
Chapter 2

The Essential Theorem

In this chapter we give our new proof of the Rubio de Francia extrapolation the-
orem, Theorem 1.4, and discuss how our proof allows a number of powerful gen-
eralizations. For the convenience of the reader we restate it here.

Theorem 1.4. Given an operator T , suppose that for some p0, 1 ≤ p0 < ∞, and
every w ∈ Ap0 , there exists a constant C depending on [w]Ap0

such that∫
Rn

|Tf(x)|p0w(x) dx ≤ C

∫
Rn

|f(x)|p0w(x) dx.

Then for every p, 1 < p <∞, and every w ∈ Ap there exists a constant depending
on [w]Ap

such that∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pw(x) dx.

Before giving our proof of Theorem 1.4 we want to describe briefly earlier
proofs. The original proof of Rubio de Francia [193, 194, 195] is quite complex
and depends on a connection between vector-valued estimates and weighted norm
inequalities. A more direct proof that depends only on weighted norm inequalities
was given by Garćıa-Cuerva [83] (see also [88]). However, this approach requires
two complicated lemmas on the structure of Ap weights, and the proof itself is
divided into two cases, depending on whether p > p0 or p < p0. A more refined
version of this proof appears in Grafakos [92] and in Dragičević, Grafakos, Pereyra
and Petermichl [65]. (We will consider this proof again below.)

As we noted in Section 1.2 above, Rubio de Francia and Garćıa-Cuerva used
the iteration algorithm of Rubio de Francia: given a positive, sublinear operator
T that is bounded on Lp(w), define a new operator R by

Rh =
∞∑
k=0

T kh

2k‖T‖kLp(w)

.
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18 Chapter 2. The Essential Theorem

A simpler proof of Theorem 1.4 that avoided the iteration algorithm was
given by Duoandikoetxea [68] when p0 > 1. This proof has two steps: first prove
that the desired inequality holds for 1 < p < p0 and w ∈ A1, and then use this
to prove the full result. The proof requires the very deep property of Ap weights
that if w ∈ Ap, then there exists ε > 0 such that w ∈ Ap−ε (Theorem 1.3).

2.1 The new proof

Our proof of the Rubio de Francia extrapolation theorem is simpler and more direct
than any previous proof, since it yields the desired inequality directly without cases
or intermediate steps, and uses only the iteration algorithm and basic properties
of Ap weights.

Proof of Theorem 1.4. Fix p, 1 < p < ∞, and w ∈ Ap. We first introduce two
versions of the iteration algorithm. Since w ∈ Ap, M is bounded on Lp(w), so
given h ∈ Lp(w) we can define

Rh(x) =
∞∑
k=0

Mkh(x)

2k‖M‖kLp(w)

,

where for k ≥ 1, Mk = M ◦ · · · ◦M is k iterations of the maximal operator, and
M0h = |h|. The operator R has the following properties:

• for all x, |h(x)| ≤ Rh(x);

• ‖Rh‖Lp(w) ≤ 2‖h‖Lp(w);

• Rh ∈ A1 with [Rh]A1
≤ 2‖M‖Lp(w).

The first two follow immediately from the definition; to see the third, note that
since M is sublinear we have that

M(Rh)(x) ≤
∞∑
k=0

Mk+1h(x)

2k‖M‖kLp(w)

≤ 2‖M‖Lp(w)Rh(x).

Now define the operator M ′f = M(fw)/w. Since w1−p′ ∈ Ap′ , M is bounded

on Lp′
(w1−p′

) and so M ′ is bounded on Lp′
(w). Therefore, we can define another

iteration algorithm:

R′h(x) =
∞∑
k=0

(M ′)kh(x)
2k‖M ′‖k

Lp′ (w)

.

(Again, (M ′)0h = |h|.) Arguing exactly as before we have that:

• for all x, |h(x)| ≤ R′h(x);

• ‖R′h‖Lp′ (w) ≤ 2‖h‖Lp′ (w);
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• M ′(R′h)(x) ≤ 2‖M ′‖Lp′ (w)R′h(x), and so R′hw ∈ A1 with [R′hw]A1 ≤
2‖M ′‖Lp′ (w).

