
I. General Properties of Representations

In this chapter we give an account of the basic definitions and simplest the-
orems of the theory of linear representations. Some of these theorems are
valid for both finite- and infinite-dimensional representations. This textbook,
however, is devoted to the former case representations, and the reader is prac-
tically at no loss if he assumes that all representations considered here are
finite-dimensional (except, of course, for those examples which are manifestly
infinite-dimensional).

1. Invariant Subspaces

1.1. The study of the structure of linear representations begins with that of
invariant subspaces.

Definition. Let T :G → GL(V ) be a linear representation of the group G
in a vector space V . A subspace U ⊂ V is said to be invariant under

representation T (or G-invariant, if it is clear which representation of
G one has in mind) if

(1) T (g)u ∈ U for all g ∈ G and u ∈ U .

For example, let L be the representation of the additive group R in the space
of all polynomials, given by the rule

(L(t)f)(x) = f(x− t).

Then the subspace of all polynomials of degree ≤ n is invariant under L for
every n.

It is obvious that sums and intersections of invariant subspaces are invariant .

Suppose that the space V is finite-dimensional and that (e) = (e1, . . . , en) is
some basis in V such that U = 〈e1, . . . , ek〉. Then the invariance of U under
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14 I. General Properties of Representations

the given representation T of G means that in the basis (e) each operator
T (g), g ∈ G, is given by a matrix of the form

(2) T(e)(g) =
(
A(g) C(g) } k

0︸︷︷︸
k

B(g)

)
.

1.2. With every invariant subspace U we can associate two linear represen-
tations of G, acting on the spaces U and V/U respectively. The first of these,
called a subrepresentation of T and denoted by TU , is obtained by re-
stricting the operators T (g) to U :

(3) TU (g) = T (g)
∣∣
U

for all g ∈ G.
The second, called a quotient or factor representation of T and de-
noted by TV/U , is defined as follows:

(4) TV/U (x+ U) = T (g)x+ U for all g ∈ G, x ∈ V.

(Recall that the elements of the quotient space V/U are the cosets x + U
with x ∈ V .)

Definition (4) requires some further explanations. First of all, we have to
verify that the right-hand side does not depend upon the choice of the rep-
resentative x in a given coset. Replacing x by x′ = x + u with u ∈ U , we
get

T (g)x′ + U = T (g)x + T (g)u+ U = T (g)x+ U.

Here we have used in an essential manner the invariance of U , which guaran-
tees that T (g)u ∈ U . Next, we have to check that TV/U (g) is a linear operator.
By the addition rule for cosets,

TV/U (g)((x + U) + (y + U)) = TV/U (g)(x+ y + U)

= T (g)(x+ y) + U

= T (g)x+ T (g)y + U

= (T (g)x+ U) + (T (g)y + U)

= TV/U (g)(x+ U) + TV/U (g)(y + U).

The homogeneity of TV/U is verified in a similar manner. Finally, we have to
show that the map g �→ TV/U (g) is a homomorphism, i.e.,

TV/U (g1g2) = TV/U (g1)TV/U (g2) for all g1, g2 ∈ G.

But this is a straightforward consequence of the definition of TV/U and the
equality T (g1g2) = T (g1)T (g2).

If the space V is finite-dimensional, TU and TV/U can be conveniently de-
scribed in terms of matrices. To this end, we pick a basis (e1, . . . , en) of V
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such that U = 〈e1, . . . , ek〉. Then the operators T (g), g ∈ G, are described
by the matrices (2). Here A(g) and B(g) are the matrices of the operators
TU (g) and TV/U (g) in the bases (e1, . . . , ek) of U and (ek+1 +U, . . . , en +U)
of V/U respectively.

To prove the assertion concerning the matrix B(g), let bij(g) (respectively
cij(g)) denote the entry of B(g) (respectively C(g)) lying on the i-th row and
j-th column of the matrix T(e)(g). Then for every j > k

TV/U (g)(ej + U) = T (g)ej + U

=
k∑

i=1

cij(g)ei +
n∑

i=k+1

bij(g)ei + U

=
n∑

i=k+1

bij(g)ei + U =
n∑

i=k+1

bij(g)(ei + U),

as it should be.

1.3. Definition. A linear representation T :G → GL(V ) is said to be irre-

ducible if there are no nontrivial (i.e., different from 0 and V ) subspaces
U ⊂ V invariant under T .

Examples.

1. Every one-dimensional representation is irreducible.

2. The identity representation of GL(V ) is irreducible, since every nonnull
vector in V can be taken into any other such vector by an invertible linear
transformation.

3. The representation of R by rotations in the plane (see Example 1, 0.7) is
also irreducible.

4. The representation of R by translations in the space of polynomials (see
Example 2, 0.7) is not irreducible.

5. Let V be an n-dimensional vector space over the field K, and let e1, . . . , en

be a basis in V . The representation M of the group Sn in V specified by the
rule

M(σ)ei = eσ(i) (i = 1, . . . , n)

(see 0.2 and 0.4) is called a monomial representation of Sn. It is not
irreducible: for example, it leaves invariant the (n− 1)-dimensional subspace

V0 =
{∑

xiei

∣∣∣
∑

xi = 0
}
,
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and also the one-dimensional subspace

V1 =
〈∑

ei

〉
.

If the characteristic of the field K is equal to zero, then V1 �⊂ V0, and hence

V = V0 ⊕ V1.

We claim that in this case the representation M0 = MV0
is irreducible. In fact,

suppose U ⊂ V0 is an invariant subspace. Let x =
∑
xiei be a nonnull vector

in U . Since x �∈ V1, at least two of the numbers xi are distinct. Suppose, for
the sake of definiteness, that x1 �= x2. Then

M((12))x − x = (x2 − x1)(e1 − e2) ∈ U,

whence e1 − e2 ∈ U . Applying to e1 − e2 various operators M(σ), we can
obtain all vectors of the form ei − ej , and the latter span the subspace V0.
Thus U = V0, as we needed to show.

1.4. Definition. The linear representation T : G→ GL(V ) is said to be com-

pletely reducible if every invariant subspace U ⊂ V has an invariant
complement W . (Recall that W is called a complement of U if V = U⊕W .)

Every irreducible representation is completely reducible (though from the
point of view of the Russian [or English] language this may sound strange!) In
fact, for an irreducible representation there are only two invariant subspaces:
the entire representation space and the null subspace, which complement one
another. Hence every invariant subspace has an invariant complement.

Notice that if U and W are complementary subspaces, then the restriction
σ of the canonical map V → V/U to W is an isomorphism of the space W
onto V/U (each coset of U in V contains exactly one element from W ). If,
in addition, U and W are invariant under the representation T :G→ GL(V ),
then σ commutes with the action of G:

σTW (g)x = T (g)x+ U = TV/U (g)σx.

This implies that the representations TW and TV/U are isomorphic.

Let us examine in more detail the finite-dimensional case. Let T :G→ GL(V )
be a finite-dimensional linear representation of the group G. Let U , W ⊂
V be complementary invariant subspaces. Pick bases (e1, . . . , ek) in U and
(ek+1, . . . , en) in W . Together they yield a basis (e) = (e1, . . . , en) in V .
Relative to (e), the operators T (g), for g ∈ G, are given by matrices of the
form

(5)
(
A(g) 0 } k

0︸︷︷︸
k

B(g)

)
,
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where A(g) is the matrix of TU (g) in the basis (e1, . . . , ek), and B(g) is the
matrix of TW (g) in the basis (ek+1, . . . , en), as well as the matrix of TV/U (g)
(see 1.2 above).

Example. Consider the two-dimensional representations F and S of R, given
in the basis (e) = (e1, e2) by the matrices

F(e)(t) =
(

1 t
0 1

)
and S(e)(t) =

(
et et − 1
0 1

)
.

In both cases U = 〈e1〉 is an invariant subspace. Does it admit an invariant
complement?

In the first case, FU and FV/U are trivial representations. Assuming that an
invariant complement to U exists, F would be specified, in a suitable basis,
by the (t-independent) matrix

(
1 0
0 1

)
,

i.e., would be a trivial representation, which is not the case. Thus U has no
invariant complement. In particular, F is not completely reducible.

For representation S, one can check that S(t)(e1 − e2) = e1 − e2 for all
t ∈ R. Consequently, 〈e1 − e2〉 is an invariant subspace. Relative to the basis
(e1, e1 − e2), S is given by the diagonal matrix

(
et 0
0 1

)
.

It is readily verified that 〈e1〉 and 〈e1 − e2〉 are the only nontrivial subspaces
invariant under S. This shows that S is completely reducible.

1.5. Theorem 1. Every subrepresentation of a completely reducible represen-
tation is completely reducible.

Proof. Let T : G → GL(V ) be a completely reducible representation, U ⊂
V an invariant subspace, and U1 an arbitrary invariant subspace contained
in U . Since T is completely reducible, U1 has an invariant complement W in
V . Consider the subspace W ∩ U . It is invariant and, as is readily verified,
U = U1 ⊕ (W ∩U), i.e., W ∩ U is a complement of U1 in U . This proves the
complete reducibility of the representation TU .
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Theorem 2. The representation space of any completely reducible finite-dimen-
sional representation admits a decomposition into a direct sum of minimal
invariant subspaces.

(We call an invariant subspace minimal if it is minimal among the nonzero
invariant subspaces.)

Proof. We proceed by induction on the dimension of the representation
space. Let T : G → GL(V ) be a completely reducible representation. If T is
irreducible, the theorem is plainly true (and the sum reduces to one term).
In the opposite case there exist nontrivial invariant subspaces. Let U be an
arbitrary minimal invariant subspace, and let W be an invariant complement
of U . By Theorem 1, the representation TW is completely reducible. Apply-
ing the inductive hypothesis to TW , we can assume that W decomposes into
a direct sum of minimal invariant subspaces. Adding U to this decomposi-
tion, we obtain a decomposition of V into a direct sum of minimal invariant
subspaces.

