
Lecture 2

Trees as operads

In this lecture, we introduce convenient categories of trees that will be used for the
definition of dendroidal sets. These categories are generalizations of the simplicial
category ∆ used to define simplicial sets. First we consider the case of planar trees
and then the more general case of non-planar trees.

2.1 A formalism of trees

A tree is a non-empty connected finite graph with no loops. A vertex in a graph
is called outer if it has only one edge attached to it. All the trees we will consider
are rooted trees, i.e., equipped with a distinguished outer vertex called the output
and a (possibly empty) set of outer vertices (not containing the output vertex)
called the set of inputs.

When drawing trees, we will delete the output and input vertices from the
picture. From now on, the term ‘vertex’ in a tree will always refer to a remaining
vertex. Given a tree T , we denote by V (T ) the set of vertices of T and by E(T )
the set of edges of T .

The edges attached to the deleted input vertices are called input edges or
leaves; the edge attached to the deleted output vertex is called output edge or root.
The rest of the edges are called inner edges. The root induces an obvious direction
in the tree, ‘from the leaves towards the root’. If v is a vertex of a finite rooted tree,
we denote by out(v) the unique outgoing edge and by in(v) the set of incoming
edges (note that in(v) can be empty). The cardinality of in(v) is called the valence
of v, the element of out(v) is the output of v, and the elements of in(v) are the
inputs of v.

As an example, consider the following picture of a tree:
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The output vertex at the edge a and the input vertices at e, f and c have been
deleted. This tree has three vertices r, v and w of respective valences 3, 2, and 0.
It also has three input edges or leaves, namely e, f and c. The edges b and d are
inner edges and the edge a is the root. A tree with no vertices

e

whose input edge (which we denote by e) coincides with its output edge will be
denoted by ηe, or simply by η.

Definition 2.1.1. A planar rooted tree is a rooted tree T together with a linear
ordering of in(v) for each vertex v of T .

The ordering of in(v) for each vertex is equivalent to drawing the tree on
the plane. When we draw a tree we will always put the root at the bottom. One
drawback of drawing a tree on the plane is that it immediately becomes a planar
tree; we thus may have many different ‘pictures’ for the same tree. For example,
the two trees
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are two different planar representations of the same tree.

2.2 Planar trees

Let T be a planar rooted tree. Any such tree generates a non-Σ operad, which we
denote by Ωp(T ). The set of colours of Ωp(T ) is the set E(T ) of edges of T ,
and the operations are generated by the vertices of the tree. More explicitly,
each vertex v with input edges e1, . . . , en and output edge e defines an opera-
tion v ∈ Ωp(T )(e1, . . . , en; e). The other operations are the unit operations and
the operations obtained by compositions. This operad has the property that, for



2.2. Planar trees 13

all e1, . . . , en, e, the set of operations Ωp(T )(e1, . . . , en; e) contains at most one
element. For example, consider the same tree T pictured before:
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The operad Ωp(T ) has six colours a, b, c, d, e, and f . Then v ∈ Ωp(T )(e, f ; b),
w ∈ Ωp(T )( ; d), and r ∈ Ωp(b, c, d; a) are the generators, while the other operations
are the units 1a, 1b, . . . , 1f and the operations obtained by compositions, namely
r ◦1 v ∈ Ωp(T )(e, f, c, d; a), r ◦3 w ∈ Ωp(T )(b, c; a), and

r(v, 1c, w) = (r ◦1 v) ◦4 w = (r ◦3 w) ◦1 v ∈ Ωp(T )(e, f, c; a).

This is a complete description of the operad Ωp(T ).

Definition 2.2.1. The category of planar rooted trees Ωp is the full subcategory of
the category of non-Σ coloured operads whose objects are Ωp(T ) for any tree T .

We can view Ωp as the category whose objects are planar rooted trees. The
set of morphisms from a tree S to a tree T is given by the set of non-Σ coloured
operad maps from Ωp(S) to Ωp(T ). Observe that any morphism S −→ T in Ωp is
completely determined by its effect on the colours (i.e., edges).

