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Abstract. In this paper we present a couple of old and new results related to
the problem of large coupling convergence. Several aspects of convergence are
discussed, namely norm resolvent convergence as well as convergence within
Schatten-von Neumann classes. We also discuss the rate of convergence with
a special emphasis on the optimal rate of convergence, for which we give
necessary and sufficient conditions. The collected results are then used for the
case of Dirichlet operators. Our method is purely analytical and is supported
by a wide variety of examples.
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1. Introduction

For non-negative potentials V', convergence of Schrédinger operators —A + bV as
the coupling constant b goes to infinity has been studied for a long time, cf. [9],
[11], [12], and the references therein. Motivated by the fact that there has been
created a rich theory of point interactions described in detail in the monograph
[1], one has recently made an attempt to include singular, measure-valued po-
tentials in these investigations. In addition, it turned out that perturbations by
differential operators of the same order are important in a variety of applications
in engineering, cf. [14], [15].

All the mentioned families (Hp)p>0 of operators are of the following form:
One is given a non-negative self-adjoint operator H in a Hilbert space H. Set

D(&) := D(VH),
E(u,v) := (VHu,VHv) Vu,ve D).
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£ is a form in H, i.e., a semi-scalar product on a linear subspace of H. Hence
& (u,v) = E(u,v) + (u,v) Yu,ve DE)

defines a scalar product on D(&). The form £ is closed, i.e., (D(£), &) is a Hilbert
space. Moreover, it is densely defined, i.e., D(&) is dense in H. In addition, one is
given a form P in H such that for every b > 0 the form &£ + bP, defined by

D(E+bP):=D(E)N D(P),
(€ +bP)(u,v) == E(u,v) + bP(u,v) Vu,ve DE+DbP),

is densely defined and closed. Then, by Kato’s representation theorem, for every
b > 0 there exists a unique non-negative self-adjoint operator Hj in H such that

D(y/Hy) = D(€ +bP),
v/ Hyu||> = (€ + bP)(u,u) Yu € D(E +bP).

Hy, is called the self-adjoint operator associated with £ 4+ bP. By Kato’s monotone
convergence theorem, the operators (H, + 1)~! converge strongly as b goes to
infinity. In a wide variety of applications it turns out that it is more easy to
analyze the limit than the approximants (Hy + 1)~!. For this reason one might
use the following strategy for the investigation of the operator H for large b: One
studies the limit of the operators (Hj, +1)~! and estimates the error one produces
by replacing (H, + 1)~! by the limit. This leads to the question about how fast
the operators (H, + 1)~! converge. It is also important to find out which kind of
convergence takes place. For instance, convergence with respect to the operator
norm admits much stronger conclusions about the spectral properties than strong
convergence, cf., e.g., the discussion of this point in [22, Chap. VIIL.7].

One has achieved a variety of results within the general framework described
above. One has discovered that there exists a universal upper bound for the rate
of convergence (Corollary 2.8), and one has derived a criterion for convergence
with maximal rate (Theorem 2.7). In general, only strong convergence takes place.
However, one has found a variety of conditions which are sufficient for locally uni-
form convergence (Theorem 2.6, Theorem 2.7, and Proposition 2.9), and in certain
cases one has even arrived at estimates for the rate of convergence (Theorem 2.7
and Proposition 2.9).

One has even found conditions which are sufficient for convergence within
a Schatten (-von Neumann) class of finite order, cf. Sections 2.5 and 2.6.2. This
admits strong conclusions about the spectral properties. For instance, if H and
Hy are non-negative self-adjoint operators and (H +1)~! — (Hp +1)~! belongs to
the trace class, then, by the Birman-Kuroda theorem, the absolutely continuous
spectral parts of H and Hy are unitarily equivalent and, in particular, H and Hy
have the same absolutely continuous spectrum. Often, (H+1)"1 —(Ho+1)~! does
not belong to the trace class, but (H +1)~% — (Hy+1)~* for some sufficiently large
k does and, again the Birman-Kuroda Theorem, this implies that the absolutely
continuous parts of H and H( are unitarily equivalent. This note also contains some
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new results on the convergence of powers of resolvents, cf. Section 2.8. These results
are based on a generalization of the celebrated Dynkin’s formula in Section 2.7.

One has introduced the concept of the trace of a Dirichlet form in order to
study time changed Markov processes. The generator of the time changed process
plays also an important role in the investigation of large coupling convergence for
the Dirichlet operators, cf. Section 3.2. If one perturbs a Dirichlet operator by an
equilibrium measure times a coupling constant b and let b go to infinity, then one
gets, at least in the conservative case, large coupling convergence with maximal
rate, cf. Theorem 3.16. A simple domination principle described in Section 3.3
makes it possible to use results on the perturbation by one measure in order to
derive results on perturbations by other measures.

In this note we concentrate on non-negative perturbations. If one studies large
coupling convergence of magnetic Schrédinger operators, then one needs different
techniques. We refer to [17] and the references therein for results in this direction.

In addition to new results we have collected material which can be found
at the following places (we do not claim that these are the original sources in all
cases):

[3]: Lemma 3.7

[4]: Lemmas 2.2 and 2.4, Theorems 2.6 and 2.7, Corollary 2.8,
Proposition 2.9 a), Sections 2.5 and 3.4

]: Lemma 2.3, Lemma 2.15

7): Section 2.6.1, Examples 2.1 and 3.19, and Egs. (3.20) and (3.22)
]

8]: Section 2.7
[13]: Section 2.4 up to Lemma 2.15 and the examples,
Section 3.1, and Theorem 3.5, cf. also [20]
[16]: Eq. (3.21)
[23]: Eq. (2.10)
[25]: Lemma 2.5

2. Non-negative form perturbations

2.1. Notation and general hypotheses

Let € denote a densely defined closed form in the Hilbert space (H, (-,-)) and H
be the self-adjoint operator associated with £. Let P denote a form in H such that
&€+ P is a densely defined and closed form in H. Note that we do not require P be

closable, i.e., we do not only admit regular, but also singular form perturbations
of H.

Ezample 2.1. Let J be a closed operator from the Hilbert space (D(&),&1) to an
auxiliary Hilbert space Haux. Let

D(P) := D(J),
Pu,v) = (Ju, Jv)aux Vu,v € D(J).
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Then & + bP is a closed form in H for every b > 0. If D(J) is dense in (D(E), &)
and, in addition, ran(.J) is dense in Haux, then JJ* is an invertible non-negative
self-adjoint operator in H,ux-

Proof. Let (uy) be a sequence in D(E + bP) = D(J) such that

(4 VP) (U — Uy U — Upm) + ||t — Up|?
= &1 (Un — U, Uy — Upy) + b][ Tty — Tt |20 = 0 as n,m — 0o, (2.1)

In order to prove that £ + bP is closed we only have to show that there exists a
u € D(J) such that

(€ +0P) (un — t, un — w) + [|un — ul|?

=& (Un — Uyt — 1) + b || Jup — Ju|2 =0 asn — oco.

aux
Since & is non-negative and b > 0, it follows from (2.1) that
E1(Up — Uy Uy — Upy) = 0 a8 M, M — 00.
Since & is closed, this implies that there exists a u € D(€) such that
E1(up —uyup —u) =0 asn — oo. (2.2)
Since & is non-negative and b > 0, it also follows from (2.1) that
| Tty — Jtum |2 — 0 as n,m — oo

and hence the sequence (Ju,) in Haux is convergent. Since J is a closed operator
from the Hilbert space (D(£),&1) to the Hilbert space Haux and (Juy,) is conver-
gent in Haux, (2.2) implies that v € D(J) and ||Ju,, — Ju|laux — 0. Thus € + bP
is closed.

Suppose now, in addition, that D(J) is dense in (D(£),&1) and ran(J) is
dense in Haux. Since J is closed, the domain D(J*) of the adjoint J* of J is dense
in Haux and J = J**. Hence JJ* is a non-negative self-adjoint operator in H,yx.
If JJ*u = 0, then & (J*u, J*u) = (u, JJ*u)aux = 0 and hence u € ker(J*) =
ran(J)*. ran(J)* = {0}, since ran(J) is dense in Hauy. Thus all assertions in the
example are proven. O

Indeed, Example 2.1 covers the most general non-negative form perturbation of H:

Lemma 2.2. There exist an auxiliary Hilbert space Haux and a closed operator J
from the Hilbert space (D(E),E1) to Haux such that

D(J)=D(E+P),
(Ju, Jv)aux = P(u,v) Yu,v € D(J),

and ran(J) is dense in Haux. Thus, in particular, £+ bP is closed for every b > 0.
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Proof. We define an equivalence relation ~ on D(E)ND(P) as follows: f ~ g if and
only if P(f —g,f —g) =0. For every f € D(E) N D(P) let [f] be the equivalence
class with respect to this equivalence relation and denote by H.ux the completion
of the quotient space (D(£) N D(P),P)/ ~, with respect to the norm

LI =P(f. ), VIfl € (DE)ND(P))/ ~.
Then it easily follows from the hypothesis that & + P is closed that
D(J) = D(E) N D(P),
Jf=1[f] YfeD(J),
defines a closed operator from (D(E), &) to Haux with the required properties. O

In the following, we choose an auxiliary Hilbert space H.ux and a closed
operator J from (D(E),&1) to Haux as in the previous lemma, i.e., such that

D(J) = D(&) N D(P),
(Ju, Jv)aux = P(u,v) Yu,v e D(J), (2.3)
and set
gl =E+P. (2.4)

For every b > 0, we denote by H; (or simply by Hy if J is clear from the context)
the self-adjoint operator in ‘H associated with £ + bP.
If not stated otherwise, we assume, in addition, that

D(J) > D(H). (2.5)

This hypothesis is less restrictive than it might seem at a first glance. In fact,
J may also be regarded as an operator from (D(EJ),ElJ) to Haux and then J
is a bounded, everywhere defined operator and, in particular, it is closed. Thus,
if necessary, we may replace & and H by £/ and H;, respectively, and then the
hypothesis (2.5) is satisfied (with H; in place of H). Moreover, we have

Hyyy = (Hy), Vb>0,
lim (Hy + 1)~ = lim ((Hy), +1)7 % (2.6)
b—o0 b— o0
Under the hypothesis (2.5), D(J) is dense in (D(£), &), and we set
H:= (JJ) . (2.7)

Note that H is an invertible non-negative self-adjoint operator in Hayx.
Let

D(EL) :={u € D& +P): P(u,u) =0},
EL (u,v) := E(u,v) Yu,v € D(Ey), (2.8)
where J and P are related via (2.3) (often we shall omit J in the notation). Let

HI = {u € DE+P): Plu,u) =0}, (2.9)
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i.e., let HZ be the closure of the kernel of J in the Hilbert space H. By Kato’s
monotone convergence theorem, £7 is a densely defined closed form in the Hilbert
space HZ, and

(Hy 4+ 1) = (Ho + 1)1 @ 0 strongly as b — oo, (2.10)

where Ho denotes the self-adjoint operator in HZ associated to £L. We shall
abuse notation and write (Hy + 1)7! instead of (Hoo +1)71 & 0.
We set

L(H,P) := lim inf b |(Hy 4+ 1)"" = (Hoo + 1)1
We shall also use the following abbreviations:
Dy:=(H+1)"—(H+1)7", Do:=H+1)"—(Hu+1)",
G:=(H+1)" (2.11)
2.2. A resolvent formula

We have an explicit expression for the resolvents of the self-adjoint operators Hy.
This fact will play a key role throughout this note.