Theorem 3. Let T : G→ GL(V ) be a linear representation. Let

(6) V = V1 + V2 + . . . + Vm

be a decomposition of the space V into a (not necessarily direct) sum of
minimal invariant subspaces. Then T is completely reducible. Moreover, for
every invariant subspace U there exist indices i1, . . . , ip such that

(7) V = U ⊕ Vi1
⊕ . . . ⊕ Vip

.

Proof. It suffices to prove the second assertion of the theorem, since it
is a stronger version of the first. Let U be an invariant subspace, and let
{i1, . . . , ip} be a (possibly empty) maximal set of indices such that the sub-
spaces U, Vi1

, . . . , Vip
are linearly independent. We claim that (7) holds in

this case. It suffices to show that

(8) Vi ⊂ U ⊕ Vi1
⊕ . . . ⊕ Vip

for every i �∈ {i1, . . . , ip}. Since Vi ∩ (U ⊕ Vi1
⊕ . . . ⊕ Vip

) is an invariant
subspace contained in Vi, and since Vi is a minimal invariant subspace, either
(8) holds or

(9) Vi ∩ (U ⊕ Vi1
⊕ . . . ⊕ Vip

) = 0.

However, alternative (9) is impossible, because it would imply the linear
independence of the subspaces U, Vi1

, . . . , Vip
, and Vi, thereby contradicting

the choice of the set {i1, . . . , ip}. This completes the proof of the theorem.
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Remarks.

1) Applying Theorem 3 to the subspace U = 0 we conclude that V itself is
the direct sum of a number of subspaces Vi.

2) An invariant subspace is not necessarily the direct sum of a number of
subspaces Vi. For instance, let T be the trivial representation in V . Then
every subspace of V is invariant, and the minimal invariant subspaces are
precisely the one-dimensional ones. Let (e1, . . . , en) be an arbitrary basis in
V . Then V = 〈e1〉 ⊕ . . . ⊕ 〈en〉 is a decomposition of V into a direct sum of
minimal invariant subspaces. However, if n > 1, not every subspace is the
linear span of a subset of basis vectors.

1.6. Some Examples. We consider three linear representations of the group
GL(V ), where V is an n-dimensional vector space over K.

1. Representation by left multiplication in the algebra L(V ) of all linear op-
erators in V :

Λ(α)ξ = αξ (α ∈ GL(V ), ξ ∈ L(V )).

Linear operators can be replaced by their matrices in some fixed basis of V .
Then the definition of the representation Λ is accordingly modified to

(10) Λ(A)X = AX (A ∈ GLn(K), X ∈ Ln(K)).

Let L(i) denote the subspace of all matrices for which every column except
the i-th contains only zeros. Obviously,

(11) Ln(K) = L(1) ⊕ L(2) ⊕ . . . ⊕ L(n).

On multiplying the matrix X on the left by the matrix A, every column of X
is multiplied by A. This implies that the subspaces L(i) are invariant under
Λ. Moreover, ΛL(i) is isomorphic to the identity representation Id of GLn(K)
in the space of columns, and hence it is irreducible. According to Theorem
3, the representation Λ is completely reducible.

To the decomposition (11) there corresponds a decomposition of the space
L(V ) into a direct sum of minimal invariant subspaces. Such a decomposition
is not unique: changing the basis in V , generally speaking, also changes the
decomposition.

2. The adjoint representation in the algebra L(V ):

Ad(α)ξ = αξα−1 (α ∈ GL(V ), ξ ∈ L(V )).
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This is indeed a representation:

Ad(αβ)ξ = αβξ(αβ)−1 = αβξβ−1α−1 = Ad(α)Ad(β)ξ.

In terms of matrices Ad is defined as follows:

(12) Ad(A)X = AXA−1 (A ∈ GLn(K), X ∈ Ln(K)).

One can show that there are only two nontrivial Ad-invariant subspaces: the
one-dimensional subspace 〈E〉 and the (n2 − 1)-dimensional subspace L0

n(K)
of the matrices with trace zero. If the characteristic of K is equal to zero,
then E �∈ L0

n(K), and so

Ln(K) = 〈E〉 ⊕ L0
n(K).

In this case the adjoint representation is completely reducible.

3. The representation in the space B(V ) of bilinear functions (forms) on V :

(Φ(α)f)(x, y) = f(α−1x, α−1y) (α ∈ GL(V ), f ∈ B(V )).

This is a natural definition if one is guided by the general principle that every
one-to-one mapping σ of an arbitrary set X onto itself acts on functions
of one or several X-valued arguments if one applies σ−1 simultaneously to
all arguments (see 0.9). It is readily verified that Φ(α)f is again a bilinear
function.

The subspaces B+(V ) and B−(V ) of symmetric and skew-symmetric bilinear
functions are invariant under Φ. If the characteristic of K is different from
two, then

(13) B(V ) = B+(V ) ⊕ B−(V ),

and one can show that B+(V ) and B−(V ) are minimal. In this case Φ is
completely reducible.

In terms of matrices, Φ is defined as follows:

(14) Φ(A)X = (A−1)′XA−1 (A ∈ GLn(K), X ∈ Ln(K)),

where ′ stands for transposition of matrices.

To (13) there corresponds the decomposition

Ln(K) = L+
n (K) ⊕ L−

n (K),

where L+
n (K) and L−

n (K) denote the spaces of symmetric and skew-symmet-
ric matrices respectively.

In the following we shall, as a rule, write α∗f instead of Φ(α)f , in agreement
with the general notation adopted in 0.9.
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Questions and Exercises

1. Prove that if the subspace U of the space of the representation T of G is
invariant, then T (g)U = U for all g ∈ G.

2. Find all subspaces of the space of polynomials that are invariant under
the representation L of R given by the formula (L(t)f)(x) = f(x− t).

3. Let F denote the representation of C in a complex n-dimensional space
given by the formula F (t) = etα, where α is a linear operator whose charac-
teristic polynomial has no multiple roots. Find all subspaces invariant under
F .

4. Without resorting to computations, prove that the matrix B(g) in formula
(2) does not change on passing to a new basis (f) = (f1, . . . , fn) of the space
V if fi − ei ∈ U for all i > k.

5. Let W1 and W2 be two invariant complements of the invariant subspace
U in the space of the representation T . Prove that TW1

� TW2
.

6. Prove that every quotient representation of a completely reducible repre-
sentation is completely reducible.

7. Is the representation

a) of Exercise 2,

b) of Exercise 3

completely reducible?

8. Prove that the representation t �→ etα of C is completely reducible if and
only if the operator α is diagonalizable (i.e., it admits a basis of eigenvectors).

9. Prove that the identity representation of the orthogonal group On is irre-
ducible for any n.

10. Prove that any monomial representation of the group Sn over a field of
characteristic zero is completely reducible.

11. Prove that for n ≥ 4 the restriction of the representation M0 (see Exam-
ple 5 of 1.3) to the subgroup An is irreducible.

12. Let T :G → GL(V ) be a completely reducible finite-dimensional linear
representation. Show that for every invariant subspace U ⊂ V there is a
decomposition V = V1⊕ . . .⊕Vm of V into a direct sum of minimal invariant
subspaces and an s ≤ m such that U = V1 ⊕ . . . ⊕ Vs.
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13. Prove that the subspaces invariant under the representation Λ of GLn(K)
defined by formula (10) are precisely the left ideals in the ring of matrices of
order n.

14.* Prove that the adjoint representation of the group GL(V ) possesses only
the two nontrivial invariant subspaces indicated in 1.6.

15.* Prove that B+(V ) and B−(V ) are minimal GL(V )-invariant subspaces
of the space B(V ) of bilinear functions.

2. Complete Reducibility of
Representations of Compact Groups

In this section we are concerned only with finite-dimensional representations.

2.1. One of the basic problems of representation theory is that of describ-
ing all representations of a given group (over a given field). In the preceding
section we have seen that the description of completely reducible representa-
tions reduces to that of the irreducible representations (see also Section 3).
Here we will show that all real or complex representations of finite groups are
completely reducible. This result will subsequently be generalized to compact
topological groups; this class includes, for example, the orthogonal group On.

The idea of the proof of complete reducibility is to equip the representation
space with an inner product invariant under the action of the group. Then,
given an arbitrary invariant subspace, one finds an invariant complement for
it by taking its orthogonal complement.

2.2. We proceed to implement the program formulated above.

Definition. A real linear representation T :G → GL(V ) is called ortho-

gonal if on the space V there is a positive definite symmetric bilinear func-
tion f invariant under T .

The invariance of f means that

(1) f(T (g)x, T (g)y) = f(x, y)

for all g ∈ G and all x, y ∈ V or, equivalently, that

(2) T (g)∗f = f

for all g ∈ G, where the asterisk indicates the natural action of an invertible
linear operator on bilinear functions (see Example 3, 1.6). Taking f as an
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inner product, we turn V into a Euclidean space in which the operators
T (g), for g ∈ G, are orthogonal.

Similarly, the complex linear representation T :G→ GL(V ) is called unitary

if on the space V there is a positive definite Hermitian sesquilinear function f
invariant under T . Taking f as an inner product, we turn V into a Hermitian
space in which the operators T (g), for g ∈ G, are unitary.

Proposition. Every orthogonal or unitary representation is completely re-
ducible.

Proof. Let T :G→ GL(V ) be an orthogonal representation of the group G.
Let U ⊂ V be an arbitrary invariant subspace. Denote by Uo the orthogonal
complement of U with respect to an invariant inner product on V . It is known
that

V = U ⊕ Uo.