Given the two iteration algorithms, the proof is now straightforward. Fix f ∈
Lp(w). By duality there exists a non-negative function h ∈ Lp′

(w), ‖h‖Lp′ (w) = 1,
such that

‖Tf‖Lp(w) =

∫
Rn

|Tf(x)|h(x)w(x) dx

≤
∫
Rn

|Tf(x)|Rf(x)−1/p′
0Rf(x)1/p

′
0R′h(x)w(x) dx,

where we have used that h ≤ R′h, and if p0 = 1 we let 1/p′0 = 0. SinceRf, R′hw ∈
A1, by the reverse factorization property, Proposition 1.2 (c), (Rf)1−p0R′hw ∈
Ap0

. Therefore, by Hölder’s inequality with respect to the measure R′hw (if p0 >
1), by our hypothesis, and since |f | ≤ Rf ,

‖Tf‖Lp(w) ≤
(∫

Rn

|Tf(x)|p0Rf(x)1−p0R′h(x)w(x) dx
)1/p0

×
(∫

Rn

Rf(x)R′h(x)w(x) dx
)1/p′

0

≤ C

(∫
Rn

|f(x)|p0Rf(x)1−p0R′h(x)w(x) dx
)1/p0

×
(∫

Rn

Rf(x)R′h(x)w(x) dx
)1/p′

0

≤ C

∫
Rn

Rf(x)R′h(x)w(x) dx.

Again by Hölder’s inequality and since R is bounded on Lp(w) and R′ is bounded
on Lp′

(w),

‖Tf‖Lp(w) ≤ C

(∫
Rn

Rf(x)pw(x) dx

)1/p(∫
Rn

R′h(x)p
′
w(x) dx

)1/p′

≤ C

(∫
Rn

|f(x)|pw(x) dx
)1/p(∫

Rn

h(x)p
′
w(x) dx

)1/p′

= C

(∫
Rn

|f(x)|pw(x) dx
)1/p

. �

Beyond its simplicity, an important feature of our proof of the Rubio de
Francia extrapolation theorem is that it makes clear exactly what the essential
ingredients are. They are three-fold: norm inequalities for the Hardy-Littlewood
maximal operator, duality, and the reverse factorization property of Ap weights.
More precisely, we need the following:
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(a) M is sublinear, positive and bounded on Lp(w) if w ∈ Ap;

(b) M ′ is sublinear, positive and bounded on Lp′
(w) if w ∈ Ap;

(c) Lp′
(w) is the dual space of Lp(w);

(d) Hölder’s inequality;

(e) if w1, w2 ∈ A1, then w1w
1−p
2 ∈ Ap.

Properties (a) and (b) let us define the iteration algorithm, and Properties (c),
(d), and (e) are all that we use in the second part of the proof.

This list of essential properties can be simplified further. Property (b) follows
from (a) and another structural property of Ap weights:

(f) w ∈ Ap if and only if w1−p′ ∈ Ap′ .

Furthermore, in the proof we do not use that Lp′
(w) is the dual space of Lp(w);

it suffices to assume that it is the associate space, thereby giving us the reverse of
Hölder’s inequality. We can avoid explicitly using duality if we simply define the
function h = |Tf |p−1/‖Tf‖p−1

Lp(w). With some minor modifications to the proof we

can actually take h = |Tf |p−1.
As we mentioned in Chapter 1, Property (e) is usually subsumed into the

Jones factorization theorem, but we emphasize that we only need the reverse
factorization property, and not the converse, which is the heart of this result and
more difficult to prove.

Conspicuously missing from this list of properties is any mention of the oper-
ator T : we do not assume that T is linear or even sublinear. In the original proofs
of Rubio de Francia and Garćıa-Cuerva, T was assumed to be sublinear; it was
later noted that this hypothesis is superfluous provided that T is well defined on
the union of Lp(w) for all 1 < p <∞ and w ∈ Ap.

2.2 Extensions of the extrapolation theorem

A very important feature of our proof is that we can adapt it to prove a num-
ber of non-trivial extensions of the Rubio de Francia extrapolation theorem. The
following are the principal generalizations which we will consider in Chapters 3
and 4.

Generalized maximal operators

The Hardy-Littlewood maximal operator is defined in terms of averages over cubes,
as are the Muckenhoupt Ap classes. However, the maximal operator can be gen-
eralized to averages over other families of sets: dyadic cubes, rectangles with sides
parallel to the coordinate axes, etc. For each such maximal operator there is a
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corresponding Ap class, and in many important examples the maximal operator
satisfies one-weight norm inequalities with respect to this class. In each of these
cases there is an extrapolation theorem: the original proofs of Rubio de Francia
and Garćıa-Cuerva both go through, as each author noted.

