
CHAPTER 2

CONVEX HULLS

In this Chapter special results in the geometry of convex hulls are developed
which are required for the analytic approximation theory in Chapter III. The
main result of this chapter is the Integral Representation Theorem2.12 which,
simply stated, represents a continuous function f : B → Rq, with values in
the convex hull of a connected open set X ⊂ Rq, as a Riemann integral whose
integrand is a continuous function with values in X: for all b ∈ B,

f(b) =
∫ 1

0

h(t, b) dt,

where h : [0, 1] × B → X is continuous. Over each point b ∈ B, the map
h is defined to be a suitable reparametrization of a contractible loop in X
which strictly surrounds the point f(b). A parametrized family of contractible
loops (parametrized by the space B) together with a specific parametrized fam-
ily of contractions is called a C-structure with respect to f . A key observa-
tion, Lemma2.2, important for subsequent applications, is that the space of
C-structures is itself a contractible space. Employing the lemma, one is able to
glue together local C-structures in a neighbourhood of each point b ∈ B to ob-
tain a global C-structure over B, with respect to which one constructs the map
h in the above Riemann integral.

§1. Contractible Spaces of Surrounding Loops

Let ρ : X → Rq, q ≥ 1, be continuous where X is path connected. Denote by
Conv X the convex hull of the ρ-image of X in Rq: the subset of Rq consisting of
all convex linear combinations

∑N
i=1 piρ(xi), N ≥ 1, where xi ∈ X and

∑N
i=1 pi =

1, pi ∈ [0, 1], i = 1, 2, . . . , N . ( A convenient reference for the principal properties
of convex hulls is Hörmander [23]). Let IntConv X denote the interior (possibly
empty) of Conv X in Rq. In case X is not path connected and x ∈ X, we employ
the notation Conv(X,x), respectively IntConv(X,x), to denote the convex hull,
respectively the interior of the convex hull, of the ρ-image of the path component
in X to which x belongs. Note that in case ρ : X → Rq is the inclusion of an open
path connected subspace then the convex hull of X coincides with the interior of
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the convex hull of X. Indeed if z ∈ Conv X then there is an integer k, 0 ≤ k ≤ q,
and an affine k-simplex σk which contains z and whose vertices lie in X. Since X
is open one easily constructs an affine q-simplex ∆q whose vertices lie in X and
which contains σk in its interior. More generally, if ρ : X → Rq is a microfibration
(V Lemma 5.7) then Conv(X,x) = IntConv(X,x) for all x ∈ X.

Ample Sets. A continuous map ρ : X → Rq is ample if for all x ∈ X,
Conv(X,x) = Rq. That is, X is ample if the convex hull of the ρ-image of
each path component of X is all of Rq. Examples of open ample sets X ⊂ Rq

which occur in the theory are X = Rq \ L, where L is a smooth (or stratified)
submanifold of codimension ≥ 2.

Nowhere Flat Sets. For the purposes of applying convex integration theory
to the construction of solutions of non-linear systems of partial differential equa-
tions, the following affine notion is also required. A subset X in Rq is nowhere
flat if for each affine (q − 1)-dimensional hyperplane H of Rq, the intersection
H ∩ X is nowhere dense in X. For example, the unit sphere in Rq (in the Eu-
clidean metric) is nowhere flat in Rq, q ≥ 2. Evidently, any affine subspace of Rq

is flat i.e., not nowhere flat.

In case X ⊂ Rq is nowhere flat then X ⊂
⋃

x∈X IntConv(X,x) in Rq.
Indeed, each x ∈ X is a vertex of a non-degenerate affine q-simplex in Rq, all of
whose vertices are points in X.

It is useful for what follows to remark the obvious connection between
Riemann integration and convex hulls. Let f : [0, 1] → Rq be continuous and let
X = im f ⊂ Rq. Evidently a Riemann sum for the integral

∫ 1

0
f(t) dt is a point

of Conv X. Furthermore, since X is compact, Conv X is compact and hence the
integral

∫ 1

0
f(t) dt ∈ Conv X. Geometrically, in case [0, 1] is parametrized by

arc-length of the C1-regular curve f ,
∫ 1

0
f(t) dt is the barycentre of X.