The category Ωp extends the simplicial category ∆. Indeed, any n ≥ 0 defines
a linear tree
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with n+ 1 edges and n vertices v1, . . . , vn. We denote this tree by [n] or Ln. Any
order-preserving map {0, . . . , n} −→ {0, . . . ,m} defines an arrow [n] −→ [m] in
the category Ωp. In this way, we obtain an embedding

∆
u // Ωp.

This embedding is fully faithful. Moreover, it describes ∆ as a sieve (or ideal)
in Ωp, in the sense that for any arrow S −→ T in Ωp, if T is linear then so is S.
In the next sections we give a more explicit description of the morphisms in Ωp.
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2.2.1 Face maps

Let T be a planar rooted tree and b an inner edge in T . Let us denote by T/b the
tree obtained from T by contracting b. Then there is a natural map ∂b : T/b −→ T
in Ωp, called the inner face map associated with b. This map is the inclusion
on both the colours and the generating operations of Ωp(T/b), except for the
operation u, which is sent to r ◦b v. Here r and v are the two vertices in T at the
two ends of b, and u is the corresponding vertex in T/b, as in the picture:
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T

//
∂b

Now let T be a planar rooted tree and v a vertex of T with exactly one inner
edge attached to it. Let T/v be the tree obtained from T by removing the vertex v
and all the outer edges. There is a face map associated to this operation, denoted
∂v : T/v −→ T , which is the inclusion both on the colours and on the generating
operations of Ωp(T/v). These types of face maps are called the outer faces of T .
The following are two outer face maps:
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T/w

//
∂v ∂woo

Note that the possibility of removing the root vertex of T is included in this
definition. This situation can happen only if the root vertex is attached to exactly
one inner edge, thus not every tree T has an outer face induced by its root.
There is another particular situation which requires special attention, namely the
inclusion of the tree with no vertices η into a tree with one vertex, called a corolla.
In this case we get n+ 1 face maps if the corolla has n leaves. The operad Ωp(η)
consists of only one colour and the identity operation on it. Then a map of operads
Ωp(η) −→ Ωp(T ) is just a choice of an edge of T .

We will use the term face map to refer to an inner or outer face map.

2.2.2 Degeneracy maps

There is one more type of map that can be associated with a vertex v of valence
one in T as follows. Let T\v be the tree obtained from T by removing the vertex
v and merging the two edges incident to it into one edge e. Then there is a map
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σv : T −→ T\v in Ωp called the degeneracy map associated with v, which sends
the colours e1 and e2 of Ωp(T ) to e, sends the generating operation v to ide, and
is the identity for the other colours and operations. It can be pictured like this:

•

• •

•
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Face maps and degeneracy maps generate the whole category Ωp. The fol-
lowing lemma is the generalization to Ωp of the well-known fact that in ∆ each
arrow can be written as a composition of degeneracy maps followed by face maps.
For the proof of this fact we refer the reader to Lemma 2.3.2, where we prove a
similar statement in the category of non-planar trees.

Lemma 2.2.2. Any arrow f : A −→ B in Ωp decomposes (up to isomorphism) as

A
f
//

σ
��

B

C

δ

OO

where σ : A −→ C is a composition of degeneracy maps and δ : C −→ B is a
composition of face maps. �

2.2.3 Dendroidal identities

In this section we are going to make explicit the relations between the generating
maps (faces and degeneracies) of Ωp. The identities that we obtain generalize the
simplicial ones in the category ∆.

