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Abstract. For a bounded pseudo-differential operator with the dense domain
C∞(S1) on Lp(S1), the minimal and maximal operator are introduced. An
analogue of Agmon-Douglis-Nirenberg [1] is proved and then is used to prove
the uniqueness of the closed extension of an elliptic pseudo-differential oper-
ator of symbol of positive order. We show the Fredholmness of the minimal
operator. The essential spectra of pseudo-differential operators on S

1 are de-
scribed.
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1. Introduction

In this paper the focus is on pseudo-differential operators on the unit circle S
1

centered at the origin. For −∞ < m <∞, let Sm(S1 × Z) be the set all functions
σ in C∞(S1 × Z) such that for all nonnegative integers α and β there exists a
positive constant Cα,β for which

|(∂αθ ∂βnσ)(θ, n)| ≤ Cα,β(1 + |n|)m−β , θ ∈ [−π, π], n ∈ Z.

Let σ ∈ Sm(S1 × Z), −∞ < m < ∞. Then we define the pseudo-differential
operator Tσ on L1(S1) by

(Tσf)(θ) =
∑

n∈Z

einθσ(θ, n)(FS1f)(n), θ ∈ [−π, π],

where

(FS1f)(n) = (2π)−1

∫ π

−π
e−inθf(θ) dθ, n ∈ Z.

Basic properties of pseudo-differential operators with symbols in Sm(S1 × Z),
−∞ < m < ∞, can be found in [2, 3, 4, 6, 10, 9]. The basic calculi for the
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product and the formal adjoint of pseudo-differential operators with symbols in
Sm(S1 × Z) can be found in [9].

A symbol σ in Sm(S1×Z), −∞ < m <∞, is said to be elliptic if there exist
positive constants C and R such that

|σ(θ, n)| ≥ C(1 + |n|)m, |n| ≥ R, θ ∈ [−π, π].

The following theorem gives a parametrix for an elliptic pseudo-differential oper-
ator with symbol in Sm(S1 × Z), ∞ < m < −∞, see [9].

Theorem 1.1. Let σ ∈ Sm(S1 × Z), −∞ < m <∞ be elliptic. Then there exists a
symbol τ ∈ S−m(S1 × Z) such that

TσTτ = I +K and TτTσ = I +R,

where K and R are infinitely smoothing in the sense that they are pseudo-differ-
ential operators with symbols in ∩m∈RS

m(S1 × Z).

Similar results for the symbol class Sm(Rn × R
n) of the pseudo-differential

operators on R
n have been studied for example in [15].

In Section 2, we recall Lp-Sobolev spacesHs,p,−∞ < s <∞, 1 ≤ p ≤ ∞, and
we give some of the results in [7]. Then in Section 3, we consider bounded pseudo-
differential operators Tσ on Lp(S1), 1 < p < ∞ with dense domain C∞(S1). The
smallest and largest closed extension of Tσ are provided. The analogue of Agmon-
Douglis-Nirenberg [1], is given to prove that for an elliptic symbol σ of positive or-
derm, the corresponding pseudo-differential operator has a unique closed extension
with domain Hm,p on Lp(S1). In Section 4, we focus on Fredholmness of pseudo-
differential operator and its essential spectrum. Results on the Fredholmness of
pseudo-differential operators on R

n can be found in [16, 13]. By using Theorem
2.9 in [7], we see that the minimal operator of an elliptic pseudo-differential oper-
ator of positive order is Fredholm. The essential spectra of the pseudo-differential
operator and the minimal (maximal) operator are then provided. Similar results
for the SG Pseudo-differential operator on R

n are given in [5, 8].

2. Lp-Sobolev spaces

For −∞ < s < ∞, let Js be the pseudo-differential operator with symbol σs
given by

σs(n) = (1 + |n|2)−s/2, n ∈ Z.