Surrounding Loops. Let ρ : X → Rq be continuous; fix x ∈ X. Suppose
g : [0, 1] → X is a continuous loop at x: g(0) = g(1) = x. A point z ∈ Conv(X,x)
is surrounded, respectively strictly surrounded, by the loop g if z lies in the
convex hull, respectively the interior of the convex hull, of the composed path
ρ ◦ g(t) ∈ Rq, t ∈ [0, 1]. The main interest is in loops g in X that surround z and
which are homotopically trivial i.e. there is a base point preserving homotopy
of loops in X which connects g to the constant path Cx. Such loops are easily
constructed as follows. Let z ∈ Conv(X,x), respectively z ∈ IntConv(X,x).
There is a loop λ in X, based at x, such that im ρ ◦ λ contains the vertices of a
simplex that contains z, respectively contains the vertices of a q-simplex in Rq

whose interior contains z. Then the product g = λ ∗ λ−1 is a contractible loop
that surrounds z, respectively strictly surrounds z.
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X g(t)

z x

Figure 2.1

For each z ∈ Conv(X,x) let Xz
x ⊂ C0([0, 1],X)×C0([0, 1]2,X) be the subspace,

in the compact-open topology, of pairs of contractible loops at x which surround
z, together with a contraction of the loop to Cx: pairs (g,G) where g : [0, 1] → X,
g(0) = g(1) = x, g surrounds z and G : [0, 1]2 → X is a base point preserving
homotopy which contracts the loop g to the constant path Cx. Thus, for all
(t, s) ∈ [0, 1]2,

G(t, 0) = x; G(t, 1) = g(t); G(0, s) = G(1, s) = x. (2.1)

Analogously, intXz
x is the space of pairs (g,G) as above where g strictly sur-

rounds z.
The space intXz

x is an example of a space of C-structures (cf.§2) on an
Rq-bundle, in this case the bundle Rq → ∗ over a point, with respect to z ∈
IntConv(X,x), x ∈ X. Note that the loop g of the pair (g,G) is included for
convenience; g is the map at time 1 of the homotopy G. The following elementary
result is essential for the proof of the existence of C-structures in §2, Proposition
2.3.

Lemma 2.1. For all (x, z) ∈ X × Conv(X,x), respectively all (x, z) ∈ X ×
IntConv(X,x), the space Xz

x, respectively intXz
x is contractible.

Proof. We prove the lemma for the space Xz
x; the proof for the space intXz

x is
similar and is omitted. We show that Xz

x deformation retracts in a canonical
way to each point in Xz

x: there is a continuous map D : Xz
x × Xz

x × [0, 1] → Xz
x

such that for all u, v ∈ Xz
x , the corresponding map Du : Xz

x × [0, 1] → Xz
x,
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Du(v, t) = D(u, v, t), satisfies the property:

Du(v, 1) = v; Du(v, 0) = u. (2.2)

Thus for each u ∈ Xz
x the map Du is a deformation retract of Xz

x to u which
depends continuously on u ∈ Xz

x.
Briefly, the map D is constructed canonically as follows. Let u = (g,G), v =

(h,H) ∈ Xz
x and let ∗ denote the product operator on the space of loops. Em-

ploying the contractions H,G one constructs a canonical homotopy of closed
loops in X which connects h, g, and which, at each stage, consists of closed loops
which surround z:

h ∼ h ∗ Cx ∼ h ∗ g ∼ Cx ∗ g ∼ g. (2.3)

Furthermore, again employing the contractions H,G, each of the surrounding
loops in the above homotopy is canonically contractible to the constant path Cx.
Specifically, with respect to the two middle homotopies in (2.3), the product of
paths in the t variable, H(t, u)∗G(t, su), 0 ≤ u ≤ 1, is a homotopy which connects
Cx (u = 0) to the loops which surround z, h(t) ∗ G(t, s), 0 ≤ s ≤ 1, (u = 1).
Similarly H(t, (1 − s)u) ∗ G(t, u), 0 ≤ u ≤ 1, is a homotopy which connects
Cx (u = 0) to the loops which surround z, H(t, (1 − s)) ∗ g(t), 0 ≤ s ≤ 1,
(u = 1). With respect to the two end homotopies of (2.3), standard homotopies
which connect h, h ∗ Cx, respectively which connect Cx, Cx ∗ g, are employed to
construct a homotopy of contractions which connects Hs,Hs ∗ Cx, respectively
which connects Cx ∗ Gs, Gs, 0 ≤ s ≤ 1. Precise details are left to the reader.