For each g ∈ G the operator T (g) is orthogonal and preserves U . By a well-
known property, it preserves Uo as well. Hence, Uo is an invariant subspace
complementing U .

The proof for a unitary representation is identical.

2.3. Theorem 1. Every real (complex) linear representation of a finite group
is orthogonal (respectively, unitary).

Proof. Let T :G → GL(V ) be a real linear representation of a finite group
G. Pick an arbitrary positive definite symmetric bilinear function f0 on V ,
and construct a new symmetric bilinear function f by the rule

(3) f =
∑

h∈G

T (h)∗f0.

Since
f(x, x) =

∑

h∈G

f0(T (h)−1x, T (h)−1x) > 0

for every nonnull vector x ∈ V , f is positive definite. We claim that f is
invariant under T . In fact, for every g ∈ G,

T (g)∗f =
∑

h∈G

T (g)∗T (h)∗f0 =
∑

h∈G

T (gh)∗f0.

Since the equation gx = h has a unique solution in G for every fixed h, the
last sum above differs from the one in (3) only in the order of its terms. Hence
T (g)∗f = f , as claimed.

The proof for a complex representation is identical.
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Corollary. Every real or complex linear representation of a finite group is
completely reducible.

In point of fact, every linear representation of a finite group over a field whose
characteristic does not divide the order of the group is completely reducible.
(For a proof see, for example, [4].)

2.4. A topological group is, by definition, a group endowed with a topol-
ogy such that the group operations

x �→ x−1 and (x, y) �→ xy

are continuous maps.

Examples of topological groups.

1. Any group with the discrete topology.

2. GL(V ), where V is an n-dimensional vector space over R or C. The topol-
ogy is defined as on any (open) subset of the vector space L(V ). That is, the
continuous functions in this topology are exactly the continuous functions
of the matrix elements (relative to some fixed basis, the choice of which,
however, does not affect the topology). Since the matrix elements of the op-
erators α−1 and αβ are continuous functions of the matrix elements of α and
β, GL(V ) is indeed a topological group.

3. Any subgroup of a topological group endowed with the induced topology.
In particular, every group of linear transformations of a real or complex vector
space is a topological group.

A topological group is said to be compact if it is compact as a topological
space.

Examples of compact topological groups.

1. Any finite group endowed with the discrete topology.

2. The orthogonal group On.

3. The unitary group Un.

4. Any closed subgroup of a compact topological group.

To prove the compactness of the groups On and Un, we remind the reader
of the following general fact: a subset of a real or complex vector space is
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compact if and only if it is closed and bounded. On is singled out in the
space Ln(R) of real matrices by the algebraic equations

∑

k

aikajk = δij

and consequently is closed in Ln(R). The same equations yield the bounds
|aij | ≤ 1, which prove the boundedness of On in Ln(R). The compactness of
the unitary group is established in an analogous manner.

A real or complex linear representation T :G → GL(V ) of the topological
group G is said to be continuous if it is a continuous map of the underlying
topological spaces. This means that the matrix elements of the operator T (g)
depend continuously on g.

Examples.

1. Any real or complex linear representation of a discrete topological group.

2. If V is a real or complex vector space, then all representations of GL(V )
considered in 1.6 are continuous.

For example, let us prove the continuity of the representation Φ (Exam-
ple 3, 1.6). To this end we use its matrix expression (formula (14), 1.6).
Let aij , ãij , xij , and yij denote the elements of the matrices A,A−1,X, and
Φ(A)X, respectively. Then

yij =
∑

k,�

ãkixk�ã�j .

We see that Φ(A) is the linear transformation with coefficients (matrix ele-
ments) ãkiã�j , which obviously depend continuously on the elements of the
matrix A. This means precisely that Φ is a continuous representation.

One usually considers only continuous linear representations of topological
groups. For this reason from now on we shall omit, as a rule, the adjective
“continuous.”

2.5. From the point of view of the theory of (continuous) linear representa-
tions, compact topological groups are similar to discrete ones. In particular,
we have

Theorem 2. Every real (complex) linear representation of a compact topolog-
ical group is orthogonal (respectively, unitary).

Recalling the proposition of 2.2, we derive the following
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Corollary. Every real or complex linear representation of a compact topolog-
ical group is completely reducible.

To prove Theorem 2 one can proceed as in the proof of Theorem 1, but
now integration replaces summation over a finite group. It is known (see [7],
for example) that on every compact topological group G one can define an
invariant integration, meaning that to each continuous function f on
G one can assign a number, denoted by

∫
G
f(x) dx, such that the mapping

f �→
∫

G
f(x) dx possesses the following properties:

1)
∫

G
(a1f1(x) + a2f2(x)) dx = a1

∫
G
f1(x) dx + a2

∫
G
f2(x) dx (linearity);

2) if f is nonnegative everywhere and does not vanish identically, then we
have

∫
G
f(x) dx > 0 (positivity);

3)
∫

G
f(gx) dx =

∫
G
f(xg) dx =

∫
G
f(x) dx for every g ∈ G (invariance).

Such an integration is unique up to a constant factor. Usually this factor is
chosen so that

4)
∫

G
1 dx = 1.

In what follows we shall assume that this last condition is satisfied.

Examples.

1. The invariant integration on a finite group G is defined by the formula
∫

G

f(x) dx =
1
|G|

∑

x∈G

f(x).

2. The invariant integration on the group T � U1 is defined by the formula
∫

G

f(x) dx =
1
2π

∫ 2π

0

f(eiφ) dφ.

3. In Chapter III we will show that the group SU2 can be identified with
the three-dimensional sphere in such a manner that the left and right trans-
lations are isometries of the sphere. Under this identification, the invariant
integration on SU2 can be defined as integration over the sphere with respect
to the usual measure, multiplied by a factor of (2π2)−1.
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4. Let N be a closed normal subgroup of the compact group G. The invari-
ant integration on the quotient group G/N can be defined in terms of the
invariant integration on G itself as

∫

G/N

f(y) dy =
∫

G

f(xN) dx.

In this way one can, for example, define the invariant integration on the group
SO3, which, as we will see in Chapter III, is isomorphic to the quotient group
SU2/{E,−E}.
The proof of Theorem 2 for a real linear representation T :G→ GL(V ) of
a compact groupG proceeds as follows. Let f0 be an arbitrary positive definite
symmetric bilinear function on V . One defines a new symmetric bilinear
function f by the rule

f(x, y) =
∫

G

f0(T (g)x, T (g)y) dg (x, y ∈ V ).

Next, using the properties of invariant integration one shows that f is positive
definite and invariant. In the case of a complex representation one proceeds in
the same manner, but one replaces symmetric bilinear functions by Hermitian
sesquilinear functions.

2.6. We now give an alternate proof of Theorem 2 which does not resort to
integration on the group.

We remark that on multiplying the sum in (3) by the factor |G|−1 the function
f becomes the center of mass of the finite set M = {T (h)∗f0 | h ∈ G} in the
vector space B+(V ) of symmetric bilinear functions on V . For each g ∈ G
the transformation T (g)∗ maps the set M into itself (permuting its points in
some way), and consequently preserves its center of mass.

Our proof of Theorem 2 will also rest on the idea of using the center of mass,
but we must first replace the elementary definition, appropriate for the finite
case, by the notion of center of mass of a compact set of positive measure.

Let V be a real vector space. Let K ⊂ V be a compact set of positive measure.
By definition, the center of mass of K is the point (vector)

(4) c(K) = µ(K)−1

∫

K

xµ(dx).

Here x is a vector variable and µ denotes the usual measure on V ; µ is defined
to within a constant factor, but, as formula (4) shows, this freedom in the
choice of µ does not affect the result c(K).
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The integral in (4) can be defined either coordinate-wise, or directly, as a limit
of integral sums. The first definition proves its existence, while the second
establishes its independence of the choice of a coordinate system (basis) in V .

We now show that

(5) c(αK) = αc(K) for all α ∈ GL(V ).

In fact,

c(αK) = µ(αK)−1

∫

αK

xµ(dx)

= (detα · µ(K))−1

∫

K

αx · detα · µ(dx)

= µ(K)−1α

∫

K

xµ(dx) = αc(K).

(Moving α in front of the integral sign is permitted thanks to the continuity
and linearity of the transformation α.)

Another important property is that the center of mass of a compact set K
lies in the convex hull of K.

Recall that the convex hull of an arbitrary set K ⊂ V is defined as

convK = {
m∑

i=1

cixi | xi ∈ K, ci ≥ 0,
m∑

i=1

ci = 1, m arbitrary }.

It is the smallest convex set containing K. One can show that the convex hull
of a compact set is closed (see Appendix 3).

It follows from the definition of the integral that the center of mass c(K) of
the compact set K is a limit of vectors of the form

µ(K)−1
m∑

i=1

µ(Ki)xi,

where xi ∈ Ki ⊂ K and
∑
µ(Ki) = µ(K). Each such vector lies in convK,

and since convK is closed, c(K) ∈ convK, too.

2.7. Proof of Theorem 2. Let T :G→ GL(V ) be a real linear representa-
tion of the compact topological group G.

In the space B+(V ) of symmetric bilinear functions on V , consider the subset
P of all positive definite functions. Obviously, P is closed under addition
(the sum of two positive definite functions is again positive definite) and
multiplication by positive numbers. This implies that P is convex. Moreover,
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P is open, since in terms of matrices it is given by the condition that all
principal minors be positive. Finally, it is plain that

(6) α∗P ⊂ P

for all α ∈ GL(V ).

Let K0 ⊂ P be an arbitrary compact set of positive measure. Put

K =
⋃

h∈G

T (h)∗K0

(cf. formula (3)). We claim that the set K enjoys the following properties:

(K1) K ⊂ P ;

(K2) T (g)∗K = K for all g ∈ G;

(K3) K is compact.