Lemma 2.3. Let J be a closed operator from (D(E),&E1) to an auwiliary Hilbert
space Haux such that

D(J) > D(H).
Let b > 0 and let Hy, be the self-adjoint operator in H associated with the closed
form EY in H defined as follows:

D(EY) = D(J),
EY (u,v) := E(u,v) + b(Ju, Jv)aux  Yu,v € D(J).
Then, with G := (H + 1)1, the following resolvent formula holds:

1

-1
(H+1)'—(Hy+1) ' = (JG) (b + JJ*) JG. (2.12)

Proof. Replacing J by v/bJ, if necessary, we may assume that b = 1. On the other
hand the following identity holds true: for all u € H and v € D(J*)

(J*v,u) = & (T v, Gu) = (v, JGU) aux = ((JG) v, u). (2.13)

Let uw € H. Since JJ* is a non-negative self-adjoint operator in H,ux, the
operator 1 + JJ* in H,ux is bounded, self-adjoint, and invertible, and

D((1+J7) ") = Haux-

Since ran(1 + JJ*)~! = D(JJ*), we obtain that u € D(J*(1 + JJ*)"'JG) and
J*(1+JJ*)"YJGu € D(J) = D(&7).
By Kato’s representation theorem,

E((Hy 4+ 1) u,v) = (u,v) Yu e H,ve DE).
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On the other hand,
EN(Gu — T (L + JJ*) 1 IGu,v)
= &1(Gu,v) + (JGu, JU) aux
— (L + JT) L TG, Jv)aux — (JT*(1 + JJ*) L TGu, JU)aux

= (u,v) Yu€H,ve DE).
Thus

(Hi+ 1) 'u=Gu—J1+JJ) ' JGu YucH,
and it only remains to show that

J'v=(JG)*v VYve D). (2.14)

This is true by identity (2.13). O

2.3. Convergence with respect to the operator norm

If not otherwise stated, J is a closed operator from the Hilbert space (D(£), &)
to an auxiliary Hilbert space Haux and, in addition, D(J) D D(H). Let

D(P) := D(J),
P(u,v) := (Ju, Jv)aux Vu,v € D(J),

and Hj be the self-adjoint operator in H associated to £ + bP.
By Lemma 2.1, JJ* is a non-negative invertible self-adjoint operator in H,ux.
For every h € H,ux we denote by pj, the spectral measure of h with respect to the
self-adjoint operator H := (JJ*)™! in Hauy, i-e., the unique finite positive Radon
measure on R such that, with (E;;(\))xer being the spectral family of H,
pn((=00,A]) = | Eg(Mh[l5 YA €R. (2.15)
Since H is invertible and non-negative,
wn((—00,0)) =0 Vh € Haux. (2.16)

By (2.12), for every b > 0
1
Dy:=(H+1)" '~ (H,+1)" ' = (JG)*(b +JJH) LG, (2.17)

Hence Dy is a bounded non-negative self-adjoint operator in 4 and the spectral
calculus yields that

(Duf. 1) = ((JG)'(, +17°) TGS, f)

((2 + JI)THIGE, TG f) aux

/1 L) Vien, (2.18)
b + A
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where h = JGf. Thus Dy := limy oo Dy = (H +1)7! — (Hy + 1)1 is also
a bounded non-negative self-adjoint operator in H and it follows from (2.18) in
conjunction with (2.16) and the monotone convergence theorem that

(Dt )= [Adun3) ¥ e, (2.19)
where h:= JGf. By (2.18) and (2.19),
2
(-1 = [ 7

where h := JGf. Thus Do, — Dy = (Hp + 1)71 — (Hs + 1)~ ! is a bounded
non-negative self-adjoint operator in H, too.

dun(\) VfeEH, (2.20)

Lemma 2.4.
a) We have

ran(JG) C D(HY?) and Do, = (HY?JG)*H'2JG. (2.21)
In particular, Do is compact if and only if HY/2JG is compact.

b) Ifran(JG) C D(H), then
Do = (JG)*HJG. (2.22)
Proof. a) Let f € H and h := JGf. By (2.19),

@mﬁﬁ=/AWMM<w,

and hence, by the spectral calculus, it follows that h = JGf € D(H'/?) and
|HY2JGf|2 . = (Doof, f). Since Dy, is a bounded non-negative self-adjoint op-

aux
erator, we have

[Dooll = sup (Doof, f)-
I711=1

Thus
[H'2IG|? = (| Dos]l- (2.23)
Since JGf € D(H'/?) for every f € H, the spectral calculus yields

1 B —-1/2 B
[b + Hl} JG — HY?J@ strongly as b — oo,

and hence

1 _ —-1/2 * 1 B —-1/2 5 5
({bJrHl} JG) {b+H1} JG = (HV2JG)*HY?JG  (2.24)

weakly as b goes to infinity. The operators on the left-hand side equal
1
(JG)*(b +JI) VG =(H+1) - (Hy+ 1) =D,

and converge even strongly to Dy, as b — oco. Thus (2.21) is proved.
b) (2.22) follows from (2.21) and the fact that (JG)*HY? c (HY/?2JG)*. O
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By the preceding lemma, H'/2JG is a bounded everywhere defined operator
from H to Haux. That does not guarantee that the resolvents (H + b)~! converge
locally uniformly, cf. the examples 2.17 and 2.18. By Theorem 2.6 below, the
stronger requirement that H'/2JG is compact implies convergence of the operators
(Hp, + 1)~1 with respect to the operator norm. We shall use the following result
for the proof of Theorem 2.6.

Lemma 2.5. Let (A,,) be a sequence of non-negative bounded self-adjoint operators
converging strongly to the compact self-adjoint operator
C :H — H. Suppose that A, is dominated by C, i.e.,

(Anf, ) <(CF ) VfeH,

for every n € N. Then the operators A,, converge locally uniformly to C.

Proof. The operator C' — A,, is non-negative, bounded and self-adjoint and hence

”O - An” = sup ((O - An)fv f)
IIFl=1

for every n.

Let € > 0. Since C' is a non-negative compact self-adjoint operator and the
A,, converge to C strongly, we can choose an orthonormal family (ej)évzl and an
ng such that

(Ch,h) < ;||h||2 Vh € span(er, ... en)"

and
&
[(An — C)gll < 6 lgll Vg €span(ey,...,en)Vn > no,

respectively. Let f € H and |/ f|| = 1. Choose g € span(ey,...,en) and h €
span(ey,...,ex)® such that f = g+ h. For all n > ng

(C=An)f, ) = (C = An)g,9) + 2Re(((C = An)g, h)) + ((C = An)h, h)
< HC = An)gll(llgll + 21IAl)) + (Ch, k) < e. .

Theorem 2.6. Suppose that D(H) C D(J) and the operator H/2JG from H to

Haux s compact. Then
|(Hy + 1) = (Hoo + 1) =0, b— oo

Proof. We only need to show that Dy, — Dy = (Hp +1)"! — (Hs + 1) 7! converge
to zero with respect to the operator norm as b goes to infinity. By (2.17), Dy is
a non-negative bounded self-adjoint operator in H for every b > 0. By (2.16) in
conjunction with (2.20), D, — Dy is a non-negative bounded self-adjoint operator
in H, too. By definition, Do, — D}, converge to zero strongly as b goes to infinity.
By (2.21), along with H'Y2J@G also Dy is a compact operator.

The remaining part of the proof follows now from the preceding lemma: The
operators Dy are non-negative self-adjoint operators and, by (2.16) in conjunction
with (2.20), are dominated by the compact self-adjoint operator D, and they
converge to Dy, strongly as b goes to infinity. Hence limp_, o || Doo — Dyl = 0. O
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Of course, one is not only interested in the question whether norm conver-
gence takes place but one also wants to derive estimates for the rate of convergence.
We shall show that convergence faster than O(1/b) is not possible for the opera-
tors (Hp + 1), cf. Corollary 2.8 below. Under the additional assumption that the
domain D(H) of H is contained in the domain D(J) of J we can even provide a
criterion for convergence with maximal rate O(1/b):

Theorem 2.7. Suppose that
D(H) C D(J)
and Ju # 0 for at least one uw € D(J). Then the following holds:
a) The mapping b+ b||(Hp +1)"! — (Hoo + 1)7Y| is nondecreasing and

L(H,P):= lim inf b |(Hy +1)"" — (Hoo + 1)1
=limsupb|[(Hy +1)"" — (Hoo + 1) >0
b—o0

b) L(H, P) < 0o <= J(D(H)) C D(H).

c) If J(D(H)) C D(H), then
L(H,P) = |HJG|]? < cc. (2.25)

Proof. Let f € H, h = JGf, and py, be the spectral measure of i with respect to
H. By (2.20),

2
W(Dw -0 N = [

This implies in conjunction with (2.16) and the monotone convergence theorem
(from measure theory), that the mapping b — b((Dso — Dp) f, f) is nondecreasing
and

dpn(A).

lin (Do =~ D0)f. ) = [ 2 dun(),

b—o00

Since pup, is the spectral measure of h with respect to the self-adjoint operator H,
it follows that

T b(Daw — D)f. ) = [HIGH |y it JGF € D), (2.26)
i (Dne — DS, ) = o0 it JGf ¢ D). (227)
By (2.27),

lim inf b|| Do — D3|l = oo, (2.28)
b— oo

if there exists an f € H such that JGf ¢ D(H).

Suppose now that ran(JG) C D(H) = ran(JJ*). JG is closed, since J is
closed and G is bounded and closed. Since D(JG) = H, it follows from the closed
graph theorem that JG is bounded. Since H is closed, this implies that HJG is
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closed. Since D(HJG) = H, it follows from the closed graph theorem that HJG
is bounded. Moreover, by (2.26),

lim inf bl| Dog — Dy| > IHIGS]IA
— 00

if ||| = 1, and hence
lim inf b| Do — Ds|| > |HJIG|?. (2.29)
—00

By (2.20) in conjunction with (2.16), Do, — Dy is a non-negative self-adjoint
operator in H. Thus

”Doo*Db” = H?ngl((Doo *Db)f, f) (230)

(2.20) in conjunction with (2.16) also implies that for every normalized f € H and
h=JGf
W(Doe = DL S) < [ 02 i) < |HLIGE,
In conjunction with (2.30), this implies that
b||[Dee — Dy|| < |HJIG|* Vb > 0. (2.31)

By (2.28), (2.29), (2.31), part b) and c) of the theorem are proved. In addition,
we have shown that the mapping

b b||Dy — Dool| = b|(Hy +1)7" = (Hoo + 1) 7}
is nondecreasing and hence
L(H,P) = lim inf b |(Hy +1)"" = (Hoo + 1)1
= lilr7nsupb |(Hy +1)"" — (Hoo + 1) 7. (2.32)
—o00

It remains to prove that L(H, P) > 0. We conduct the proof by contradiction. If
L(H, P) were equal to zero, then, by ¢), we would have JG = 0. Thus the kernel
of J would contain ran(G) = D(H) and hence it would be dense in (D(£),&1).
Since the kernel of a closed operator is closed it would follow that J = 0, which
contradicts the fact that the range of J is dense in Haux. Thus L(H,P) > 0. O

Part a) of the preceding theorem in conjunction with formula (2.6) yields the
following corollary where we do not require that D(J) D D(H).

