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Abstract. In this paper we present a couple of old and new results related to
the problem of large coupling convergence. Several aspects of convergence are
discussed, namely norm resolvent convergence as well as convergence within
Schatten-von Neumann classes. We also discuss the rate of convergence with
a special emphasis on the optimal rate of convergence, for which we give
necessary and sufficient conditions. The collected results are then used for the
case of Dirichlet operators. Our method is purely analytical and is supported
by a wide variety of examples.
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1. Introduction

For non-negative potentials V , convergence of Schrödinger operators −Δ+ bV as
the coupling constant b goes to infinity has been studied for a long time, cf. [9],
[11], [12], and the references therein. Motivated by the fact that there has been
created a rich theory of point interactions described in detail in the monograph
[1], one has recently made an attempt to include singular, measure-valued po-
tentials in these investigations. In addition, it turned out that perturbations by
differential operators of the same order are important in a variety of applications
in engineering, cf. [14], [15].

All the mentioned families (Hb)b>0 of operators are of the following form:
One is given a non-negative self-adjoint operator H in a Hilbert space H. Set

D(E) := D(
√

H),

E(u, v) := (
√

Hu,
√

Hv) ∀u, v ∈ D(E).
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E is a form in H, i.e., a semi-scalar product on a linear subspace of H. Hence

E1(u, v) := E(u, v) + (u, v) ∀u, v ∈ D(E)

defines a scalar product on D(E). The form E is closed, i.e., (D(E), E1) is a Hilbert
space. Moreover, it is densely defined, i.e., D(E) is dense in H. In addition, one is
given a form P in H such that for every b > 0 the form E + bP , defined by

D(E + bP) := D(E) ∩D(P),
(E + bP)(u, v) := E(u, v) + bP(u, v) ∀u, v ∈ D(E + bP),

is densely defined and closed. Then, by Kato’s representation theorem, for every
b > 0 there exists a unique non-negative self-adjoint operator Hb in H such that

D(
√

Hb) = D(E + bP),∥∥√Hbu
∥∥2 = (E + bP)(u, u) ∀u ∈ D(E + bP).

Hb is called the self-adjoint operator associated with E + bP . By Kato’s monotone
convergence theorem, the operators (Hb + 1)−1 converge strongly as b goes to
infinity. In a wide variety of applications it turns out that it is more easy to
analyze the limit than the approximants (Hb + 1)−1. For this reason one might
use the following strategy for the investigation of the operator Hb for large b: One
studies the limit of the operators (Hb+1)−1 and estimates the error one produces
by replacing (Hb + 1)−1 by the limit. This leads to the question about how fast
the operators (Hb + 1)−1 converge. It is also important to find out which kind of
convergence takes place. For instance, convergence with respect to the operator
norm admits much stronger conclusions about the spectral properties than strong
convergence, cf., e.g., the discussion of this point in [22, Chap. VIII.7].

One has achieved a variety of results within the general framework described
above. One has discovered that there exists a universal upper bound for the rate
of convergence (Corollary 2.8), and one has derived a criterion for convergence
with maximal rate (Theorem 2.7). In general, only strong convergence takes place.
However, one has found a variety of conditions which are sufficient for locally uni-
form convergence (Theorem 2.6, Theorem 2.7, and Proposition 2.9), and in certain
cases one has even arrived at estimates for the rate of convergence (Theorem 2.7
and Proposition 2.9).

One has even found conditions which are sufficient for convergence within
a Schatten (-von Neumann) class of finite order, cf. Sections 2.5 and 2.6.2. This
admits strong conclusions about the spectral properties. For instance, if H and
H0 are non-negative self-adjoint operators and (H +1)−1− (H0 +1)−1 belongs to
the trace class, then, by the Birman-Kuroda theorem, the absolutely continuous
spectral parts of H and H0 are unitarily equivalent and, in particular, H and H0

have the same absolutely continuous spectrum. Often, (H+1)−1−(H0+1)−1 does
not belong to the trace class, but (H+1)−k−(H0+1)−k for some sufficiently large
k does and, again the Birman-Kuroda Theorem, this implies that the absolutely
continuous parts of H and H0 are unitarily equivalent. This note also contains some
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new results on the convergence of powers of resolvents, cf. Section 2.8. These results
are based on a generalization of the celebrated Dynkin’s formula in Section 2.7.

One has introduced the concept of the trace of a Dirichlet form in order to
study time changed Markov processes. The generator of the time changed process
plays also an important role in the investigation of large coupling convergence for
the Dirichlet operators, cf. Section 3.2. If one perturbs a Dirichlet operator by an
equilibrium measure times a coupling constant b and let b go to infinity, then one
gets, at least in the conservative case, large coupling convergence with maximal
rate, cf. Theorem 3.16. A simple domination principle described in Section 3.3
makes it possible to use results on the perturbation by one measure in order to
derive results on perturbations by other measures.

In this note we concentrate on non-negative perturbations. If one studies large
coupling convergence of magnetic Schrödinger operators, then one needs different
techniques. We refer to [17] and the references therein for results in this direction.

In addition to new results we have collected material which can be found
at the following places (we do not claim that these are the original sources in all
cases):

[3]: Lemma 3.7
[4]: Lemmas 2.2 and 2.4, Theorems 2.6 and 2.7, Corollary 2.8,

Proposition 2.9 a), Sections 2.5 and 3.4
[6]: Lemma 2.3, Lemma 2.15
[7]: Section 2.6.1, Examples 2.1 and 3.19, and Eqs. (3.20) and (3.22)
[8]: Section 2.7
[13]: Section 2.4 up to Lemma 2.15 and the examples,

Section 3.1, and Theorem 3.5, cf. also [20]
[16]: Eq. (3.21)
[23]: Eq. (2.10)
[25]: Lemma 2.5

2. Non-negative form perturbations

2.1. Notation and general hypotheses

Let E denote a densely defined closed form in the Hilbert space (H, ( ·, · )) and H
be the self-adjoint operator associated with E . Let P denote a form in H such that
E+P is a densely defined and closed form in H. Note that we do not require P be
closable, i.e., we do not only admit regular, but also singular form perturbations
of H .

Example 2.1. Let J be a closed operator from the Hilbert space (D(E), E1) to an
auxiliary Hilbert space Haux. Let

D(P) := D(J),

P(u, v) := (Ju, Jv)aux ∀u, v ∈ D(J).
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Then E + bP is a closed form in H for every b > 0. If D(J) is dense in (D(E), E1)
and, in addition, ran(J) is dense in Haux, then JJ∗ is an invertible non-negative
self-adjoint operator in Haux.

Proof. Let (un) be a sequence in D(E + bP) = D(J) such that

(E + bP) (un − um, un − um) + ‖un − um‖2

= E1(un − um, un − um) + b‖Jun − Jum‖2aux → 0 as n,m→∞. (2.1)

In order to prove that E + bP is closed we only have to show that there exists a
u ∈ D(J) such that

(E + bP)(un − u, un − u) + ‖un − u‖2

= E1(un − u, un − u) + b ‖Jun − Ju‖2aux → 0 as n→∞.

Since E1 is non-negative and b > 0, it follows from (2.1) that

E1(un − um, un − um)→ 0 as n,m→∞.

Since E is closed, this implies that there exists a u ∈ D(E) such that

E1(un − u, un − u)→ 0 as n→∞. (2.2)

Since E1 is non-negative and b > 0, it also follows from (2.1) that

‖Jun − Jum‖2aux → 0 as n,m→∞

and hence the sequence (Jun) in Haux is convergent. Since J is a closed operator
from the Hilbert space (D(E), E1) to the Hilbert space Haux and (Jun) is conver-
gent in Haux, (2.2) implies that u ∈ D(J) and ‖Jun − Ju‖aux → 0. Thus E + bP
is closed.

Suppose now, in addition, that D(J) is dense in (D(E), E1) and ran(J) is
dense in Haux. Since J is closed, the domain D(J∗) of the adjoint J∗ of J is dense
in Haux and J = J∗∗. Hence JJ∗ is a non-negative self-adjoint operator in Haux.
If JJ∗u = 0, then E1(J∗u, J∗u) = (u, JJ∗u)aux = 0 and hence u ∈ ker(J∗) =
ran(J)⊥. ran(J)⊥ = {0}, since ran(J) is dense in Haux. Thus all assertions in the
example are proven. �

Indeed, Example 2.1 covers the most general non-negative form perturbation of H :

Lemma 2.2. There exist an auxiliary Hilbert space Haux and a closed operator J
from the Hilbert space (D(E), E1) to Haux such that

D(J) = D(E + P),
(Ju, Jv)aux = P(u, v) ∀u, v ∈ D(J),

and ran(J) is dense in Haux. Thus, in particular, E+ bP is closed for every b > 0.
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Proof. We define an equivalence relation ∼ on D(E)∩D(P) as follows: f ∼ g if and
only if P(f − g, f − g) = 0. For every f ∈ D(E) ∩D(P) let [f ] be the equivalence
class with respect to this equivalence relation and denote by Haux the completion
of the quotient space (D(E) ∩D(P),P)/ ∼, with respect to the norm

‖|[f ]‖| = P(f, f), ∀ [f ] ∈
(
D(E) ∩D(P)

)
/ ∼ .

Then it easily follows from the hypothesis that E + P is closed that

D(J) := D(E) ∩D(P),
Jf := [f ] ∀ f ∈ D(J),

defines a closed operator from (D(E), E1) toHaux with the required properties. �

In the following, we choose an auxiliary Hilbert space Haux and a closed
operator J from (D(E), E1) to Haux as in the previous lemma, i.e., such that

D(J) = D(E) ∩D(P),
(Ju, Jv)aux = P(u, v) ∀u, v ∈ D(J), (2.3)

and set

EJ := E + P . (2.4)

For every b > 0, we denote by HJ
b (or simply by Hb if J is clear from the context)

the self-adjoint operator in H associated with E + bP .
If not stated otherwise, we assume, in addition, that

D(J) ⊃ D(H). (2.5)

This hypothesis is less restrictive than it might seem at a first glance. In fact,
J may also be regarded as an operator from

(
D(EJ ), EJ1

)
to Haux and then J

is a bounded, everywhere defined operator and, in particular, it is closed. Thus,
if necessary, we may replace E and H by EJ and H1, respectively, and then the
hypothesis (2.5) is satisfied (with H1 in place of H). Moreover, we have

Hb+1 = (H1)b ∀ b > 0,

lim
b→∞

(Hb + 1)−1 = lim
b→∞

((H1)b + 1)−1. (2.6)

Under the hypothesis (2.5), D(J) is dense in (D(E), E1), and we set

Ȟ := (JJ∗)−1. (2.7)

Note that Ȟ is an invertible non-negative self-adjoint operator in Haux.
Let

D(EJ∞) := {u ∈ D(E + P) : P(u, u) = 0},
EJ∞(u, v) := E(u, v) ∀u, v ∈ D(E∞), (2.8)

where J and P are related via (2.3) (often we shall omit J in the notation). Let

HJ∞ := {u ∈ D(E + P) : P(u, u) = 0}, (2.9)
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i.e., let HJ∞ be the closure of the kernel of J in the Hilbert space H. By Kato’s
monotone convergence theorem, EJ∞ is a densely defined closed form in the Hilbert
space HJ∞ and

(Hb + 1)−1 → (H∞ + 1)−1 ⊕ 0 strongly as b→∞, (2.10)

where H∞ denotes the self-adjoint operator in HJ∞ associated to EJ∞. We shall
abuse notation and write (H∞ + 1)−1 instead of (H∞ + 1)−1 ⊕ 0.

We set

L(H,P ) := lim inf
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖.

We shall also use the following abbreviations:

Db := (H + 1)−1 − (Hb + 1)−1, D∞ := (H + 1)−1 − (H∞ + 1)−1,

G := (H + 1)−1. (2.11)

2.2. A resolvent formula

We have an explicit expression for the resolvents of the self-adjoint operators Hb.
This fact will play a key role throughout this note.

Lemma 2.3. Let J be a closed operator from (D(E), E1) to an auxiliary Hilbert
space Haux such that

D(J) ⊃ D(H).

Let b > 0 and let Hb be the self-adjoint operator in H associated with the closed
form EbJ in H defined as follows:

D(EbJ ) := D(J),

EbJ (u, v) := E(u, v) + b(Ju, Jv)aux ∀u, v ∈ D(J).

Then, with G := (H + 1)−1, the following resolvent formula holds:

(H + 1)−1 − (Hb + 1)−1 = (JG)∗
(
1

b
+ JJ∗

)−1

JG. (2.12)

Proof. Replacing J by
√

bJ , if necessary, we may assume that b = 1. On the other
hand the following identity holds true: for all u ∈ H and v ∈ D(J∗)

(J∗v, u) = E1(J∗v,Gu) = (v, JGu)aux = ((JG)∗v, u). (2.13)

Let u ∈ H. Since JJ∗ is a non-negative self-adjoint operator in Haux, the
operator 1 + JJ∗ in Haux is bounded, self-adjoint, and invertible, and

D((1 + JJ∗)−1) = Haux.

Since ran(1 + JJ∗)−1 = D(JJ∗), we obtain that u ∈ D(J∗(1 + JJ∗)−1JG) and
J∗(1 + JJ∗)−1JGu ∈ D(J) = D(EJ ).