�

§2. C-Structures for Relations in Affine Bundles

Let p : E → B be an affine Rq-bundle over a second-countable paracompact base
space B (for example, a manifold B). In the applications p : E → B occurs mainly
as the restriction over a submanifold B ⊂ X⊥ of a naturally defined affine Rq-
bundle pr

⊥ : X(r) → X⊥ associated to a smooth fiber bundle p : X → V and to a
codimension 1 tangent hyperplane field τ on the base space V (cf. Chapter VI).
The affine structure means that the transition functions of the bundle take their
values in the group of affine transformations of Rq. Γ(E) denotes the space of
continuous sections of the bundle E, in the compact-open topology. Let ρ : R →
E be a continuous map referred to as a relation over E. For example R ⊂ E
and ρ is the inclusion map. Γ(R) denotes the space of continuous sections of the
map p ◦ ρ : R → B in the compact-open topology. If α ∈ Γ(R) then ρ ◦ α ∈
Γ(E). ΓK(E), ΓK(R) are the corresponding spaces of sections over the subspace
K ⊂ B.
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For each b ∈ B let Eb = p−1(b), the Rq-fiber over the base point b ; Rb =
R ∩ ρ−1(Eb), the subspace of R lying over b (possibly empty). If a ∈ Rb then
Conv(Rb, a) denotes the convex hull (in the fiber Eb) of the ρ-image of the path
component of Rb to which a belongs (cf. §1).

Ample Relations. A relation ρ : R → E is ample if for all pairs (b, a) ∈
B ×Rb, Conv(Rb, a) = Eb (by convention this includes the case Rb is empty).

C-structures. Let ρ : R → E be a relation over E. Suppose f ∈ Γ(E),
β ∈ Γ(R) satisfy the property that for all b ∈ B,

f(b) ∈ IntConv(Rb, β(b)).

A C-structure (C = contractible) over a subset K ⊂ B, with respect to f, β, is a
pair consisting of a contractible loop of sections in ΓK(E), based at βK , which
fiberwise strictly surrounds the section fK together with a contraction of the loop
to βK : a pair (g,G) where g : [0, 1] → ΓK(R) is continuous, g(0) = g(1) = βK

(the restriction of β to K) such that for all b ∈ K the path gb : [0, 1] → Rb,
gb(t) = g(t, b), strictly surrounds f(b) ; G : [0, 1]2 → ΓK(R) is a (fiberwise) base
point preserving contraction of g to βK : for all t, s ∈ [0, 1],

G(t, 1) = g(t); G(t, 0) = βK ; G(0, s) = G(1, s) = βK . (2.4)

The set of all C-structures (g,G) over K, with respect to f, β, is topologized
as a subspace of C0 ([0, 1],ΓK(R)) × C0

(
[0, 1]2,ΓK(R)

)
, in the compact-open

topology. In this bundle theoretic context, if ρ : X → Rq is continuous then the
space intXz

x (§1, Surrounding Paths) is precisely the space of C-structures with
respect to x ∈ X, z ∈ IntConv(X,x), for the trivial bundle over a point Rq → ∗.
The proof of Lemma 2.1 obviously admits a parametric version which is stated
as the following lemma.

Lemma 2.2. For each K ⊂ B, the space of C-structures over K with respect to
f, β is contractible.

Proof. The proof is analogous to the proof of Lemma 2.1, for which all surround-
ing maps and contracting homotopies carry an additional K-space of parameters.
Indeed from Lemma 2.1, intXz

x is canonically contractible, via the deformation
retract D, to each point of intXz

x . To prove the lemma one applies D fiberwise
to the relation R over E: for each b ∈ K the deformation retract D of int Xz

x is
applied to the case X = Rb with respect to z = f(b) ∈ Eb, x = β(b) ∈ Rb. In this
way D induces a canonical deformation retract DK of the space of C-structures
over K with respect to f, β to each C-structure in the space. A useful, though
schematic, description of the deformation DK is described succinctly as follows
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(cf. (2.3)). Full details are left to the reader. If (h,H), (g,G), are C-structures
over K with respect to f, β then,

h ∼ h ∗ Cβ ∼ h ∗ g ∼ Cβ ∗ g ∼ g.

where Cβ : [0, 1] → ΓK(R) is the constant section β. In particular, let (g0, G0),
(g1, G1) be C-structures over K with respect to f, β. There is a homotopy of C-
structures (gt, Gt), t ∈ [0, 1], over K with respect to f, β which connects (g0, G0),
(g1, G1). �

The principal result in this section is the following proposition which es-
tablishes the existence of C-structures over each K ⊂ B in case R ⊂ E is
open. In case R ⊂ E is open then for each b ∈ B and a ∈ Rb, Conv(Rb, a) =
IntConv(Rb, a). Since f(b) ∈ IntConv(Rb, β(b)), it follows that pointwise there
is a C-structure over each point b ∈ B with respect to f(b) ∈ Eb, β(b) ∈ Rb i.e.
there is a contractible loop g in Rb based at β(b) that strictly surrounds f(b)
in the fiber Eb. The following proposition constructs these strictly surrounding
contractible loops continuously over the base space B.