Corollary 2.8. Let P be a form in H such that € + P is a densely defined closed
form in H. Let P(u,u) # 0 for at least one w € D(E + P). For every b > 0 let Hy
be the self-adjoint operator in H associated to € + bP. Then

L(H,P) = lim inf b |(Hy +1)7 — (Hoo +1)71|
— 00

=limsupb||(Hy +1)"' — (Ho + 1)1 > 0.

b—o0
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Trivially, we get large coupling convergence with maximal rate, i.e., as fast
O(1/b), if the auxiliary Hilbert space Haux is finite-dimensional. We shall also
give a variety of nontrivial examples. On the other hand, there are other examples,
where ||(Hp+1) "t — (Hoo +1) 71| converge to zero as ¢/b" for some strictly positive
finite constant ¢ and some r € (0,1). Let 0 < r < 1. It is an open problem to find
a criterion for convergence with rate O(1/b") to take place. In part a) of the
following proposition we give a sufficient condition and in part b) we show that
this condition is “almost necessary”.

Proposition 2.9. Let 0 <r <1 and sgp = ; + g Suppose that D(H) C D(J).
a) If J(D(H)) C D(H?®°), then
I(Hy+1)~" = (Hao + 1)1 < (1 — r)lfrrr||ﬁ1/2+r/2JG||2b1T Vb > 0.
b) Letuw e H. If

|(Hy+ 1) = (Hoo + D)7l < 0 Wb >0,

for some finite constant ¢, then JGu € D(H?®) for every s < so.

Proof. a) By (2.16) in conjunction with (2.20), (H, + 1)7! — (He + 1)7! is a
non-negative bounded self-adjoint operator in H and hence

[(Hy + 1) = (Hoo + 1) = @‘J&“Dw = Do)t f).

y (2.20), this implies that
/\2
Hy+ 1) = (Ho + )7 = / dpn (A
I+ )7 = (et )7 = oo [ din ),

where f and h are related via h = JG f and pj, denotes the spectral measure of h
with respect to H. Moreover,

)\2
d A )\1/2+T/22d
A ) = Ag(l(?fo)Aer/' " dunA).

By elementary calculus,
s AL B (1 - T)lfr ’r
Ae(0,00) A+ b br '
By the spectral calculus,

[N ) = 2,

If h=JGf and ||f|| =1, then
||H1/2+T/2h||aux < ||H1/2+7‘/2JG||7

and part a) of the Proposition is proved.
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b) Conversely let f € H and assume that

¢
Iy + )7 = (Hoo + D) 7H <,
for some finite constant ¢. Let h = JGf. We may assume that || f|| = 1. Let
1/2 < s< s < sg:=r/2+4+1/2. Then

Vb >0,

¢ 2 b" |Doof = Do f|| 2 b" (Doof — Duf, f)
/\2 br /\27251
= b’”/ " buh(d/\) = /A251 A4 dpn(\) Vb >0. (2.33)
In the second step we have used (2.20). Since 2sy — 1 = r, we have
t:= : > g =
251 —1 250 —1
For all b > 1 and A € [b,b'], we have
br )\27251 1
)\+b Z 2A172slbr2
By (2.33), this implies

1.

1

5 (bt)172slbr — 1.

/ A28 1duh(/\) <c Vb>1.
By 2

Thus

N 1
28 < 2s1
/[2100) 4 dﬂh()\) B 7120/[2m12tn+1) A (2t")281—25 dﬂh(/\)

0o 1 t"
<23 (ja) <
n=0

and hence h = JGf € D(H?). Thus the assertion b) of Proposition 2.9 is also
proved. O

2.4. Schrodinger operators

In this section we illustrate above general definitions and results with the aid of
Schrodinger operators with regular and singular potentials.

We denote by D the classical Dirichlet form, i.e., the form in L?(R?) :=
L?(RY, dz) defined as follows:

D(D) := H'(R?),
D(u,v) := /Vﬂ~Vvdz Vu,v € H' (R?). (2.34)

Here dx denotes the Lebesgue measure and H'(RY) the Sobolev space of order
one. D is a densely defined closed form in L?(RY). We shall denote by —A the
self-adjoint operator in L?(R?) associated to .
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The capacity of a compact subset K of R? and an arbitrary subset B of R?
is defined as follows:

cap(K) := inf{D; (u,u): u € C(RY), u>1 on K},
cap(B) := sup{cap(K): K C B, K is compact}, (2.35)

respectively. A function u : R* — C is quasi-continuous if and only if for every
€ > 0 there exists an open set G, such that

cap(G:) <¢ (2.36)

and the restriction u [ R?\ G of u to R?\ G. is continuous. We shall use the
following elementary results:
Lemma 2.10.

a) Every u € HY(RY) has a quasi-continuous representative.
b) If & and u® are quasi-continuous and @ = u°® dx-a.e., then @ = u°® q.e. (quasi-
everywhere), i.e.,

cap({z € R%: a(z) # u°(x)}) = 0. (2.37)

c) If (uy,) is a sequence in H*(R?), uw € HY(RY) and D1 (uy, — u, up, —u) — 0 as
n — 00, then there exists a subsequence (un;) of (uyn) such that

Up;, — T q.e., (2.38)

i.e., cap({z € R%: @y, (z) 4 i(z)}) = 0. Here @, and @ denote any quasi-
continuous representative of un; and u, respectively.
The proof of the latter lemma can be found in [13].

In the following we shall denote by u both an element of H'(RY) and any
quasi-continuous representative of u. It will not matter which quasi-continuous
representative is chosen and it will always be clear from the context what is meant.

Remark 2.11. In the one-dimensional case cap({a}) = 2 for every a € R and hence
a function is quasi-continuous if and only if it is continuous. Thus, in the one-
dimensional case, it makes sense to write u(a) if u € H'(R) and a € R. Here u(a)
is just the value of the unique continuous representative of u at the point a.

Definition 2.12. Let i be a positive Radon measure on R? charging no set with
capacity zero.

a) We define the form P, in L?(R?) as follows:
D(P,) = {u e H'(RY: /|u|2du < oo},

P(u,v) = /ﬁvdu Vu,v e D(P). (2.39)
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b) We define the operator J* from H'(RY) to L?(R%, ) as follows:
D) i= {ue H'®Y: [ fuP d < o),
Jru i =u  prae. Vu € D(JH). (2.40)
Lemma 2.13. Let p be a positive Radon measure on R% charging no set with ca-

pacity zero. Then the operator J" is closed and D+ bP,, is a non-negative densely
defined closed form in L*(R%) for any b > 0.

Proof. Let (uy,) be a sequence in D(J*), u € H'(R?) and v € L?(R%, 1) satisfying
Dy (un — u,uy —u) — 0 as n — oo, and JHu, — v as n — oco. By Lemma 2.10 ¢),
a suitably chosen subsequence of (u,,) converges to u q.e. and hence p-a.e. Thus
u = v p-a.e. and hence v € D(J*) and J*u,, — u as n — oco. Thus the operator
J# is closed, and, by Lemma 2.1, it follows that D + bP, is also closed. O

Definition 2.14. Let i be a positive Radon measure on R? charging no set with
capacity zero. We denote by —A + p the non-negative self-adjoint operator in
L%*(R%) associated to D + P, and put

(—A+oopu+1)"t:= blim (—A4bp+1)"h
—00
In the absolutely continuous case, i.e., if du = Vdz for some function V', we also

write V instead of Vdx.

In a wide variety of applications one is interested in the question whether the
operator J# is compact. There exists a rich literature on this topic. Here we shall
only need the following result.

Lemma 2.15. Suppose that D(J*) = H'(R) and
p{yeR: jJz—y|<1}) =0, |z|— oo. (2.41)
Then the operator J* from H(R) to L?(R, u) is compact.
The proof of this lemma can be found in [6].
Ezample 2.16. Let (z,)ez and (a,)ez be families of real numbers satisfying
d:= iréfz(zwrl —zp)>0anda, >0 VneZ (2.42)
Let I := {z,, : n € Z} and —AL the Laplacian in L?(R) with Dirichlet bound-

ary conditions at every point of T, i.e., let —AL be the non-negative self-adjoint
operator in L?(IR) associated to the form Dy, in L?(R) defined as follows:

D(Dy) :={u€ H'(R): u=0 on I'},
Do (1, v) := D(u,v) Vu,v € D(Dy). (2.43)

Then the operators —A +b) _, a,d,, converge in the strong resolvent sense to
—AE). Here 6, denotes the Dirac measure with unit mass at x.
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Proof. =A+b)", ., ands, is the self-adjoint operator associated to D + bP,, with
p= Y, cz @nde, and we may replace in formula (2.8) £ and P by D and Py, re-
spectively. Then the assertion on strong resolvent convergence follows from Kato’s
monotone convergence theorem, cf. (2.10). 0

Different choices of the weights a, in the last example lead to extremely
different convergence results. If the a,, go to zero as n — 400, then the operators
—A + bZnEZ an0z, do not converge in the norm resolvent sense, cf. the next
example. On the other hand, if inf,cz a, > 0, then these operators converge in
the norm resolvent with maximal rate of convergence, i.e., as fast as O(1/b), cf.
Example 3.8 below.

Ezample 2.17 (Continuation of Example 2.16). We choose (z,,)nez, (@n)nez, d, T,
—AL . and p as in the previous example. Assume, in addition, that
lim a, =0and D :=sup(zpt1 — n) < 0. (2.44)
In|—o0 nez
Then the operators —A + bZnEZ andz, do not converge in the norm resolvent
sense.

Proof. The hypothesis (2.44) implies that P, is an infinitesimal small form per-
turbation of D, cf. [5], and hence, in particular, D(J*) = H(R). In conjunction
with Lemma 2.15 and the hypotheses (2.42) and (2.44) this implies that the op-
erator J# is compact. In Lemma 2.3 we may replace H, Hy, G and J by —A,
—A+bY, ey a0, (—A+1)"! and J#, respectively. Then the resolvent formula
(2.12) yields that (=A+1)"" = (A + b, o ands, + 1)~ is compact, too. By
Weyl’s essential spectrum theorem, this implies that

- ( (—A 5 b, + 1) _1> (A D))= [0,1]. (245)

newr
Moreover,
2
r m
—AD > D
and hence
_ 1
supo((—AL +1)7h) < |4 22/D2 (2.46)

If the operators —A +b%" ., an0,, converged in the norm resolvent sense to the
Dirichlet Laplacian —AL | then, by (2.45), we would have o(—AL +1)71) O [0, 1],
which contradicts (2.46). Thus the operators —A+b) _, and., do not converge
in the norm resolvent sense. O

In Example 2.17 the operators (—A + bu + 1)~ do not converge locally
uniformly. In this example p is a so-called d-potential and, in particular, singular.
In the regular case we can also have absence of convergence with respect to the
operator norm, as it is shown by the next example. That the operators (—A +
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bV + 1)1 in the next example do not converge locally uniformly can be shown by
mimicking the proof in Example 2.17.

Ezample 2.18. Let (an)nez and (by)nez be families of real numbers with the fol-
lowing properties:

ap, < bp < apy1 Yn€Z, D:=sup(ant1 —by) < oo,

nez
d = inf (ap41 —by) >0, lim (b, —a,) =0. (2.47)
nez |n]—o0

Let V := 3", 7 l{a,b,)- Then the operators (—A + bV + 1)~ converge strongly
as b goes to infinity, but do not converge locally uniformly.