Elementary face relations

Let ∂a : T/a −→ T and ∂b : T/b −→ T be distinct inner faces of T . It follows
that the inner faces ∂a : (T/b)/a −→ T/b and ∂b : (T/a)/b −→ T/a exist, we have
(T/a)/b = (T/b)/a, and the following diagram commutes:

(T/a)/b
∂b //

∂a

��

T/a

∂a

��

T/b
∂b // T .
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Let ∂v : T/v −→ T and ∂w : T/w −→ T be distinct outer faces of T , and as-
sume that T has at least three vertices. Then the outer faces ∂w : (T/v)/w −→ T/v
and ∂v : (T/w)/v −→ T/w also exist, (T/v)/w = (T/w)/v, and the following dia-
gram commutes:

(T/v)/w
∂w //

∂v

��

T/v

∂v

��

T/w
∂w // T .

In case that T has only two vertices, there is a similar commutative diagram
involving the inclusion of η into the n-th corolla.

The last remaining case is when we compose an inner face with an outer one
in any order. There are several possibilities and in all of them we suppose that
∂v : T/v −→ T is an outer face and ∂e : T/e −→ T is an inner face.

• If in T the edge e is not adjacent to the vertex v, then the outer face
∂v : (T/e)/v −→ T/e and the inner face ∂e : (T/v)/e −→ T/v exist,
(T/e)/v = (T/v)/e, and the following diagram commutes:

(T/v)/e
∂e //

∂v

��

T/v

∂v

��

T/e
∂e // T .

• Suppose that in T the inner edge e is adjacent to the vertex v and denote the
other adjacent vertex to e by w. Observe that v and w contribute a vertex
v ◦e w or w ◦e v to T/e. Let us denote this vertex by z. Then the outer face
∂z : (T/e)/z −→ T/e exists if and only if the outer face ∂w : (T/v)/w −→ T/v
exists, and in this case (T/e)/z = (T/v)/w. Moreover, the following diagram
commutes:

(T/v)/w

∂w

��

(T/e)/z
∂z // T/e

∂e

��

T/v
∂v // T .

It follows that we can write ∂v∂w = ∂e∂z, where z = v ◦e w if v is ‘closer’ to
the root of T or z = w ◦e v if w is ‘closer’ to the root of T .

Elementary degeneracy relations

Let σv : T −→ T\v and σw : T −→ T\w be two degeneracies of T . Then the
degeneracies σv : T\w −→ (T\w)\v and σw : T\v −→ (T\v)\w exist, we have
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(T\v)\w = (T\w)\v, and the following diagram commutes:

T
σv //

σw

��

T\v

σw

��

T\w σv // (T\v)\w.

Combined relations

Let σv : T −→ T\v be a degeneracy and ∂ : T ′ −→ T be a face map such that
σv : T ′ −→ T ′\v makes sense (i.e., T ′ still contains v and its two adjacent edges as
a subtree). Then there exists an induced face map ∂ : T ′\v −→ T\v determined
by the same vertex or edge as ∂ : T ′ −→ T . Moreover, the following diagram
commutes:

T
σv // T\v

T ′

∂

OO

σv // T ′\v.

∂

OO

Let σv : T −→ T\v be a degeneracy and ∂ : T ′ −→ T be a face map induced
by one of the adjacent edges to v or the removal of v, if that is possible. It follows
that T ′ = T\v and the composition

T\v ∂ // T
σv // T\v

is the identity map idT\v.

2.3 Non-planar trees

Any non-planar tree T generates a (symmetric) coloured operad Ω(T ). Similarly
as in the case of planar trees, the set of colours of Ω(T ) is the set of edges E(T )
of T . The operations are generated by the vertices of the tree, and the symmetric
group on n letters Σn acts on each operation with n inputs by permuting the
order of its inputs. Each vertex v of the tree with output edge e and a numbering
of its input edges e1, . . . , en defines an operation v ∈ Ω(e1, . . . , en; e). The other
operations are the unit operations and the operations obtained by compositions
and the action of the symmetric group. For example, consider the tree

•

• •
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e f

T
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The operad Ω(T ) has six colours a, b, c, d, e, and f . The generating operations are
the same as the generating operations of Ωp(T ). All the operations of Ωp(T ) are
operations of Ω(T ), but there are more operations in Ω(T ) obtained by the action
of the symmetric group. For example if σ is the transposition of two elements of
Σ2, we have an operation v ◦ σ ∈ Ω(f, e; b). Similarly if σ is the transposition
of Σ3 that interchanges the first and third elements, then there is an operation
r ◦ σ ∈ Ω(d, c, b; a).