Js is called the Bessel potential of order s.
Now, for −∞ < s < ∞ and 1 ≤ p ≤ ∞, we define the Lp-Sobolev space

Hs,p to be the set of all tempered distributions u for which J−su is a function in
Lp(S1). Then Hs,p is a Banach space in which the norm ‖ · ‖s,p is given by

‖u‖s,p = ‖J−su‖Lp(S1), u ∈ Hs,p.

It is easy to show that for −∞ < s, t <∞, Jt is an isometry of Hs,p onto Hs+t,p.
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The following theorem is known as Sobolev embedding theorem.

Theorem 2.1. Let 1 < p <∞ and s ≤ t. Then Ht,p ⊆ Hs,p and

‖u‖s,p ≤ ‖u‖t,p, u ∈ Ht,p.

Proposition 2.2. Let σ ∈ Sm(S1 × Z), −∞ < m < ∞. Then Tσ : Hs,p → Hs−m,p

is a bounded linear operator for 1 < p <∞.

Proposition 2.3. Let s < t. Then the inclusion operator i : Ht,p ↪→ Hs,p is compact
for 1 ≤ p ≤ ∞.

The results above can be found in [7].

3. Minimal and maximal operators

Let σ ∈ Sm(S1×Z), m ∈ R. Then the formal adjoint of Tσ, denoted T ∗
σ is a linear

operator on C∞(S1) such that

(Tσϕ, ψ) = (ϕ, T ∗
σψ), ϕ, ψ ∈ C∞(S1).

It can be proved that the formal adjoint of Tσ is a pseudo-differential operator
of symbol of order −m (see [10]). The following proposition guarantee that the
minimal operator of Tσ exists.

Proposition 3.1. Let Sm(S1 × Z), −∞ < m < ∞. Then Tσ : Lp(S1) → Lp(S1) is
closable with dense domain C∞(S1) for 1 < p <∞.

Proof. Let {ϕk}∞k=1 be a sequence in C∞(S1) such that ϕk → 0 and Tσϕk → f for
some f in Lp(S1) as k→∞. We only need to show that f = 0. We have

(Tσϕk, ψ) = (ϕk, T ∗
σψ), ψ ∈ C∞(S1), k = 1, 2, . . . .

Let k → ∞, then (f, ψ) = 0 for all ψ ∈ C∞(S1). By the density of C∞(S1) in
Lp(S1), it follows that f = 0. �

Consider Tσ : Lp(S1) → Lp(S1) with domain C∞(S1). Then by Proposition
3.1, Tσ has a closed extension. Let Tσ,0 be the minimal operator of Tσ which is the
smallest closed extension of Tσ. Then the domain D(Tσ,0) of Tσ,0 consists of all
functions u ∈ Lp(S1) for which there exists a sequence {ϕk}∞k=1 in C∞(S1) such
that ϕk → u in Lp(S1) and Tσϕk → f for some f ∈ Lp(S1) in Lp(S1) as k → ∞.
It can be shown that f does not depend on the choice of {ϕk}∞k=1 in C∞(S1) and
Tσ,0u = f .

We define the linear operator Tσ,1 on Lp(S1) with domain D(Tσ,1) by the
following. Let f and u be in Lp(S1). Then we say that u ∈ D(Tσ,1) and Tσ,1u = f
if and only if

(u, T ∗
σϕ) = (f, ϕ), ϕ ∈ C∞(S1).

It can be proved that Tσ,1 is a closed linear operator from Lp(S1) into Lp(S1) with
domain D(Tσ,1) containing C∞(S1). In fact, C∞(S1) is contained in the domain
D(T tσ,1) of the true adjoint T tσ,1 of Tσ,1. Furthermore, Tσ,1(u) = Tσ(u) for all u in
D(Tσ,1).
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It is easy to see that Tσ,1 is an extension of Tσ,0. In fact Tσ,1 is the largest
closed extension of Tσ in the sense that if B is any closed extension of Tσ such that
C∞(S1) ⊆ D(Bt), then Tσ,1 is an extension of B. Tσ,1 is called the maximal opera-
tor of Tσ. The following theorem is an analogue of Agmon-Douglis-Nirenberg in [1].