Proposition 2.3. Let R ⊂ E be open. Suppose β ∈ Γ(R) (a fiberwise base point
map) and f ∈ Γ(E) satisfy the property that for all b ∈ B, f(b) ∈ Conv(Rb, β(b)).
There is a C-structure (ψ,H) globally defined over B with respect to f, β. Ex-
plicitly, there is a continuous map ψ : [0, 1] → Γ(R), ψ(0) = ψ(1) = β, such that
for all b ∈ B, the path ψb : [0, 1] → Rb, ψb(t) = ψ(t, b), strictly surrounds f(b).
Furthermore, there is a base point preserving homotopy H : [0, 1]2 → Γ(R) which
contracts ψ to the constant path of sections Cβ: For all t, s ∈ [0, 1]2,

H(t, 1) = ψ(t); H(t, 0) = β; H(0, s) = H(1, s) = β.

Proof. The local existence of C-structures in a neighbourhood of each point of B
is proved in Lemma 2.4 below. The contractibility of the space of C-structures,
Lemma 2.2, is employed in an essential way to patch together these local con-
structions of C-structures to obtain a globally defined C-structure over all of B.
The details are as follows.
Throughout this text we employ the convenient notation, due to Gromov [18]: if
Z ⊂ Y then OpZ denotes an open neighbourhood (i.e., an “opening”) of Z in
Y . OpZ is employed in the sense of a germs: with no change of notation, OpZ
may be replaced by a smaller neighbourhood, if necessary, during the course of
a proof.

Lemma 2.4. For all b ∈ B, each C-structure over {b} with respect to f, β extends
to a C-structure over Op b with respect to f, β.
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Proof. Fix b ∈ B. By hypothesis, f(b) ∈ IntConv(Rb, β(b)). Let (g,G) be a C-
structure over b with respect to f(b), β(b) (as noted above C-structures exist over
each point b ∈ B). Employing the hypothesis that R ⊂ E is open, one extends
as follows the C-structure (g,G) over the point b to a C-structure (h,H) with
respect to f, β, over a suitably small neighbourhood Op b. Since we are working
locally near b we assume that the bundle p : E → B is the product bundle:
p : E = B × Rq → B.

Let L = im g = imG, a compact set in Rb. Since R is open there is a
neighbourhood Op b such that Op b × L ⊂ R. For each y ∈ Op b let (g(y), G(y))
be the translate of the C-structure (g,G) over {b} to the fiber Ry. For Op b
sufficiently small, for all y ∈ Op b the loop g(y) strictly surrounds f(y), and also
the line segment �(y) in Ey that joins β(y) to (y, β(b)) satisfies �(y) ⊂ Rb.

Let h : [0, 1] → ΓOp b(R), h(0) = h(1) = βOp b, be the family of loops
obtained by conjugating the translated loop g(y) with the parametrized line
segment �(y): for all y ∈ Op b, t ∈ [0, 1],

h(t, y) = �(y)(t) ∗ g(y)(t) ∗ �(y)−1(t), (2.5)

Similarly, let H0 : [0, 1]2 → ΓOp b be the contraction of h obtained by conjugating
G(y) with �(y): for all y ∈ Op b, (t, s) ∈ [0, 1]2,

H0(t, s, y) = �(y)(t) ∗ G(y)(t, s) ∗ �(y)−1(t), (2.6)

followed by a contraction of the segment �(y) to the base point β(y). Evidently
the pair (h,H) is a C-structure over Op b with respect to f, β. �

β(b) β(y)

g(b)

l(y)

g(y)

f(y)

f(b)

Figure 2.2



26 II. CONVEX HULLS

Employing Lemma 2.2, one patches together the local C-structures constructed
above over Op b for all b ∈ B. The inductive step for this process is as follows.

Lemma 2.5. Let K,L ⊂ B be closed and let (g0, G0), (g1, G1) be C-structures
over OpK, OpL respectively with respect to f, β. There is a C-structure (h,H)
over Op (K ∪L) with respect to f, β such that (h,H) = (g0, G0) over (a smaller)
Op1K and (h,H) = (g1, G1) over Op (L \ Op (K ∩ L)).

Proof. In case K ∩ L = ∅ then one may assume OpK ∩ OpL = ∅ in which case
the lemma is trivial. Suppose now M = K ∩ L 	= ∅. Applying Lemma 2.2, there
is a homotopy of C-structures (gs, Gs), s ∈ [0, 1], over OpM with respect to f, β
which connects the C-structures (g0, G0) to (g1, G1) on OpM . Furthermore since
K ∩ (L \ OpM) = ∅, there are disjoint neighbourhoods Op1K, Op2(L \ OpM)
in the paracompact space B.