2.5. Convergence within a Schatten-von Neumann class
Let p € [1,00). Let H; be Hilbert spaces with scalar products (-,-);, 4 =0,1,2,...
Let C' be a compact operator from H; to Ho. Then Hs has an orthonormal basis
{e;}ier such that, with |C| := v/CC*,

|C|€Z =N\Ne; Viel

for some suitably chosen family ()\;);e; in [0, 00) which is unique up to permuta-

tions. One sets
1/p
jls, = (X))

iel
Sp(H1,H2) (short S,) denotes the set of compact operators from H; to Ha such
that ||Cl|s, < oo. It is called the Schatten-von Neumann class of order p. S, is
a linear space and || - ||s, a norm on it. If C': H; — Ha belongs to the class
Sp(H1,H2) and A: Hy — H1 and B: He — Hg are linear and bounded, then
CA € Sp(Ho,H2) and BC € S,(H1,Hs) and

ICAlls, < IClls, Al I1BClls, < Clls, [ BI|- (2.48)
Moreover,
IClls, = IC*|ls, = llICIIls, (2.49)

for every compact operator C.

Let B: H1 — Ha be linear and bounded, ;1 be an orthogonal projection
in H1, and @2 be an orthogonal projection in Hs such that the dimension N of
the range of Qo is finite. Then |Q2BQ1|?> = Q2BQ1B*Q2 and hence |Q2BQ]| is
compact and

[1Q2BQ1llls, = [|Q2BQ| I ran(Q2)lls, - (2.50)

Since |Q2BQ1| | ran(Q2) belongs to the finite-dimensional space of all linear map-
pings from ran(Q2) into itself and all norms on a finite-dimensional space are
equivalent, there exists a finite constant ¢, depending only on p and N such that

I1Q2BQ| [ ran(Q2)]|s, < ¢[||Q2BQ1| [ ran(Q2)[| < ¢[|B]. (2.51)
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By (2.49) to (2.51),
1Q2BQ1|ls, < | B (2.52)

for some finite constant ¢, depending only on p and N < oo, provided the range
of @1 or the range of Q5 is at most N-dimensional.

If A is a non-negative bounded self-adjoint operator and dominated by the
compact self-adjoint operator B, then A and B — A are also compact and it follows
easily from the min-max principle for compact operators that

[Alls, < [IBlls, and [|B = Alls, < [|Bls,- (2.53)

In the proof of Theorem 2.6 we have used that strong convergence of non-
negative self-adjoint operators dominated by a compact self-adjoint operator im-
plies operator-norm convergence. Similarly, strong convergence of non-negative
self-adjoint operators dominated by a self-adjoint operator in .S, implies conver-
gence in Sj:

Lemma 2.19. Let {A,, }nen be a sequence of non-negative bounded self-adjoint op-
erators in the Hilbert space H dominated by the non-negative bounded self-adjoint
operator A. Let 1 < p < co. If A € S and lim,,_, || Au— Apul|| = 0 for allu € H,
then

lim (|4 = Ay||s, = 0. (2.54)

Proof. By Lemma 2.5, lim,,_,~ || 4, — A|| = 0.
A admits the representation

A = Z)\l (ei, ) €;
iel

for some orthonormal system (¢;);e; and some family (\;);c; of non-negative real

numbers satisfying
DO = [ AfG .
il
Let € > 0. We choose a finite subset Iy of I such that
> <
i€I\Ip

and denote by @ the orthogonal projection onto the orthogonal complement of the
finite-dimensional space spanned by {e; : i € Ip}. Then

QAQ = Z )\z (€i7 ) €;
i€I\Io
and, in particular,

IQAQIG, = D A <e.

i€I\Ip
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Since Q(A — A,,)Q is dominated by QAQ), it follows that
|Q(A - An)Q|s, <e VYneNlN. (2.55)

Since the range of the orthogonal projection 1 — @ is finite-dimensional and
lim, o [|A — A,|| =0, it follows from (2.52), that

Tim (- @)(4 - 4,)Qlls, = lm (1~ @)(4 - A)(1 - Q)ls,
~ T Q(A - A4,)(1-Q)]s, = 0.
Since A—A4, =QA-A4,)Q+(1-Q)(A-A4,)Q+QA—-A,)(1-Q)+ (1 -
Q)(A— A,)(1 — Q), this implies in conjunction with (2.55), that
limsup [[A = Ans, <,

n—roo

and the lemma is proved. O

Corollary 2.20. Let 1 < p < oco. Let D(J) D D(H) and suppose that the operator
(H +1)7t — (Ho + 1)~ belongs to the Schatten-von Neumann ideal of order p.
Then Dy, € S,(H,H) and

1Dsc = Dills, < IDscls, and [ Dylls, < IDucls, (2.56)
for all b € (0,00). Moreover,
lim ||Doo - Db”Sp =0. (257)
b—o0

Proof. Tt holds limy_,« || Dot — Dpus|| = 0 for all u € H. Hence (2.57) follows from
Lemma 2.19.

By (2.16) in conjunction with (2.20), D, is a non-negative bounded self-
adjoint operator dominated by the self-adjoint operator D.. Hence (2.56) follows
from (2.53). O

The following corollary gives a sufficient condition that the operator Do, =
(H+1)"!' — (Ho + 1)~ ! belongs to a Schatten-von Neumann ideal of finite order
and gives an upper bound for the corresponding Schatten-von Neumann norm.
Corollary 2.21. Let D(J) D D(H) and L(H, P) < occ.

a) Let 1 <p<oo. If JG € Sp(H, Haux), then Dy € Sp(H,H) and

1D lls, < V/L(H,P)||JG]s,. (2.58)

b) Lett € (3/2,00). If JJ* is bounded and JG* belongs to the Hilbert-Schmidt
class So(H, Haux), then

1
1Decllss—z < /LEH,P) (TP TGE,) . (2.59)

Proof. By Theorem 2.7 and since L(H, P) < oo, we have that ran(JG) C D(H),
|HJG|| = \/L(H, P) and limy_ || Doo — Dp|| = 0. By Lemma 2.4 b), this implies
that

Do = (JG)*HJIG,
hence (2.58) follows from (2.48) in conjunction with (2.49).
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Suppose, in addition, that JJ* is bounded. For all h € H,u and f € D(E)
(f;(JG)*h) = (JGf, h)aux = E1(Gf, J*h) = (f, J"h).
Thus J*h = (JG)*h for all h € Haux. Thus JJ* = JG/?(JGY?)* and hence
175 = TG,
In conjunction with the hypothesis JG* € Sy this implies, by [6, Lemma 2], that
ITGIS2, < 1T TG,
hence (2.59) follows now from (2.58). O

2.6. Compact perturbations

2.6.1. Expansions. We get stronger assertions provided the operator J is compact.
Let us assume that J is a compact operator from (D(€), &) into Hayux, that the
domain of J equals D(£), and that the range of .J is dense in Haux.

Since J: D(E) — Haux is compact and G'/? is a unitary mapping from the
Hilbert space H onto the Hilbert space (D(E), &1 ), the operator JGY/2: H — Haux
is also compact and there exist a family (Ag)ger in (0, 00), an orthonormal system
(ex)rer in H, and an orthonormal system (gi)rer in Haux with the following
properties:

(i) I has only finitely many elements or I = N and
A — 0, k — oo.
(ii) TGP =" Nelex, flge Y f €M, (2.60)
kel

We shall call the latter expansion the canonical expansion of the operator JG'/2
and refer the reader to [24, p. 4], for more details.
It follows that

(JGY2) h =" Melgr Danxex Y h € Haus, (2.61)
kel
and, in particular,
(JGY?)* gk = e Vh €L (2.62)
By (2.60) and (2.61),
JGV2IG2) R =" N (gks Mawxge Y € Hau. (2.63)
kel
In particular,
JGY2(JGY?) g, = M2gr VEEN. (2.64)

Furthermore, ker((JG'/2)*) = (ran(JG'/?))t = {0}, since ran(J) is dense in
Haux. Thus the compact operator JG/2(JGY?)* in Hauy is invertible. Therefore,
(2.63) implies that (A\?)re; is the family of eigenvalues of JG/2(JG'/2)* counted
repeatedly according to their multiplicity, that, for any k& € I, the vector g is an
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eigenvector of JG'/2(JG'/?)* corresponding to the eigenvalue A%, and that (g )ker
is an orthonormal basis of Haux. (2.63) implies now that

1
{1/b+ JGl/Q(JGl/Q)*}—lh:Z \2 +1/b (gk,h)auxgk Vh € Haux- (265)
kel “k

By (2.12), (2.60), (2.61), and (2.65),

A

+1/b(ek,G1/2f)ek VfeH.

Dof = (H+ )™ = (Hy+ ) = G2y,
kel "k
Since G''/? is self-adjoint and bounded, it follows that
A% 1/2 1/2
D =
kel

A% 1/2 1/2
= > . 2.
kel 3 15 G e GNGE e VI EH (2.66)

(G'?e},)rer is an orthonormal system in (D(E), &), since (ex)rer is an or-
thonormal system in # and the operator G/2 from H into (D(£),&;) is unitary.
Thus the series 3, ; &1(GY2er, Gf)G ey, converges in (D(E),&1) (and, there-
fore, also in H),

D IE(G e, GF)P < E1(GF,Gf) < o0,

kel

and

& <Z EGPer, GF)GVPex — Dy f, Y E1(GVPex, GF)G ey, — Dbf)

kel kel

->

kel

2
1E1(G e, G =0, b— o0, (2.67)

1
1+ b7

for all f € H. Since convergence in (D(&), &) implies convergence in H and the
operators Dy strongly converge in H to Do, (2.67) implies that

Doof =D &1(GV2er, GF)G ey, =Y (GV2er, [)GV?er VfeH. (2.68)

kel kel

Thus we have proved the following theorem.
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Theorem 2.22. Suppose that D(J) = D(E) and that J is compact. Then, with
(M) ker and (ex)ker as in the canonical expansion of JGY/2,

S Ciyp Ak 1/2 1/2
((H +1)7" = (Hy +1) >f—;&+1/b<0 ek, [) G Per VfEH,
(2.69)
(H+1) "= (Hoo + 1)) f = (GYPer, f) G2, Ve, (2.70)
kel
-1 —1y _ 1 1/2 2
— (Hso = su G/ ey, . .
[(Hy+1)"" = (Hoo + 1) H;&;HM%I( ko f)| (2.71)

Remark 2.23. The technique of regularizing the singular problem through the use
of the canonical expansion is also typical for the theory of generalized pseudo
inverses like presented in [21]. In this context the large coupling limits are some-
times called the limits of the large penalty. They are used in numerical analysis
to regularize the ’jumping coefficients’ differential equations by penalization. A
good survey on regularization can be found in [18] and its use in the theory of
saddle-point problems can be found in [19].