By Kato’s representation theorem,

EJ1 ((H1 + 1)−1u, v) = (u, v) ∀u ∈ H, v ∈ D(EJ ).
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On the other hand,

EJ1 (Gu− J∗(1 + JJ∗)−1JGu, v)

= E1(Gu, v) + (JGu, Jv)aux

− ((1 + JJ∗)−1JGu, Jv)aux − (JJ∗(1 + JJ∗)−1JGu, Jv)aux

= (u, v) ∀u ∈ H, v ∈ D(EJ ).

Thus

(H1 + 1)−1u = Gu− J∗(1 + JJ∗)−1JGu ∀u ∈ H,

and it only remains to show that

J∗v = (JG)∗v ∀ v ∈ D(J∗). (2.14)

This is true by identity (2.13). �

2.3. Convergence with respect to the operator norm

If not otherwise stated, J is a closed operator from the Hilbert space (D(E), E1)
to an auxiliary Hilbert space Haux and, in addition, D(J) ⊃ D(H). Let

D(P) := D(J),

P(u, v) := (Ju, Jv)aux ∀u, v ∈ D(J),

and Hb be the self-adjoint operator in H associated to E + bP .
By Lemma 2.1, JJ∗ is a non-negative invertible self-adjoint operator in Haux.

For every h ∈ Haux we denote by μh the spectral measure of h with respect to the
self-adjoint operator Ȟ := (JJ∗)−1 in Haux, i.e., the unique finite positive Radon
measure on R such that, with (EȞ(λ))λ∈R being the spectral family of Ȟ ,

μh((−∞, λ]) = ‖EȞ(λ)h‖2aux ∀λ ∈ R. (2.15)

Since Ȟ is invertible and non-negative,

μh((−∞, 0]) = 0 ∀h ∈ Haux. (2.16)

By (2.12), for every b > 0

Db := (H + 1)−1 − (Hb + 1)−1 = (JG)∗(
1

b
+ JJ∗)−1JG. (2.17)

Hence Db is a bounded non-negative self-adjoint operator in H and the spectral
calculus yields that

(Dbf, f) = ((JG)∗(
1

b
+ JJ∗)−1JGf, f)

= ((
1

b
+ JJ∗)−1JGf, JGf)aux

=

∫
1

1
b +

1
λ

dμh(λ) ∀ f ∈ H, (2.18)
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where h := JGf . Thus D∞ := limb→∞ Db = (H + 1)−1 − (H∞ + 1)−1 is also
a bounded non-negative self-adjoint operator in H and it follows from (2.18) in
conjunction with (2.16) and the monotone convergence theorem that

(D∞f, f) =

∫
λdμh(λ) ∀ f ∈ H, (2.19)

where h := JGf . By (2.18) and (2.19),

((D∞ −Db)f, f) =

∫
λ2

b + λ
dμh(λ) ∀ f ∈ H, (2.20)

where h := JGf . Thus D∞ − Db = (Hb + 1)−1 − (H∞ + 1)−1 is a bounded
non-negative self-adjoint operator in H, too.
Lemma 2.4.

a) We have

ran(JG) ⊂ D(Ȟ1/2) and D∞ = (Ȟ1/2JG)∗Ȟ1/2JG. (2.21)

In particular, D∞ is compact if and only if Ȟ1/2JG is compact.
b) If ran(JG) ⊂ D(Ȟ), then

D∞ = (JG)∗ȞJG. (2.22)

Proof. a) Let f ∈ H and h := JGf . By (2.19),

(D∞f, f) =

∫
λdμh(λ) <∞,

and hence, by the spectral calculus, it follows that h = JGf ∈ D(Ȟ1/2) and
‖Ȟ1/2JGf‖2aux = (D∞f, f). Since D∞ is a bounded non-negative self-adjoint op-
erator, we have

‖D∞‖ = sup
‖f‖=1

(D∞f, f).

Thus

‖Ȟ1/2JG‖2 = ‖D∞‖. (2.23)

Since JGf ∈ D(Ȟ1/2) for every f ∈ H, the spectral calculus yields[
1

b
+ Ȟ−1

]−1/2

JG→ Ȟ1/2JG strongly as b→∞,

and hence([
1

b
+ Ȟ−1

]−1/2

JG

)∗ [
1

b
+ Ȟ−1

]−1/2

JG→ (Ȟ1/2JG)∗Ȟ1/2JG (2.24)

weakly as b goes to infinity. The operators on the left-hand side equal

(JG)∗(
1

b
+ JJ∗)−1JG = (H + 1)−1 − (Hb + 1)−1 = Db

and converge even strongly to D∞ as b→∞. Thus (2.21) is proved.
b) (2.22) follows from (2.21) and the fact that (JG)∗Ȟ1/2 ⊂ (Ȟ1/2JG)∗. �
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By the preceding lemma, Ȟ1/2JG is a bounded everywhere defined operator
from H to Haux. That does not guarantee that the resolvents (H + b)−1 converge
locally uniformly, cf. the examples 2.17 and 2.18. By Theorem 2.6 below, the
stronger requirement that Ȟ1/2JG is compact implies convergence of the operators
(Hb + 1)−1 with respect to the operator norm. We shall use the following result
for the proof of Theorem 2.6.

Lemma 2.5. Let (An) be a sequence of non-negative bounded self-adjoint operators
converging strongly to the compact self-adjoint operator
C : H → H. Suppose that An is dominated by C, i.e.,

(Anf, f) ≤ (Cf, f) ∀ f ∈ H,

for every n ∈ N. Then the operators An converge locally uniformly to C.

Proof. The operator C −An is non-negative, bounded and self-adjoint and hence

‖C −An‖ = sup
‖f‖=1

((C −An)f, f)

for every n.
Let ε > 0. Since C is a non-negative compact self-adjoint operator and the

An converge to C strongly, we can choose an orthonormal family (ej)
N
j=1 and an

n0 such that

(Ch, h) ≤ ε

2
‖h‖2 ∀h ∈ span(e1, . . . , eN)

⊥

and

‖(An − C)g‖ ≤ ε

6
‖g‖ ∀ g ∈ span(e1, . . . , eN )∀n ≥ n0,

respectively. Let f ∈ H and ‖f‖ = 1. Choose g ∈ span(e1, . . . , eN) and h ∈
span(e1, . . . , eN )⊥ such that f = g + h. For all n ≥ n0

((C −An)f, f) = ((C −An)g, g) + 2Re(((C −An)g, h)) + ((C −An)h, h)

≤ ‖(C −An)g‖(‖g‖+ 2‖h‖) + (Ch, h) ≤ ε. �

Theorem 2.6. Suppose that D(H) ⊂ D(J) and the operator Ȟ1/2JG from H to
Haux is compact. Then

‖(Hb + 1)−1 − (H∞ + 1)−1‖ → 0, b→∞.

Proof. We only need to show that D∞−Db = (Hb+1)−1− (H∞ +1)−1 converge
to zero with respect to the operator norm as b goes to infinity. By (2.17), Db is
a non-negative bounded self-adjoint operator in H for every b > 0. By (2.16) in
conjunction with (2.20), D∞−Db is a non-negative bounded self-adjoint operator
in H, too. By definition, D∞ −Db converge to zero strongly as b goes to infinity.
By (2.21), along with Ȟ1/2JG also D∞ is a compact operator.

The remaining part of the proof follows now from the preceding lemma: The
operators Db are non-negative self-adjoint operators and, by (2.16) in conjunction
with (2.20), are dominated by the compact self-adjoint operator D∞, and they
converge to D∞ strongly as b goes to infinity. Hence limb→∞ ‖D∞−Db‖ = 0. �
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Of course, one is not only interested in the question whether norm conver-
gence takes place but one also wants to derive estimates for the rate of convergence.
We shall show that convergence faster than O(1/b) is not possible for the opera-
tors (Hb+1)−1, cf. Corollary 2.8 below. Under the additional assumption that the
domain D(H) of H is contained in the domain D(J) of J we can even provide a
criterion for convergence with maximal rate O(1/b):

Theorem 2.7. Suppose that

D(H) ⊂ D(J)

and Ju �= 0 for at least one u ∈ D(J). Then the following holds:

a) The mapping b �→ b ‖(Hb + 1)−1 − (H∞ + 1)−1‖ is nondecreasing and

L(H,P ) := lim inf
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖

= lim sup
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖ > 0

b) L(H,P ) <∞⇐⇒ J(D(H)) ⊂ D(Ȟ).

c) If J(D(H)) ⊂ D(Ȟ), then

L(H,P ) = ‖ȞJG‖2 <∞. (2.25)

Proof. Let f ∈ H, h = JGf , and μh be the spectral measure of h with respect to
Ȟ . By (2.20),

b((D∞ −Db)f, f) =

∫
bλ2

b + λ
dμh(λ).

This implies in conjunction with (2.16) and the monotone convergence theorem
(from measure theory), that the mapping b �→ b((D∞ −Db)f, f) is nondecreasing
and

lim
b→∞

b((D∞ −Db)f, f) =

∫
λ2 dμh(λ).

Since μh is the spectral measure of h with respect to the self-adjoint operator Ȟ ,
it follows that

lim
b→∞

b((D∞ −Db)f, f) = ‖ȞJGf‖2aux if JGf ∈ D(Ȟ), (2.26)

lim
b→∞

b((D∞ −Db)f, f) =∞ if JGf �∈ D(Ȟ). (2.27)

By (2.27),

lim inf
b→∞

b‖D∞ −Db‖ =∞, (2.28)

if there exists an f ∈ H such that JGf �∈ D(Ȟ).

Suppose now that ran(JG) ⊂ D(Ȟ) = ran(JJ∗). JG is closed, since J is
closed and G is bounded and closed. Since D(JG) = H, it follows from the closed
graph theorem that JG is bounded. Since Ȟ is closed, this implies that ȞJG is
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closed. Since D(ȞJG) = H, it follows from the closed graph theorem that ȞJG
is bounded. Moreover, by (2.26),

lim inf
b→∞

b‖D∞ −Db‖ ≥ ‖ȞJGf‖2aux,

if ‖f‖ = 1, and hence

lim inf
b→∞

b‖D∞ −Db‖ ≥ ‖ȞJG‖2. (2.29)

By (2.20) in conjunction with (2.16), D∞ −Db is a non-negative self-adjoint
operator in H. Thus

‖D∞ −Db‖ = sup
‖f‖=1

((D∞ −Db)f, f). (2.30)

(2.20) in conjunction with (2.16) also implies that for every normalized f ∈ H and
h = JGf

b((D∞ −Db)f, f) ≤
∫

λ2 dμh(λ) ≤ ‖ȞJG‖2.

In conjunction with (2.30), this implies that

b‖D∞ −Db‖ ≤ ‖ȞJG‖2 ∀b > 0. (2.31)

By (2.28), (2.29), (2.31), part b) and c) of the theorem are proved. In addition,
we have shown that the mapping

b �→ b ‖Db −D∞‖ = b ‖(Hb + 1)−1 − (H∞ + 1)−1‖
is nondecreasing and hence

L(H,P ) := lim inf
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖

= lim sup
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖. (2.32)

It remains to prove that L(H,P ) > 0. We conduct the proof by contradiction. If
L(H,P ) were equal to zero, then, by c), we would have JG = 0. Thus the kernel
of J would contain ran(G) = D(H) and hence it would be dense in (D(E), E1).
Since the kernel of a closed operator is closed it would follow that J = 0, which
contradicts the fact that the range of J is dense in Haux. Thus L(H,P ) > 0. �

Part a) of the preceding theorem in conjunction with formula (2.6) yields the
following corollary where we do not require that D(J) ⊃ D(H).

Corollary 2.8. Let P be a form in H such that E + P is a densely defined closed
form in H. Let P(u, u) �= 0 for at least one u ∈ D(E + P). For every b > 0 let Hb

be the self-adjoint operator in H associated to E + bP. Then
L(H,P ) := lim inf

b→∞
b ‖(Hb + 1)−1 − (H∞ + 1)−1‖

= lim sup
b→∞

b ‖(Hb + 1)−1 − (H∞ + 1)−1‖ > 0.
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Trivially, we get large coupling convergence with maximal rate, i.e., as fast
as O(1/b), if the auxiliary Hilbert space Haux is finite-dimensional. We shall also
give a variety of nontrivial examples. On the other hand, there are other examples,
where ‖(Hb+1)−1−(H∞+1)−1‖ converge to zero as c/br for some strictly positive
finite constant c and some r ∈ (0, 1). Let 0 < r < 1. It is an open problem to find
a criterion for convergence with rate O(1/br) to take place. In part a) of the
following proposition we give a sufficient condition and in part b) we show that
this condition is “almost necessary”.

Proposition 2.9. Let 0 < r < 1 and s0 =
1

2
+

r

2
. Suppose that D(H) ⊂ D(J).

a) If J(D(H)) ⊂ D(Ȟs0), then

‖(Hb + 1)−1 − (H∞ + 1)−1‖ ≤ (1− r)1−rrr‖Ȟ1/2+r/2JG‖2 1

br
∀ b > 0.

b) Let u ∈ H. If

‖(Hb + 1)−1u− (H∞ + 1)−1u‖ ≤ c

br
∀ b > 0,

for some finite constant c, then JGu ∈ D(Ȟs) for every s < s0.

Proof. a) By (2.16) in conjunction with (2.20), (Hb + 1)−1 − (H∞ + 1)−1 is a
non-negative bounded self-adjoint operator in H and hence

‖(Hb + 1)−1 − (H∞ + 1)−1‖ = sup
‖f‖=1

((D∞ −Db)f, f).