Proposition 3.2. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then there exist positive
constants C and D > 0 such that

C‖u‖m,p ≤ ‖Tσu‖Lp(S1) + ‖u‖Lp(S1) ≤ D‖u‖m,p, u ∈ Hm,p.

Proof. By the boundedness of Tσ in Proposition 2.2 and the boundedness of the
inclusion operator in Theorem 2.1, there exists a positive constant D such that for
all u ∈ Hm,p,

‖Tσu‖Lp(S1) + ‖u‖Lp(S1) ≤ D‖u‖m,p, u ∈ Hm,p.

Since σ ∈ Sm(S1 × Z) is elliptic, by Theorem 1.1, there exists a symbol τ ∈
S−m(S1 × Z) such that

u = TτTσu−Ru, u ∈ Hm,p,

where R is an infinitely smoothing operator in the sense that R is a pseudo-
differential operator with symbol in ∩m∈RS

m(S1 × Z). By using Proposition 2.2
again, Tσu ∈ Lp(S1). Therefore, TτTσu ∈ Hm,p, for all u ∈ Hm,p, Moreover there
exists a positive constant C such that

‖u‖m,p ≤ C(‖Tσu‖Lp(S1) + ‖u‖Lp(S1)), u ∈ Hm,p. �
We have the following result which we use in the next theorem.

Lemma 3.3. Let s ∈ R and 1 < p <∞. Then C∞(S1) is dense in Hs,p.

Proof. Let u ∈ Hs,p. Then J−su ∈ Lp(S1). Since C∞(S1) is dense in Lp(S1), there
exists a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → J−su in Lp(S1) as k → ∞.
Let ψk = Jsϕk, k = 1, 2, . . . . Then ψk ∈ C∞(S1), k = 1, 2, . . . , and

‖ψk − u‖s,p = ‖J−sψk − J−su‖Lp(S1)

= ‖ϕk − J−su‖Lp(S1) → 0,

as k →∞, which completes the proof. �
The following theorem gives the domain of the minimal operator of an elliptic

pseudo-differential operator with symbol of positive order.

Theorem 3.4. Let σ ∈ Sm(S1 × Z), m > 0, be elliptic. Then D(Tσ,0) = Hm,p.

Proof. Let u ∈ Hm,p. Then by using the density of C∞(S1) in Hm,p, there exists
a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → u in Hm,p and therefore in Lp(S1)
as k → ∞. By Proposition 3.2, ϕk and Tσϕk are Cauchy sequences in Lp(S1).
Therefore ϕk → u and Tσϕk → f for some f in Lp(S1) as k → ∞. This implies
that u ∈ D(Tσ,0) and Tσ,0u = f . Now assume that u ∈ D(Tσ,0). Then there exists
a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → u in Lp(S1) and Tσϕk → f , for
some f ∈ Lp(S1) as k →∞. So, by Proposition 3.2, {ϕk}∞k=1 is a Cauchy sequence
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in Hm,p. Since Hm,p is complete, there exists v ∈ Hm,p such that ϕk → v in Hm,p

as k → ∞. By Sobolev embedding theorem ϕk → v in Lp(S1) which implies that
u = v ∈ Hm,p. �

The following theorem shows that the closed extension of an elliptic pseudo-
differential operator on Lp(S1) with symbol σ ∈ Sm(S1×Z), m > 0, is unique and
moreover by Theorem 3.4, its domain is Hm,p.

Theorem 3.5. Let σ ∈ Sm(S1 × Z), m > 0, be elliptic. Then Tσ,0 = Tσ,1.