In Sections 2.3 and 2.5 the operator H = (J.J*)~! has played an important
role, but did occur neither in the discussion of Schrédinger operators nor in this
section. Actually H is useful in these contexts, too. To begin with let us men-
tion that we can express the singular values )\, with the aid of H. By (2.14),
JJ* = J(JG)* = JGY?(JG?)*. Thus the orthonormal basis (gr)rer of Haux 15
contained in the domain of H and

- 1
Hgi, = A2 g, Vkel. (2.72)
k

In addition, we have, by (2.62), that
(JG)*gp = GY2(JGY?)* g, = \GY?e), Ve I (2.73)

In many applications, one can use this formula in order to describe the vectors ey

with the aid of the eigenvectors g, of H. We demonstrate this in a simple case:
Let €& = D be the classical Dirichlet form in L?(R) and u be a positive Radon

measure on R such that supp(u) = [0, 1]. The operator G := (—A+1)"1: L3(R) —

L?(R) is an integral operator with kernel g(z — y), where g(z) := 5 exp(—|z|) for

all # € R. Since the function [ g(- — y)f(y)dy is continuous for all f € L*(R),
the mapping J*G : L?(R) — L?(R, i) is also an integral operator with the same
kernel g(x—y). Thus (J*G)* : L*(R, 1) — L?*(R) is an integral operator with kernel
g(y — ) = g(z — y). Since the function [ g(- — y)h(y)u(dy) is continuous for all
h € L*(R, i), we finally obtain that also JH(J*G)* = JHJ#* : L2(R, u) — L*(R, p)
is an integral operator with kernel g(z — y).

By Lemma 2.15, J#: H'(R) — L?(R, u) is compact. Thus we can choose an
orthonormal system (ey)ren in L?(R), an orthonormal basis (gx)ren of L*(R, i),
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and a sequence (A, )ren of strictly positive real numbers such that
oo
JEGH? = ZAk(ekv )Gk
k=1

Of course, the A\, ex and g depend on p, but we suppress this dependence in our
notation.

Let k € N. The function ui := [ g(- — y)gr(y)(dy) is continuous and square
integrable, and, for supp(u) = [0, 1], satisfies the differential equation —y” +y =0
on R\ [0, 1]. Thus

() ug(0)e”, x <0,
up(z) =
§ up()el=, 2> 1.

Since uy, is the continuous representative of \yG'/%¢p, = (JFG)* gi and J*(JHG)* gy,
= )\%gk it follows, for the continuous representative G'/2e;, of G'/%¢y,, that

gr(0)e”, @ <0,
G'2e(x) = A | gr(2), 0<z<l, (2.74)
ge(el= x>1.

Set
2

ap(f) = ’/Ooo 91(0)e” f (z)dz + /Olgk(z)f(ﬂﬂ)dﬂﬂ + /100 ge(1)e! =" f(z)dw

(2.75)
By (2.71) and (2.74), we can express the distances between the operators (—A +
bu+1)~! and their limit with the aid of the self-adjoint operator —A#* = (J# J#*)~1
in L2(R, u1). Let b € (0,00). Then

[~ bt )7 = (<A oo+ )7 = sup 3o )

: (2.76)
Ifl=1 = Ex+0

where —Atg, = Ejgy, for all k € N, (gr)ren is an orthonormal basis of L(R, p).

2.6.2. Schatten-von Neumann classes. We can use Theorem 2.22 in order to derive
estimates for the rate of convergence with respect to S,-norms.

Lemma 2.24. Suppose that D(J) = D(E) and J is compact. Let 1 < p < co. Then
with A, and ey, as in the canonical expansion of JGY/2 the following holds.

a) The operator Doy = (H + 1)7! — (Hy + 1)71 belongs to the Schatten-von
Neumann class of order p if and only if

p—1
D D2 GV2e? < oo (2.77)
kel
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If this is the case, then
p—1
IDeolls, = > 1Dod G e, (2.78)
kel

b) Let 0 < b < oo. The operator Doo — Dy = (Hp +1)71 — (Hoo + 1)1 belongs
to the Schatten-von Neumann class of order p if and only if

1 —1
D 14 (D = Do) G2k < oo, (2.79)
kel k
If this is the case, then
1 -1
[Dec = Dullf, = 14 oz 1(Dee = Dy)"2 G'VPe. (2.80)
kel k

Proof. a) Let (f;);jer be an orthonormal basis for H. Since D, is a non-negative
self-adjoint operator, we obtain

1Dl = tr(D2) = S2(D%fi ;) = S (Dol f5, D2 1)

jer jer
p—1 p—1
= Y @, De [P =) [IDd GV e, (2.81)
jel’ kel kel
b) The proof of b) is quite similar, so we omit it. O

Theorem 2.25. Let p € {1,2}. Suppose that JG'/? is compact. Then the following
two assertions are equivalent:
a) [[(Hy+1) = (Hoo + 1) |5, — 0 as b — oo.
b) (H+1)"!' — (Ho + 1)7! belongs to S,(H,H).
Proof. Tt is always true that |[(Hy + 1) — (Hoo + 1) '|ls, = 0 as b — oo if Doy =
(H+1)"!' — (Hoo +1)7! belongs to S,(H,H), cf. Corollary 2.20.
Conversely, let first p = 2 and assume that

Jim [[(Hy +1) = (Hoo + 1) 7[5, = 0. (2.82)
Then, by Lemma 2.24,
1
1D = Dollg, = 3 14 bA2 [(Doo — D) /2G|
kel k
1 1/2 1/2
= Z 5 (Doo = Dp)G /ey, G/ 7ey)
kel L+ bA;
1 1 1/2 1/2, 42
=Y S (G G ey (2.83)
L 1H0A] S 14D

Similarly, we obtain

S ID&G el = 3 (G 2e;, G 2ey) 2. (2.84)

kel j,kel
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By (2.82) in conjunction with (2.83), we get for sufficiently large b that

1 1
1> ||Doc = Doll3, = >

L4+ DAE 1407 (G2, G Per)”
J

J,kel
> e 2 (G2, GM e (2.85)
A, A<l
and hence
S IDAG ek = 3 (G2, G 2er)?
kel J,kel
<(1+0b)2+ Z Z|(Gl/2ej,G1/2ek)|2 + Z Z (GY%e;, GY?ey)|?
A >1 el Ap<lA;>1
<S40 +2 ) [|Gexl® < oo. (2.86)
Ap>1

Thus, by Lemma 2.24 a), the proof is complete for the case p = 2. The case p = 1
can be treated in a similar way. U

As in the previous subsection we can express the distances between the op-
erators (—A + by + 1)71 and their limit with the aid of the operator —A*,

Lemma 2.26. Let p1 be a positive Radon measure on R and suppose that supp(p) =
[0,1]. Let (gx) be an orthonormal basis of L3*(R, 1) such that, with the operator
— AW = (JrJF)7L the following holds:

—Atg, = Ergr VEkeN.
Then

Vb>0,  (2.87)

_ 11— (— -1 _ B
I(=A+bu+1)"" = (=A+oou+ 1)~ s, ;Ek+b

where
1 o 1 2 ! 2
Br = 2|gk(0)| + 2|9k(1)| + [ lgr(x)|"dz VkeN. (2.88)
0

Proof. Since Ey, = 1/)% for every k € N, the lemma follows from (2.80) in con-
junction with (2.74). O

2.7. Dynkin’s formula

We can use (2.70) in order to derive an abstract version of the celebrated Dynkin’s
formula.

To begin with let us assume that D(J) = D(€) and J is compact. Choose
an orthonormal system (ey)res in H, an orthonormal basis (g )rer in Haux, and a
family (A )xer of non-negative real numbers as in (2.60), i.e., such that JG'/2 f =
> ner Ak(er, fgr for all f € H. Then JGY2f =0 if and only if (eg, f) = 0 for all
kel



98 H. BelHadjAli, A. Ben Amor and J.F. Brasche

G'/? is a unitary operator from H to (D(£),&r). Thus (G'/2ey)res is an
orthonormal system in the Hilbert space (D(E),&1). Moreover, (eg, f) = 0 for all
k € I'if and only if & (G'/%ey, GY/2f) = 0 for all k € I. Thus (G/?ey)ker is an
orthonormal basis of ker(.J)*; here | means orthogonal with respect to the scalar
product £; on D(E) and “orthonormal” means “orthonormal with respect to &;”.
Thus the first equality in (2.68) yields that

Dof=P;Gf VfeH, (2.89)

where P; denotes the orthogonal projection in (D(£), &) onto ker(J)*.

(2.89) holds true under much weaker assumptions on the operator J. It is
easy to understand this fact: Let J; and Jo be densely defined closed operators
from (D(E),E1) to Haux. For i = 1,2 denote by H;* the self-adjoint operator in H
associated to £/ and put

D = (H+1)"' - lim (H;" +1)~".
b—o00
By Kato’s monotone convergence theorem,
lim (H;" +1)~' = lim (H?> + 1)~

b— o0 b—o0
provided ker(.J1) = ker(J3), cf. (2.10). Trivially, we also have P; = Py, in this
case and (2.89) holds true for J; if and only if it holds true for Js. Thus in order to
prove (2.89) for a given operator J; we only have to choose a compact operator Ja

such that ker(J) = ker(J1) and ran(.Jz) is dense in Hayux. Hence the next theorem
follows from Lemma 2.29 below.

Theorem 2.27. Suppose that D(J) is dense in the Hilbert space (D(E),&1) and the
auxiliary Hilbert space Haux S separable. Let Py be the orthogonal projection in
the Hilbert space (D(E),&1) onto the kernel ker J of J. Then the following abstract
Dynkin’s formula holds true

(H+1)™' = (He +1)7 ! = P,G. (2.90)

Remark 2.28. Since we choose Haux in such a way that ran(.J) is dense in Haux,
the hypothesis that H.ux be separable is, in particular, satisfied in the case when
D(J) = D(€) and J is compact.

Lemma 2.29. Let J be a densely defined closed operator from the Hilbert space
(Hi, (-,-)1) into the separable Hilbert space (Ha, (-,-)2)). Suppose that ran(J) is
dense in Hs. Then there exists a compact operator Jo from Hq into Ha such that
D(J2) = Hi, the range of Jo is dense in Ha, and

ker(Jz) = ker(J).

Proof. J* is a closed operator from the separable Hilbert space Hs to the Hilbert
space H;. Hence the Hilbert space (D(J*), (-,-).+) is separable, where (u,v) s« :=
(u,v)a + (J*u, J*v)1.
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Since (D(J*),(+,-)s~) is separable, we can choose a sequence (f,)nen such
that the set {f, : n € N} is dense in (D(J*), (-,-)+). Selecting a linearly indepen-
dent subsequence (g )nen Of (fn)nen and applying Gram-Schmidt orthogonaliza-
tion, we get an orthonormal system (e, )nen in Ho with

span{e,: n € N} = span{g, : n € N}

and span{e,: n € N} is dense in (D(J*), (-, )= ).

D(J*) is dense in Hg, since J is closed. Thus span{e,,: n € N} is also dense
in Hs and hence an orthonormal basis of Ho. With this basis, we are able to define
the compact operator Js.

Set
K 1

1+ |[J*exllx
Define an operator Jy by D(Jy) = D(J) and

A = VEkeN.

Jof =Y M (ex, Jf)2ex YV f € D(Jy).

k=1
Jo is a bounded operator from H; to Hy and densely defined. Hence its closure Js
is a bounded operator from H; to Ho and D(J2) = Ha.

Jo is a Hilbert-Schmidt operator. To show that take an orthonormal basis
(hj)jer of Hi such that h; € D(J) for every j € I. Then

2
Z ||J2hj||§ - Z Z Ak (ex, Jhj)zey

JeI jeI |lkeN 2
=Y D (T hynl? =Y AT ellf < oo
keN jel keN

Next we show that ker(J) = ker(Jz). If Jf = 0, then Jof = Jof = 0 and
we obtain ker(J) C ker(Jz). On the other hand, J is densely defined and closed.
Hence ker(.J) = ran(J*)+. Take an f € ker(J). Then there is a sequence (f,)nen
in D(Jy) such that f = lim, oo frn and Jof = limy, 00 Jofn. Let (eg)reny be the
orthonormal basis in Hs introduced above. Then

0= (Jaof,er)2 = nILH;o(JOf"’ er)2

= nlglg() <Z A (€ms an)2(€m7€k)2>

meN
= lim Ac(exs I fa)2 = Me(T e, 1.