By (2.20), this implies that

‖(Hb + 1)−1 − (H∞ + 1)−1‖ = sup
‖f‖=1

∫
λ2

λ+ b
dμh(λ),

where f and h are related via h = JGf and μh denotes the spectral measure of h
with respect to Ȟ . Moreover,∫

λ2

λ + b
dμh(λ) ≤ max

λ∈(0,∞)

λ1−r

λ + b

∫
|λ1/2+r/2|2 dμh(λ).

By elementary calculus,

max
λ∈(0,∞)

λ1−r

λ + b
=

(1− r)1−r rr

br
.

By the spectral calculus,∫
|λ1/2+r/2|2 dμh(λ) = ‖Ȟ1/2+r/2h‖2aux.

If h = JGf and ‖f‖ = 1, then

‖Ȟ1/2+r/2h‖aux ≤ ‖Ȟ1/2+r/2JG‖,
and part a) of the Proposition is proved.



Large Coupling Convergence 85

b) Conversely let f ∈ H and assume that

‖(Hb + 1)−1 − (H∞ + 1)−1‖ ≤ c

br
∀ b > 0,

for some finite constant c. Let h = JGf . We may assume that ‖f‖ = 1. Let
1/2 < s < s1 < s0 := r/2 + 1/2. Then

c ≥ br ‖D∞f −Dbf‖ ≥ br (D∞f −Dbf, f)

= br
∫

λ2

λ + b
μh(dλ) =

∫
λ2s1

br λ2−2s1

λ+ b
dμh(λ) ∀ b > 0. (2.33)

In the second step we have used (2.20). Since 2s0 − 1 = r, we have

t :=
r

2s1 − 1
>

r

2s0 − 1
= 1.

For all b ≥ 1 and λ ∈ [b, bt], we have

br λ2−2s1

λ + b
≥ 1

2
λ1−2s1br ≥ 1

2
(bt)1−2s1br =

1

2
.

By (2.33), this implies ∫
[b,bt]

λ2s1
1

2
dμh(λ) ≤ c ∀ b ≥ 1.

Thus ∫
[2,∞)

λ2s dμh(λ) ≤
∞∑
n=0

∫
[2tn ,2tn+1 )

λ2s1
1

(2tn)2s1−2s
dμh(λ)

≤ 2c
∞∑
n=0

(
1

22s1−2s

)tn
<∞

and hence h = JGf ∈ D(Ȟs). Thus the assertion b) of Proposition 2.9 is also
proved. �

2.4. Schrödinger operators

In this section we illustrate above general definitions and results with the aid of
Schrödinger operators with regular and singular potentials.

We denote by D the classical Dirichlet form, i.e., the form in L2(Rd) :=
L2(Rd, dx) defined as follows:

D(D) := H1(Rd),

D(u, v) :=

∫
∇ū · ∇vdx ∀u, v ∈ H1(Rd). (2.34)

Here dx denotes the Lebesgue measure and H1(Rd) the Sobolev space of order
one. D is a densely defined closed form in L2(Rd). We shall denote by −Δ the
self-adjoint operator in L2(Rd) associated to D.
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The capacity of a compact subset K of Rd and an arbitrary subset B of Rd

is defined as follows:

cap(K) := inf{D1(u, u) : u ∈ C∞
0 (Rd), u ≥ 1 on K},

cap(B) := sup{cap(K) : K ⊂ B, K is compact}, (2.35)

respectively. A function u : Rd → C is quasi-continuous if and only if for every
ε > 0 there exists an open set Gε such that

cap(Gε) < ε (2.36)

and the restriction u � Rd \ Gε of u to Rd \ Gε is continuous. We shall use the
following elementary results:

Lemma 2.10.

a) Every u ∈ H1(Rd) has a quasi-continuous representative.

b) If ũ and u◦ are quasi-continuous and ũ = u◦ dx-a.e., then ũ = u◦ q.e. (quasi-
everywhere), i.e.,

cap({x ∈ Rd : ũ(x) �= u◦(x)}) = 0. (2.37)

c) If (un) is a sequence in H1(Rd), u ∈ H1(Rd) and D1(un − u, un− u)→ 0 as
n→∞, then there exists a subsequence (unj ) of (un) such that

ũnj → ũ q.e., (2.38)

i.e., cap({x ∈ Rd : ũnj (x) �→ ũ(x)}) = 0. Here ũnj and ũ denote any quasi-
continuous representative of unj and u, respectively.

The proof of the latter lemma can be found in [13].

In the following we shall denote by u both an element of H1(Rd) and any
quasi-continuous representative of u. It will not matter which quasi-continuous
representative is chosen and it will always be clear from the context what is meant.

Remark 2.11. In the one-dimensional case cap({a}) = 2 for every a ∈ R and hence
a function is quasi-continuous if and only if it is continuous. Thus, in the one-
dimensional case, it makes sense to write u(a) if u ∈ H1(R) and a ∈ R. Here u(a)
is just the value of the unique continuous representative of u at the point a.

Definition 2.12. Let μ be a positive Radon measure on Rd charging no set with
capacity zero.

a) We define the form Pμ in L2(Rd) as follows:

D(Pμ) := {u ∈ H1(Rd) :

∫
|u|2 dμ <∞},

Pμ(u, v) :=

∫
ū v dμ ∀u, v ∈ D(Pμ). (2.39)
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b) We define the operator Jμ from H1(Rd) to L2(Rd, μ) as follows:

D(Jμ) := {u ∈ H1(Rd) :

∫
|u|2 dμ <∞},

Jμu := u μ-a.e. ∀u ∈ D(Jμ). (2.40)

Lemma 2.13. Let μ be a positive Radon measure on Rd charging no set with ca-
pacity zero. Then the operator Jμ is closed and D+ bPμ is a non-negative densely
defined closed form in L2(Rd) for any b > 0.

Proof. Let (un) be a sequence in D(Jμ), u ∈ H1(Rd) and v ∈ L2(Rd, μ) satisfying
D1(un − u, un − u)→ 0 as n→∞, and Jμun → v as n→∞. By Lemma 2.10 c),
a suitably chosen subsequence of (un) converges to u q.e. and hence μ-a.e. Thus
u = v μ-a.e. and hence u ∈ D(Jμ) and Jμun → u as n → ∞. Thus the operator
Jμ is closed, and, by Lemma 2.1, it follows that D+ bPμ is also closed. �

Definition 2.14. Let μ be a positive Radon measure on Rd charging no set with
capacity zero. We denote by −Δ + μ the non-negative self-adjoint operator in
L2(Rd) associated to D+ Pμ and put

(−Δ+∞μ + 1)−1 := lim
b→∞

(−Δ+ bμ + 1)−1.

In the absolutely continuous case, i.e., if dμ = V dx for some function V , we also
write V instead of V dx.

In a wide variety of applications one is interested in the question whether the
operator Jμ is compact. There exists a rich literature on this topic. Here we shall
only need the following result.

Lemma 2.15. Suppose that D(Jμ) = H1(R) and

μ({y ∈ R : |x− y| < 1})→ 0, |x| → ∞. (2.41)

Then the operator Jμ from H1(R) to L2(R, μ) is compact.

The proof of this lemma can be found in [6].

Example 2.16. Let (xn)∈Z and (an)∈Z be families of real numbers satisfying

d := inf
n∈Z

(xn+1 − xn) > 0 and an > 0 ∀n ∈ Z. (2.42)

Let Γ := {xn : n ∈ Z} and −ΔΓ
D the Laplacian in L2(R) with Dirichlet bound-

ary conditions at every point of Γ, i.e., let −ΔΓ
D be the non-negative self-adjoint

operator in L2(R) associated to the form D∞ in L2(R) defined as follows:

D(D∞) := {u ∈ H1(R) : u = 0 on Γ},
D∞(u, v) := D(u, v) ∀u, v ∈ D(D∞). (2.43)

Then the operators −Δ+ b
∑
n∈Z

anδxn converge in the strong resolvent sense to

−ΔΓ
D. Here δx denotes the Dirac measure with unit mass at x.
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Proof. −Δ+ b
∑
n∈Z

anδxn is the self-adjoint operator associated to D+ bPμ with
μ :=

∑
n∈Z

anδxn and we may replace in formula (2.8) E and P by D and Pμ, re-
spectively. Then the assertion on strong resolvent convergence follows from Kato’s
monotone convergence theorem, cf. (2.10). �

Different choices of the weights an in the last example lead to extremely
different convergence results. If the an go to zero as n→ ±∞, then the operators
−Δ + b

∑
n∈Z

anδxn do not converge in the norm resolvent sense, cf. the next
example. On the other hand, if infn∈Z an > 0, then these operators converge in
the norm resolvent with maximal rate of convergence, i.e., as fast as O(1/b), cf.
Example 3.8 below.

Example 2.17 (Continuation of Example 2.16). We choose (xn)n∈Z, (an)n∈Z, d, Γ,
−ΔΓ

D, and μ as in the previous example. Assume, in addition, that

lim
|n|→∞

an = 0 and D := sup
n∈Z

(xn+1 − xn) < ∞. (2.44)

Then the operators −Δ + b
∑
n∈Z

anδxn do not converge in the norm resolvent
sense.

Proof. The hypothesis (2.44) implies that Pμ is an infinitesimal small form per-
turbation of D, cf. [5], and hence, in particular, D(Jμ) = H1(R). In conjunction
with Lemma 2.15 and the hypotheses (2.42) and (2.44) this implies that the op-
erator Jμ is compact. In Lemma 2.3 we may replace H , Hb, G and J by −Δ,
−Δ+ b

∑
n∈Z

anδxn , (−Δ+1)−1 and Jμ, respectively. Then the resolvent formula

(2.12) yields that (−Δ+ 1)−1 − (−Δ+ b
∑

n∈Z
anδxn + 1)−1 is compact, too. By

Weyl’s essential spectrum theorem, this implies that

σess

((
−Δ+ b

∑
n∈Z

anδxn + 1

)−1)
= σess((−Δ+ 1)−1) = [0, 1]. (2.45)

Moreover,

−ΔΓ
D ≥

π2

D2

and hence

supσ((−ΔΓ
D + 1)−1)) ≤ 1

1 + π2/D2
. (2.46)

If the operators −Δ+ b
∑
n∈Z

anδxn converged in the norm resolvent sense to the

Dirichlet Laplacian −ΔΓ
D, then, by (2.45), we would have σ(−ΔΓ

D +1)−1) ⊃ [0, 1],
which contradicts (2.46). Thus the operators −Δ+ b

∑
n∈Z

anδxn do not converge
in the norm resolvent sense. �

In Example 2.17 the operators (−Δ + bμ + 1)−1 do not converge locally
uniformly. In this example μ is a so-called δ-potential and, in particular, singular.
In the regular case we can also have absence of convergence with respect to the
operator norm, as it is shown by the next example. That the operators (−Δ +
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bV +1)−1 in the next example do not converge locally uniformly can be shown by
mimicking the proof in Example 2.17.

Example 2.18. Let (an)n∈Z and (bn)n∈Z be families of real numbers with the fol-
lowing properties:

an < bn < an+1 ∀n ∈ Z, D := sup
n∈Z

(an+1 − bn) <∞,

d := inf
n∈Z

(an+1 − bn) > 0, lim
|n|→∞

(bn − an) = 0. (2.47)

Let V :=
∑

n∈Z
1[an,bn]. Then the operators (−Δ + bV + 1)−1 converge strongly

as b goes to infinity, but do not converge locally uniformly.

2.5. Convergence within a Schatten-von Neumann class

Let p ∈ [1,∞). Let Hi be Hilbert spaces with scalar products (·, ·)i, i = 0, 1, 2, . . .
Let C be a compact operator from H1 to H2. Then H2 has an orthonormal basis
{ei}i∈I such that, with |C| :=

√
CC∗,

|C|ei = λiei ∀i ∈ I

for some suitably chosen family (λi)i∈I in [0,∞) which is unique up to permuta-
tions. One sets

‖C‖Sp :=

(∑
i∈I

λpi

)1/p

.

Sp(H1,H2) (short Sp) denotes the set of compact operators from H1 to H2 such
that ‖C‖Sp < ∞. It is called the Schatten-von Neumann class of order p. Sp is
a linear space and ‖ · ‖Sp a norm on it. If C : H1 → H2 belongs to the class
Sp(H1,H2) and A : H0 → H1 and B : H2 → H3 are linear and bounded, then
CA ∈ Sp(H0,H2) and BC ∈ Sp(H1,H3) and

‖CA‖Sp ≤ ‖C‖Sp ‖A‖, ‖BC‖Sp ≤ ‖C‖Sp ‖B‖. (2.48)

Moreover,

‖C‖Sp = ‖C∗‖Sp = ‖|C|‖Sp (2.49)

for every compact operator C.
Let B : H1 → H2 be linear and bounded, Q1 be an orthogonal projection

in H1, and Q2 be an orthogonal projection in H2 such that the dimension N of
the range of Q2 is finite. Then |Q2BQ1|2 = Q2BQ1B

∗Q2 and hence |Q2BQ1| is
compact and

‖|Q2BQ1|‖Sp = ‖|Q2BQ1| � ran(Q2)‖Sp . (2.50)

Since |Q2BQ1| � ran(Q2) belongs to the finite-dimensional space of all linear map-
pings from ran(Q2) into itself and all norms on a finite-dimensional space are
equivalent, there exists a finite constant c, depending only on p and N such that

‖|Q2BQ1| � ran(Q2)‖Sp ≤ c ‖|Q2BQ1| � ran(Q2)‖ ≤ c ‖B‖. (2.51)
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By (2.49) to (2.51),

‖Q2BQ1‖Sp ≤ c‖B‖ (2.52)

for some finite constant c, depending only on p and N < ∞, provided the range
of Q1 or the range of Q2 is at most N -dimensional.