Proof. Since Tσ,1 is a closed extension of Tσ,0, by Theorem 3.4, it is enough to
show that D(Tσ,1) ⊆ Hm,p. Let u ∈ D(Tσ,1). By ellipticity of σ, there exists
τ ∈ S−m(S1 × Z) such that

u = TτTσu−Ru,
where R is an infinitely smoothing operator. Since Tσu = Tσ,1u ∈ Lp(S1), by
Proposition 2.2, it follows that u ∈ Hm,p, which completes the proof. �

4. Fredholm pseudo-differential operators

A closed linear operator A from a complex Banach space X into a complex Banach
space Y with dense domain D(A) is said to be Fredholm if
• the range of A, R(A) is closed subspace of Y and
• the null space of A, N(A) and the null space of the true adjoint of A, N(At)

are finite dimensional.
The index of a Fredholm operator A is defined by

i(A) = dimN(A) − dimN(At)

By Atkinson’s theorem, a closed linear operator A : X → Y with dense domain
D(A) is Fredholm if and only if there exists a bounded linear operator B : Y → X
such that K1 = AB − I : Y → Y and K2 = BA − I : X → X are compact
operators.
Let A : X → X be a closed linear operator with dense domain D(A) in the complex
Banach space X . Then the spectrum of A, Σ(A) is defined by

Σ(A) = C− ρ(A),

where ρ(A) is the resolvent set of A given by

ρ(A) = {λ ∈ C : A− λI is bijective}.
The essential spectrum Σw(A) of A, which has been defined in [14] by Wolf given by

Σw(A) = C− Φw(A), where Φw(A) = {λ ∈ C : A− λI is Fredholm}.
Note that i(A− λI) is constant for all λ in a connected component of Φw(A).
The essential spectrum Σs(A) of A in sense of Schechter [11] is defined by

Σs(A) = C− Φs(A), where Φs(A) = {λ ∈ Φw(A) : i(A− λI) = 0}.
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For the properties of essential spectra see [12]. The following theorem gives a
sufficient condition for Tσ : Hs,p → Hs−m,p to be a Fredholm operator. The proof
can be found in [7].

Theorem 4.1. Let σ ∈ Sm(S1 × Z), −∞ < m < ∞ be elliptic. Then for all
−∞ < s < ∞ and 1 < p < ∞, Tσ : Hs,p → Hs−m,p is a Fredholm operator. In
particular if σ ∈ S0(S1×Z), then the bounded linear operator Tσ : Lp(S1)→ Lp(S1)
is Fredholm.

The following is an immediate corollary of Theorem 3.4 and Theorem 4.1.

Corollary 4.2. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then for 1 < p < ∞, Tσ,0
is a Fredholm operator on Lp(S1) with the domain Hm,p.

The following theorem gives the essential spectrum of an elliptic pseudo-
differential operator of positive order.

Theorem 4.3. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then

Σw(Tσ,0) = ∅.

Proof. Let λ ∈ C. By Corollary 4.2, we need only to show that σ − λ is elliptic.
The ellipticity of σ, implies that there exist constants C,R > 0 such that

|σ(θ, n)− λ| ≥ C(1 + |n|)m − |λ| = (1 + |n|)m(C − |λ|
(1 + |n|)m ), θ ∈ [−π, π],

whenever |n| ≥ R. Since (1 + |n|)m → ∞ as |n| → ∞, there exists M > 0 such
that

|σ(θ, n)− λ| ≥ C

2
(1 + |n|)m, |n| ≥M, θ ∈ [−π, π],

which implies that σ − λ is elliptic. �
Let σ ∈ Sm(S1 × Z), m ≥ 0. Then the following theorem is a result on the

essential spectra of the bounded pseudo-differential operator Tσ with the domain
Hm,p on Lp(S1).

Theorem 4.4. Let σ ∈ Sm(S1×Z), m ≥ 0. Then for Tσ on Lp(S1) with the domain
Hm,p, 1 < p <∞, we have

Σw(Tσ) ⊆ {λ ∈ C : |λ| ≥ Li},
where

Li = lim inf
|n|→∞

{( inf
θ∈[−π,π]

|σ(θ, n)|)(1 + |n|)−m}.

Proof. Let λ ∈ C be such that |λ| < Li. Then there exists ε > 0 such that

|λ|+ ε < Li.