Therefore, f is orthogonal to J*ej for all k € N. Since span{ey: k € N} is dense
in (D(J*), (-, -)+), its image span{J*e;: k € N} is dense in ran(J*). Thus f €
ran(J*)+ = ker(J).
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It remains to prove that ran(Jz) is dense in Hq. Fix ky € N and € > 0. Since,
by hypothesis, ran(.J) is dense in Ha, we can choose f € D(J) satisfying

€kq
Jf - <e.
H d )‘ko
Thus || Jof — eg, || < €, because of
[ J2f = exoll3 = || > Meler, T f)aex — ek,
keN
2 1
= > Mler T2l + A%, |(enes Tf)2 — \
kEN, k+£ko ko
12
< Z (e, J)2|” + | (eny, J )2 — \
kEN, kko ko
2 2
= Z(ek,Jf)zek — ik(’ = HJf - iku < e.
keN ko 2 ko 2

Thus ey, € ran(J2). Since span{ey: k € N} = Hy, we have shown that ran(Js) is
dense in Hs,. O

2.8. Differences of powers of resolvents

In this section we shall use the generalized Dynkin’s formula to derive the surpris-
ing result that

(Hy+1)% = (Hoo + 1) % = (Hy+ 1) = (Huo + 1) )" VEeN  (291)
for a large class of operators H and form perturbations P of H. Let us recall that
(Hy+1)' = (Heo +1)7' @0, b— o0,

for a suitably chosen non-negative self-adjoint operator H., in a suitably chosen
closed subspace Ho, of H and that we abuse notation and write (He + 1)~ ! in
place of (H,, +1)~1@®0. Here we abuse notation again and simply write (Ho, +1) "
in place of (Ho + 1) % @ 0.

Before we derive formula (2.91), let us briefly mention some reasons why
one might be interested in this result. Let A and Ag be non-negative self-adjoint
operators. A and Ay may be differential operators so that passing to higher powers
of the resolvents improves regularity. There are also many examples where the
resolvent difference (A4 + 1)1 — (Ap + 1)~ does not belong to the trace class,
but (A +1)7% — (4y +1)7% is a trace class operator for sufficiently large k. This
implies, by the Birman-Kuroda theorem, that the absolutely continuous spectral
part A%¢ of A is unitarily equivalent to A3 and, in particular, A and Ay have the
same absolutely continuous spectrum. Estimates of the trace norm of (A +1)~% —
(Ag +1)~% can also be used to compare the eigenvalue distributions of A and Ay.
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Lemma 2.30. Suppose that D(J) D D(H) and
JGu =0 VYu e ker(J). (2.92)

Then the following holds:

a) Dy(G — Do) =0 for all b > 0.
b) Doo(G — Do) = 0.

Proof. a) Let Py be the orthogonal projection in (D(E), &) onto the orthogonal
complement of ker(J). Then 1 — P; is the orthogonal projection onto the bi-
orthogonal complement and hence onto the closure of ker(J). Since J is a closed
operator, its kernel is closed and hence 1 — Pj; is the orthogonal projection onto
the kernel of J.

By the generalized Dynkin’s formula, cf. Theorem 2.27,
Doo = P]G
In conjunction with the resolvent formula (2.12) and the hypothesis (2.92), this

implies that

Dy(G — Do) = (JC)* (1

—1
. JJ*) JG(1— P;)G = 0.

b) Due to the fact that the operators D;, converge strongly to D, b) follows
from a). O

In the proof of the main theorem of this section we shall use the following
telescope-sum formula which holds true for arbitrary everywhere defined operators
A and B on H.

AF — Bk = kz_‘i AF1ZI (A - B) B, (2.93)
j=0
If A and B are bounded self-adjoint operators and AB = 0, then
(BAu,v) = (u, ABv) =0 VYu,veH
and hence BA = 0.

Theorem 2.31. Suppose that D(J) D D(H) and ker(J) is G-invariant. Then

(Hy+ 1) = (Hao + 1) % = (Hy + 1) = (Hoo + 1)™)* VEeN.
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Proof. Let k € N. By formula (2.93) and having Lemma 2.30 in mind, we get

(Hy+1)"" — (Hoo + 1)7*

k—1
— Z(Hoo + 1) (Hoo + 1) = (Hy+1)7Y) (Hy +1)77
- |
= Z(G - DOO)k_l_j (Doo - Db) ((G - DOO) + (Doo - Db))J
j=0
k—1

j=0
k—1

= (Doo — Dp)F + > (G = Doo)¥ ™7 (Dog — D).
j=1

Now observing that, by Lemma 2.30, we have, for all f € H,

k—1
(Z(G — Doo)* ™ (Do = Dy)' f, f> = (f,(Dsc = Dy} (G = Doc)* ™7 f) = 0,
j=1
we get the result. O

Corollary 2.32. Under the hypotheses of Theorem 2.31, the following holds:
[(Hy+1) % = (Hoo + 1) " = [(Hy + 1) " = (Hoo + 1) [|" VEEN. (2.94)
In particular, there exists a ¢ > 0 such that
lim inf V|(Hy +1)7F — (Hoo +1)7F||

= limsup b*||(Hp +1) ™% — (Hoo + 1) ¥ =c* >0 VkeN, (2.95)

b—o00

and, for any k € N, we have the following equivalence:

Jim V(Hy +1)F — (Hoo + 1) F|| < 0 <= J(D(H)) C D(H). (2.96)

Proof. By (2.16) in conjunction with (2.20), the operator D, — D is non-negative,
bounded, and self-adjoint. By the spectral calculus and Theorem 2.31, this implies
formula (2.94). The assertions (2.95) and (2.96), respectively, follow from (2.94)
in conjunction with Theorem 2.7. 0

We conclude this section with an example which shows that the condition
(2.92) is not “artificial” at all.
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Example 2.33. Let D be the open unit disc in R? and T the unit circle. We consider
the form in L?(T) = L?(T,df) defined by

£ = e /%/% (8")]? sin 2<9 29 >d0d0’,
D(F):={f € L*(T): F(f,f) < oo}. (2.97)

We define the form &£ in L?(D) as follows:

: /|Vf| dz,

D(&) :={f € L*(D): f is harmonic, (f, f) < co}. (2.98)

We take
J: (D(&),E) = (D(F),F), Jf:=f|T VYfeDE),

where f | T is the operation of taking the boundary limit of f. It is known, cf.
[13, p. 12], that J is unitary and it preserves the subspace of constant functions.
We define an equivalence relation on both L?(D) and L*(T) by f ~ g f — g is
a constant function. Accordingly we define the forms

FUL U = F(f, f), DF) = (D(F))/~, (2.99)
E( LM = E(f, 1), DE) = (D(€))/~, (2.100)
and
J: (D(€),€) = (D(F), F), JIfl:=Jf V[fl€DE).

Then both F,& and J are well defined and it is well known that (D(£),€) is a
Hilbert space (which we take to be #). Furthermore since .J is unitary we conclude
that J is unitary as well. Thus ker(J) = {0} and trivially the assumption (2.92) is
satisfied. Since ker(J) = {0}, also Hoo = {0}, cf. (2.8), and hence (Hoo + 1)1 =0
and Do, = G. Since Jy is unitary, JJ* = 1 and, in particular, ran(JJ*) = D(F).
J is not unitary as an operator from (D(£),&;) onto (D(F),F), but the norms
induced by £ and &; are equivalent and hence we still have ran(JJ*) = D(F).
Thus, by formula (2.96), there exists a constant ¢ € (0, c0) such that

lim b%||(Hy 4+ 1)7F|| =
b—o0
for all k£ € N.

It is also known that £ and F in the previous example are Dirichlet forms and
the perturbation corresponding to J is a so-called jumping term and, in particular,
non-local, cf. [13, p. 12]. Moreover, obviously the operator J is not compact. In
the next section we shall concentrate on Dirichlet forms and treat certain local
perturbations, the so-called killing terms.
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3. Dirichlet forms

We can combine our general methods with tools from the theory of Dirichlet
forms in order to improve our results in the special, but very important case when
Hy, = H + by for some Dirichlet operator H and some killing measure pu. It is
also possible to treat other kinds of perturbations, for instance, perturbations by
jumping terms, as it was demonstrated in Example 2.33.

3.1. Notation and basic results

Throughout this section, X denotes a locally compact separable metric space, m
a positive Radon measure on X such that supp(m) = X and £ a (symmetric)
Dirichlet form in L?(X,m), i.e., a densely defined closed form in L?(X,m) satis-

fying
feDE) VfeDE, (3.1)
(this condition is void in the real case) and possessing the contraction property
f° € D(E) and E(f°, ) < E(f, f) (3.2)

for all real-valued f € D(E), where f¢ := min(1, fT) and f* := max(0, f). In
addition, we require the Dirichlet form be regular, i.e., the following two conditions
are satisfied:

a) The set of all f in the space Cy(X) of continuous functions with compact
support such that f is a representative of an element of D(&) is dense in
(Co(X), || - loo). We shall denote this set by Co(X) N D(E).

b) The set of all f in D(£) with a continuous representative with compact
support is dense in (D(€),&;). We shall denote this set by Co(X) N D(E),
too.

The capacity (with respect to &) of an open subset U of X and an arbitrary
subset B of X is defined as follows:

cap(U) := inf{& (u,u): u > 1 m-a.e. on U},
cap(B) = inf{cap(U): U D B, U is open}, (3.3)

respectively. The classical Dirichlet form D, defined by (2.34), is a regular Dirichlet
form in L?(R?) and the definition of capacity in Section 2.4 is equivalent to the
definition of capacity for D in (3.3). As in the classical case, a function u : X — C
is called quasi-continuous (with respect to &) if and only if for every ¢ > 0 there
exists an open set U, such that u | X \U: is continuous and cap(U:) < €. Moreover,
as in the classical case, every u € D(€) has a quasi-continuous representative, two
quasi-continuous representatives are equal q.e., i.e., everywhere up to a set with
capacity zero, and every £1-convergent sequence has a subsequence converging q.e.
For u € D(E) we denote by u also any quasi-continuous representative of u. We
shall denote by H the non-negative self-adjoint operator associated to £.
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Remark 3.1. There exists a Markov process M such that p:(-, B) is a quasi-
continuous representative of e~ 1 for every Borel set B € B(X) with m(B) < oo
and all ¢ > 0. Here p;(x, B) is the transition function of M and M is even an m-
symmetric Hunt process with state space X U{A}, where A is added as an isolated
point if X is compact and XU{A} is the one-point compactification of X otherwise.

If &= 9 D, then the corresponding Markov process M is the standard Brownian

motion.