Property (K1) is a consequence of (6). (K2) follows from the equality

T (g)∗T (h)∗K0 = T (gh)∗K0.

To prove (K3), consider an arbitrary sequence T (hn)∗fn (hn ∈ G, fn ∈ K0) of
elements of K. Since G and K0 are compact, we can, passing to a subsequence
if necessary, ensure that hn → h ∈ G and fn → f ∈ K0. Then T (hn)∗fn →
T (h)∗f ∈ K (here we used the continuity of the representation T ).

Now consider the center of mass f = c(K) of K in the space B+(V ). Since
c(K) ∈ convK (see 2.6), (K1) and the convexity of P guarantee that f ∈ P ,
i.e., f is a positive definite symmetric bilinear function. Properties (K2) and
(5) imply that T (g)∗f = f for all g ∈ G, i.e., f is G-invariant. Thus, T is an
orthogonal representation, as asserted.

The complex version of the theorem is proved in an analogous manner, with
the difference that instead of B+(V ) one works with the space H+(V ) of
positive definite Hermitian sesquilinear functions. Notice that H+(V ) is a real
(and not complex) vector space, and the notion of center of mass introduced
in 2.6 can be used in the indicated proof with no modifications.

Questions and Exercises

1. Let T be an orthogonal or unitary representation of the group G. Prove
that all complex eigenvalues of the operators T (g), g ∈ G, have modulus one.

2. Give an example of a nonunitary complex representation of Z.
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3. Let T be a real representation of Z3 in which the generator of Z3 goes

into the linear operator with the matrix
(

0 −1
1 −1

)
. Find a positive definite

symmetric bilinear function invariant under T .

4. Which of the following topological groups are compact: Z, Zm, T, SLn(R)?

5. Let T :G→ GL(V ) be a continuous real or complex representation of the
topological group G, and let U ⊂ V be an invariant subspace. Show that the
representations TU and TV/U are continuous.

6. Let V be a real or complex vector space. Show that the adjoint represen-
tation of the group GL(V) (Example 2, 1.6) is continuous.

7.* Let K1 and K2 be compact sets of positive measure in the real vector
space V . Prove that

a) if the symmetric difference of K1 and K2 has measure zero, then c(K1) =
c(K2);

b) if µ(K1∩K2) = 0, then c(K1∪K2) lies on the segment connecting c(K1)
and c(K2).

8.* Give an example of a compact subset of positive measure in the set P of
positive definite symmetric bilinear functions.

3. Basic Operations on Representations

Various methods of obtaining new representations from one or more other
representations play an important role in representation theory. We have al-
ready encountered certain constructions of this sort, namely, composing a
representation and a homomorphism (0.10), and passing to a subrepresenta-
tion or quotient representation (1.2). In this section we consider a number of
other constructions that will be needed later.

3.1. The Contragredient or Dual Representation. Given any linear representa-
tion T :G→ GL(V ), we define in a canonical manner the contragredient

or dual representation T ′:G → GL(V ′) in the dual space V ′ of V . (Recall
that the elements of V ′ are the linear functions on V .)

Definition. (T ′(g)f)(x) = f(T (g)−1x) (g ∈ G, f ∈ V ′, x ∈ V ).

T ′ is a subrepresentation of the representation T∗ of G in the space of all
K-valued functions on V (see 0.9).
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For a finite-dimensional representation T , the contragredient representation
can be described in terms of matrices as follows. Let (e) = (e1, . . . , en) and
(ε) = (ε1, . . . , εn) be a basis in V and the dual basis in V ′ respectively, i.e.,
εi(ej) = δij . Let

T(e)(g) = [aij ] and T ′
(ε)(g) = [bij ].

According to the definition,

(T ′(g)εi)(T (g)ej ) = εi(ej) = δij .

Since
T ′(g)εi =

∑

k

bkiεk, T (g)ej =
∑

�

a�je�,

we have that

(T ′(g)εi)(T (g)ej ) =
∑

k

bkiakj = δij .

This means that (T ′
(ε)(g))

′T(e)(g) = E or, equivalently,

(1) T ′
(ε)(g) = ((T(e)(g))

′)−1.

In particular, if T is an orthogonal representation and the basis (e) is ortho-
normal (with respect to an invariant inner product), then T(e)(g) is an ortho-
gonal matrix, and so ((T(e)(g))

′)−1 = T(e)(g). In this case T ′
(ε)(g) = T(e)(g),

and so T ′ � T .

If T is a unitary representation and the basis (e) is orthonormal, then

(2) T ′
(ε)(g) = T(e)(g),

where the bar denotes complex conjugation.

It also follows from formula (1) that T ′′ � T for every representation T .

Theorem 1. Let T be an irreducible finite-dimensional representation. Then
T ′ is irreducible.

Proof. Let U ⊂ V ′ be a T ′-invariant subspace. Consider its annihilator

U0 = {x ∈ V | f(x) = 0 for all f ∈ U } ⊂ V.

It is a T -invariant subspace. In fact, for any g ∈ G, x ∈ U0, and f ∈ U we
have

f(T (g)x) = (T ′(g)−1f)(x) = 0,

because T ′(g)−1f ∈ U . It is known from the theory of systems of linear
equations that dimU0 = dimV − dimU . Since T is irreducible, U0 is equal
to 0 or V , and correspondingly U is equal to V ′ or 0. This means that V ′

contains no nontrivial T ′-invariant subspaces, as we needed to show.
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3.2 Sums of Representations. Let

T1:G→ GL(V1) and T2:G→ GL(V2)

be two linear representations of the group G.

Definition. The sum of T1 and T2 is the representation T1 + T2 of G in the
space V1 ⊕ V2 defined by the rule

(T1 + T2)(g)(x1 + x2) = T1(g)x1 + T2(g)x2

(g ∈ G, x1 ∈ V1, x2 ∈ V2).

The sum of an arbitrary finite number of representations is defined in a similar
manner. A sum of representations is independent, up to an isomorphism, of
the order of its summands.

This definition makes it clear that the spaces V1 and V2, canonically imbedded
in V1 ⊕ V2, are invariant under T1 + T2. Conversely, if the space V of a
representation T of G can be written as the direct sum of two T -invariant
subspaces V1 and V2, then T coincides with the sum of the representations
TV1

and TV2
. In fact,

T (g)(x1 + x2) = T (g)x1 + T (g)x2 = TV1
(g)x1 + TV2

(g)x2

for all x1 ∈ V1, x2 ∈ V2, which is precisely the definition of the sum of the
representations TV1

and TV2
. Analogous assertions are of course true for a

sum of finitely many representations.

In terms of matrices, the sum T of the representations Ti:G→ GL(Vi), for i =
1, 2, . . . ,m, is described as follows. Let (e) be a basis in V = V1⊕V2⊕. . .⊕Vm

that is a union of bases (e)i in Vi. Then in block form

T (g)(e) =





T (g)(e)1 0

T (g)(e)2
. . .

0 T (g)(e)m




.

The notion of a sum of representations is suitable for formulating properties
of completely reducible representations.

Theorem 2. Every completely reducible finite-dimensional linear representa-
tion is isomorphic to a sum of irreducible representations. Conversely, every
sum of irreducible representations is completely reducible.

This is simply a reformulation of Theorem 2 and of the first assertion of
Theorem 3 of 1.5.
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Theorem 3. Suppose the representation T :G → GL(V ) is isomorphic to a
sum of irreducible representations Ti:G → GL(Vi), i = 1, . . . ,m. Then ev-
ery subrepresentation of T as well as every quotient representation of T is
isomorphic to a sum of some of the representations Ti.

Proof. It suffices to prove the assertion for quotient representations, since
every subrepresentation TU of T is isomorphic to the quotient representation
TV/W , where W is an invariant complement of the subspace U .

Let U be an invariant subspace. By Theorem 3 of 1.5, it admits a complement
of the form Vi1

⊕ . . .⊕ Vip
, and then TV/U � TVi1⊕...⊕Vip

� Ti1
⊕ . . .⊕ Tip

.

Corollary. Let T :G → GL(V ) be a linear representation. Let V1, . . . , Vm be
minimal invariant subspaces such that the representations Ti = TVi

are pair-
wise nonisomorphic. Then V1, . . . , Vm are linearly independent.

Proof. Suppose this is not the case. Then there is a k < m such that the
subspaces V1, . . . , Vk are linearly independent, whereas Vk+1∩

∑k
i=1 Vi = ∆ �=

0. Since ∆ ⊂ Vk+1 and Vk+1 is a minimal invariant subspace, ∆ = Vk+1, i.e.,
Vk+1 ⊂

∑k
i=1 Vi. But then, by Theorem 3, Tk+1 is isomorphic to one of the

representations T1, . . . , Tk, which contradicts the hypothesis.

We show next that the decomposition of a completely reducible representa-
tion into a sum of irreducible components is, in a certain sense, unique.

Theorem 4. Let T be a linear representation. If

T � T1 + . . . + Tm � S1 + . . . + Sp,

where Ti and Sj are irreducible representations, then m = p and, for a suit-
able labeling, Ti � Si.

(Compare this result with the theorem asserting the uniqueness of the de-
composition of a positive integer into prime factors.)

Proof. By hypothesis, the representation space V of T admits two decom-
positions into a direct sum of minimal invariant subspaces,

V = V1 ⊕ . . . ⊕ Vm = U1 ⊕ . . . ⊕ Up,

such that TVi
� Ti and TUj

� Sj .