If A is a non-negative bounded self-adjoint operator and dominated by the
compact self-adjoint operator B, then A and B−A are also compact and it follows
easily from the min-max principle for compact operators that

‖A‖Sp ≤ ‖B‖Sp and ‖B −A‖Sp ≤ ‖B‖Sp . (2.53)

In the proof of Theorem 2.6 we have used that strong convergence of non-
negative self-adjoint operators dominated by a compact self-adjoint operator im-
plies operator-norm convergence. Similarly, strong convergence of non-negative
self-adjoint operators dominated by a self-adjoint operator in Sp implies conver-
gence in Sp:

Lemma 2.19. Let {An}n∈N be a sequence of non-negative bounded self-adjoint op-
erators in the Hilbert space H dominated by the non-negative bounded self-adjoint
operator A. Let 1 ≤ p <∞. If A ∈ Sp and limn→∞ ‖Au−Anu‖ = 0 for all u ∈ H,
then

lim
n→∞ ‖A−An‖Sp = 0. (2.54)

Proof. By Lemma 2.5, limn→∞ ‖An −A‖ = 0.

A admits the representation

A =
∑
i∈I

λi (ei, ·) ei

for some orthonormal system (ei)i∈I and some family (λi)i∈I of non-negative real
numbers satisfying ∑

i∈I
λpi = ‖A‖

p
Sp

.

Let ε > 0. We choose a finite subset I0 of I such that∑
i∈I\I0

λpi ≤ εp

and denote by Q the orthogonal projection onto the orthogonal complement of the
finite-dimensional space spanned by {ei : i ∈ I0}. Then

QAQ =
∑
i∈I\I0

λi (ei, ·) ei

and, in particular,

‖QAQ‖pSp
=
∑
i∈I\I0

λpi ≤ εp.
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Since Q(A−An)Q is dominated by QAQ, it follows that

‖Q(A−An)Q‖Sp ≤ ε ∀n ∈ N. (2.55)

Since the range of the orthogonal projection 1−Q is finite-dimensional and
limn→∞ ‖A−An‖ = 0, it follows from (2.52), that

lim
n→∞ ‖(1−Q)(A−An)Q‖Sp = lim

n→∞ ‖(1−Q)(A−An)(1 −Q)‖Sp

= lim
n→∞ ‖Q(A−An)(1−Q)‖Sp = 0.

Since A − An = Q(A − An)Q + (1 − Q)(A − An)Q + Q(A − An)(1 − Q) + (1 −
Q)(A−An)(1 −Q), this implies in conjunction with (2.55), that

lim sup
n→∞

‖A−An‖Sp ≤ ε,

and the lemma is proved. �
Corollary 2.20. Let 1 ≤ p < ∞. Let D(J) ⊃ D(H) and suppose that the operator
(H + 1)−1 − (H∞ + 1)−1 belongs to the Schatten-von Neumann ideal of order p.
Then Db ∈ Sp(H,H) and

‖D∞ −Db‖Sp ≤ ‖D∞‖Sp and ‖Db‖Sp ≤ ‖D∞‖Sp (2.56)

for all b ∈ (0,∞). Moreover,

lim
b→∞

‖D∞ −Db‖Sp = 0. (2.57)

Proof. It holds limb→∞ ‖D∞u−Dbu‖ = 0 for all u ∈ H. Hence (2.57) follows from
Lemma 2.19.

By (2.16) in conjunction with (2.20), Db is a non-negative bounded self-
adjoint operator dominated by the self-adjoint operator D∞. Hence (2.56) follows
from (2.53). �

The following corollary gives a sufficient condition that the operator D∞ =
(H + 1)−1 − (H∞ + 1)−1 belongs to a Schatten-von Neumann ideal of finite order
and gives an upper bound for the corresponding Schatten-von Neumann norm.

Corollary 2.21. Let D(J) ⊃ D(H) and L(H,P ) <∞.

a) Let 1 ≤ p <∞. If JG ∈ Sp(H,Haux), then Db ∈ Sp(H,H) and
‖D∞‖Sp ≤

√
L(H,P ) ‖JG‖Sp . (2.58)

b) Let t ∈ (3/2,∞). If JJ∗ is bounded and JGt belongs to the Hilbert-Schmidt
class S2(H,Haux), then

‖D∞‖S4t−2 ≤
√

L(H,P )
(
‖JJ∗‖2t−2 ‖JGt‖2S2

) 1
4t−2 . (2.59)

Proof. By Theorem 2.7 and since L(H,P ) < ∞, we have that ran(JG) ⊂ D(Ȟ),

‖ȞJG‖ =
√

L(H,P ) and limb→∞ ‖D∞−Db‖ = 0. By Lemma 2.4 b), this implies
that

D∞ = (JG)∗ȞJG,

hence (2.58) follows from (2.48) in conjunction with (2.49).
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Suppose, in addition, that JJ∗ is bounded. For all h ∈ Haux and f ∈ D(E)
(f, (JG)∗h) = (JGf, h)aux = E1(Gf, J∗h) = (f, J∗h).

Thus J∗h = (JG)∗h for all h ∈ Haux. Thus JJ∗ = JG1/2(JG1/2)∗ and hence

‖JJ∗‖ = ‖JG1/2‖2.
In conjunction with the hypothesis JGt ∈ S2 this implies, by [6, Lemma 2], that

‖JG‖4t−2
S4t−2

≤ ‖JJ∗‖2t−2 ‖JGt‖2S2
,

hence (2.59) follows now from (2.58). �

2.6. Compact perturbations

2.6.1. Expansions. We get stronger assertions provided the operator J is compact.
Let us assume that J is a compact operator from (D(E), E1) into Haux, that the
domain of J equals D(E), and that the range of J is dense in Haux.

Since J : D(E) → Haux is compact and G1/2 is a unitary mapping from the
Hilbert space H onto the Hilbert space (D(E), E1), the operator JG1/2 : H → Haux

is also compact and there exist a family (λk)k∈I in (0,∞), an orthonormal system
(ek)k∈I in H, and an orthonormal system (gk)k∈I in Haux with the following
properties:

(i) I has only finitely many elements or I = N and

λk → 0, k →∞.

(ii) JG1/2f =
∑
k∈I

λk(ek, f)gk ∀ f ∈ H. (2.60)

We shall call the latter expansion the canonical expansion of the operator JG1/2

and refer the reader to [24, p. 4], for more details.
It follows that

(JG1/2)∗h =
∑
k∈I

λk(gk, h)aux ek ∀h ∈ Haux, (2.61)

and, in particular,

(JG1/2)∗gk = λkek ∀ k ∈ I. (2.62)

By (2.60) and (2.61),

JG1/2(JG1/2)∗h =
∑
k∈I

λ2
k(gk, h)auxgk ∀h ∈ Haux. (2.63)

In particular,

JG1/2(JG1/2)∗gk = λ2
kgk ∀ k ∈ N. (2.64)

Furthermore, ker((JG1/2)∗) = (ran(JG1/2))⊥ = {0}, since ran(J) is dense in
Haux. Thus the compact operator JG1/2(JG1/2)∗ in Haux is invertible. Therefore,
(2.63) implies that (λ2

k)k∈I is the family of eigenvalues of JG1/2(JG1/2)∗ counted
repeatedly according to their multiplicity, that, for any k ∈ I, the vector gk is an
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eigenvector of JG1/2(JG1/2)∗ corresponding to the eigenvalue λ2
k, and that (gk)k∈I

is an orthonormal basis of Haux. (2.63) implies now that

{1/b+ JG1/2(JG1/2)∗}−1h =
∑
k∈I

1

λ2
k + 1/b

(gk, h)aux gk ∀h ∈ Haux. (2.65)

By (2.12), (2.60), (2.61), and (2.65),

Dbf := ((H + 1)−1 − (Hb + 1)−1)f = G1/2
∑
k∈I

λ2
k

λ2
k + 1/b

(ek, G
1/2f)ek ∀ f ∈ H.

Since G1/2 is self-adjoint and bounded, it follows that

Dbf =
∑
k∈I

λ2
k

λ2
k + 1/b

(G1/2ek, f)G
1/2ek

=
∑
k∈I

λ2
k

λ2
k + 1/b

E1(G1/2ek, Gf)G1/2ek ∀ f ∈ H. (2.66)

(G1/2ek)k∈I is an orthonormal system in (D(E), E1), since (ek)k∈I is an or-
thonormal system in H and the operator G1/2 from H into (D(E), E1) is unitary.
Thus the series

∑
k∈I E1(G1/2ek, Gf)G1/2ek converges in (D(E), E1) (and, there-

fore, also in H), ∑
k∈I
|E1(G1/2ek, Gf)|2 ≤ E1(Gf,Gf) <∞,

and

E1

(∑
k∈I
E1(G1/2ek, Gf)G1/2ek −Dbf,

∑
k∈I
E1(G1/2ek, Gf)G1/2ek −Dbf

)

=
∑
k∈I

∣∣∣∣ 1

1 + bλ2
k

∣∣∣∣2 |E1(G1/2ek, Gf)|2 → 0, b→∞, (2.67)

for all f ∈ H. Since convergence in (D(E), E1) implies convergence in H and the
operators Db strongly converge in H to D∞, (2.67) implies that

D∞f =
∑
k∈I
E1(G1/2ek, Gf)G1/2ek =

∑
k∈I

(G1/2ek, f)G
1/2ek ∀ f ∈ H. (2.68)

Thus we have proved the following theorem.
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Theorem 2.22. Suppose that D(J) = D(E) and that J is compact. Then, with
(λk)k∈I and (ek)k∈I as in the canonical expansion of JG1/2,

((H + 1)−1 − (Hb + 1)−1)f =
∑
k∈I

λ2
k

λ2
k + 1/b

(G1/2ek, f)G
1/2ek ∀ f ∈ H,

(2.69)

((H + 1)−1 − (H∞ + 1)−1)f =
∑
k∈I

(G1/2ek, f)G
1/2ek ∀ f ∈ H, (2.70)

‖(Hb + 1)−1 − (H∞ + 1)−1‖ = sup
‖f‖=1

∑
k∈I

1

1 + bλ2
k

| (G1/2ek, f) |2. (2.71)

Remark 2.23. The technique of regularizing the singular problem through the use
of the canonical expansion is also typical for the theory of generalized pseudo
inverses like presented in [21]. In this context the large coupling limits are some-
times called the limits of the large penalty. They are used in numerical analysis
to regularize the ’jumping coefficients’ differential equations by penalization. A
good survey on regularization can be found in [18] and its use in the theory of
saddle-point problems can be found in [19].

In Sections 2.3 and 2.5 the operator Ȟ = (JJ∗)−1 has played an important
role, but did occur neither in the discussion of Schrödinger operators nor in this
section. Actually Ȟ is useful in these contexts, too. To begin with let us men-
tion that we can express the singular values λk with the aid of Ȟ . By (2.14),
JJ∗ = J(JG)∗ = JG1/2(JG1/2)∗. Thus the orthonormal basis (gk)k∈I of Haux is
contained in the domain of Ȟ and

Ȟgk =
1

λ2
k

gk ∀ k ∈ I. (2.72)

In addition, we have, by (2.62), that

(JG)∗gk = G1/2(JG1/2)∗gk = λkG
1/2ek ∀ k ∈ I. (2.73)

In many applications, one can use this formula in order to describe the vectors ek
with the aid of the eigenvectors gk of Ȟ . We demonstrate this in a simple case:

Let E = D be the classical Dirichlet form in L2(R) and μ be a positive Radon
measure on R such that supp(μ) = [0, 1]. The operator G := (−Δ+1)−1 : L2(R)→
L2(R) is an integral operator with kernel g(x− y), where g(x) :=

1

2
exp(−|x|) for

all x ∈ R. Since the function
∫

g(· − y)f(y)dy is continuous for all f ∈ L2(R),
the mapping JμG : L2(R) → L2(R, μ) is also an integral operator with the same
kernel g(x−y). Thus (JμG)∗ : L2(R, μ)→ L2(R) is an integral operator with kernel

g(y − x) = g(x − y). Since the function
∫

g(· − y)h(y)μ(dy) is continuous for all
h ∈ L2(R, μ), we finally obtain that also Jμ(JμG)∗ = JμJμ∗ : L2(R, μ)→ L2(R, μ)
is an integral operator with kernel g(x− y).

By Lemma 2.15, Jμ : H1(R)→ L2(R, μ) is compact. Thus we can choose an
orthonormal system (ek)k∈N in L2(R), an orthonormal basis (gk)k∈N of L2(R, μ),
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and a sequence (λk)k∈N of strictly positive real numbers such that

JμG1/2 =

∞∑
k=1

λk(ek, ·)gk.

Of course, the λk, ek and gk depend on μ, but we suppress this dependence in our
notation.