Let λ : B → [0, 1] be continuous such that λ = 0 on Op3K and λ = 1
on B \ Op1K, where Op3K ⊂ Op1K. Let H : [0, 1]2 → Γ(R) be the homotopy
such that: (i) H = G0 on Op3K; (ii) H = G1 on Op2(L \ OpM); (iii) for all
(s, t, b) ∈ [0, 1]2 × OpM , H(s, t, b) = Gλ(b)(s, t, b). One verifies that H is well
defined hence continuous. Setting h(t, b) = H(t, 1, b) it follows that (h,H) is a
C-structure over Op (K ∪ L). �

Returning to the proof of the proposition, according to Lemma 2.4 there
is a C-structure over Op b for each b ∈ B. Hence there are countable locally
finite open covers {Wi}, {Ui} of the base space B such that for all i, W i ⊂ Ui,
and there is a C-structure over Ui. Inductively on n, let K =

⋃i=n
i=1 W i, a closed

set in B, and suppose (ψn, Gn) is a C-structure over OpK. Applying Lemma
2.5 to the closed set K and to Wn+1, there is a C-structure (ψn+1, Gn+1) over
Op (K ∪Wn+1) such that (ψn+1, Gn+1) = (ψn, Gn) over OpK. Since the covers
{Wi}, {Ui} are locally finite, it follows that the maps,

ψ = lim
n→∞

ψn : [0, 1] → Γ(R); G = lim
n→∞

Gn : [0, 1]2 → Γ(R),

are well-defined and continuous. Consequently, (ψ,G) is a C-structure over B
with respect to f ∈ Γ(E), β ∈ Γ(R). �

Proposition 2.3 admits several refinements which are required for the full
development of convex integration theory. These refinements are stated below
as a series of complements to the above proposition. In all these complements,
R ⊂ E is open.

Complement 2.6 (Relative Theorem). Let N be a neighbourhood of β(B) in E.
Suppose there is a closed subspace K of B such that f = β on K. There is a
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C-structure (h,H) over B with respect to f, β, such that over OpK, the image
of H lies in N :

H
(
[0, 1]2 × OpK

)
⊂ N.

Proof. The point here is that in case b ∈ K the C-structure (h,H) that is
constructed over Op b in Lemma 2.4 may be chosen to satisfy the additional
property that imH ⊂ N . Passing to a locally finite subcover of the open cover
{Op b}b∈K of K, the inductive proof procedure of Proposition 2.3 applies to
construct a C-structure (h1,H1) over OpK such that the image of H1 lies in
N . Applying Lemma 2.5 to the C-structure (h1,H1) over OpK and to any C-
structure over B one obtains a C-structure (h,H) over B which equals (h1,H1)
over (a smaller) OpK. �
Remark 2.7. If one replaces “strictly surrounds” by “surrounds” in the definition
of a C-structure then the relative theorem above can be improved to state that,
in case f = β on OpK, then one can choose H to be the constant homotopy
equal to the base point section β over (a smaller) OpK. However the strictly
surrounding property for C-structures is indispensable for the general theory, for
example in the proof of the Integral Representation theorem below.

Suppose p : E → B is a smooth (i.e., C∞) affine Rq-bundle. Since R is
open in E and since the “strictly surrounds” property of a C-structure is an
open condition, the standard smooth approximation theorems apply to prove
the following smooth refinement of Proposition 2.3.

Complement 2.8 (C∞-Structures). Suppose, in addition, p : E → B is a smooth
affine Rq-bundle. Let f ∈ Γ(E), β ∈ Γ(R) satisfy the hypothesis of Proposition
2.3, where, in addition, β is a smooth section. There is a C-structure (h,H)
over B, with respect to f, β, such that H (and hence h) is a smooth map i.e.,
the evaluation map H : [0, 1]2 × B → E is a smooth map.

Complement 2.9 (Parameters). Let P be a compact Hausdorff space (a parameter
space). Let f : P → Γ(E), β : P → Γ(R) be continuous maps such that for all
(p, b) ∈ P × B, the following convex hull property obtains:

f(p, b) ∈ IntConv(Rb, β(p, b)). (2.7)

There is P -parameter family of C-structures (h,H) over B with respect to f, β.
That is, there are continuous maps,

h : P × [0, 1] → Γ(R); H : P × [0, 1]2 → Γ(R),

such that, for each p ∈ P , (hp,Hp) is a C-structure over B with respect to
the sections f(p), β(p). (One employs the notation, hp(t) = h(p, t); Hp(t, s) =
H(p, t, s).)
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Proof. Let id×p : P ×E → P ×B be the pullback of the affine bundle p : E → B
along the projection map onto the second factor, π : P×B → B. Then P×R, the
pullback of R, is open in P ×E, and the maps f, β induce obvious sections (same
notation) in Γ(P × E), respectively Γ(P ×R). Employing (2.7), the hypothesis
of Proposition 2.3 is satisfied with respect to the maps f, β above, from which
the Complement follows. �

Corollary 2.10 (Ample Relations). Let R be open and ample in E, and suppose
R admits a section β ∈ Γ(R). For each section f ∈ Γ(E) there is a C-structure
(h,H) globally defined over B, with respect to f, β.