Since m ≥ 0, it follows that |λ| < (Li − ε)(1 + |n|)m. On the other hand, there
exists a positive constant R such that

inf
|n|≥R

{( inf
θ∈[−π,π]

|σ(n, θ)|)(1 + |n|)−m} > Li − ε

2
.
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So, for |n| ≥ R,

|σ(θ, n) − λ| ≥ |σ(θ, n)| − |λ|
> (Li − ε

2
− Li + ε)(1 + |n|)m

=
ε

2
(1 + |n|)m, θ ∈ [−π, π].

Therefore, σ − λ is elliptic and hence Tσ − λI : Lp(S1) → Lp(S1) with domain
Hm,p is Fredholm. Thus,

{λ ∈ C : |λ| < Li} ⊆ Φw(Tσ),

which implies that
Σw(Tσ) ⊆ {λ ∈ C : |λ| ≥ Li}. �

We have the following theorem on the essential spectrum of a pseudo-differ-
ential operator of order 0 from Lp(S1) into Lp(S1).

Theorem 4.5. Let σ ∈ S0(S1 × Z). Then for Tσ : Lp(S1) → Lp(S1), 1 < p < ∞,
we have

Σs(Tσ) ⊆ {λ : |λ| ≤ Ls},
where

Ls = lim sup
|n|→∞

{ sup
θ∈[−π,π]

|σ(θ, n)|}.

Proof. Let λ ∈ C such that |λ| > Ls. Then there exists ε > 0 such that

|λ| − ε > Ls,

and there exists a positive number R such that

sup
|n|≥R

{ sup
θ∈[−π,π]

|σ(θ, n)|} < Ls +
ε

2
.

For all |n| ≥ R,

|σ(θ, n)− λ| ≥ |λ| − |σ(θ, n)|
> Ls + ε− Ls − ε

2
=
ε

2
, θ ∈ [−π, π].

Hence σ−λ is elliptic and by Theorem 4.1, Tσ−λI : Lp(S1)→ Lp(S1) is Fredholm.
Thus,

{λ ∈ C : |λ| > Ls} ⊆ Φw(Tσ),
which is the same as

Σw(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}.
Since {λ ∈ C : |λ| > Ls} is a connected component of Φw(Tσ), it follows that
i(Tσ − λI) is a constant for all λ in {λ ∈ C : |λ| > Ls}. On the other hand,

ρ(Tσ) ∩ {λ ∈ C : |λ| > Ls} �= ∅.
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Therefore, i(Tσ − λI) = 0 for all {λ ∈ C : |λ| > Ls}. This implies that

Σs(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}. �
We have the following spectral alternative for a pseudo-differential operator

with symbol in S0(S1 × Z).

Corollary 4.6. Let σ ∈ S0(S1 × Z) be such that

lim sup
|n|→∞

( sup
θ∈[−π,π]

|σ(θ, n)|) = lim inf
|n|→∞

( inf
θ∈[−π,π]

|σ(θ, n)|) = L > 0.

Then

Σw(Tσ) = {λ ∈ C : |λ| = L} or Σs(Tσ) ⊆ {λ ∈ C : |λ| = L}.
Proof. By Theorem 4.4 and Theorem 4.5,

Σw(Tσ) ⊆ {λ ∈ C : |λ| = L}.
Suppose that

Σw(Tσ) �= {λ ∈ C : |λ| = L}.
Then there exists λ0 ∈ C such that |λ0| = L and λ0 ∈ Φw(Tσ). On the other hand,
by Theorem 4.5,

{λ ∈ C : |λ| > L} ⊆ Φs(Tσ).
Hence using the fact that Φw(Tσ) is an open set and the index of Tσ − λI is
constant on on every connected component of Φw(Tσ) we get i(Tσ − λI) = 0 for
all λ ∈ C with |λ| �= L, which is the same as

Σs(Tσ) ⊆ {λ ∈ C : |λ| = L},
as asserted. �
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