Let k ∈ N. The function uk :=
∫

g(· − y)gk(y)μ(dy) is continuous and square
integrable, and, for supp(μ) = [0, 1], satisfies the differential equation −y′′+ y = 0
on R \ [0, 1]. Thus

uk(x) =

{
uk(0)e

x, x ≤ 0,

uk(1)e
1−x, x ≥ 1.

Since uk is the continuous representative of λkG
1/2ek = (JμG)∗gk and Jμ(JμG)∗gk

= λ2
kgk it follows, for the continuous representative G1/2ek of G1/2ek, that

G1/2ek(x) = λk

⎧⎪⎨⎪⎩
gk(0)e

x, x ≤ 0,

gk(x), 0 < x < 1,

gk(1)e
1−x, x ≥ 1.

(2.74)

Set

αk(f) :=

∣∣∣∣∫ 0

−∞
gk(0)e

xf(x)dx +

∫ 1

0

gk(x)f(x)dx +

∫ ∞

1

gk(1)e
1−xf(x)dx

∣∣∣∣2 .

(2.75)
By (2.71) and (2.74), we can express the distances between the operators (−Δ+
bμ+1)−1 and their limit with the aid of the self-adjoint operator−Δ̌μ = (JμJμ∗)−1

in L2(R, μ). Let b ∈ (0,∞). Then

‖(−Δ+ bμ + 1)−1 − (−Δ+∞μ + 1)−1‖ = sup
‖f‖=1

∞∑
k=1

αk(f)

Ek + b
, (2.76)

where −Δ̌μgk = Ekgk for all k ∈ N, (gk)k∈N is an orthonormal basis of L2(R, μ).

2.6.2. Schatten-von Neumann classes. We can use Theorem 2.22 in order to derive
estimates for the rate of convergence with respect to Sp-norms.

Lemma 2.24. Suppose that D(J) = D(E) and J is compact. Let 1 ≤ p <∞. Then
with λk and ek as in the canonical expansion of JG1/2 the following holds.

a) The operator D∞ = (H + 1)−1 − (H∞ + 1)−1 belongs to the Schatten-von
Neumann class of order p if and only if∑

k∈I
‖D

p−1
2∞ G1/2ek‖2 <∞. (2.77)
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If this is the case, then

‖D∞‖pSp
=
∑
k∈I
‖D

p−1
2∞ G1/2ek‖2. (2.78)

b) Let 0 < b <∞. The operator D∞ −Db = (Hb + 1)−1 − (H∞ + 1)−1 belongs
to the Schatten-von Neumann class of order p if and only if∑

k∈I

1

1 + bλ2
k

‖(D∞ −Db)
p−1
2 G1/2ek‖2 <∞. (2.79)

If this is the case, then

‖D∞ −Db‖pSp
=
∑
k∈I

1

1 + bλ2
k

‖(D∞ −Db)
p−1
2 G1/2ek‖2. (2.80)

Proof. a) Let (fj)j∈I′ be an orthonormal basis for H. Since D∞ is a non-negative
self-adjoint operator, we obtain

‖D∞‖pSp
= tr(Dp

∞) =
∑
j∈I′

(Dp
∞fj , fj) =

∑
j∈I′

(D∞D
p−1
2∞ fj, D

p−1
2∞ fj)

=
∑

j∈I′,k∈I
|(G1/2ek, D

p−1
2∞ fj)|2 =

∑
k∈I
‖D

p−1
2∞ G1/2ek‖2. (2.81)

b) The proof of b) is quite similar, so we omit it. �

Theorem 2.25. Let p ∈ {1, 2}. Suppose that JG1/2 is compact. Then the following
two assertions are equivalent:

a) ‖(Hb + 1)− (H∞ + 1)−1‖Sp → 0 as b→∞.

b) (H + 1)−1 − (H∞ + 1)−1 belongs to Sp(H,H).
Proof. It is always true that ‖(Hb + 1)− (H∞ + 1)−1‖Sp → 0 as b→∞ if D∞ =

(H + 1)−1 − (H∞ + 1)−1 belongs to Sp(H,H), cf. Corollary 2.20.
Conversely, let first p = 2 and assume that

lim
b→∞

‖(Hb + 1)− (H∞ + 1)−1‖S2 = 0. (2.82)

Then, by Lemma 2.24,

‖D∞ −Db‖2S2
=
∑
k∈I

1

1 + bλ2
k

‖(D∞ −Db)
1/2G1/2ek‖2

=
∑
k∈I

1

1 + bλ2
k

((D∞ −Db)G
1/2ek, G

1/2ek)

=
∑
k∈I

1

1 + bλ2
k

∑
j∈I

1

1 + bλ2
j

|(G1/2ej , G
1/2ek)|2. (2.83)

Similarly, we obtain∑
k∈I
‖D

1
2∞G1/2ek‖2 =

∑
j,k∈I

|(G1/2ej, G
1/2ek)|2. (2.84)
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By (2.82) in conjunction with (2.83), we get for sufficiently large b that

1 ≥ ‖D∞ −Db‖2S2
=
∑
j,k∈I

1

1 + bλ2
k

1

1 + bλ2
j

|(G1/2ej, G
1/2ek)|2

≥ 1

1 + b2

∑
λj ,λk<1

|(G1/2ej , G
1/2ek)|2 (2.85)

and hence∑
k∈I
‖D

1
2∞G1/2ek‖2 =

∑
j,k∈I

|(G1/2ej, G
1/2ek)|2

≤ (1 + b)2 +
∑
λk≥1

∑
j∈I
|(G1/2ej , G

1/2ek)|2 +
∑
λk<1

∑
λj≥1

|(G1/2ej , G
1/2ek)|2

≤ (1 + b)2 + 2
∑
λk≥1

‖Gek‖2 <∞. (2.86)

Thus, by Lemma 2.24 a), the proof is complete for the case p = 2. The case p = 1
can be treated in a similar way. �

As in the previous subsection we can express the distances between the op-
erators (−Δ+ bμ + 1)−1 and their limit with the aid of the operator −Δ̌μ.

Lemma 2.26. Let μ be a positive Radon measure on R and suppose that supp(μ) =
[0, 1]. Let (gk) be an orthonormal basis of L2(R, μ) such that, with the operator
−Δ̌μ = (JμJμ∗)−1, the following holds:

−Δ̌μgk = Ekgk ∀ k ∈ N.

Then

‖(−Δ+ bμ + 1)−1 − (−Δ+∞μ + 1)−1‖S1 =

∞∑
k=1

βk
Ek + b

∀ b > 0, (2.87)

where

βk =
1

2
|gk(0)|2 +

1

2
|gk(1)|2 +

∫ 1

0

|gk(x)|2dx ∀ k ∈ N. (2.88)

Proof. Since Ek = 1/λ2
k for every k ∈ N, the lemma follows from (2.80) in con-

junction with (2.74). �

2.7. Dynkin’s formula

We can use (2.70) in order to derive an abstract version of the celebrated Dynkin’s
formula.

To begin with let us assume that D(J) = D(E) and J is compact. Choose
an orthonormal system (ek)k∈I in H, an orthonormal basis (gk)k∈I in Haux, and a
family (λk)k∈I of non-negative real numbers as in (2.60), i.e., such that JG1/2f =∑

k∈I λk(ek, f)gk for all f ∈ H. Then JG1/2f = 0 if and only if (ek, f) = 0 for all
k ∈ I.
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G1/2 is a unitary operator from H to (D(E), E1). Thus (G1/2ek)k∈I is an
orthonormal system in the Hilbert space (D(E), E1). Moreover, (ek, f) = 0 for all
k ∈ I if and only if E1(G1/2ek, G

1/2f) = 0 for all k ∈ I. Thus (G1/2ek)k∈I is an
orthonormal basis of ker(J)⊥; here ⊥ means orthogonal with respect to the scalar
product E1 on D(E) and “orthonormal” means “orthonormal with respect to E1”.
Thus the first equality in (2.68) yields that

D∞f = PJGf ∀ f ∈ H, (2.89)

where PJ denotes the orthogonal projection in (D(E), E1) onto ker(J)⊥.
(2.89) holds true under much weaker assumptions on the operator J . It is

easy to understand this fact: Let J1 and J2 be densely defined closed operators
from (D(E), E1) to Haux. For i = 1, 2 denote by HJi

b the self-adjoint operator in H
associated to EbJi and put

DJi∞ := (H + 1)−1 − lim
b→∞

(HJi

b + 1)−1.

By Kato’s monotone convergence theorem,

lim
b→∞

(HJ1

b + 1)−1 = lim
b→∞

(HJ2

b + 1)−1

provided ker(J1) = ker(J2), cf. (2.10). Trivially, we also have PJ1 = PJ2 in this
case and (2.89) holds true for J1 if and only if it holds true for J2. Thus in order to
prove (2.89) for a given operator J1 we only have to choose a compact operator J2

such that ker(J2) = ker(J1) and ran(J2) is dense in Haux. Hence the next theorem
follows from Lemma 2.29 below.

Theorem 2.27. Suppose that D(J) is dense in the Hilbert space (D(E), E1) and the
auxiliary Hilbert space Haux is separable. Let PJ be the orthogonal projection in
the Hilbert space (D(E), E1) onto the kernel kerJ of J . Then the following abstract
Dynkin’s formula holds true

(H + 1)−1 − (H∞ + 1)−1 = PJG. (2.90)

Remark 2.28. Since we choose Haux in such a way that ran(J) is dense in Haux,
the hypothesis that Haux be separable is, in particular, satisfied in the case when
D(J) = D(E) and J is compact.

Lemma 2.29. Let J be a densely defined closed operator from the Hilbert space
(H1, (·, ·)1) into the separable Hilbert space (H2, (·, ·)2)). Suppose that ran(J) is
dense in H2. Then there exists a compact operator J2 from H1 into H2 such that
D(J2) = H1, the range of J2 is dense in H2, and

ker(J2) = ker(J).

Proof. J∗ is a closed operator from the separable Hilbert space H2 to the Hilbert
space H1. Hence the Hilbert space (D(J∗), (·, ·)J∗) is separable, where (u, v)J∗ :=
(u, v)2 + (J∗u, J∗v)1.
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Since (D(J∗), (·, ·)J∗) is separable, we can choose a sequence (fn)n∈N such
that the set {fn : n ∈ N} is dense in (D(J∗), (·, ·)J∗). Selecting a linearly indepen-
dent subsequence (gn)n∈N of (fn)n∈N and applying Gram-Schmidt orthogonaliza-
tion, we get an orthonormal system (en)n∈N in H2 with

span{en : n ∈ N} = span{gn : n ∈ N}

and span{en : n ∈ N} is dense in (D(J∗), (·, ·)J∗).

D(J∗) is dense in H2, since J is closed. Thus span{en : n ∈ N} is also dense
in H2 and hence an orthonormal basis of H2. With this basis, we are able to define
the compact operator J2.

Set

λk := 2−k
1

1 + ‖J∗ek‖1
∀ k ∈ N.

Define an operator J0 by D(J0) = D(J) and

J0f :=

∞∑
k=1

λk (ek, Jf)2 ek ∀ f ∈ D(J0).

J0 is a bounded operator from H1 to H2 and densely defined. Hence its closure J2

is a bounded operator from H1 to H2 and D(J2) = H2.

J2 is a Hilbert-Schmidt operator. To show that take an orthonormal basis
(hj)j∈I of H1 such that hj ∈ D(J) for every j ∈ I. Then

∑
j∈I
‖J2hj‖22 =

∑
j∈I

∥∥∥∥∥∑
k∈N

λk(ek, Jhj)2ek

∥∥∥∥∥
2

2

=
∑
k∈N

λ2
k

∑
j∈I
|(J∗ek, hj)1|2 =

∑
k∈N

λ2
k‖J∗ek‖21 < ∞.

Next we show that ker(J) = ker(J2). If Jf = 0, then J0f = J2f = 0 and
we obtain ker(J) ⊂ ker(J2). On the other hand, J is densely defined and closed.
Hence ker(J) = ran(J∗)⊥. Take an f ∈ ker(J2). Then there is a sequence (fn)n∈N

in D(J0) such that f = limn→∞ fn and J2f = limn→∞ J0fn. Let (ek)k∈N be the
orthonormal basis in H2 introduced above. Then

0 = (J2f, ek)2 = lim
n→∞(J0fn, ek)2

= lim
n→∞

(∑
m∈N

λm(em, Jfn)2(em, ek)2

)
= lim

n→∞λk(ek, Jfn)2 = λk(J
∗ek, f)1.

Therefore, f is orthogonal to J∗ek for all k ∈ N. Since span{ek : k ∈ N} is dense
in (D(J∗), (·, ·)J∗), its image span{J∗ek : k ∈ N} is dense in ran(J∗). Thus f ∈
ran(J∗)⊥ = ker(J).
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It remains to prove that ran(J2) is dense in H2. Fix k0 ∈ N and ε > 0. Since,
by hypothesis, ran(J) is dense in H2, we can choose f ∈ D(J) satisfying∥∥∥∥Jf − ek0

λk0

∥∥∥∥ < ε.