Our approach makes this extension immediate: since the structural properties
(e) and (f) automatically hold for these generalized Ap classes, our proof extends at
once if we assume that the maximal operator satisfies property (a). We will develop
these ideas carefully in Chapter 3 and use this approach throughout Part I. (In
Part II we will restrict ourselves to the Hardy-Littlewood maximal operator.)

Elimination of the operator

Since we make no assumptions on the operator T , we can reinterpret Theorem 1.4
as follows: if an Lp0(w) inequality holds for pairs of the form (|Tf |, |f |), then an
Lp(w) inequality also holds for such pairs. In fact, we can eliminate the operator T
entirely, and restate the extrapolation theorem for pairs of non-negative functions
(f, g): given a suitably chosen family of pairs of functions (f, g), if for some p0
and all w ∈ Ap0 , ‖f‖Lp0 (w) ≤ ‖g‖Lp0 (w), then for all p and w ∈ Ap, ‖f‖Lp(w) ≤
‖g‖Lp(w).

This perspective was first described in passing in [54], but it was not fully
exploited until later in a series of papers by the authors and their collaborators (see
[40, 44, 45, 57, 93]). The advantage of our approach is that a number of different
results become special cases of a single extrapolation theorem. We consider three
important examples. For clarity we state them in terms of operators, but below
we will treat them in full generality in terms of pairs of functions.

Weak type inequalities

Given an operator T , suppose that for some p0 and all w ∈ Ap0
, T : Lp0(w) →

Lp0,∞(w). Let

Eλ = {x ∈ Rn : |Tf(x)| > λ};

then we can rewrite the weak type (p0, p0) inequality as

‖λχEλ
‖Lp0 (w) ≤ C‖f‖Lp0 (w).

Hence, if we apply extrapolation to the family of pairs (λχEλ
, |f |), we get that

for all p and w ∈ Ap that ‖λχEλ
‖Lp(w) ≤ C‖f‖Lp(w), or equivalently, that T is of

weak type (p, p).

This idea first appeared in [93]. Extrapolation for weak type inequalities was
proved by both Rubio de Francia and Garćıa-Cuerva [83, 195]. However, each gave
a separate proof by adapting the proof in the case of strong type inequalities.
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Vector-valued inequalities

Given an operator T , suppose that it is bounded on Lp0(w) for all w ∈ Ap0 . Then
by extrapolation it is bounded on Lq(w) whenever w ∈ Aq. If we let f = {fi},
we can extend T to a vector-valued operator by defining Tf = {Tfi}. Then we
immediately have that∫

Rn

‖Tf(x)‖q�qw(x) dx ≤ C

∫
Rn

‖f(x)‖q�qw(x) dx.

We can, therefore, apply extrapolation again, this time to the pairs
(‖Tf‖�q , ‖f‖�q),

and conclude that for all p and w ∈ Ap,∫
Rn

‖Tf(x)‖p�qw(x) dx ≤ C

∫
Rn

‖f(x)‖p�qw(x) dx.

Extrapolation to vector-valued inequalities was proved by Rubio de Francia
[195] as part of the original extrapolation theorem. He was led to this extension
because his proof relied on the connection between vector-valued inequalities and
weighted norm inequalities. In [88] it was noted in passing that extrapolation
can be used to prove vector-valued inequalities, but no details were given. Later
authors only considered the scalar case.

Rescaling

There are two versions of the extrapolation theorem that yield Lp(w) inequalities
for weights w that are not in Ap. Rubio de Francia [195] observed that his proof of
the extrapolation theorem could be modified to prove the following: given r > 1,
suppose that for some p0 ≥ r the operator T is bounded on Lp0(w) whenever
w ∈ Ap0/r. Then for all p > r, T is bounded on Lp(w) whenever w ∈ Ap/r. (See
also Duoandikoetxea [68].) As an application, Rubio de Francia used this result to
proved weighted Littlewood-Paley inequalities. Other operators that satisfy such
inequalities include the square function g∗λ (see [153, 219]) and singular integrals
with rough kernels (see [67, 119, 196, 228]).

This version of the extrapolation theorem is an immediate consequence of the
general result for pairs of functions. We can restate the Lp0 inequality as an Lp0/r

inequality: ‖|Tf |r‖Lp0/r(w) ≤ C‖|f |r‖Lp0/r(w). Hence, we can apply extrapolation
to the pairs (|Tf |r, |f |r) to get the desired inequality for all p and w ∈ Ap/r.