The proof proceeds by induction on m. Applying Theorem 3 of 1.5 to the
invariant subspace U = U1, we deduce that V = U⊕Vi1

⊕ . . .⊕Vik
for certain

i1, . . . , ik. Then

S1 � TU � TV/(Vi1⊕...⊕Vik
) � Tj1

+ . . . + Tj�
,
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where {j1, . . . , j�} = {1, . . . ,m} \ {i1, . . . , ik}. Since the representation S1 is
irreducible, � = 1. Now let us relabel the representations Ti so that j1 = 1.
Then S1 � T1 and

V = U ⊕ V2 ⊕ . . . ⊕ Vm.

This says that

TV/U � T2 + . . . + Tm.

On the other hand, it is clear that

TV/U � S2 + . . . + Sp.

Applying the inductive hypothesis to TV/U , we conclude that m = p and,
after a suitable relabeling, Ti � Si for all i ≥ 2. Since T1 � S1, the assertion
of the theorem is also true for T .

We remark that Theorem 4 does not imply the uniqueness of the decom-
position of the representation space into a direct sum of minimal invariant
subspaces. Such uniqueness does not hold, as can be seen even in the case of
a trivial representation (see the end of 1.5).

3.3. Products of Representations. Let T :G → GL(V ) and S:G → GL(U) be
two linear representations of the group G.

Definition. The product of T and S is the representation TS of G in the
space V ⊗ U defined by the rule

TS(g) = T (g) ⊗ S(g).

(For the definitions of the tensor product for vector spaces and linear opera-
tors, see Appendix 2.)

Sometimes TS is referred to as the tensor product of the representations
T and S. However, we reserve this term for another notion, defined below
in 3.4.

Let us give the matrix interpretation of the product of finite-dimensional
representations. To this end we pick bases

(e) = (e1, . . . , en) ⊂ V and (f) = (f1, . . . , fm) ⊂ U

of the spaces V and U respectively. Each element x ∈ V ⊗U can be uniquely
expressed as

x =
∑

xij(ei ⊗ fj).
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How is the matrix X = [xij ] transformed under the action of the operator
TS(g) on x?

Let T(e)(g) = [aij ] and S(f)(g) = [bij ]. Then

T (g)ei =
∑

k

akiek, S(g)fj =
∑

�

b�jf�,

and
TS(g)x =

∑

i,j

xij(T (g)ei ⊗ S(g)fj)

=
∑

i,j,k,�

xijakib�j(ek ⊗ f�)

=
∑

i,j

(
∑

k,�

aikxk�bj�)(ei ⊗ fj).

Hence, X transforms according to the rule

X �→ T(e)(g)XS(f)(g)
′.

We thus obtain the following matrix interpretation of the product of two
representations:

(3) TS(g)X = T (g)XS(g)′ (X ∈ Ln,m(K)).

(Here T and S are regarded as matrix representations, and the representation
space of TS is interpreted as the space of (n×m)-matrices.)

Examples.

1. Let T be an n-dimensional linear representation of a group G in the space
V , and I = Im the m-dimensional trivial representation of G in the space U .
Let us examine the representation TI.

In terms of matrices, TI is given by the formula

TI(g)X = T (g)X (X ∈ Ln,m(K)).

When U = V ′, this coincides with the composition of the representation Λ of
GL(V ) considered in Example 1 of 1.6 and the representation T :G→ GL(V ).
In the general case one can show, proceeding exactly as in 1.6, that

TIm � mT (= T + . . . + T︸ ︷︷ ︸
m times

).

The corresponding decomposition of V ⊗ U into a direct sum of invariant
subspaces is readily described in invariant terms as well. It has the form

V ⊗ U = (V ⊗ f1) ⊕ . . . ⊕ (V ⊗ fm),
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where (f1, . . . , fm) is a basis of U . The map

x �→ x⊗ fi

is an isomorphism of the representations T and (TI)V ⊗fi
.

2. The representation TT ′ is, according to (1) and (3), described in terms of
matrices as

(5) TT ′(g)X = T (g)XT (g)−1 (X ∈ Ln(K)).

This shows that TT ′ = Ad◦T , where Ad is the adjoint representation of
GL(V ) (Example 2, 1.6).

3. The representation (T ′)2 = T ′T ′ is given in terms of matrices by the
formula
(6) (T ′)2(g)X = T (g)′−1XT (g)−1 (X ∈ Ln(K)).

Consequently, (T ′)2 = Φ◦T , where Φ is the natural representation of GL(V )
in the space B(V ) = V ′ ⊗ V ′ (see Example 3, 1.6).

4. In the case where one of the representations T , S is one-dimensional , the
product TS has a particularly simple meaning. Suppose, for example, that
T :G → GL(V ) is an arbitrary representation of the group G, and S:G →
GL(U) is a one-dimensional representation, i.e., a homomorphism of G into
K∗. Pick a nonnull vector u0 ∈ U . The map

σ:x �→ x⊗ u0

is an isomorphism of V onto V ⊗ U . For every g ∈ G we have

TS(g)σx = T (g)x⊗ S(g)u0 = S(g)T (g)x ⊗ u0 = σS(g)T (g)x,

where S(g)T (g) is understood as the product of the operator T (g) by the
scalar S(g). Thus TS is isomorphic to the representation

g �→ S(g)T (g) ∈ GL(V ).

The product of an arbitrary finite number of representations is defined in
a natural manner. In particular, if T is a representation of G in a vector
space V , then T kT ′� is a representation of G in the space of tensors of type
(k, �) over V . Such representations are often encountered in mathematical
and physical applications of representation theory.

Examples 2 and 3 (see also the corresponding examples in 1.6) show that a
product of irreducible representations is not necessarily irreducible. Decom-
posing such a product into a sum of irreducible representations is one of the
most important problems of representation theory.
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3.4. Tensor Products of Representations of Two Groups. Let T :G→ GL(V )
and S:H → GL(U) be two representations of the groups G and H.

Definition. The tensor product of T and S is the representation T ⊗ S
of the group G×H in the space V ⊗ U , defined by the rule

(T ⊗ S)(g, h) = T (g) ⊗ S(h)

(here we should really write (T ⊗ S)((g, h)) !).

In the matrix interpretation (cf. 3.3), the tensor product of two finite-dimen-
sional representations takes the form

(7) (T ⊗ S)(g, h)X = T (g)XS(h)′.

Here, in contrast to formula (3), the factors on the left and right of the matrix
X are independent (even if G = H).

Let i1 denote the canonical imbedding of the group G in G×H, i.e., i1(g) =
(g, e). Then (T ⊗S)◦i1 is a representation of G. It is clear from the definition
that (T⊗S)◦i1 = TI, where I is the trivial representation ofG in U . Therefore
(see Example 1 of 3.3),

(T ⊗ S)◦i1 � (dimU)T.

Similarly, if i2 denotes the canonical imbedding of H in G×H, then

(T ⊗ S)◦i2 = IS,

where I is now the trivial representation of H in V . Therefore,

(T ⊗ S)◦i2 � (dimV )S.

A very important example. Let T be a representation of the group G in
the n-dimensional space V . Consider the representation T ⊗ T ′ of G ×G in
V ⊗ V ′. In terms of matrices it is described as

(8) (T ⊗ T ′)(g1, g2)X = T (g1)XT (g2)
−1 (X ∈ Ln(K))

(cf. Example 2, 3.3).

If one uses the canonical identification of the spaces V ⊗ V ′ and L(V ) (see
Appendix 2), then T ⊗ T ′ can be described in invariant form as

(9) (T ⊗ T ′)(g1, g2)ξ = T (g1)ξT (g2)
−1 (ξ ∈ L(V )).

This follows from (8). In fact, the matrix assigned to a linear operator when
that operator is viewed as an element of the tensor product V ⊗V ′ coincides
with its usual matrix (see Appendix 2), and to the product of matrices there
corresponds the product of linear operators.
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3.5. Extension of the Ground Field. Let K ′ be an extension of the field K.

The group GLn(K) is then a subgroup of GLn(K ′). Consequently, every n-
dimensional matrix representation T of an arbitrary group G over K can
also be regarded as an n-dimensional representation of G over K ′, and in
this capacity we denote it by EK

K′T . In exact terms, EK
K′T is the composition

of the canonical imbedding of GLn(K) in GLn(K ′) with the representation T .

A similar operation can be defined for linear representations.

First of all, every vector space V over K can be included in a vector space
EK

K′V over K ′ in such a way that a basis (e) of V is simultaneously a basis
(over K ′) of EK

K′V . Accordingly, every linear transformation α of V extends
to a linear transformation EK

K′α of EK
K′V that, in the basis (e), has the same

matrix as α:

(EK
K′α)(e) = α(e).

This yields an imbedding L(V ) ⊂ L(EK
K′V ), which in turn induces a group

imbedding

GL(V ) ⊂ GL(EK
K′V ).

Now let T be a linear representation of G in V . Setting

(EK
K′T )(g) = EK

K′T (g),

we obtain a linear representation of G in EK
K′V .

3.6. Let us examine in more detail the most important case for applications:
K = R, K ′ = C. The operation ER

C is called complexification (of vector
spaces, linear operators, and representations). For simplicity, we shall denote
it by the index C, writing TC, for example, instead of ER

CT .

One reason why complexification is often useful is that in a complex vector
space, in contrast to a real one, every linear operator has an eigenvector.

Example. By complexifying the representation of R through rotations of the
Euclidean plane (Example 1, 0.7), we are allowed to write it in the form

t �→
(

eit 0
0 e−it

)
.

To do this we must pass from an orthonormal basis (e1, e2) of the Euclidean
plane to the new basis (e1 − ie2, e1 + ie2).
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Theorem 5. Two finite-dimensional real linear representations are isomorphic
if and only if their complexifications are isomorphic.

Proof. Let T1 and T2 be n-dimensional real representations of the group
G. In matrix form, the fact that T1 and T2 are isomorphic means that there
exists a real matrix C satisfying the following two conditions:

(C1) CT1(g) = T2(g)C for all g ∈ G;

(C2) detC �= 0.