Thus ‖J2f − ek0‖ < ε, because of

‖J2f − ek0‖22 =

∥∥∥∥∥∑
k∈N

λk(ek, Jf)2ek − ek0

∥∥∥∥∥
=

∑
k∈N,k �=k0

λ2
k |(ek, Jf)2|2 + λ2

k0

∣∣∣∣(ek0 , Jf)2 −
1

λk0

∣∣∣∣2

≤
∑

k∈N,k �=k0
|(ek, Jf)2|2 +

∣∣∣∣(ek0 , Jf)2 −
1

λk0

∣∣∣∣2

=

∥∥∥∥∥∑
k∈N

(ek, Jf)2ek −
ek0
λk0

∥∥∥∥∥
2

2

=

∥∥∥∥Jf − ek0
λk0

∥∥∥∥2
2

< ε.

Thus ek0 ∈ ran(J2). Since span{ek : k ∈ N} = H2, we have shown that ran(J2) is
dense in H2. �

2.8. Differences of powers of resolvents

In this section we shall use the generalized Dynkin’s formula to derive the surpris-
ing result that

(Hb + 1)−k − (H∞ + 1)−k =
(
(Hb + 1)−1 − (H∞ + 1)−1

)k ∀ k ∈ N (2.91)

for a large class of operators H and form perturbations P of H . Let us recall that

(Hb + 1)−1 → (H∞ + 1)−1 ⊕ 0, b→∞,

for a suitably chosen non-negative self-adjoint operator H∞ in a suitably chosen
closed subspace H∞ of H and that we abuse notation and write (H∞ + 1)−1 in
place of (H∞+1)−1⊕0. Here we abuse notation again and simply write (H∞+1)−k

in place of (H∞ + 1)−k ⊕ 0.

Before we derive formula (2.91), let us briefly mention some reasons why
one might be interested in this result. Let A and A0 be non-negative self-adjoint
operators. A and A0 may be differential operators so that passing to higher powers
of the resolvents improves regularity. There are also many examples where the
resolvent difference (A + 1)−1 − (A0 + 1)−1 does not belong to the trace class,
but (A + 1)−k − (A0 + 1)−k is a trace class operator for sufficiently large k. This
implies, by the Birman-Kuroda theorem, that the absolutely continuous spectral
part Aac of A is unitarily equivalent to Aac

0 and, in particular, A and A0 have the
same absolutely continuous spectrum. Estimates of the trace norm of (A+1)−k−
(A0 + 1)−k can also be used to compare the eigenvalue distributions of A and A0.
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Lemma 2.30. Suppose that D(J) ⊃ D(H) and

JGu = 0 ∀u ∈ ker(J). (2.92)

Then the following holds:

a) Db(G−D∞) = 0 for all b > 0.

b) D∞(G−D∞) = 0.

Proof. a) Let PJ be the orthogonal projection in (D(E), E1) onto the orthogonal
complement of ker(J). Then 1 − PJ is the orthogonal projection onto the bi-
orthogonal complement and hence onto the closure of ker(J). Since J is a closed
operator, its kernel is closed and hence 1 − PJ is the orthogonal projection onto
the kernel of J .

By the generalized Dynkin’s formula, cf. Theorem 2.27,

D∞ = PJG.

In conjunction with the resolvent formula (2.12) and the hypothesis (2.92), this
implies that

Db(G−D∞) = (JG)∗
(
1

b
+ JJ∗

)−1

JG(1− PJ )G = 0.

b) Due to the fact that the operators Db converge strongly to D∞, b) follows
from a). �

In the proof of the main theorem of this section we shall use the following
telescope-sum formula which holds true for arbitrary everywhere defined operators
A and B on H.

Ak −Bk =

k−1∑
j=0

Ak−1−j (A−B)Bj . (2.93)

If A and B are bounded self-adjoint operators and AB = 0, then

(BAu, v) = (u,ABv) = 0 ∀u, v ∈ H

and hence BA = 0.

Theorem 2.31. Suppose that D(J) ⊃ D(H) and ker(J) is G-invariant. Then

(Hb + 1)−k − (H∞ + 1)−k =
(
(Hb + 1)−1 − (H∞ + 1)−1

)k ∀ k ∈ N.
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Proof. Let k ∈ N. By formula (2.93) and having Lemma 2.30 in mind, we get

(Hb + 1)−k − (H∞ + 1)−k

=

k−1∑
j=0

(H∞ + 1)−k−1−j ((H∞ + 1)−1 − (Hb + 1)−1
)
(Hb + 1)−j

=

k−1∑
j=0

(G−D∞)k−1−j (D∞ −Db) ((G−D∞) + (D∞ −Db))
j

=

k−1∑
j=0

(G−D∞)k−1−j (D∞ −Db)
j+1

= (D∞ −Db)
k +

k−1∑
j=1

(G−D∞)k−j (D∞ −Db)
j .

Now observing that, by Lemma 2.30, we have, for all f ∈ H,(k−1∑
j=1

(G−D∞)k−j (D∞ −Db)
jf, f

)
= (f, (D∞ −Db)

j(G−D∞)k−jf) = 0,

we get the result. �

Corollary 2.32. Under the hypotheses of Theorem 2.31, the following holds:

‖(Hb + 1)−k − (H∞ + 1)−k‖ = ‖(Hb + 1)−1 − (H∞ + 1)−1‖k ∀ k ∈ N. (2.94)

In particular, there exists a c > 0 such that

lim inf
b→∞

bk‖(Hb + 1)−k − (H∞ + 1)−k‖

= lim sup
b→∞

bk‖(Hb + 1)−k − (H∞ + 1)−k‖ = ck > 0 ∀k ∈ N, (2.95)

and, for any k ∈ N, we have the following equivalence:

lim
b→∞

bk‖(Hb + 1)−k − (H∞ + 1)−k‖ <∞ ⇐⇒ J(D(H)) ⊂ D(Ȟ). (2.96)

Proof. By (2.16) in conjunction with (2.20), the operator D∞−Db is non-negative,
bounded, and self-adjoint. By the spectral calculus and Theorem 2.31, this implies
formula (2.94). The assertions (2.95) and (2.96), respectively, follow from (2.94)
in conjunction with Theorem 2.7. �

We conclude this section with an example which shows that the condition
(2.92) is not “artificial” at all.
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Example 2.33. Let D be the open unit disc in R2 and T the unit circle. We consider
the form in L2(T ) = L2(T, dθ) defined by

Ḟ(f, f) := 1

16π

∫ 2π

0

∫ 2π

0

|f(θ)− f(θ′)|2 sin−2

(
θ − θ′

2

)
dθdθ′,

D(Ḟ) := {f ∈ L2(T ) : F(f, f) <∞}. (2.97)

We define the form Ė in L2(D) as follows:

Ė(f, f) := 1

2

∫
D

|∇f |2dx,

D(Ė) := {f ∈ L2(D) : f is harmonic, E(f, f) <∞}. (2.98)

We take

J̇ : (D(Ė), Ė)→ (D(Ḟ), Ḟ), J̇f := f � T ∀ f ∈ D(Ė),

where f � T is the operation of taking the boundary limit of f . It is known, cf.
[13, p. 12], that J̇ is unitary and it preserves the subspace of constant functions.
We define an equivalence relation on both L2(D) and L2(T ) by f ∼ g ⇔ f − g is
a constant function. Accordingly we define the forms

F([f ], [f ]) := Ḟ(f, f), D(F) =
(
D(Ḟ)

)
/∼, (2.99)

E([f ], [f ]) = Ė(f, f), D(E) =
(
D(Ė)

)
/∼, (2.100)

and

J : (D(E), E)→ (D(F),F), J [f ] := J̇f ∀ [f ] ∈ D(E).

Then both F , E and J are well defined and it is well known that (D(E), E) is a

Hilbert space (which we take to be H). Furthermore since J̇ is unitary we conclude
that J is unitary as well. Thus ker(J) = {0} and trivially the assumption (2.92) is
satisfied. Since ker(J) = {0}, also H∞ = {0}, cf. (2.8), and hence (H∞ +1)−1 = 0
and D∞ = G. Since J0 is unitary, JJ∗ = 1 and, in particular, ran(JJ∗) = D(F).
J is not unitary as an operator from (D(E), E1) onto (D(F),F), but the norms
induced by E and E1 are equivalent and hence we still have ran(JJ∗) = D(F).
Thus, by formula (2.96), there exists a constant c ∈ (0,∞) such that

lim
b→∞

bk‖(Hb + 1)−k‖ = ck

for all k ∈ N.

It is also known that E and F in the previous example are Dirichlet forms and
the perturbation corresponding to J is a so-called jumping term and, in particular,
non-local, cf. [13, p. 12]. Moreover, obviously the operator J is not compact. In
the next section we shall concentrate on Dirichlet forms and treat certain local
perturbations, the so-called killing terms.
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3. Dirichlet forms

We can combine our general methods with tools from the theory of Dirichlet
forms in order to improve our results in the special, but very important case when
Hb = H + bμ for some Dirichlet operator H and some killing measure μ. It is
also possible to treat other kinds of perturbations, for instance, perturbations by
jumping terms, as it was demonstrated in Example 2.33.

3.1. Notation and basic results

Throughout this section, X denotes a locally compact separable metric space, m
a positive Radon measure on X such that supp(m) = X and E a (symmetric)
Dirichlet form in L2(X,m), i.e., a densely defined closed form in L2(X,m) satis-
fying

f̄ ∈ D(E) ∀ f ∈ D(E), (3.1)

(this condition is void in the real case) and possessing the contraction property

f c ∈ D(E) and E(f c, f c) ≤ E(f, f) (3.2)

for all real-valued f ∈ D(E), where f c := min(1, f+) and f+ := max(0, f). In
addition, we require the Dirichlet form be regular, i.e., the following two conditions
are satisfied:

a) The set of all f in the space C0(X) of continuous functions with compact
support such that f is a representative of an element of D(E) is dense in
(C0(X), ‖ · ‖∞). We shall denote this set by C0(X) ∩D(E).

b) The set of all f in D(E) with a continuous representative with compact
support is dense in (D(E), E1). We shall denote this set by C0(X) ∩ D(E),
too.

The capacity (with respect to E) of an open subset U of X and an arbitrary
subset B of X is defined as follows:

cap(U) := inf{E1(u, u) : u ≥ 1m-a.e. on U},
cap(B) := inf{cap(U) : U ⊃ B, U is open}, (3.3)

respectively. The classical Dirichlet form D, defined by (2.34), is a regular Dirichlet
form in L2(Rd) and the definition of capacity in Section 2.4 is equivalent to the
definition of capacity for D in (3.3). As in the classical case, a function u : X → C

is called quasi-continuous (with respect to E) if and only if for every ε > 0 there
exists an open set Uε such that u � X\Uε is continuous and cap(Uε) < ε. Moreover,
as in the classical case, every u ∈ D(E) has a quasi-continuous representative, two
quasi-continuous representatives are equal q.e., i.e., everywhere up to a set with
capacity zero, and every E1-convergent sequence has a subsequence converging q.e.
For u ∈ D(E) we denote by u also any quasi-continuous representative of u. We
shall denote by H the non-negative self-adjoint operator associated to E .
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Remark 3.1. There exists a Markov process M such that pt(·, B) is a quasi-
continuous representative of e−tH1B for every Borel set B ∈ B(X) with m(B) <∞
and all t > 0. Here pt(x,B) is the transition function of M and M is even an m-
symmetric Hunt process with state space X∪{Δ}, where Δ is added as an isolated
point if X is compact and X∪{Δ} is the one-point compactification ofX otherwise.

If E =
1

2
D, then the corresponding Markov process M is the standard Brownian

motion.

In the following, let μ be a positive Radon measure on X charging no set
with capacity zero. As in the classical case, we set

D(Pμ) := D(E) ∩ L2(X,μ), (3.4)

Pμ(u, v) :=

∫
ūv dμ ∀u, v ∈ D(E) (3.5)

and obtain that the operator Jμ from (D(E), E1) to L2(X,μ), defined by

D(Jμ) := D(Pμ), Jμu := u μ-a.e. ∀u ∈ D(Jμ), (3.6)

is closed and hence E + bPμ is closed for all b > 0. For each b > 0, we set Ebμ :=
E + bPμ and denote by H + bμ the non-negative self-adjoint operator associated
with Ebμ. Moreover,

(H +∞μ + 1)−1 := lim
b→∞

(H + bμ + 1)−1,

Dμ
b := (H + 1)−1 − (H + bμ + 1)−1 ∀ b ∈ [0,∞].

Theorem 3.2. Eμ is a regular Dirichlet form in L2(X,m).

(H + 1)−1 has a Markovian kernel G, i.e., there exists a mapping

G : X × B(X)→ [0, 1]

such that G(·, B) is measurable for every B in the Borel-algebra B(X) of X ,
G(x,X) ≤ 1 and G(x, ·) is a measure for every x ∈ X and

x �→
∫

f(y)G(x, dy)

is a quasi-continuous representative of (H + 1)−1f for every f ∈ L2(X,m). For
every non-negative Borel measurable function f on X the function Gf : X →
[0,∞], Gf(x) :=

∫
f(y)G(x, dy) for x ∈ X , is well defined. G is also m-symmetric,

i.e.,
∫

Gf hdm =
∫

f Ghdm for all non-negative Borel measurable functions f and
h. Gf ≥ 0 q.e. if f ≥ 0 m-a.e. E , H , and G will be called conservative if G1 = 1 q.e.
We shall abuse notation and denote not only the Markovian kernel of (H + 1)−1,
but also the operator (H + 1)−1 by G. Moreover, we put

Gμ := (H + μ + 1)−1

and denote by Gμ also the m-symmetric Markovian kernel of this operator.