An extrapolation theorem for A∞ weights was introduced in [44]: given a
pair of operators S and T , suppose that for some p0, 0 < p0 < ∞, and for all
w ∈ A∞, ‖Tf‖Lp0 (w) ≤ C‖Sf‖Lp0 (w). Then for all p, 0 < p < ∞, ‖Tf‖Lp(w) ≤
C‖Sf‖Lp(w) whenever w ∈ A∞. The original proof of this result did not use Rubio
de Francia extrapolation; the proof was direct and had two steps, similar to the
proof of Theorem 1.4 due to Duoandikoetxea [68]. However, A∞ extrapolation is
an immediate corollary of the general extrapolation theorem for pairs of functions.
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Since the Ap classes are nested, w ∈ A∞ is equivalent to w ∈ Ap0/r for some r,
0 < r < p0. Therefore, this result follows by the same rescaling argument as before.

As we noted in Chapter 1, inequalities of this type were introduced by Coif-
man and Fefferman [25], who showed that if T is a Calderón-Zygmund singular
integral, then for all p and w ∈ A∞, ‖Tf‖Lp(w) ≤ C‖Mf‖Lp(w). This and re-
lated estimates were originally proved using good-λ inequalities, but in [44] we
showed that they can also be proved using extrapolation. As there is no stan-
dard terminology, we refer to all such inequalities involving pairs of operators as
Coifman-Fefferman inequalities.

In Chapter 3 we will prove the extrapolation theorem for pairs of functions,
and we will also provide the details on the above applications. Throughout this
monograph we will state and prove all the extrapolation theorems in this general-
ity.

Sharp constants

Initially, little attention was paid to the exact constant obtained via extrapo-
lation: the primary concern was to establish weighted Lp estimates. However,
beginning with the work of Buckley [15], there has been increasing interest in
the best constants in weighted norm inequalities (in terms of the Ap constant
of the weight). In particular, the results of Astala, Iwaniec and Saksman [6] on
the Beltrami equation (discussed in Section 1.2) showed that sharp constants had
important consequences. Sharp constants for singular integrals and other opera-
tors have been considered by a number of authors: see [48, 49, 65, 121, 127, 129,
130, 179, 181, 182, 184]. For every operator except the Hardy-Littlewood maximal
operator, sharp constants were proved for a specific value of p (usually but not
universally p = 2) and then extrapolation was used to find the best constant for
all other values of p.

If the constant in the initial Lp0 inequality is Np0
([w]Ap0

), where Np0
is an

increasing function with values in [1,∞), then it can be shown that the constants
gotten for Lp inequalities are{

21/p0Np0(Cn,p,p0 [w]Ap) p > p0,

21/p
′
0Np0

(Cn,p,p0
[w]

p0−1
p−1

Ap
) p < p0.

These bounds are sharp in the sense that for many operators (e.g. the Hilbert
transform) the resulting constants are the best possible. These bounds were first
obtained by Petermichl and Volberg [184] for p > p0 = 2, and then for all p and
p0 by Dragičević, et al. [65]. These proofs required a careful adaptation of the two
case proof of Garćıa-Cuerva. A simpler proof was given by Grafakos [92].

The singular weakness of our proof is that it does not yield these sharp
constants. A close examination of the proof shows that the constant is

Np0
(Cn,p0,p[w]

1+
p0−1
p−1

Ap
).
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This estimate depends on the best constant for ‖M‖Lp(w) due to Buckley [15]
(see also the recent proof by Lerner [127]) and details are left to the reader. This
appears to be intrinsic to our proof: since we treat all values of p simultaneously we
must use both iteration algorithms, and this yields a larger constant. However, by
treating the cases separately we can refine our approach to get the sharp constants,
and we do so in the context of Muckenhoupt bases. Our proof uses some ideas from
recent work of Duoandikoetxea [69].

Off-diagonal extrapolation

We can extend our proof of Theorem 1.4 to prove extrapolation for “off-diagonal”
inequalities. More precisely, given p, q, 1 < p < q < ∞, we say that w ∈ Ap,q if
for every cube Q,(

−
∫
Q

w(x)q dx

)1/q (
−
∫
Q

w(x)−p′
dx

)1/p′

≤ K <∞.