The point here is that the convex hull hypothesis of Proposition 2.3 is
automatically satisfied for any f ∈ Γ(E). Indeed, since R is ample in E, it follows
by definition that, for each b ∈ B, the convex hull of each path component of Rb

is Eb.

§3. The Integral Representation Theorem

Let X ⊂ Rq, x ∈ X, and let z ∈ IntConv(X,x). The space intXz
x is precisely

the space of C-structures with respect to z ∈ Rq, x ∈ X, for the trivial bundle
over a point, Rq → ∗. In what follows, C-structures in intXz

x are employed to
obtain a representation of the point z as a Riemann integral whose integrand
is a function with values in X. The main result of this section, the Integral
Representation Theorem 2.12, establishes this Riemann integral representation
continuously over the base space, in the context of an affine Rq-bundle.

Proposition 2.11. Let X ∈ Rq, x ∈ X, and let z ∈ IntConv(X,x). Each C-
structure (g,G) ∈ intXz

x can be reparametrized to a C-structure (h,H) such that
z =

∫ 1

0
h(t) dt.

Proof. Let (g,G) ∈ intXz
x be a C-structure and let 0 = s0 < s1 · · · < sn+1 = 1

be a partition of the interval [0, 1] such that z is contained in the interior of the
convex hull of the points g(si), 1 ≤ i ≤ n. For each i, 1 ≤ i ≤ n, let dµi be a
positive measure on [0, 1] such that

∫ 1

0
dµi = 1, and dµi ≈ δ(s − si). (δ is the

Dirac delta function). For example, dµi is represented by a positive, continuous
density function fi on [0, 1] such that

∫ 1

0
fi(s) ds = 1, and fi(s) is concentrated

near si, 1 ≤ i ≤ n.

Let bi =
∫ 1

0
g dµi, 1 ≤ i ≤ n. Let ε > 0. If each dµi is a sufficiently close

approximation to δ(s − si) then, with respect to a norm ‖ ‖ on Rq,

‖bi − g(si)‖ < ε, 1 ≤ i ≤ n, (2.8)

Since z is in the interior of the convex hull of the points g(si), 1 ≤ i ≤ n, it follows
from (2.8) that for ε > 0 sufficiently small, Op z is contained in the convex hull



§3. THE INTEGRAL REPRESENTATION THEOREM 29

of the points bi, 1 ≤ i ≤ n. One may therefore assume,

z =
n∑

i=0

pi bi, where
n∑

i=1

pi = 1, pi ∈ [0, 1], 1 ≤ i ≤ n. (2.9)

We remark here that one may choose n = q +1 and g(si) ∈ Rq, 1 ≤ i ≤ q +1, to
be the vertices of a q+1-simplex, from which it follows that the above barycentric
coordinates (pi)1≤i≤q+1 are unique and strictly positive. This is important for
proving the continuity of these coordinates in the parametric (bundle) version
Theorem 2.12 below.

The continuous measure dµ =
∑n

i=1 pi dµi on the interval [0, 1] is positive,∫ 1

0
dµ = 1, and with respect to dµ one has the following integral representation:

∫ 1

0

g dµ =
n∑

i=1

pi

∫ 1

0

g dµi

=
n∑

i=1

pi bi = z.

(2.10)

Employing a simple change of coordinates, one obtains the integral representation
(2.10) with respect to Lebesgue measure on [0, 1]. Explicitly, let λ(t) =

∫ t

0
dµ.

Evidently, λ(0) = 0, λ(1) = 1, and dλ/dt > 0 on [0, 1]. Define h = g ◦ λ−1.
Clearly h(0) = h(1) = x; h strictly surrounds z and, employing the change of
coordinates s = λ(t), it follows from (2.9) that,

∫ 1

0

h(s) ds =
∫ 1

0

g ◦ λ−1(s) ds =
∫ 1

0

g dµ = z. (2.11)

Let H : [0, 1]2 → X be the reparametrization, H(t, s) = G(λ−1(t), s). Hence
(h,H) is a C-structure in intXz

x for which the integral representation (2.11)
obtains. �

Theorem 2.12 (Integral Representation). Let p : E → B be an affine Rq-bundle
over a second-countable paracompact space B. Let R ⊂ E be open and suppose
β ∈ Γ(R) and f ∈ Γ(E) satisfy the property that, for all b ∈ B,

f(b) ∈ Conv(Rb, β(b)).