Similarly, the fact that the representations (T1)C and (T2)C are isomorphic
means that there exists a complex matrix C satisfying the same two condi-
tions. This clearly proves the implication (T1 � T2) ⇒ ((T1)C � (T2)C).

To prove the converse implication, we remark that condition (C1) is in fact a
homogeneous system of linear equations with real coefficients for the entries
of the matrix C. Its general solution has the form t1C1 + t2C2 + . . . + tmCm,
where C1, . . . , Cm are linearly independent real matrices. The determinant
det(t1C1 + t2C2 + . . . + tmCm) is a polynomial d in t1, . . . , tm with real
coefficients.

Suppose now that (T1)C � (T2)C. Then there exist complex numbers
τ1, . . . , τm such that d(τ1, . . . , τm) �= 0, and so d is not the zero polyno-
mial. But in this case there also exist real numbers τ ′1, . . . , τ

′
m such that

d(τ ′1, . . . , τ
′
m) �= 0. Therefore, T1 � T2, as needed.

3.7. What can be said about the connection between the invariant sub-
spaces of the representation T :G→ GL(V ) and those of its complexification
TC:G → GL(VC)? Obviously, the complexification UC of any T -invariant
subspace U ⊂ V is a TC-invariant subspace. However, VC may contain in-
variant subspaces which do not arise in this manner. For instance, in the
example of 3.6, the representation T is irreducible, whereas TC possesses
one-dimensional invariant subspaces.

To answer the question posed above, we introduce the operation of complex
conjugation in the space VC. Each vector z ∈ VC can be uniquely written as
z = x+ iy, with x, y ∈ V . Put z̄ = x− iy. In a basis consisting of real vectors
(i.e., vectors in V ), the coordinates of z̄ are the complex conjugates of the
coordinates of z.

Complex conjugation is an anti-linear transformation, that is, z + u = z̄ + ū
and cz = c̄z̄ for c ∈ C. It follows that it transforms every subspace of VC

into a subspace of the same dimension.
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Lemma. The subspace W ⊂ VC is the complexification of some subspace
U ⊂ V if and only if W = W .

Proof. It is plain that if W = UC, then W = W . Conversely, suppose
that W = W . Then the subspace W contains, together with each vector
z = x + iy (x, y ∈ V ), the vector z̄ = x − iy, and hence also the linear
combinations x = 1

2 (z + z̄) and y = 1
2 (z − z̄). Consequently, W = UC, where

U = W ∩ V .

Since the operators TC(g), for g ∈ G, take real vectors into real vectors, they
commute with complex conjugation:

(10) TC(g)z̄ = TC(g)z (z ∈ VC).

Therefore, W is an invariant subspace whenever W is invariant. Consider the
subspaces W + W and W ∩W . They are also G-invariant. Moreover, they
coincide with their complex conjugates:

W +W = W +W = W +W, W ∩W = W ∩W = W ∩W.

By the preceding lemma, W + W and W ∩W are complexifications of G-
invariant subspaces of V .

Theorem 6. Let T :G → GL(V ) be an irreducible real linear representation.
Then TC is either irreducible or the sum of two irreducible representations. In
the second case VC decomposes into the direct sum of two complex-conjugate
minimal invariant subspaces.

Proof. Let W be a minimal invariant subspace of VC. Then W +W is the
complexification of an invariant subspace of V , which must coincide with V
in view of the irreducibility of the representation T . Hence W +W = VC.

Now consider the invariant subspace W ∩W ⊂ W . It must either coincide
with W or be the null subspace. In the first case, W = W = VC and the
representation TC is irreducible. In the second case, VC = W ⊕W , and TC

decomposes into the sum of two irreducible representations.

Examples.

1. In the example considered in 3.6, the second alternative of Theorem 6
holds true.

2. In the Euclidean plane, consider an equilateral triangle A1A2A3 centered
at the origin. For each permutation σ ∈ S3 we let T (σ) denote the orthogonal
transformation that takes the vertex Ai into Aσ(i) (i = 1, 2, 3). T (σ) is either
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the identity transformation, or the rotation by 2π/3 in one of the two possible
directions, or the reflection in one of the altitudes of the triangle A1A2A3.
We thus get a faithful two-dimensional real representation T of the group S3.
It is obviously irreducible.

Using Theorem 6 it is readily established that the complexification TC is
also irreducible. Otherwise it would decompose into the sum of two one-
dimensional representations, and in a suitable basis all the operators TC(σ),
σ ∈ S3, would be given by diagonal matrices. The latter is impossible, how-
ever, since diagonal matrices commute with one another, whereas the group
S3 is not commutative.

Assertions similar to Theorems 5 and 6 permit us to reduce all questions
concerning real representations to questions concerning complex representa-
tions. Since complex representations are simpler to describe than real ones,
they constitute the main object of representation theory.

3.8. Lifting and Factoring. In 0.10 we considered the composition of a linear
transformation and a homomorphism. A particular case of that construction
is the composition S◦p of a linear representation

S:G/N → GL(V )

of a quotient group G/N and the canonical homomorphism

p:G→ G/N.

We call it the lift of the representation S. The representation S◦p has
the property that its kernel contains the subgroup N :

(S◦p)(h) = ε for all h ∈ N.

Conversely, every linear representation T of G whose kernel contains N takes
all elements of a given coset of N in G into the same operator and so can
be ”factored” through p, i.e., T = S◦p, where S is a linear representation of
the quotient group G/N . We call the transition from T to S factoring the

representation T with respect to the subgroup N .

We thus establish a one-to-one correspondence between the linear representa-
tions of the quotient group G/N and those linear representations of G whose
kernel contains N .

Examples.

1. G = GLn(K), N = SLn(K). Since N is the kernel of the epimorphism

det:GLn(K) → K∗,
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G/N � K∗. Every linear representation S of K∗ can be lifted to yield a linear
representation T of GLn(K). For example, if S: t �→ tm (a one-dimensional
representation), then T :A �→ (detA)m.

2. G = S4, N = {ε, (12)(34), (13)(24), (14)(23)}. (N is called Klein’s four-
group.) Each coset of N in G contains exactly one permutation that keeps
1 fixed; hence, G/N � S3. This observation can be used to build a linear
representation of S4 from any given linear representation of S3.

In particular, from the two-dimensional irreducible representation of S3 con-
structed in Example 2 of 3.7 one obtains a two-dimensional irreducible rep-
resentation of S4.

3. All linear representations of the group Zm = Z/mZ are obtained by fac-
toring linear representations T of Z with the property

T (m) = T (1)m = ε.

3.9. The considerations of 3.8 apply to the description of one-dimensional
linear representations.

Let T be a one-dimensional representation of G. Then

T (ghg−1h−1) = T (g)T (h)T (g)−1T (h)−1 = 1

for all g, h ∈ G. Consequently, KerT contains the subgroup of G generated
by all commutators (g, h) = ghg−1h−1. The latter is called the commutator

subgroup of G and is denoted (G,G). It is a normal subgroup of G, since
the set of all commutators is invariant under any (in particular, any inner)
automorphism a of G:

a((g, h)) = (a(g), a(h)).

(Recall that a normal subgroup is by definition a subgroup invariant under
all inner automorphisms.)

Therefore, every one-dimensional representation of the group G is the lift of
a one-dimensional representation of the quotient group G/(G,G)=A(G). We
remark that A(G) is abelian. In fact, let p denote the canonical homomor-
phism of G onto A(G). Then for any g, h ∈ G,

(p(g), p(h)) = p((g, h)) = 1,

whence p(g)p(h) = p(h)p(g).
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Example. Let us find all one-dimensional representations of the symmetric
group Sn. To this end we compute its commutator subgroup. Since the com-
mutator of any two permutations is an even permutation, (Sn, Sn) ⊂ An. We
show that (Sn, Sn) = An.

It is a straightforward matter to check that the commutator of the transposi-
tions (ik) and (jk) (with distinct i, j, k) is the triple cycle (ijk). Let H ⊂ Sn

denote the subgroup generated by all triple cycles. Using a permutation of the
form (ijk) one can take 1 to any prescribed element of the set {1, 2, . . . , n};
then, using a permutation of the form (2jk), one can take 2 to any prescribed
element of {1, 2, . . . , n} while keeping 1 in its place, and so on, up to and in-
cluding n − 2. This shows that for every σ ∈ An there exists an η ∈ H such
that η(i) = σ(i) for i = 1, 2, . . . , n − 2. Since η and σ have the same parity,
one also has that η(n− 1) = σ(n− 1) and η(n) = σ(n). Hence, H = An, and
since (Sn, Sn) ⊃ H, we conclude that (Sn, Sn) = An.

The quotient group Sn/An � Z2 has two one-dimensional representations:
one trivial, and the other taking the generator to −1. To the first there corre-
sponds the trivial one-dimensional representation I of Sn, while to the second
there corresponds the representation Π which takes all even permutations to
1 and all odd permutations to −1.

Questions and Exercises

1. Describe the dual of a trivial representation.

2. Prove that if the representation T ′ is irreducible, then so is T .

3. Prove that (R + S)′ � R′ + S′ for any two representations R and S of a
group G.

4. Prove that if the representation T is completely reducible, then so is T ′.

5. Prove that the identity representation of SL2(K) is isomorphic to its dual.

6. Let T :G→ GL(V ) be a completely reducible representation, and let U ⊂
V be an invariant subspace. Show that T � TU + TV/U .

7. Let T1, T2, and S be completely reducible finite-dimensional linear repre-
sentations. Show that if T1 + S � T2 + S, then T1 � T2.

8. Prove that (T1 + T2)S � T1S + T2S for any representations T1, T2, and S
of G.

9. Prove that TS � ST for any representations T and S of G.
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10. Describe the square of a representation in terms of matrices.