Suppose an operator T is such that for some p0, q0, and every w ∈ Ap0,q0 , T :
Lp0(wp0)→ Lq0(wq0). Then for all pairs (p, q) such that 1/p− 1/q = 1/p0 − 1/q0,
and all w ∈ Ap,q, T : Lp(wp) → Lq(wq). In addition, though we do not explore
it in detail, our approach yields many of the same extensions and generalizations
described above (such as vector-valued inequalities) in the off-diagonal case.

Off-diagonal extrapolation was first proved by Harboure, Maćıas and Segovia
[96] by adapting the proof of Garćıa-Cuerva. Our proof simplifies and extends
theirs. It is applicable to the study of the so-called fractional operators, for instance
the fractional integral operators, also known as the Riesz potentials.

Extrapolation for arbitrary pairs of operators

In the proof of Theorem 1.4 we can replace M (and so M ′) not just with a more
general maximal operator as we discussed above, but with an arbitrary pair of
positive, sublinear operators, T, T ′. If we do so, however, we need to replace Ap

weights with weight classes associated to these operators. This generalization was
implicit in Coifman, Jones and Rubio de Francia [26], and was made explicit by
Jawerth [108], who replaced the maximal operator with a positive sublinear oper-
ator T . (Also see Bloom [13].) Later, Hernández [102] and Ruiz and Torrea [198]
extended the argument to two arbitrary operators. A version of this technique was
used by Watson [229] to prove norm inequalities for a family of rough operators.

Using our approach we can easily deduce what we need to assume about the
operators T and T ′, though the situation is complicated by the fact that prop-
erty (e), reverse factorization, does not necessarily hold in this context. We will
give a precise statement and proof in Chapter 3. We consider the special case of
extrapolation for the one-sided Ap weights associated with the one-sided maxi-
mal operators. These weights were introduced by Sawyer [206], and extensively
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explored by Mart́ın-Reyes, et al. [139, 140, 141, 142]. Extrapolation results were
proved in [134, 141, 198].

Limited range extrapolation

The conclusion of Theorem 1.4 yields that the operator T is bounded on Lp(w),
1 < p < ∞. Therefore, extrapolation cannot be applied to operators T that are
only bounded, for instance, on Lp if 1 < p− < p < p+ < ∞. Operators of this
type include the Riesz transforms and square functions associated with divergence
form elliptic operators; see [7, 8] for precise definitions and results.

A restricted range extrapolation theorem can be gotten, however, by restrict-
ing the class of weights to Ap∩RHs for some s > 1 depending on p. Results of this
kind have been obtained by Johnson and Neugebauer [109] and by Duoandikoetxea
et al. [70]. Here we use our techniques to prove a limited range extrapolation the-
orem that generalizes the extrapolation result in [9] and includes the above results
as special cases.

We note in passing that a different kind of limited range extrapolation the-
orem was proved by Passarelli di Napoli [168].

Extrapolation to Banach function spaces

Since our proof of Theorem 1.4 only uses a basic property of Lp(w)—the existence
of an associate space—we can replace Lp(w) by more general Banach function
spaces. Given a Banach function space X, with modest assumptions we have that
M is bounded on X and M ′ is bounded on its associate space X′. Thus we can
show that if T is bounded on Lp(w) whenever w ∈ Ap, then T is bounded on X. If
X is rearrangement invariant, then we can also get estimates for T on the weighted
spaces X(w).

Further, as we noted above, by a clever choice of the “dual function” h we
do not have to use duality explicitly. This point of view can be extended to let us
extrapolate to so-called modular spaces (see [156]) and so obtain weighted modular
inequalities, ∫

Rn

Φ(|Tf(x)|)w(x) dx ≤ C

∫
Rn

Φ(|f(x)|)w(x) dx,

where Φ is a Young function, as a consequence of weighted Lp inequalities. Such
inequalities have been considered extensively by many authors: see [90, 114, 115]
for details and further references. We will consider all of these results and their
applications in Chapter 4.

This extension of extrapolation is new: the idea of extending extrapolation
to modular inequalities and Banach function spaces first appeared in [57] where
the authors and their collaborators used it to prove A∞ extrapolation theorems
for rearrangement invariant Banach function spaces and modular spaces. In [40]
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extrapolation results were obtained for variable Lp spaces, Banach function spaces
that are not rearrangement invariant. Here we unite and extend both results.
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