In the following, let 1 be a positive Radon measure on X charging no set
with capacity zero. As in the classical case, we set

D(P,) == D(E) N LA(X, ), (3.4)
Pp(u,v) := /fw dp Yu,v e D(E) (3.5)

and obtain that the operator J* from (D(£),&1) to L?(X, i), defined by
D(J*) :==D(P,), Jtu:=u p-ae VueDJH), (3.6)

is closed and hence € + bP,, is closed for all b > 0. For each b > 0, we set £ :=
&€ + bP, and denote by H + by the non-negative self-adjoint operator associated
with £%#. Moreover,

(H+oop+1)"" = blggo(H +bu+ 1)1,
Di=H+1)"—(H+bu+1)"" Vbe[0,00].
Theorem 3.2. £V is a regular Dirichlet form in L*(X,m).
(H +1)~! has a Markovian kernel G, i.e., there exists a mapping
G: X xB(X)—[0,1]
such that G(-, B) is measurable for every B in the Borel-algebra B(X) of X,

G(z,X) <1 and G(z,-) is a measure for every € X and

- / f(5)G (. dy)

is a quasi-continuous representative of (H + 1)~1f for every f € L?(X,m). For
every non-negative Borel measurable function f on X the function Gf: X —
[0,00], Gf(z) := [ f(y)G(z,dy) for z € X, is well defined. G is also m-symmetric,
ie., [Gfhdm = [ f Ghdm for all non-negative Borel measurable functions f and
h.Gf > 0q.e.if f > 0m-a.e. £, H, and G will be called conservative if G1 = 1 q.e.
We shall abuse notation and denote not only the Markovian kernel of (H + 1)~1,
but also the operator (H + 1)~! by G. Moreover, we put

GF:=H+p+1)1

and denote by G* also the m-symmetric Markovian kernel of this operator.
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The Dirichlet form £ is strongly local if and only if the following implication
holds for all u, v € D(E):

supp(um) and supp(vm) compact and v constant in

a neighborhood of supp(um) implies that £(u,v) = 0. (3.7)

Example 3.3. D is a regular conservative strongly local Dirichlet form in L?(R?).

3.2. Trace of a Dirichlet form

In the remaining part of this note we shall assume that p is a positive Radon

measure on X charging no set with capacity zero (with respect to £) that satisfies
D(H) c D(J*). (3.8)

Recently Chen, Fukushima, and Ying [10] have obtained deep results on the trace
of a Dirichlet form and the associated Markov process. It turns out that traces of
Dirichlet forms are also very useful for the investigation of large coupling conver-
gence.

Before we give the definition of the trace of a Dirichlet form, we need some
preparation. We put

F = supp(p)

and identify L?(X,u) and L?(F,u) in the canonical way, i.e., via the unitary
transformation u +— u [ F'. We further put

P, :=Pju,

i.e., P, is the orthogonal projection in the Hilbert space (D(£), £1) onto the orthog-
onal complement of ker(J*) (with respect to the scalar product £;). Obviously,
the following implications hold:

Jru=J'w = u—w€ker(J!') = P,u= P,w.
Hence, the following is correctly defined:
Definition 3.4. We define the form £!' in L%(F, ) as follows:
D(EL) i= ran(J"),
EM(JFu, ') := E1(Pyu, Pyw) Yu,v € D(E). (3.9)
5f is called the trace of the Dirichlet form &; with respect to the measure .
Theorem 3.5. ! is a regular Dirichlet form in L*(F, ).
The proof of this theorem can be found in [13, Chapter 6].

Remark 3.6. In the Definition 3.4 we have essentially used that the Dirichlet form
&1 is coercive. One can define the trace £* of an arbitrary regular Dirichlet form
& with respect to a measure p in such a way that for & the Definition 3.5 above
is equivalent to the general one. Even in the general case £* is a regular Dirichlet
form in L2(F, ;). We shall not use these extensions in this note and omit the
details, but refer the interested reader to [13, Chapter 6.2].
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The operator
H! = (Jrgre)~1 (3.10)

plays an important role in the discussion of large coupling convergence. It is re-
markable that H* is the self-adjoint operator associated with the Dirichlet form 1"

Lemma 3.7. H" is the self-adjoint operator associated with S{L
Proof. w— P,u € ker(J") for every u € D(£). Thus
P,ue D(J") and J'Pyu = J'u Yue D(J"). (3.11)
Since the operator H* is self-adjoint, we only need to prove that it is a restriction
of the self-adjoint operator associated with £}'. For this it suffices to show that
EL(JIP I h) = (f,h) 12y YV f € D(J*J")Vh € D(EY).
By Theorem 3.5, it suffices to prove this equality for all f € D(J*J"*) and all
h € Co(F) N D(EM). Let now h € Co(F) N D(EV) and choose u € D(E) such that
h = J*u. Then, by (3.11), J*P,u = J#u = h. Let f € D(J*J"*). Then
EV(IRTH [ ) = E(J* f, Pyu) = (f, J* Pyu) p2guy = (f 1) 12
Thus H* is the self-adjoint operator associated with £}'. O

The following example illustrates the strength of the previous lemma for the
investigation of large coupling convergence.

Ezample 3.8 (Continuation of Example 2.16). We choose (2, )necz, (an)nez, d, T,
—ALand p as in the Example 2.16. Assume, in addition, that

mo = inf a, > 0. (3.12)
nez

Then the operators —A + b3, a,0d,, converge in the norm resolvent sense to
—AL with maximal rate of convergence, i.e.,

lim b[[(=A+bY ande, + 1) = (AL + 1)} < o (3.13)

b— o0
nez

Proof. Let D be the trace of D with respect to the measure p. Let f € L2(R, p).

Then
w0 [11Pdn= 3 anlflen)P 2 mo 3 11(on)

nez nez
Choose ¢ € C§°(R) such that ¢(0) = 1 and ¢(z) = 0 if || > d/2. Then f(x,)-
(- — ), n € Z, are pairwise orthogonal elements of H!(R) and

DM @a)e( = za)lin @ = D 1/ @) Pllelin g

nez nez
Thus u = Y, oy f(@n)e(- — 2n) € HY(R). Since f = u p-a.c., we obtain f €
ran(J*) = D(DY). Thus
D(DY) = L*(R, p)-
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By the previous lemma, —A# := (J#J#*)~1 is the self-adjoint operator asso-
ciated with the closed form D¥ in L?(R, u1). Since the domain of the form associated
to —AM equals the whole Hilbert space L?(R, u1), the domain of D(—A*) equals
L?(R, i), too. Thus, trivially,

JHD(=A)) c D(—A").
By Theorem 2.7, this implies the assertion (3.13). O

We shall demonstrate how to use traces of Dirichlet forms for the investigation
of large coupling convergence by further examples. First we need some preparation.

Lemma 3.9. Let u be a positive Radon measure on R such that supp(u) = [0, 1].
Then

1
DY (f, h) :/O (f'R' + fh)dz + f(0O)h(0) + f(D)A(1) V f,he D(DY). (3.14)

(We recall that f denotes both an element of D(DY) and the unique continuous
representative of f.)

Proof. By polarization, it suffices to consider the case f = h. Choose u € H'(R)
such that f = J#u. By definition,

DY (f, f) = D1 (Puu, Pyu). (3.15)
P, is infinitely differentiable on R\ [0, 1] and
—(Pyu)"+ Pyu=0onR\|[0,1], (3.16)

since Dy (P,u,v) = 0 for every v € C§°(R) with support in R\ [0,1]. Since, by
(3.11), J#P,u = Jhu = £, this implies

Pyu(z) = P,u(0)e” = f(0)e® Va <0,

Pou(z) = Pau(l)e' ™ = f(1)e!™* Va > 1. (3.17)
Thus
1
Dy (Pu, Pyu) = / ((Bpa)'? + |(Pyur) [2)da: + / (IF'P + | 2)de
R\[0,1] 0
1
— O+ [fQ) + / (UF'P + 1. (3.18)
O

Corollary 3.10. Let u be a positive Radon measure on R such that supp(u) = [0, 1]
and 1,1yt = 1(o,1) dz. Then each eigenvalue of the self-adjoint operator N
L?(R, i) associated to the trace Df of Dy with respect to the measure p is strictly
positive.

Let n > 0 and —Arf = (n> + 1)f. Then there exist constants ¢ € C and
0 € [-7/2,m/2] such that (the continuous representative of ) f satisfies

f(x)=csin(nx +0) Vzel0,1]. (3.19)
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Proof. Each eigenvalue of —A* is strictly positive, since —A* is an invertible non-
negative self-adjoint operator.
Let n > 0 and —A*f = (n*> 4+ 1)f. By (3.14),

~ 1 —
(_Aﬂf7 h)L2(]R,,u) = /0 (f/hl + fh) dx

for all infinitely differentiable functions with compact support in (0, 1). This implies
that f is infinitely differentiable on (0,1) and —A*f = —f"(x) + f(z) for every
x € (0,1). Thus —f”(z) = n?f(x) for all z € (0,1) and hence there exist constants
cand 0 such that f(z) = esin(nax+0) for all € (0, 1) and, therefore, by continuity,
for all x € [0,1]. O

We can now apply Lemma 2.26 in order to derive results on the rate of trace
class convergence. We demonstrate how to do this through the following example.

Ezample 3.11. Let py := 1jg,1)dz and pg := p1 + dg + 61. Then

3
Jim Vo ||(=A + by + 1) — (A + oopy +1)7Hs, = ) (3.20)
and
1
Jim VO ||(=A +bug + 1) — (A + copg + 1) 7Ys, = . (3.21)

Proof. Let p € {p1, 2} Let k € N, ¢, € R\ {0}, mx > 0, 0 € [—7/2,7/2] and
suppose that g with gr(z) = cpsin(mez + 0)) for all x € [0,1] is a normalized
eigenfunction of —A¥. We have
1
[ 6+ gt o +-90()01) + 1 0)h(0)
0
= ]D)lf(g;“h) = (—A“gk, h)L2(#) = (—gg + gk, h)L2(#) Vhe D(D“)

Moreover,

1
(=g + gk ) L2 () = /0 (gxh" + gh) dz — gi, (1)1 (1) + g;.(0)(0),
and
(_g;ill + Gk, h)Lz('LL2)
= (=% + 9k D) L2y + (=91 (1) + 96 (1)A(1) + (=95 (0) + 91(0))(0)
for all h € D(D*1) and h € D(D*2), respectively. It follows that

9x(0) =gx(0)  and g (1) = —gr(1) if p=p,
and

95 (0) = —g,(0) and gy(1) =g, (1)  if p= po.



110 H. BelHadjAli, A. Ben Amor and J.F. Brasche

It follows now by elementary calculus that
lim 0 =7/2 if p= p,
k—o00
lim 0, =0 if u= po,
k—o00
lim (9, — k7) =0 and lim ¢; = 2 in both cases.
k— o0 k—o0
Hence

lim gi(0) = lim gi(1) =2 if p=p,

k— o0
lim ¢g3(0) = lim g7(1) =0 if = po.
k— o0 k— o0

Inserting these results into Lemma 2.26 and taking Corollary 3.10 into account,
we complete the proof by an elementary computation. O

Finally, we want to hint to an interesting fact. Again let py = 1jo 1) du.
Choose an orthonormal system (gx)ren in L*(R, 1) and a sequence(ny)ren of
strictly positive real numbers such that —A*gy, = (1 + n?) gx for all k € N. Then,
by (2.76),

- _ o«
(A + b+ )7 (At oo+ )7 =Y )
for any normalized f € L*(R), where

0 1 00

)= [ o i@drs [ a@i@dst [ ae @ dof,
—o0 0 1

If we choose f(z) 1= V21(_oo,0)(2)e” for all z € R, then, by the considerations of

the previous example, limg_, o ax(f) = 1 and hence

1
Jim VB|[(=A + buy +1)"1 — (=A + oopy + 1)1 > . (3.22)

Thus the operators (—A + buy 4+ 1)~ do not converge faster than O(1/v/b) with
respect to the operator norm. On the other hand, the rate of convergence becomes
O(1/b), if we add £0dp 4 £10;1 to the measure p1, where £; and ey are any strictly
positive real numbers, cf. Example 3.19 below. Thus arbitrarily small changes of
the measure can lead to strong changes of the rate of convergence.