11.* Let V and U be complex vector spaces, and let α ∈ L(V ), β ∈ L(U).
The product of the representations t �→ etα and t �→ etβ of C is necessarily
of the form t �→ etγ , where γ ∈ L(V ⊗ U). Find the operator γ.

12. Let T and S be an irreducible representation and a one-dimensional
representation, respectively, of the group G. Show that TS is irreducible.

13. Prove formula (9) without resorting to the matrix interpretation.

14. Interpret the representation T ⊗ T in terms of matrices, and compare it
with T 2.

15. Prove that the complexification of any odd-dimensional irreducible real
representation is irreducible.

16. Find all finite-dimensional representations of On whose kernels con-
tain SOn.

17. Find all one-dimensional representations of the group A4.

18.* Prove that the commutator subgroup of GLn(R) is equal to SLn(R).

4. Properties of Irreducible Complex Representations

In this section we consider only finite-dimensional representations, except
for 4.1.

4.1. Morphisms. The notion of an isomorphism of linear representations was
defined in the Introduction. In group theory it is well known that, in addi-
tion to isomorphisms, homomorphisms also play an important role. Similarly,
arbitrary linear maps, and not only isomorphisms, are important in linear al-
gebra. In the theory of linear representations one considers an analogous
generalization of the notion of isomorphism.

Definition. Let T1:G → GL(V1) and T2:G → GL(V2) be linear representa-
tions of the group G. A morphism of T1 into T2 is an arbitrary linear map
σ:V1 → V2 satisfying the condition

(1) σT1(g) = T2(g)σ for all g ∈ G.

[Translator’s note: Such a σ is also referred to as an intertwining opera-

tor, and one says that σ intertwines T1 and T2.]
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Example. Let V = U ⊕W be a decomposition of the representation space
of T into a direct sum of invariant subspaces. Then the projection onto U
parallel to W is a morphism of T into the representation TU .

It follows from (1) that the kernel Kerσ of the morphism σ is a subspace
invariant under T1, while its image Imσ = σ(V1) is a subspace invariant
under T2.

If the representations T1 and T2 are irreducible, only two cases are possible:

1) Kerσ = 0, Imσ = V2

or

2) Kerσ = V1, Imσ = 0.

In the first case σ is an isomorphism, while in the second it is the null map.
We have thus proved

Theorem 1. Every morphism of irreducible representations is either an iso-
morphism or the null map.

In spite of its extreme simplicity, Theorem 1 has important applications. In
particular, with its help one can establish the following result, which will be
used in what follows.

Theorem 2. Suppose that the space V of the representation T splits into a
direct sum of minimal invariant subspaces V1, . . . , Vm such that the represen-
tations Ti = TVi

are pairwise nonisomorphic. Then every invariant subspace
U ⊂ V is the sum of a certain number of subspaces Vi. (Cf. Remark 2 in 1.5.)

Proof. Representation TU is completely reducible, being a subrepresenta-
tion of the completely reducible representation T . Consequently, U is a sum
of minimal invariant subspaces. It suffices to consider the case where U is
itself minimal. Suppose this is the case. Let pi denote the projection of U
onto Vi. It is a morphism of the irreducible representation TU into Ti. It fol-
lows from the assumptions of the theorem that TU can be isomorphic only to
one of the representations Ti, say, to T1. Then p1 is an isomorphism, whereas
p2 = . . . = pm = 0. This means that U = V1, which completes the proof of
the theorem.

4.2. The Schur Lemma. A morphism of a linear representation T into itself
is called an endomorphism of T . In other words, an endomorphism of the
representation T of the group G is a linear operator which commutes with
all the operators T (g), g ∈ G. An example is the identity operator ε.
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Theorem 3 (Schur’s Lemma). Every endomorphism of an irreducible complex
representation T is scalar, i.e., it has the form cε, with c ∈ C.

Proof. Let σ be an endomorphism of T :

(2) σT (g) = T (g)σ for all g ∈ G.
Let c be any of the eigenvalues of the operator σ. Then it follows from (2)
that

(σ − cε)T (g) = T (g)(σ − cε) for all g ∈ G,
and so σ−cε, too, is an endomorphism of T . Since det(σ−cε) = 0, Theorem 1
yields σ − cε = 0, i.e., σ = cε.

Corollary. Let T1 and T2 be isomorphic irreducible complex linear represen-
tations of the group G. Let σ be a fixed isomorphism of T1 onto T2. Then
every morphism of T1 into T2 has the form cσ, where c ∈ C.

Proof. Let τ be a morphism of T1 into T2. Then σ−1τ is an endomorphism
of T1. By Schur’s Lemma, σ−1τ = cε, with c ∈ C, and so τ = cσ.

Schur’s Lemma permits us to describe the invariant subspaces of a completely
reducible complex representation in the situation opposite to the one consid-
ered in Theorem 2, namely when all irreducible components are mutually
isomorphic.

Theorem 4. Let T be an irreducible complex representation of the group G in
the space V , and let I be the trivial representation of G in the space U . Then
every minimal subspace W ⊂ V ⊗ U invariant under the representation TI
has the form V ⊗ u0, where u0 ∈ U .

Proof. TI is isomorphic to the sum of a certain number of copies of the
representation T (see Example 1, 3.3). By Theorem 3 of 3.2, (TI)W � T . Let
σ be an arbitrary isomorphism of the representations (TI)W and T .

Pick a basis (f1, . . . , fm) of U . Every element of V ⊗U can be uniquely written
as x1 ⊗ f1 + . . . + xm ⊗ fm, where xi ∈ V . In particular, for every w ∈W ,

w = σ1(w) ⊗ f1 + . . . + σm(w) ⊗ fm.

It is clear that the vectors σi(w) depend linearly on w, and that σi((TI)(g)w)
= T (g)σi(w) for all g ∈ G. Hence, σi is a morphism of the representation
(TI)W into T . By the Corollary to Theorem 3, σi = ciσ, with ci ∈ C.
Consequently,

w = σ(w) ⊗ (c1f1 + . . . + cmfm)

for all w ∈ V , and so indeed W = V ⊗ u0, where u0 = c1f1 + . . . + cmfm.
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4.3. Irreducible Representations of Abelian Groups. One of the basic facts
established in linear algebra is that every linear operator in a complex vector
space possesses a one-dimensional invariant subspace. This implies that every
irreducible complex linear representation of a cyclic group is one-dimensional.
The next result generalizes this assertion.

Theorem 5. Every irreducible complex linear representation of an abelian
group is one-dimensional.

Proof. Let G be an abelian group. Let T be an irreducible complex repre-
sentation of G. For g0, g ∈ G we have

T (g0)T (g) = T (g0g) = T (gg0) = T (g)T (g0).

This means that T (g0) is an endomorphism of T . By Schur’s Lemma, T (g0)
is a scalar operator. Since this holds true for every g0 ∈ G, it follows that
any subspace is invariant under T . This forces T to be one-dimensional.

Corollary. Every complex linear representation of an abelian group possesses
a one-dimensional invariant subspace.

Proof. In fact, every minimal invariant subspace is, by Theorem 5, one-
dimensional.

4.4. Tensor Products of Irreducible Representations.

Theorem 6. The tensor product of two irreducible complex representations
T :G → GL(V ) and S:H → GL(U) of the groups G and H is an irreducible
representation of the group G×H.
(For the definition of the tensor product of two representations, see 3.4.)

Proof. The tensor product T ⊗S is a representation of G×H in the space
V ⊗ U . Let W ⊂ V ⊗ U be a nonnull invariant subspace. We claim that
W = V ⊗ U .

It is obvious that W is invariant under the representation TI = (T ⊗ S)◦i1
of G (see 3.4). By Theorem 4, W contains a subspace of the form V ⊗ u0,
where u0 ∈ U , u0 �= 0.

Now for each x ∈ V consider the subspace

U(x) = {u ∈ U | x⊗ u ∈W } ⊂ U.
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It is H-invariant. In fact, if x⊗ u ∈W , then also

x⊗ S(h)u = (T ⊗ S)(e, h)(x ⊗ u) ∈W.

Moreover, U(x) � u0. It follows from the irreducibility of the representation
S that U(x) = U . This means that x⊗ u ∈W for all x ∈ V and u ∈ U , and
so W = V ⊗ U , as claimed.

One can also prove the following converse of Theorem 4: every irreducible
complex linear representation of G×H is isomorpic to the tensor product of
two irreducible representations of G and H.

4.5 Spaces of Matrix Elements. Let T :G→ GL(V ) be a complex linear rep-
resentation. Let (e) = (e1, . . . , en) be a basis of V . We put

T(e)(g) = [Tij(g)].

Definition. The functions Tij ∈ C[G] are called the matrix elements (or
matrix coordinate functions) of the representation T relative to
the basis (e).

Any linear combination of matrix elements

f =
∑

i,j

cijTij ∈ C[G] (cij ∈ C)

can be expressed invariantly (without using coordinates) as

(3) f(g) = tr ξT (g)

upon denoting by ξ the linear operator given in the basis (e) by the matrix
[cji]. It follows from this invariant expression that the linear span of the
matrix elements does not depend on the choice of a basis.

Definition. The space of matrix elements of the representation T ,

denoted by M(T ), is the linear span of the matrix elements of T (relative to
some basis).

We emphasize that M(T ) is a subspace of the space C[G] of all C-valued
functions on the group G.

We mention two simple properties.

1) If T1 � T2, then M(T1) = M(T2). In fact, in compatible bases the repre-
sentations T1 and T2 are given by identical matrices.

2) If T = T1 + . . . + Tm, then

M(T ) = M(T1) + . . . + M(Tm).
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In fact, in a suitable basis the operators T (g), for g ∈ G, are given by block-
diagonal matrices, the diagonal blocks of which are the matrices of the oper-
ators T1(g), . . . , Tm(g) (see 3.2).