Each C-structure (g,G) over B with respect to f, β can be reparametrized to a
C-structure (h,H) such that for all b ∈ B (recall h : [0, 1] → Γ(R)), f(b) =∫ 1

0
h(t, b) dt.
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Proof. Applying Proposition 2.3, there exists a C-structure (g,G) over B with
respect to the sections f ∈ Γ(E), β ∈ Γ(R). The proof consists of suitably
reparametrizing a C-structure (g,G) to obtain a C-structure (h,H) over B for
which the above integral representation of f obtains. The map g : [0, 1] → Γ(R)
satisfies the property that g(0) = g(1) = β, and for each b ∈ B the corresponding
path gb : [0, 1] → Rb strictly surrounds f(b) in the fiber Eb. Consequently (since
“strictly surrounding” is an open condition), for each b ∈ B there is a neigh-
bourhood U of b and a partition 0 < s1 < s2 · · · < sq+1 < 1 of the interval [0, 1],
such that for all y ∈ U the sequence of points gy(s1), gy(s2), . . . , gy(sq+1), spans
an affine q-simplex ∆(y) in the fiber Ey, and f(y) is an interior point of ∆(y).
In particular the barycentric coordinates of f(y) ∈ ∆(y) are strictly positive
continuous functions on U (cf. the remark following (2.9) above).

Recall, Proposition 2.11, the positive, continuous measures dµi on [0, 1],∫ 1

0
dµi = 1, and such that dµi ≈ δ(s − si), 1 ≤ i ≤ q + 1. For each y ∈ U let

bi(y) =
∫ 1

0
gy(s) dµi, 1 ≤ i ≤ q + 1. If dµi is a sufficiently close approximation

to δ(s − si), 1 ≤ i ≤ q + 1, and if U is a sufficiently small neighbourhood of b,
then, for all y ∈ U , the sequence of points b1(y), b2(y), . . . , bq+1(y) also spans an
affine q-simplex ∆′(y) in the fiber Ey, and f(y) is an interior point of ∆′(y). In
particular, the barycentric coordinates of f(y) in the q-simplex ∆′(y) are strictly
positive continuous functions of y ∈ U . Consequently, there is a neighbourhood
W ≡ W (b) of b, W ⊂ U , and globally defined continuous functions, compactly
supported in U , pi : B → [0, 1], 1 ≤ i ≤ q+1, such that the sequence of functions
(pi) on W are the barycentric coordinates of the section f : for all y ∈ W ,

f(y) =
q+1∑

i=1

pi(y) bi(y);
q+1∑

i=1

pi(y) = 1. (2.12)

Let {Wj} be a countable locally finite subcover of the above open cover
{W (b)}b∈B of the base space B. Thus, for each index j, (2.12) applies to the
section f over Wj . Explicitly, in the above notation (the index j corresponds to
Wj) for all y ∈ Wj ,

f(y) =
q+1∑

i=1

pj
i (y) bj

i (y);
q+1∑

i=1

pj
i (y) = 1.

Let {qj : B → [0, 1]}j≥1 be a partition of unity subordinate to the cover {Wj}.
Also, for each index j, one employs the notation, dµj

i , 1 ≤ i ≤ q + 1, to denote
the measures above on [0, 1], with respect to the open set Wj . Thus bj

i (y) =∫ 1

0
g(s, y) dµj

i , 1 ≤ i ≤ q + 1. Let dµ be the B-parameter family of measures on
the interval [0, 1] defined as follows. For each b ∈ B,

dµ(b) =
∞∑

j=1

q+1∑

i=1

qj(b) pj
i (b) dµj

i . (2.13)
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Evidently, dµ(b) is a positive measure on [0, 1], continuous in the parameter
b ∈ B, such that for all b ∈ B,

∫ 1

0
dµ(b) = 1. Furthermore, employing (2.13), f ∈

Γ(E) has the following integral representation with respect to the B-parameter
of measures dµ(b). For each y ∈ B,

∫ 1

0

g(s, y) dµ(y) =
∞∑

j=1

qj(y)
q+1∑

i=1

pj
i (y)

∫ 1

0

g(s, y) dµj
i

=
∞∑

j=1

qj(y)
q+1∑

i=1

pj
i (y) bj

i (y) =
∞∑

j=1

qj(y) f(y) = f(y).