106 H. BelHadjAli, A. Ben Amor and J.F. Brasche

The Dirichlet form E is strongly local if and only if the following implication
holds for all u, v ∈ D(E):

supp(um) and supp(vm) compact and v constant in
a neighborhood of supp(um) implies that E(u, v) = 0.

(3.7)

Example 3.3. D is a regular conservative strongly local Dirichlet form in L2(Rd).

3.2. Trace of a Dirichlet form

In the remaining part of this note we shall assume that μ is a positive Radon
measure on X charging no set with capacity zero (with respect to E) that satisfies

D(H) ⊂ D(Jμ). (3.8)

Recently Chen, Fukushima, and Ying [10] have obtained deep results on the trace
of a Dirichlet form and the associated Markov process. It turns out that traces of
Dirichlet forms are also very useful for the investigation of large coupling conver-
gence.

Before we give the definition of the trace of a Dirichlet form, we need some
preparation. We put

F := supp(μ)

and identify L2(X,μ) and L2(F, μ) in the canonical way, i.e., via the unitary
transformation u �→ u � F . We further put

Pμ := PJμ ,

i.e., Pμ is the orthogonal projection in the Hilbert space (D(E), E1) onto the orthog-
onal complement of ker(Jμ) (with respect to the scalar product E1). Obviously,
the following implications hold:

Jμu = Jμw =⇒ u− w ∈ ker(Jμ) =⇒ Pμu = Pμw.

Hence, the following is correctly defined:

Definition 3.4. We define the form Ěμ1 in L2(F, μ) as follows:

D(Ěμ1 ) := ran(Jμ),

Ěμ1 (Jμu, Jμv) := E1(Pμu, Pμv) ∀u, v ∈ D(E). (3.9)

Ěμ1 is called the trace of the Dirichlet form E1 with respect to the measure μ.

Theorem 3.5. Ěμ1 is a regular Dirichlet form in L2(F, μ).

The proof of this theorem can be found in [13, Chapter 6].

Remark 3.6. In the Definition 3.4 we have essentially used that the Dirichlet form
E1 is coercive. One can define the trace Ěμ of an arbitrary regular Dirichlet form
E with respect to a measure μ in such a way that for E1 the Definition 3.5 above
is equivalent to the general one. Even in the general case Ěμ is a regular Dirichlet
form in L2(F, μ). We shall not use these extensions in this note and omit the
details, but refer the interested reader to [13, Chapter 6.2].
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The operator

Ȟμ := (JμJμ∗)−1 (3.10)

plays an important role in the discussion of large coupling convergence. It is re-
markable that Ȟμ is the self-adjoint operator associated with the Dirichlet form Ěμ1 .

Lemma 3.7. Ȟμ is the self-adjoint operator associated with Ěμ1 .

Proof. u− Pμu ∈ ker(Jμ) for every u ∈ D(E). Thus
Pμu ∈ D(Jμ) and JμPμu = Jμu ∀u ∈ D(Jμ). (3.11)

Since the operator Ȟμ is self-adjoint, we only need to prove that it is a restriction
of the self-adjoint operator associated with Ěμ1 . For this it suffices to show that

Ěμ1 (JμJμ∗f, h) = (f, h)L2(μ) ∀ f ∈ D(JμJμ∗)∀h ∈ D(Ěμ1 ).
By Theorem 3.5, it suffices to prove this equality for all f ∈ D(JμJμ∗) and all
h ∈ C0(F ) ∩D(Ěμ1 ). Let now h ∈ C0(F ) ∩D(Ěμ1 ) and choose u ∈ D(E) such that
h = Jμu. Then, by (3.11), JμPμu = Jμu = h. Let f ∈ D(JμJμ∗). Then

Ěμ1 (JμJμ∗f, h) = E1(Jμ∗f, Pμu) = (f, JμPμu)L2(μ) = (f, h)L2(μ).

Thus Ȟμ is the self-adjoint operator associated with Ěμ1 . �

The following example illustrates the strength of the previous lemma for the
investigation of large coupling convergence.

Example 3.8 (Continuation of Example 2.16). We choose (xn)n∈Z, (an)n∈Z, d, Γ,
−ΔΓ

D, and μ as in the Example 2.16. Assume, in addition, that

m0 := inf
n∈Z

an > 0. (3.12)

Then the operators −Δ+ b
∑
n∈Z

anδxn converge in the norm resolvent sense to

−ΔΓ
D with maximal rate of convergence, i.e.,

lim
b→∞

b ‖(−Δ+ b
∑
n∈Z

anδxn + 1)−1 − (−ΔΓ
D + 1)−1‖ <∞. (3.13)

Proof. Let Ďμ1 be the trace of D with respect to the measure μ. Let f ∈ L2(R, μ).
Then

∞ >

∫
|f |2 dμ =

∑
n∈Z

an|f(xn)|2 ≥ m0

∑
n∈Z

|f(xn)|2.

Choose ϕ ∈ C∞
0 (R) such that ϕ(0) = 1 and ϕ(x) = 0 if |x| ≥ d/2. Then f(xn)·

ϕ(· − xn), n ∈ Z, are pairwise orthogonal elements of H1(R) and∑
n∈Z

‖f(xn)ϕ(· − xn)‖2H1(R) =
∑
n∈Z

|f(xn)|2‖ϕ‖2H1(R) <∞.

Thus u :=
∑
n∈Z

f(xn)ϕ(· − xn) ∈ H1(R). Since f = u μ-a.e., we obtain f ∈
ran(Jμ) = D(Ďμ1 ). Thus

D(Ďμ1 ) = L2(R, μ).
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By the previous lemma, −Δ̌μ := (JμJμ∗)−1 is the self-adjoint operator asso-
ciated with the closed form Ď

μ
1 in L2(R, μ). Since the domain of the form associated

to −Δ̌μ equals the whole Hilbert space L2(R, μ), the domain of D(−Δ̌μ) equals
L2(R, μ), too. Thus, trivially,

Jμ(D(−Δ)) ⊂ D(−̌Δμ
).

By Theorem 2.7, this implies the assertion (3.13). �
We shall demonstrate how to use traces of Dirichlet forms for the investigation

of large coupling convergence by further examples. First we need some preparation.

Lemma 3.9. Let μ be a positive Radon measure on R such that supp(μ) = [0, 1].
Then

Ď
μ
1 (f, h) =

∫ 1

0

(f ′h′ + f̄h)dx + f(0)h(0) + f(1)h(1) ∀ f, h ∈ D(Ďμ1 ). (3.14)

(We recall that f denotes both an element of D(Ďμ1 ) and the unique continuous
representative of f .)

Proof. By polarization, it suffices to consider the case f = h. Choose u ∈ H1(R)
such that f = Jμu. By definition,

Ď
μ
1 (f, f) = D1(Pμu, Pμu). (3.15)

Pμ is infinitely differentiable on R \ [0, 1] and
−(Pμu)′′ + Pμu = 0 on R \ [0, 1], (3.16)

since D1(Pμu, v) = 0 for every v ∈ C∞
0 (R) with support in R \ [0, 1]. Since, by

(3.11), JμPμu = Jμu = f , this implies

Pμu(x) = Pμu(0)e
x = f(0)ex ∀x ≤ 0,

Pμu(x) = Pμu(1)e
1−x = f(1)e1−x ∀x ≥ 1. (3.17)

Thus

D1(Pμu, Pμu) =

∫
R\[0,1]

(|(Pμu)′|2 + |(Pμu)|2)dx +

∫ 1

0

(|f ′|2 + |f |2)dx

= |f(0)|2 + |f(1)|2 +
∫ 1

0

(|f ′|2 + |f |2)dx. (3.18)

�
Corollary 3.10. Let μ be a positive Radon measure on R such that supp(μ) = [0, 1]
and 1(0,1)μ = 1(0,1) dx. Then each eigenvalue of the self-adjoint operator −Δ̌μ in

L2(R, μ) associated to the trace Ď
μ
1 of D1 with respect to the measure μ is strictly

positive.
Let η > 0 and −Δ̌μf = (η2 + 1)f . Then there exist constants c ∈ C and

θ ∈ [−π/2, π/2] such that (the continuous representative of ) f satisfies

f(x) = c sin(ηx + θ) ∀x ∈ [0, 1]. (3.19)
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Proof. Each eigenvalue of −Δ̌μ is strictly positive, since −Δ̌μ is an invertible non-
negative self-adjoint operator.

Let η > 0 and −Δ̌μf = (η2 + 1)f . By (3.14),

(−Δ̌μf, h)L2(R,μ) =

∫ 1

0

(f ′h′ + f̄h) dx

for all infinitely differentiable functions with compact support in (0, 1). This implies
that f is infinitely differentiable on (0, 1) and −Δ̌μf = −f ′′(x) + f(x) for every
x ∈ (0, 1). Thus −f ′′(x) = η2f(x) for all x ∈ (0, 1) and hence there exist constants
c and θ such that f(x) = c sin(ηx+θ) for all x ∈ (0, 1) and, therefore, by continuity,
for all x ∈ [0, 1]. �

We can now apply Lemma 2.26 in order to derive results on the rate of trace
class convergence. We demonstrate how to do this through the following example.

Example 3.11. Let μ1 := 1[0,1] dx and μ2 := μ1 + δ0 + δ1. Then

lim
b→∞

√
b ‖(−Δ+ bμ1 + 1)−1 − (−Δ+∞μ1 + 1)−1‖S1 =

3

2
(3.20)

and

lim
b→∞

√
b ‖(−Δ+ bμ2 + 1)−1 − (−Δ+∞μ2 + 1)−1‖S1 =

1

2
. (3.21)

Proof. Let μ ∈ {μ1, μ2}. Let k ∈ N, ck ∈ R \ {0}, ηk > 0, θk ∈ [−π/2, π/2] and
suppose that gk with gk(x) = ck sin(ηkx + θk) for all x ∈ [0, 1] is a normalized
eigenfunction of −Δ̌μ. We have∫ 1

0

(g′kh
′ + gkh) dx + gk(1)h(1) + gk(0)h(0)

= Ď
μ
1 (gk, h) = (−Δ̌μgk, h)L2(μ) = (−g′′k + gk, h)L2(μ) ∀h ∈ D(Ďμ).

Moreover,

(−g′′k + gk, h)L2(μ1) =

∫ 1

0

(g′kh
′ + gkh) dx− g′k(1)h(1) + g′k(0)h(0),

and

(−g′′k + gk, h)L2(μ2)

= (−g′′k + gk, h)L2(μ1) + (−g′′k (1) + gk(1))h(1) + (−g′′k(0) + gk(0))h(0)

for all h ∈ D(Ďμ1) and h ∈ D(Ďμ2), respectively. It follows that

g′k(0) = gk(0) and g′k(1) = −gk(1) if μ = μ1,

and

g′′k (0) = −g′k(0) and g′′k (1) = g′k(1) if μ = μ2.
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It follows now by elementary calculus that

lim
k→∞

θk = π/2 if μ = μ1,

lim
k→∞

θk = 0 if μ = μ2,

lim
k→∞

(ηk − kπ) = 0 and lim
k→∞

c2k = 2 in both cases.

Hence

lim
k→∞

g2k(0) = lim
k→∞

g2k(1) = 2 if μ = μ1,

lim
k→∞

g2k(0) = lim
k→∞

g2k(1) = 0 if μ = μ2.

Inserting these results into Lemma 2.26 and taking Corollary 3.10 into account,
we complete the proof by an elementary computation. �

Finally, we want to hint to an interesting fact. Again let μ1 = 1[0,1] dx.

Choose an orthonormal system (gk)k∈N in L2(R, μ1) and a sequence(ηk)k∈N of
strictly positive real numbers such that −Δ̌μgk = (1 + η2

k) gk for all k ∈ N. Then,
by (2.76),

‖(−Δ+ bμ1 + 1)−1 − (−Δ+∞μ1 + 1)−1‖ ≥
∞∑
k=1

αk(f)

1 + η2
k + b

for any normalized f ∈ L2(R), where

αk(f) := |
∫ 0

−∞
gk(0)e

xf(x) dx +

∫ 1

0

gk(x)f(x) dx +

∫ ∞

1

gk(1)e
1−xf(x) dx|2.

If we choose f(x) :=
√
2 1(−∞,0)(x)e

x for all x ∈ R, then, by the considerations of
the previous example, limk→∞ αk(f) = 1 and hence

lim
b→∞

√
b ‖(−Δ+ bμ1 + 1)−1 − (−Δ+∞μ1 + 1)−1‖ ≥ 1

2
. (3.22)

Thus the operators (−Δ+ bμ1 + 1)−1 do not converge faster than O(1/
√

b) with
respect to the operator norm. On the other hand, the rate of convergence becomes
O(1/b), if we add ε0δ0 + ε1δ1 to the measure μ1, where ε1 and ε2 are any strictly
positive real numbers, cf. Example 3.19 below. Thus arbitrarily small changes of
the measure can lead to strong changes of the rate of convergence.

Actually, if one combines (2.76), (2.75) and the results from the previous
example, then one gets via an elementary computation that

lim
b→∞

√
b ‖(−Δ+ bμ1 + 1)−1 − (−Δ+∞μ1 + 1)−1‖ = 1

2
. (3.23)
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3.3. A domination principle

For positive Radon measures μ on X charging no set with capacity zero let

Hμ∞ := ker(Jμ)

be the closure of ker(Jμ) in the Hilbert space H. We have

(H +∞μ + 1)−1 = (H +∞ν + 1)−1

for Hμ∞ = Hν∞. This can be true even if the measures μ and ν are quite different;
in particular, it is not necessary that the measures μ and ν are equivalent.