The reason for the interest attached to the spaces of matrix elements of
various linear representations of the group G is that they are invariant under
left and right translations.

Specifically, let f be the function given by formula (3). Then

(4)
f(g−1

2 gg1) = tr ξ T (g−1
2 gg1) = tr ξ T (g2)

−1T (g)T (g1)

= tr(T (g1)ξT (g2)
−1)T (g) = tr η T (g),

where η = T (g1)ξT (g2)
−1 = (T ⊗ T ′)(g1, g2)ξ (see the Example in 3.4).

The result obtained can be interpreted as follows. Consider the map

µ: L(V ) → C[G]

which takes each operator ξ ∈ L(V ) into the function f ∈ C[G] given by (3),
i.e.,

(5) µ(ξ)(g) = tr ξ T (g) (ξ ∈ L(V )).

Next, consider the linear representation Reg of the group G × G in C[G]
defined by the rule

(6) (Reg(g1, g2)f)(g) = f(g−1
2 gg1).

Reg combines the left and right regular representations of G.

Definition. The linear representation Reg of G×G in C[G] given by formula
(6) is called the (two-sided) regular representation.

Formula (4) says that µ is a morphism of the representation T ⊗T ′ into Reg.
The image of µ is precisely the space M(T ) of matrix elements of T .

4.6. If T is an irreducible complex representation, then, by Theorem 4, T⊗T ′

is also irreducible, and so Kerµ = 0. We have thus proved

Theorem 7. Let T :G → GL(V ) be an irreducible complex linear represen-
tation. Then the map µ defined by formula (5) is an isomorphism of the
representations T ⊗ T ′ and RegM(T ).

Corollary 1. dimM(T ) = n2, where n = dimV .



50 I. General Properties of Representations

Let I be the trivial representation G in a space V . Setting g1 = e or g2 = e
in (4) we obtain

Corollary 2. The map µ establishes an isomorphism of the representations
IT ′ and LM(T ), as well as of the representations TI ′ and RM(T ).

Corollary 3. LM(T ) � nT ′ and RM(T ) � nT . (See Example 1, 3.3.)

Corollary 4. Let T1 and T2 be nonisomorphic irreducible complex represen-
tations of the group G. Then the representations RegM(T1) and RegM(T2) of
G×G are not isomorphic.

Proof. Suppose RegM(T1) and RegM(T2) are isomorphic. Then so are their
restrictions to the subgroup G × {e}, i.e., the representations RM(T1) and
RM(T2) of G. However, by Corollary 3,

RM(T1) � n1T1 and RM(T2) � n2T2

(with n1 = dimT1 and n2 = dimT2), and hence RM(T1) �� RM(T2), a contra-
diction.

In view of Corollary 3 of 3.2, Corollary 4 implies

Corollary 5. Let T1, . . . , Tq be pairwise nonisomorphic irreducible complex
representations of the group G. Then the subspaces M(T1), . . . ,M(Tq) of C[G]
are linearly independent.

Next we find the explicit form of the decomposition of the space M(T ) into a
direct sum of minimal left-invariant subspaces.

Let (e) = (e1, . . . , en) be a basis of V , and (ε) = (ε1, . . . , εn) be the dual basis
of V ′. Relative to (e), the linear operator ej ⊗ εi is given by the matrix Eji

whose only nonzero entry, equal to one, is in the (j, i) site. Consequently,

(7) µ(ej ⊗ εi) = Tij .

Proceeding from the decomposition

V ⊗ V ′ =
∑

(ej ⊗ V ′)

of V ⊗V ′ into a direct sum of minimal IT ′-invariant subspaces (see Example
1 of 3.3) we obtain, using the isomorphism µ, the sought-for decomposition
of the space M(T ):

M(T ) =
∑

µ(ej ⊗ V ′).
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A basis of the j-th component of this decomposition is provided by the entries
of the j-th column of the matrix [Tij ].

The decomposition of M(T ) into a direct sum of minimal right-invariant
subspaces is obtained in a similar manner. A basis of the i-th component of
this second decomposition is provided by the entries of the i-th row of the
matrix [Tij ].

Example. Let G be a cyclic group of order m with generator a. Consider its
one-dimensional representations

Tk(ax) = ωkx (k = 0, 1, . . . ,m− 1),

where ω = e
2πi
m . They are obviously pairwise nonisomorphic. Each space

M(Tk) is one-dimensional: it is spanned by the function Tk. By Corollary
5, the functions T0, T1, . . . , Tm−1 are linearly independent. This can also be
verified directly: the matrix constructed from the values of these functions
has the form





1 1 1 · · · 1
1 ω ω2 · · · ωm−1

1 ω2 ω4 · · · ω2(m−1)

· · · · · · · · · · · · · · ·
1 ωm−1 ω2(m−1) · · · ω(m−1)2



 ,

and its determinant (a Vandermonde determinant) is different from zero.

4.7. Uniqueness of the Invariant Inner Product. As we saw in Section 2,
introducing an invariant inner product in the representation space can be a
very useful step. There arises naturally the problem of describing all such
inner products. (By an inner product in a complex vector space we shall
mean an arbitrary positive definite Hermitian sesquilinear function.)

To study this problem we need the following

Lemma. Let f and f0 be two inner products in the complex vector space V .
Then there exists a linear operator σ such that

(8) f(x, y) = f0(σx, y)

for all x, y ∈ V .

Proof. Both sides of equation (8) are linear in x and anti-linear in y. Hence
it suffices to check that (8) holds for vectors forming a basis. Let (e) =
(e1, . . . , en) be a basis of V orthonormal with respect to the inner product f0.
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Let σ denote the linear operator given in this basis by the matrix [f(ej , ei)].
Then

f0(σei, ej) = f0(
∑

k

f(ei, ek)ek, ej) = f(ei, ej),

and so (8) holds with the indicated σ.

Theorem 8. Let T :G→ GL(V ) be an irreducible unitary representation. Then
the T -invariant inner product in V is unique up to a constant factor.

Proof. Let f0 and f be two invariant inner products in V . Let σ be a linear
operator satisfying condition (8). We prove that σ is an endomorphism of the
representation T .

For arbitrary g ∈ G and x, y ∈ V we have

(9)

f0(T (g)−1σT (g)x, y) = f0(σT (g)x, T (g)y)

= f(T (g)x, T (g)y)

= f(x, y) = f0(σx, y);

here we used the invariance of f and f0 under T (g). Therefore, T (g)−1σT (g)
= σ, and so σT (g) = T (g)σ.

Now, by Schur’s Lemma, σ = cε for some c ∈ C. But then f = cf0, as we
needed to show.

Theorem 9. Let T :G → GL(V ) be a unitary representation. Let U,W ⊂ V
be minimal invariant subspaces such that TU �� TW . Then U and W are
orthogonal with respect to any invariant inner product in V .

Proof. Fix an invariant inner-product in V and denote the corresponding
orthogonal projection of the subspace W onto U by p. It is easy to see that
p is a morphism of the representation TW into TU . By Theorem 1, p = 0,
which means precisely that W is orthogonal to U .

Questions and Exercises

1. Prove that the image of an invariant subspace under a morphism of rep-
resentations is an invariant subspace.
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2.* Let G be a doubly-transitive group of permutations, i.e., a subgroup of
the symmetric group Sn with the following property: for any i, j, k, � such
that i �= j and k �= � there exists a permutation σ ∈ G such that σ(i) = k
and σ(j) = �. Let M be a monomial representation of Sn (see Example 5
of 1.3). Prove that every endomorphism of the representation M |G has the
form aε+ bη, where a, b ∈ C and η(ei) = e1 + . . . + en for all i.

3. Let T1, . . . , Tq be pairwise nonisomorphic complex linear representations
of the group G. Prove that the set of all morphisms of the representation∑
kiTi into the representation

∑
�iTi is a vector space of dimension

∑
ki�i.

4.* Using Problems 2 and 3, prove that if G is a doubly-transitive group
of permutations, then the representation M0|G (see Example 5 of 1.3) is
irreducible.

5. Find all automorphisms of the representation of R by rotations in the
Euclidean plane.

6. Let T be an arbitrary complex representation of the abelian group G.
Show that in the representation space of T there is a basis relative to which
all operators T (g), for g ∈ G, are given by triangular matrices.

7. Prove that every irreducible real representation of an abelian group is one-
or two-dimensional.

8.* Let G be a finite group and R the right regular representation of G
(see 0.9). Give a direct proof of the fact that the dimension of the space of
all morphisms of R into an irreducible representation T is equal to dimT .
Applying Problem 3, deduce from this that R �

∑q
i=1(dimTi)Ti, where

T1, . . . , Tq is a complete list of irreducible complex representations of G.

9. Under the assumptions of Theorem 4, prove that every G-invariant sub-
space of V ⊗ U has the form V ⊗ U0, where U0 is a subspace of U .

10. Prove that the matrix elements of an irreducible complex representation
are linearly independent. Is this assertion true for real representations?

11. Let T :G→ GL(V ) be an irreducible complex representation. Prove that
the linear span of the set {T (g) | g ∈ G } ⊂ L(V ) equals L(V ) (Burnside’s
Theorem).

12. Prove that every irreducible representation of the group G over an arbi-
trary field is isomorphic to a subrepresentation of the right regular represen-
tation of G.

13. The same for the left regular representation.



54 I. General Properties of Representations

14.* Prove Corollaries 4 and 5 of Theorem 7 for linear representations over
an arbitrary field.

15.* Let T :G → GL(V ) be an irreducible orthogonal representation. Prove
that the invariant inner product in V is unique up to a (positive) constant
factor.
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