Actually, if one combines (2.76), (2.75) and the results from the previous
example, then one gets via an elementary computation that

1
Jim VO|[(=A + buy +1)"" = (=A + oopy + 1) = o (3.23)
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3.3. A domination principle

For positive Radon measures . on X charging no set with capacity zero let
HE = ker(J*#)
be the closure of ker(J*) in the Hilbert space H. We have
(H +oop+1)"' = (H +oov+1)7*

for HY = HY,. This can be true even if the measures i and v are quite different;
in particular, it is not necessary that the measures p and v are equivalent.

Intuitively one expects in the case (H + oopu + 1)™t = (H + oov + 1)~ !
that the operators (H + bu + 1)~! converge at least as fast as (H + bv + 1)~ 1 if
1 > v. We shall prove that this is true. In this way we can use known results for
one measure v in order to derive results for another measure p. For instance, if
(H +bv+1)~! converge with maximal rate, i.e., as fast as O(1/b), and p > v and
(H+oop+1)"t = (H + oov + 1)1, then (H + bu+ 1)~! converge with maximal
rate, too.

Lemma 3.12. Let p1 and v be positive Radon measures on X charging no set with
capacity (with respect to ) zero. Assume, in addition, that p > v. Then the
operator G* — G* is positivity preserving, i.c., it holds (G¥ — G*)f > 0 m-a.e if
f>0m-a.e.
Proof. Let f, g € L*(X,m), f > 0 m-a.e., and g > 0 m-a.e. Then G*f > 0 m-a.e.
and G¥g > 0 m-a.e., since G* and G¥ are positivity preserving. By [13, Lemma
2.1.5], this implies that all quasi-continuous representatives of G f and of G¥g
(with respect to £) are non-negative q.e. and, therefore, also (u — v)-a.e.

We have, with the convention that u denotes both an element of D(&) and
any quasi-continuous representative of u, that

(f,G"g) = &1 (G"f,.G"9g)
—&(61.6%) + [ 6 f 6 gd(u—)

= (G“f7g)+/G“fG”gdu-
Thus
/ (G f — G*f)g dm = / G G¥gd(u—v).

Since the right-hand side is non-negative for every g € L?(X,m) satisfying g > 0
m-a.e., it follows that G f — G* f > 0 m-a.e. O

It holds G = G°, where 0 denotes the measure which is identically equal to
zero and b’y < by if b/ < b. Hence it follows from the previous lemma that

G(-,B) > G""(-,B) > G"(-,B) VB e B(X)qe. if0<b <b. (3.24)
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Thus (H + oo + 1)71 has also an m-symmetric Markovian kernel G*# and
G%(-,B) > G®"(-,B) VB e B(X) qe. (3.25)
For each b € [0, o0], it follows that Dj’ has an m-symmetric Markovian kernel, also
denoted by D}', and that
Dy (-,B) < DY(-,B) <DL (-,B) VBeB(X)qe if0<bd <b. (3.26)
Corollary 3.13. Under the hypotheses of Lemma 3.12 and the additional assump-
tion that

DL, = Dg.,
it holds that
0< DL f—-Dyf<DLf—-Dyf mae. (3.27)
for all b > 0 provided that f > 0 m-a.e. Moreover,
IDE, = Dyll < |1 DZ, — Dyl Vo> 0. (3.28)

Proof. (3.27) follows immediately from Lemma 3.12 and (3.28) follows from (3.27),
since both the operators D% — D) and the operators DY, — Dy have m-symmetric
Markovian kernels. O

3.4. Convergence with maximal rate and equilibrium measures

First let us recall some known facts from the potential theory of Dirichlet forms,
cf. [13]. A positive Radon measure is a measure with finite energy integral (with
respect to &) if and only if there exists a constant ¢ > 0 such that

/|u|du§c\/51(u,u) Yu e Co(X)ND(E). (3.29)

If 14 is a measure with finite energy integral, then p does not charge any set with
capacity zero and there exists a unique element Uy (the 1-potential of 1) of D(E)
such that

E1(Urp,v) = /vd,u Yo e D(E). (3.30)

It holds that Uy > 0 m-a.e. Now let u be any positive Radon measure on X
charging no set with capacity zero. Then, for all h € L?(X,pu) with h > 0 pu-
a.e., the following holds: hu is a measure with finite energy integral if and only if
h € D(J#*). In this case J**h equals the 1-potential Uy (hp) of hu and hence
JH*h = Uy (hp) > 0 m-a.e. Yh € D(J**) with h > 0 p-a.e. (3.31)
Let T be a closed subset of X such that the 1-capacity cap(I") of " is finite.
There exists a unique er € D(€) satisfying
er =1 qe onT and & (ep,v) > 0Vv € D(E) with v >0 g.e. on T. (3.32)

Moreover, there exists a unique positive Radon measure pur on X such that pr has
finite energy integral,

pr(T) = pr(X) = cap(T) and er = Uy pur. (3.33)
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Thus 1 € D(J#T*) and
JPr Jir*] =1 q.e. on T. (3.34)
The 1-equilibrium potential ep of I' satisfies, in addition,
0<er <1 m-ae. (3.35)
We recall that H = (J*J**)~! and set

K:=J'J" and K,:=(H+a)™' Va>0. (3.36)

(3.34) can be used to prove that J*U J#T* is a bounded operator with norm
one. We prepare the proof through the following lemma.

Lemma 3.14. Let G be a symmetric Markovian kernel and set

Tf(e) = [ 1)Gla,dy)
whenever the expression on the right-hand side is defined. Then
ITFIL < (1T Y2 VF € L2, m) N L% (X, m)
and hence T extends to a bounded operator on L*(X,m) with
IT) < (IT 1o, (3.37)
Proof. Let f € L?>(X,m) N L*(X,m). By Hélder’s inequality,

TH? < T1 /X PG dy) < |T1 o /X PWGC, dy).  (3.38)

This yields, by the Markov property and the symmetry of G, that ||Tf]? <
171 ooLf11%. O

Corollary 3.15. Let T be a closed subset of X such that 0 < cap(T") < co. Then

|[JHETJHEE|| = 1. (3.39)
Proof. By the first resolvent equality and since the operators K, are positivity
preserving, the sequence (K, f)s2, is pointwise non-decreasing ur-a.e. for all
f € L3(X, ur) with f >0 ur-a.e.

By (3.36) and (3.34), 1 € D(K) and K1 = 1 pp-a.e. and hence || K| > 1. By
spectral calculus,

||K1/’I’Lf_Kf||L2(X,[.LF) — 0 asn— oo VfED(K) (3.40)

Since the sequence (K, /ml)5; is non-decreasing pr-a.e., it follows that it con-

verges to 1 ur-a.e. and, in particular, Kl/nl <1 pr-a.e. forallm € N, n > 1. By
Lemma 3.14, this implies that

||K1/n|| Slv TL:172,3,...
By (3.40), it follows that ||K| < 1. O
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It is remarkable that the important and large class of equilibrium measures
leads to large coupling convergence with maximal rate of convergence.

Theorem 3.16. Let I' be a closed subset of X with finite capacity and ur the equi-
librium measure of T'. Let F be the support of ur. Assume that (H + 1)71 is
conservative. Then

_ _ 1
H@r+@w+1)1—ui+xwp+nlng1+b Vb > 0. (3.41)

Proof. By (3.26), DX — D}'" possesses an m-symmetric Markovian kernel and, by
Lemma 3.14, it suffices to prove that
1
mH+erru—w+mm+m*wngM Vb > 0. (3.42)
Let b > 0 and (fx) C Co(X) such that fr 1+ 1 everywhere on X. Using the
representation of G in terms of its Markovian kernel, we obtain that, by applying
the monotone convergence theorem,

JH Gy — 1in L3(X, ur). (3.43)

Thus observing that, by (3.34), (, + H‘l)fl 1= 1ib7 we obtain

—1
sz@:UWGr(i+H*) JH Gy — JHGY*1. (3.44)

1+b(

By monotone convergence again, we get that D" fi 1+ D{"'1 a.e. Thus, by the
latter identity and since

b
(JFrG)*1 = Uypr,

b
L+ S 1+b
we arrive at D)1 = 1_1;17 Uspr for all 0 < b < oo. Since the operators D" converge
to DX strongly, this implies that D¥'1 = Uy ur. Thus
1Urpr|oo
1+0b
Finally, the result follows from (3.33) and (3.35). O

By the previous theorem, L(H, P,.) < 1 provided that the regular Dirichlet
form & is conservative. For conservative strongly local regular Dirichlet forms, we
can even give the exact value of L(H, P,.).

|(H +bur + 1)1 — (H + oopr + 1) M| < Vb>0. (3.45)

Theorem 3.17. Suppose that the regular Dirichlet form £ associated to the non-
negative self-adjoint operator H in L*(X,m) has the strong local property. Let T’
be a closed subset of X with finite capacity. If the interior I'° of T' is not empty,
then

L(H,P,.) > 1. (3.46)
If, in addition, the operator (H + 1)1 is conservative, then
L(H,P,.)=1. (3.47)
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Proof. (3.47) follows from (3.46) and Theorem 3.16. Thus we only need to prove
(3.46).
Since Ujur = 1 g.e. on I' and by the strong locality of &,

/Udm = (Uipr,u) = E(Urpr, u) = /Udur

for all u € Co(I'°) N D(E). Since Co(I'°) N D(E) is dense in Cy(I'°) with respect to
the supremum norm, it follows that

pr = m on the Borel-Algebra B(I'°) of B. (3.48)
Choose u € Cy(I'°) N D(E) such that [|ul| = 1. For all f € D(JT)
51(f7 GU) = (f7 U) = (J#Ff7 U)Lz(yr) = 61(fa J#F*u)

(in the second step we have used (3.48)). Thus Gu = J*"*u and hence HJ"r Gu =
u. Thus

[HI" H|| > (]| L2y = [Jul =1

(again, we have used (3.48) in the second step). By Theorem 2.7 (c), this implies
(3.46). O

As a consequence of Theorem 3.16 in conjunction with Corollary 3.13, we
obtain the next result.

Corollary 3.18. Let £ be a conservative Dirichlet form. Let T be a closed subset of
X with finite capacity, 0 < ¢ < oo, and let p be a positive Radon measure on X
charging no set with capacity zero and such that p > cup. Assume, in addition,
that

Dt = Dpr.

(In particular, this is true if p is absolutely continuous with respect to the equilib-
rium measure ur.) Then

1
b pk
|Dh, — Dyf|| < L+ cb Vb > 0.

If £ equals the classical Dirichlet form D in L?(R), then the equilibrium
measure of the interval [0, 1] equals 1fg 1] = da + dg + 01. Hence the result in the
next example follows from the previous corollary. If one compares this result with
(3.22), then one sees that the rate of convergence for the operators (—A+bu+1)~*
can be changed strongly by an arbitrarily small change of the measure p.

Ezample 3.19. Let ¢; > 0 for i = 0,1. Let u = 1jg,1jdx + €9do + €101 Let ¢ :=
min(eg,e1). Then

1
“A+bu+1)"t—(=A+ +1)7Y < v .
||( A+bu+1) ( A+ oop ) || 14 b b>0
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