More formally, if T is any tree, then Ω(T ) = Σ(Ωp(T )), where T is a planar
representative of T . In fact, a choice of a planar structure on T is precisely a choice
of generators for Ω(T ).

Definition 2.3.1. The category of rooted trees Ω is the full subcategory of the
category of coloured operads whose objects are Ω(T ) for any tree T .

We can view Ω as the category whose objects are rooted trees. The set of mor-
phisms from a tree S to a tree T is given by the set of coloured operad maps from
Ω(S) to Ω(T ). Note that any morphism S −→ T in Ω is completely determined
by its effect on the colours (i.e., edges).

The morphisms in Ω are generated by faces and degeneracies (as in the planar
case) and also by (non-planar) isomorphisms.

Lemma 2.3.2. Any arrow f : S −→ T in Ω decomposes as

S
f
//

σ

��

T

S′
ϕ
// T ′

δ

OO

where σ : S −→ S′ is a composition of degeneracy maps, ϕ : S′ −→ T ′ is an
isomorphism, and δ : T ′ −→ T is a composition of face maps.

Proof. We proceed by induction on the sum of the number of vertices of S and T .
If T and S have no vertices, then T = S = η and f is the identity. Note that,
without loss of generality, we can assume that f sends the root of S to the root
of T ; otherwise we can factor it as a map S −→ T ′ that preserves the root followed
by a map T ′ −→ T that is a composition of outer faces. Also, we can assume
that f is an epimorphism on the leaves since, if this is not the case, f factors as

S −→ T/v
∂v−→ T , where v is the vertex below the leaf in T that is not in the

image of f .
If a and b are edges of S such that f(a) = f(b), then a and b must be on the

same (linear) branch of S and f sends intermediate vertices to identities.
Since f is a map of coloured operads, we can factor it in a unique way

as a surjection followed by an injection on the colours. This corresponds to a
factorization in Ω,

S
ψ−→ S′

ξ−→ T,
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where ψ is a composition of degeneracies and ξ is bijective on leaves, sends the root
of S′ to the root of T , and is injective on the colours (by the previous observations).

If ξ is surjective on colours, then ξ is an isomorphism. If ξ is not surjective,
then there is an edge e in T not in the image of ξ. Since e is an internal edge (not
a leaf), ξ factors as

S′
ξ′−→ T/e

∂e−→ T.

Now we continue by induction on the map ξ′. �

In general, limits and colimits do not exist in the category Ω; for example,
Ω lacks sums and products. However, certain pushouts do exist in Ω, as expressed
in the following lemma:

Lemma 2.3.3. Let f : R // // S and g : R // // T be two surjective maps in Ω. Then
the pushout

R
f
// //

g
����

S

��

T // P

exists in Ω.

Proof. The maps f and g can each be written as a composition of an isomorphism
and a sequence of degeneracy maps by Lemma 2.3.2. Since pushout squares can be
pasted together to get larger pushout squares, it thus suffices to prove the lemma
in the case where f and g are degeneracy maps given by unary vertices v and w
in R, i.e., f : R −→ S is σv : R −→ R\v and g : R −→ T is σw : R −→ R\w. If
v = w, then the following diagram is a pushout:

R
σv //

σv

��

R\v

R\v R\v.

