The transition probabilities allow us to roll
back the relevant expectations and the Bermudan swaption can be easily
priced through backward induction, see Carr and Yang (1997) for the details
and for numerical tests.

A similar approach has been suggested in Clewlow and Strickland (1998)
for a Gaussian multi-factor Heath-Jarrow-Morton model (and not the LFM),
where again the early-exercise opportunity is evaluated in terms of a single
variable. This variable is taken to be the fixed leg of the underlying interest-
rate swap. Since the floating leg is always valued on par at reset dates, this
choice amounts roughly to considering the value of the underlying interest-
rate swap as fundamental single process at the reset dates.

The approximate specification of the early-exercise region as a function
of the underlying variable is found by using a single-factor extended Va-
sicek (Hull and White) approximation of the multi-factor model. With the
one-factor model one obtains the approximate early-exercise region via a re-
combining tree for the short rate, by determining the critical values of the
underlying interest-rate swap at the early-exercise dates through backward
induction on the tree. Choosing only one factor allows for a richer discretiza-
tion in time and this yields an accurate exercise region.

Once the exercise decision has been estimated as a function of the underly-
ing swap through the tree, one runs a Monte Carlo simulation for the original
multi-factor model, where each early-exercise opportunity, when encountered,
is evaluated as the (known) approximate function of the underlying swap.

This method seems to be robust. It provides one with a lower bound for
the Bermudan swaption price, due to the sub-optimal exercise region, as in
the LSMC method. A similar method for the LFM has been proposed by
Andersen (1999), and we review it in the following.

10.13.3 Andersen’s Approach

Andersen (1999) proposed a method similar to that of Clewlow and Strick-
land (1998). Again, the early-exercise region is extracted by a low-dimensional
parameterization, consisting of a small number of key variables (these includ-
ing the underlying interest-rate swap as in Clewlow and Strickland), but the
approximated early-exercise region, as a function of these variables, is not de-
termined through a one-factor model. Rather, an optimization on a separate
simulation for the whole multi-factor model is considered in order to deter-
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mine this function. The method can be summarized as follows. We adopt the
notation introduced earlier in Definition 10.13.1.

We now provide a scheme summarizing a possible formulation of Ander-
sen’s method for approximately computing PBSk,h,n(Tk).

1)Choose a function f approximating for each Tl the optimal exercise flag
I(Tl), depending for example on the nested European swaptions and on a
function H = H(Tl) to be determined,

I(Tl) ≈ f(PSl,n(Tl),PSl+1,n(Tl), . . . ,PSh,n(Tl),H(Tl)).

The optimal exercise flag I(Tl)(ω) at time Tl, under the path ω, is defined
to be one when exercise is optimal at Tl along the trajectory ω and 0 when
the continuation value at Tl is larger than the exercise value along ω. As
usual, ω is omitted in the notation.

2)Simulate, through the LFM dynamics for the forward LIBOR rates, in a
set of scenarios indexed by j, all the variables

PSj
l,n(Tl), PSj

l+1,n(Tl), . . . , PSj
h,n(Tl), Bj

d(Tl)

entering in f ’s expression above, for all l = k, k+1, . . . , h. The last quantity
is the discrete-bank-account numeraire that is used for discounting, i.e.

Bd(Tl) =
l

∏

m=1

[1 + τmFm(Tm−1)],

which is determined by the simulated forward-rate dynamics of the LFM,
with T0 denoting the initial time. Notice that the first variable PSj

l,n(Tl)
involves the interest-rate swap whose swap rate is Sl,n(Tl), which was
the (unique) “early-exercise flag” variable in the Clewlow and Strickland
method.

3)Compute by backward induction all values of H(Tl) from Tl = Th to Tl =
Tk as follows:

• 3.a) The final H(Th) has to be known from the requirement

f(PSh,n(Th),H(Th)) = 1{PSh,n(Th) > 0}.

This is to say that at the last possible exercise date we simply exercise if
the underlying European swaption has strictly positive value, as should be.
Set m = h.

• 3.b) Find H(Tm−1) as follows. For each simulated path j, solve the opti-
mization problem

Hj(Tm−1) = arg sup
H

{

f(PSj
m−1,n(Tm−1),PSj

m,n(Tm−1), . . .

. . . ,PSj
h,n(Tm−1),H) PSj

m−1,n(Tm−1)

+
Bj

d(Tm−1)

Bj
d(Tm)

(1− f) PBSj
m,h,n(Tm)

}

,
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where we omit f ’s arguments in the second half of the expression for
brevity, and where the expression between curly brackets basically reads
as:
if (exercise(H)) then (current underlying European swaption)
else (present value of one-period ahead Bermudan swaption).
We thus look for the value of H in the exercise strategy that maximizes
the option value in each scenario.
Notice also that we can write

Bd(Tm−1)
Bd(Tm)

=
1

1 + τmFm(Tm−1)
.

Let PBSj
m−1,h,n(Tm−1) be the supremum corresponding to the above

Hj(Tm−1).
Average over all scenarios j and find H(Tm−1) from the Hj(Tm−1)’s.

• 3.c) If m− 1 equals k then move to point 4), otherwise decrease m by one
and restart from point 3.b).

4)Now that H is known at all times, compute the Bermudan-swaption price
PBSk,h,n(Tk) through a new simulation with a larger number of paths and
with the approximated exercise function given by f .

Andersen (1999) proposed as possible examples of approximate early-exercise
function f two possibilities. First, one can set

I(Tl) = 1{PSl,n(Tl) > H(Tl)}.

With this choice we say that early exercise will depend on the longest nested
European swaption exceeding a level H. A second possibility is setting

I(Tl) = 1
{

PSl,n(Tl) > H(Tl) and max
p=l+1,...,h

PSp,n(Tl) ≤ PSl,n(Tl)
}

.

This choice is more refined than the previous one and amounts to adding
the requirement that all the other nested future European swaptions, when
valued at Tl, have a lower value than the current longest one. This intuitively
amounts to saying that, in the context of European swaptions evaluated now,
the most convenient is the current longest one. Then, as before, the option
is to be exercised if this longest swaption exceeds a level H(Tl).

The second choice is more refined but also more computationally demand-
ing. Indeed, with the first choice, f depends only on the present value per
basis point C and on the underlying swap rate (both defining the relevant
European swaption), so that backward induction concerns only these two
variables and memory requirements are not a problem.

Andersen (1999) also made several considerations on the possible com-
putational efficiency of the method and on low memory requirements. The
first Monte Carlo simulation involved in steps 1)-3) usually requires a low
number of paths, whereas the evaluation in step 4) requires usually a higher
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number of scenarios. For other considerations and numerical results, see An-
dersen (1999). We also mention that Pedersen (1999), among several other
issues, considers a comparison of the Andersen method with the Longstaff
and Schwartz Monte Carlo method summarized in Section 10.13.1.