Intuitively one expects in the case (H + ∞μ + 1)−1 = (H + ∞ν + 1)−1

that the operators (H + bμ + 1)−1 converge at least as fast as (H + bν + 1)−1 if
μ ≥ ν. We shall prove that this is true. In this way we can use known results for
one measure ν in order to derive results for another measure μ. For instance, if
(H + bν +1)−1 converge with maximal rate, i.e., as fast as O(1/b), and μ ≥ ν and
(H +∞μ+1)−1 = (H +∞ν + 1)−1, then (H + bμ+ 1)−1 converge with maximal
rate, too.

Lemma 3.12. Let μ and ν be positive Radon measures on X charging no set with
capacity (with respect to E) zero. Assume, in addition, that μ ≥ ν. Then the
operator Gν − Gμ is positivity preserving, i.e., it holds (Gν − Gμ)f ≥ 0 m-a.e if
f ≥ 0 m-a.e.

Proof. Let f, g ∈ L2(X,m), f ≥ 0 m-a.e., and g ≥ 0 m-a.e. Then Gμf ≥ 0 m-a.e.
and Gνg ≥ 0 m-a.e., since Gμ and Gν are positivity preserving. By [13, Lemma
2.1.5], this implies that all quasi-continuous representatives of Gμf and of Gνg
(with respect to E) are non-negative q.e. and, therefore, also (μ− ν)-a.e.

We have, with the convention that u denotes both an element of D(E) and
any quasi-continuous representative of u, that

(f,Gνg) = Eμ1 (Gμf,Gνg)

= Eν1 (Gμf,Gνg) +

∫
Gμf Gνg d(μ− ν)

= (Gμf, g) +

∫
Gμf Gνg dμ.

Thus ∫
(Gνf −Gμf)g dm =

∫
Gμf Gνg d(μ− ν).

Since the right-hand side is non-negative for every g ∈ L2(X,m) satisfying g ≥ 0
m-a.e., it follows that Gνf −Gμf ≥ 0 m-a.e. �

It holds G = G0, where 0 denotes the measure which is identically equal to
zero and b′μ ≤ bμ if b′ ≤ b. Hence it follows from the previous lemma that

G(·, B) ≥ Gb′μ(·, B) ≥ Gbμ(·, B) ∀B ∈ B(X) q.e. if 0 < b′ < b. (3.24)
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Thus (H +∞μ + 1)−1 has also an m-symmetric Markovian kernel G∞μ and

Gbμ(·, B) ≥ G∞μ(·, B) ∀B ∈ B(X) q.e. (3.25)

For each b ∈ [0,∞], it follows that Dμ
b has an m-symmetric Markovian kernel, also

denoted by Dμ
b , and that

Dμ
b′(·, B) ≤ Dμ

b (·, B) ≤ Dμ
∞(·, B) ∀B ∈ B(X) q.e. if 0 < b′ < b. (3.26)

Corollary 3.13. Under the hypotheses of Lemma 3.12 and the additional assump-
tion that

Dμ
∞ = Dν

∞,

it holds that

0 ≤ Dμ
∞f −Dμ

b f ≤ Dν
∞f −Dν

b f m-a.e. (3.27)

for all b > 0 provided that f ≥ 0 m-a.e. Moreover,

‖Dμ
∞ −Dμ

b ‖ ≤ ‖Dν
∞ −Dν

b ‖ ∀ b > 0. (3.28)

Proof. (3.27) follows immediately from Lemma 3.12 and (3.28) follows from (3.27),
since both the operators Dμ∞−Dμ

b and the operators Dν∞−Dν
b have m-symmetric

Markovian kernels. �
3.4. Convergence with maximal rate and equilibrium measures

First let us recall some known facts from the potential theory of Dirichlet forms,
cf. [13]. A positive Radon measure is a measure with finite energy integral (with
respect to E) if and only if there exists a constant c > 0 such that∫

|u| dμ ≤ c
√
E1(u, u) ∀u ∈ C0(X) ∩D(E). (3.29)

If μ is a measure with finite energy integral, then μ does not charge any set with
capacity zero and there exists a unique element U1μ (the 1-potential of μ) of D(E)
such that

E1(U1μ, v) =

∫
v dμ ∀ v ∈ D(E). (3.30)

It holds that U1μ ≥ 0 m-a.e. Now let μ be any positive Radon measure on X
charging no set with capacity zero. Then, for all h ∈ L2(X,μ) with h ≥ 0 μ-
a.e., the following holds: hμ is a measure with finite energy integral if and only if
h ∈ D(Jμ∗). In this case Jμ∗h equals the 1-potential U1(hμ) of hμ and hence

Jμ∗h = U1(hμ) ≥ 0 m-a.e. ∀h ∈ D(Jμ∗) with h ≥ 0μ-a.e. (3.31)

Let Γ be a closed subset of X such that the 1-capacity cap(Γ) of Γ is finite.
There exists a unique eΓ ∈ D(E) satisfying

eΓ = 1 q.e. on Γ and E1(eΓ, v) ≥ 0 ∀ v ∈ D(E) with v ≥ 0 q.e. on Γ. (3.32)

Moreover, there exists a unique positive Radon measure μΓ on X such that μΓ has
finite energy integral,

μΓ(Γ) = μΓ(X) = cap(Γ) and eΓ = U1μΓ. (3.33)
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Thus 1 ∈ D(JμΓ∗) and

JμΓJμΓ∗1 = 1 q.e. on Γ. (3.34)

The 1-equilibrium potential eΓ of Γ satisfies, in addition,

0 ≤ eΓ ≤ 1 m-a.e. (3.35)

We recall that Ȟ = (JμJμ∗)−1 and set

Ǩ := JμJμ∗ and Ǩα := (Ȟ + α)−1 ∀α > 0. (3.36)

(3.34) can be used to prove that JμΓJμΓ∗ is a bounded operator with norm
one. We prepare the proof through the following lemma.

Lemma 3.14. Let G be a symmetric Markovian kernel and set

Tf(x) :=

∫
f(y)G(x, dy)

whenever the expression on the right-hand side is defined. Then

‖Tf‖ ≤ (‖T 1‖∞)1/2‖f‖ ∀f ∈ L2(X,m) ∩ L∞(X,m)

and hence T extends to a bounded operator on L2(X,m) with

‖T ‖ ≤ (‖T 1‖∞)1/2. (3.37)

Proof. Let f ∈ L2(X,m) ∩ L∞(X,m). By Hölder’s inequality,

|Tf |2 ≤ T 1

∫
X

f2(y)G(·, dy) ≤ ‖T 1‖∞
∫
X

f2(y)G(·, dy). (3.38)

This yields, by the Markov property and the symmetry of G, that ‖Tf‖2 ≤
‖T 1‖∞‖f‖2. �

Corollary 3.15. Let Γ be a closed subset of X such that 0 < cap(Γ) <∞. Then

‖JμΓJμΓ∗‖ = 1. (3.39)

Proof. By the first resolvent equality and since the operators Ǩα are positivity
preserving, the sequence (Ǩ1/nf)

∞
n=1 is pointwise non-decreasing μΓ-a.e. for all

f ∈ L2(X,μΓ) with f ≥ 0 μΓ-a.e.

By (3.36) and (3.34), 1 ∈ D(Ǩ) and Ǩ1 = 1 μΓ-a.e. and hence ‖Ǩ‖ ≥ 1. By
spectral calculus,

‖Ǩ1/nf − Ǩf‖L2(X,μΓ) → 0 as n→∞ ∀ f ∈ D(Ǩ). (3.40)

Since the sequence (Ǩ1/n1)
∞
n=1 is non-decreasing μΓ-a.e., it follows that it con-

verges to 1 μΓ-a.e. and, in particular, Ǩ1/n1 ≤ 1 μΓ-a.e. for all n ∈ N, n ≥ 1. By
Lemma 3.14, this implies that

‖Ǩ1/n‖ ≤ 1, n = 1, 2, 3, . . .

By (3.40), it follows that ‖Ǩ‖ ≤ 1. �
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It is remarkable that the important and large class of equilibrium measures
leads to large coupling convergence with maximal rate of convergence.

Theorem 3.16. Let Γ be a closed subset of X with finite capacity and μΓ the equi-
librium measure of Γ. Let F be the support of μΓ. Assume that (H + 1)−1 is
conservative. Then

‖(H + βμΓ + 1)−1 − (H +∞μΓ + 1)−1‖ ≤ 1

1 + b
∀ b > 0. (3.41)

Proof. By (3.26), DμΓ∞ −DμΓ

b possesses an m-symmetric Markovian kernel and, by
Lemma 3.14, it suffices to prove that

‖(H + bμΓ + 1)−11− (H +∞μΓ + 1)−11‖∞ ≤
1

1 + b
∀ b > 0. (3.42)

Let b > 0 and (fk) ⊂ C0(X) such that fk ↑ 1 everywhere on X . Using the
representation of G in terms of its Markovian kernel, we obtain that, by applying
the monotone convergence theorem,

JμΓGfk → 1 in L2(X,μΓ). (3.43)

Thus observing that, by (3.34),
(
1
b + Ȟ−1

)−1
1 = b

1+b , we obtain

DμΓ

b fk = (IμΓG)∗
(
1

b
+ Ȟ−1

)−1

JμΓGfk →
b

1 + b
(JμΓG)∗1. (3.44)

By monotone convergence again, we get that DμΓ

b fk ↑ DμΓ

b 1 a.e. Thus, by the
latter identity and since

b

1 + b
(JμΓG)∗1 =

b

1 + b
U1μΓ,

we arrive at DμΓ

b 1 = b
1+bU1μΓ for all 0 < b <∞. Since the operators DμΓ

b converge
to DμΓ∞ strongly, this implies that DμΓ∞ 1 = U1μΓ. Thus

‖(H + bμΓ + 1)−11− (H +∞μΓ + 1)−11‖∞ ≤
‖U1μΓ‖∞
1 + b

∀ b > 0. (3.45)

Finally, the result follows from (3.33) and (3.35). �
By the previous theorem, L(H,PμΓ) ≤ 1 provided that the regular Dirichlet

form E is conservative. For conservative strongly local regular Dirichlet forms, we
can even give the exact value of L(H,PμΓ).

Theorem 3.17. Suppose that the regular Dirichlet form E associated to the non-
negative self-adjoint operator H in L2(X,m) has the strong local property. Let Γ
be a closed subset of X with finite capacity. If the interior Γ◦ of Γ is not empty,
then

L(H,PμΓ) ≥ 1. (3.46)

If, in addition, the operator (H + 1)−1 is conservative, then

L(H,PμΓ) = 1. (3.47)
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Proof. (3.47) follows from (3.46) and Theorem 3.16. Thus we only need to prove
(3.46).

Since U1μΓ = 1 q.e. on Γ and by the strong locality of E ,∫
u dm = (U1μΓ, u) = E1(U1μΓ, u) =

∫
u dμΓ

for all u ∈ C0(Γ
◦)∩D(E). Since C0(Γ

◦)∩D(E) is dense in C0(Γ
◦) with respect to

the supremum norm, it follows that

μΓ = m on the Borel-Algebra B(Γ◦) of B. (3.48)

Choose u ∈ C0(Γ
◦) ∩D(E) such that ‖u‖ = 1. For all f ∈ D(JμΓ)

E1(f,Gu) = (f, u) = (JμΓf, u)L2(μΓ) = E1(f, JμΓ∗u)

(in the second step we have used (3.48)). Thus Gu = JμΓ∗u and hence ȞJμΓGu =
u. Thus

‖ȞJμΓH‖ ≥ ‖u‖L2(μΓ) = ‖u‖ = 1

(again, we have used (3.48) in the second step). By Theorem 2.7 (c), this implies
(3.46). �

As a consequence of Theorem 3.16 in conjunction with Corollary 3.13, we
obtain the next result.

Corollary 3.18. Let E be a conservative Dirichlet form. Let Γ be a closed subset of
X with finite capacity, 0 < c < ∞, and let μ be a positive Radon measure on X
charging no set with capacity zero and such that μ ≥ c μΓ. Assume, in addition,
that

Dμ
∞ = DμΓ∞ .

(In particular, this is true if μ is absolutely continuous with respect to the equilib-
rium measure μΓ.) Then

‖Dμ
∞ −Dμ

b ‖ ≤
1

1 + cb
∀ b > 0.

If E equals the classical Dirichlet form D in L2(R), then the equilibrium
measure of the interval [0, 1] equals 1[0,1] = dx + δ0 + δ1. Hence the result in the
next example follows from the previous corollary. If one compares this result with
(3.22), then one sees that the rate of convergence for the operators (−Δ+bμ+1)−1

can be changed strongly by an arbitrarily small change of the measure μ.

Example 3.19. Let εi > 0 for i = 0, 1. Let μ = 1[0,1] dx + ε0δ0 + ε1δ1. Let c :=
min(ε0, ε1). Then

‖(−Δ+ bμ + 1)−1 − (−Δ+∞μ + 1)−1‖ ≤ 1

1 + cb
∀ b > 0.
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