(2.14)

We now change coordinates to obtain an integral representation for the section
f with respect to Lebesgue measure. Let λ : [0, 1] × B → [0, 1], be the continu-
ous function, λ(t, b) =

∫ t

0
dµ(b). Thus for all b ∈ B, λ(0, b) = 0, λ(1, b) = 1,

and the derivative ∂λ/∂t : [0, 1] × B → [0, 1] is a continuous, positive func-
tion. Consequently, for each b ∈ B, the inverse function λ−1(t, b) exists and
λ−1 : [0, 1] × B → [0, 1] is a continuous function.

Let h : [0, 1] → Γ(R) be the map, h(s, b) = g(λ−1(s, b), b). Evidently, h
is continuous, h(0) = h(1) = β, and employing the change of coordinates s =
λ(t, b), it follows from (2.14) that for each b ∈ B,

∫ 1

0

h(s, b) ds =
∫ 1

0

g(λ−1(s, b), b) ds

=
∫ 1

0

g(t, b) dµ(b) = f(b).
(2.15)

Let H : [0, 1]2 → Γ(R) be the corresponding reparametrization, H(t, s, b) =
G(λ−1(t, b), s, b). Hence (h,H) is a C-structure over B which satisfies the in-
tegral representation (2.15) for the section f ∈ Γ(R). �

The Integral Representation Theorem 2.12 admits a series of complements
which are derived from the corresponding Complements 2.6 to 2.10. Again, R ⊂
E is open for all these complements.

Complement 2.13 (Relative Theorem). Let N be a neighbourhood of β(B) in E.
Suppose there is a closed subspace K of B such that f = β on K. There is a
C-structure (h,H) over B such that,

(i) For each b ∈ B, f(b) =
∫ 1

0
h(t, b) dt.

(ii) Over OpK ⊂ B, the image of H lies in N :

H([0, 1]2 × OpK) ⊂ N.
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Proof. Applying Complement 2.6, one obtains a C-structure (h0,H0) over B
with respect to f, β, and which satisfies (ii) above. Applying Theorem 2.12 to
this initial C-structure (h0,H0), one obtains a C-structure (h,H) over B which
satisfies both of the properties (i), (ii). �

Complement 2.14 (C∞-structures). Suppose p : E → B is a smooth affine Rq-
bundle, and that f ∈ Γ(E), β ∈ Γ(R) are smooth sections. There is a C-structure
(h,H) over B with respect to f, β such that H (and hence h) is a smooth map
and such that for all b ∈ B, f(b) =

∫ 1

0
h(t, b) dt.

Proof. Applying Complement 2.7, there is a smooth C-structure (h0,H0) over
B with respect to f, β. The complement follows from Theorem 2.12 applied
to this initial C-structure (h0,H0), subject to the following modifications to
ensure a smooth reparametrization. One may assume that the measures dµi

on the interval [0, 1], 1 ≤ i ≤ q + 1, are defined by positive smooth density
functions. Hence the local barycentric coordinate functions pi, of the smooth
section f in (2.12), are smooth functions, 1 ≤ i ≤ q + 1. Consequently, with
respect to a smooth partition of unity {qj}j≥1, the measures dµ(b) defined by
(2.13) are smooth, from which it follows that the change of coordinates map,
λ(t, b) =

∫ 1

0
dµ(b), is smooth. One concludes that the reparametrized C-structure

(h,H), H(t, s, b) = G(λ−1(t, b), s, b), satisfies the property that H (and hence h)
is a smooth map. �

Complement 2.15 (Parameters). Let P be a compact Hausdorff space (a param-
eter space). Let f : P → Γ(E), β : P → Γ(R) be continuous maps such that for
all (p, b) ∈ P × B, the following convex hull property obtains:

f(p, b) ∈ Conv(Rb, β(p, b)).

There is a P -parameter family of C-structures (h,H) over B with respect to f, β

such that for all (p, b) ∈ P × B, f(p, b) =
∫ 1

0
h(p, t, b) dt.

Proof. Let id×p : P ×E → P ×B be the pullback of the affine bundle p : E → B
along the projection map onto the second factor, π : P × B → B. Applying
Complement 2.9, one obtains a C-structure (h0,H0) over P × B, with respect
to f, β. The complement follows from Theorem 2.12 applied to this initial C-
structure (h0,H0) over P × B. �

Corollary 2.16 (Ample Relations). Let R be open and ample in E and suppose
R admits a section β ∈ Γ(R). For each section f ∈ Γ(E) there is a C-structure
(h,H) over B with respect to f, β such that, for all b ∈ B, f(b) =

∫ 1

0
h(t, b) dt.

Proof. Applying Complement 2.10, it follows that for each f ∈ Γ(E), there is a
C-structure (h0,H0) over B with respect to f, β. The complement follows from
Theorem 2.12 applied to this initial C-structure (h0,H0). �
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