If v 6= w, then the commutative square

R
σv //

σw

��

R\v

σw

��

R\w σv // (R\v)\w = (R\w)\v

is also a pushout, as one easily checks. �
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2.3.1 Dendroidal identities with isomorphisms

The dendroidal identities for the category Ω are the same as for the category Ωp
plus some more relations involving the isomorphisms in Ω. As an example, we give
the following relation, that involves inner faces and isomorphisms. Let T be a tree
with an inner edge a and let f : T −→ T ′ be a (non-planar) isomorphism. Then the
trees T/a and T ′/b exist, where b = f(a), the map f restricts to an isomorphism
f : T/a −→ T ′/b, and the following diagram commutes:

T/a
∂a //

f

��

T

f

��

T ′/b
∂b // T ′.

Similar relations hold for outer faces and degeneracies.

2.3.2 Isomorphisms along faces and degeneracies

For any tree T in Ω, let P (T ) be the set of planar structures of T . Note that
P (T ) 6= ∅ for every tree T . Thus, the category Ω is equivalent to the category
Ω′ whose objects are planar trees, i.e., pairs (T, p) where T is an object of Ω and
p ∈ P (T ), and whose morphisms are given by

Ω′((T, p), (T ′, p′)) = Ω(T, T ′).

A morphism ϕ : (T, p) −→ (T ′, p′) in Ω′ is called planar if, when we pull back the
planar structure p′ on T ′ to one on T along ϕ, then it coincides with p. Using
this equivalent formulation of Ω, the category Ωp is then the subcategory of Ω
consisting of the same objects and planar maps only, i.e., compositions of faces
and degeneracies. In Ωp, the only automorphisms are identities.

If δ : T // // S is a composition of faces and α : S −→ S′ is an isomorphism,
there is a factorization

T //
δ //

∼α′

��

S

α∼
��

T ′ //
δ′ // S′,

where δ′ is again a composition of faces and α′ is an isomorphism. This factor-
ization is unique if one fixes some conventions, e.g., one takes the objects of Ω to
be planar trees, and takes faces and degeneracies to be planar maps. Similarly,
isomorphisms can be pushed forward and pulled back along a composition of de-
generacies. Let σ : T −→ S be a composition of degeneracies and α : S −→ S′ and



2.3. Non-planar trees 21

β : T −→ T ′ be two isomorphisms. Then there are factorizations

T

α′

��

σ // S

α

��

T ′
σ′ // S′

T

β

��

σ // S

β′

��

T ′
σ′′ // S′

where α′ and β′ are isomorphisms and σ′ and σ′′ are compositions of degeneracies.
Thus, any arrow in Ω can be written in the form δσα or δασ with δ a

composition of faces, σ a composition of degeneracies, and α an isomorphism.

2.3.3 The presheaf of planar structures

Let P : Ωop −→ Sets be the presheaf on Ω that sends each tree to its set of planar
structures. Observe that P (T ) is a torsor under Aut(T ) for every tree T , where
Aut(T ) denotes the set of automorphisms of T . Recall that the category of elements
Ω/P is the category whose objects are pairs (T, x) with x ∈ P (T ). A morphism
between two objects (T, x) and (S, y) is given by a morphism f : T −→ S in Ω
such that P (f)(y) = x. Hence, Ω/P = Ωp and we have a projection v : Ωp −→ Ω.
There is a commutative triangle

∆
u //

i
��

Ωp

v

��

Ω,

where i is the fully faithful embedding of ∆ into Ω which sends the object [n] in
∆ to the linear tree Ln with n vertices and n+ 1 edges for every n ≥ 0.

2.3.4 Relation with the simplicial category

We have seen that both the categories Ω and Ωp extend the category ∆, by viewing
the objects of ∆ as linear trees. In fact, it is possible to obtain ∆ as a comma
category of Ω or of Ωp as follows.

Let η be the tree in Ω consisting of no vertices and one edge, and let ηp be
the planar representative of η in Ωp. If T is any tree in Ω, then Ω(T, η) consists
of only one morphism if T is a linear tree, or it is the empty set otherwise. The
same happens for Ωp and ηp. Thus, Ω/η = Ωp/ηp = ∆.
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