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Summary. Interoperability of medical devices is a growing need in modern health-
care systems, not just for convenience, but also to preclude potential human er-
rors during medical procedures. Caregivers, as end users, strongly prefer the use
of wireless networks for such interconnections between clinical devices due to its
seamless connectivity and ease of use/maintenance. In [KSM+10], we introduced a
Network-Aware Safety Supervisior framework to integrate medical devices into clin-
ical supervisory systems using finite state machine (FSM). In this paper, we simplify
FSM into Boolean Logic to minimize safety logic overhead and introduce a generic
method, called pre-verified safety control (PVSC) framework to integrate medical
devices into clinical management systems using wireless technologies that have their
safety properties verified in a formal manner. Our method provides (i) a PVSC
safety layer that automatically generates the safety engine to guarantee given safety
requirements and (ii) an abstracted application development environment so that
applications can be developed independent of underlying complications of wireless
communication. To mitigate negative effects due to packet losses, the PVSC frame-
work employs a pipelined “pre-planning” of the device controls. The key motivation
of the work in this paper is to preserve safety and the application development envi-
ronment, as is, even after adding unreliable communication media, such as wireless,
along with a pre-planning mechanism.

1 Introduction

The medical device supervision paradigm recently has a significant transfor-
mation in patient monitoring and administration. The importance of medi-
cation automation has been increased because of the high cost of health care
and high rate of medical accidents. a recent report [Gra07] suggested that
of the 284,798 deaths that occurred among patients who developed one or
more patient safety incidents between 2003 – 2005, 247,662 were potentially
preventable. Hence, there is a need to increase the use of devices that can
automaticlly check for safety constraints.
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However, automation of medication has another potential problem. The
reliability of automation relies on software. Because of its complexity, making
software bug free is known to be very challenging work. Since the reliability
in such medical system is directly related to human life, the bug in such
system is even more critical. Thereby, most medical devices today operate in
a stand-alone fashion in the era of communication to avoid complexity.

Therefore, we need safety assurance software framework to connect medi-
cal devices over networks to decouple safety from the medical devices. Recent
initiatives have been launched to increase interoperability of medical devices
to reduce medical accidents caused by human errors [Hig09]. One such ini-
tiative is the work on the Integrated Clinical Environment (ICE) draft stan-
dard [Gol08]. The ICE standard aims to provide integration of data and de-
vices to enable real-time decision support and safety interlocks, thus ensuring
patient safety.

Wireless technology has recently been proposed, and used, as a communi-
cation mechanism to implement medical device interoperability [BH08]. Most
of the developments though, have been in the area of medical sensors [cod]
(pulse oximeters, EKG monitors, etc.) and also in critical systems such as
infusion pumps and pacemakers. The latter set of devices, though comprising
of safety-critical aspects, mostly limit themselves to using wireless technology
for transmission of non-critical data and for offline analysis.

The use of wireless technology in real-time safety-critical applications is
complicated by various factors. First, the fact that wireless technologies can-
not provide guarantees that transmitted packets will actually be delivered, on
time. If some control messages between two devices are lost en route then it
could endanger the life of a patient. Second, the safety of the physical sys-
tem must be guaranteed in a rigorous manner in spite of the failure of the
wireless communication mechanism. Third, when using wireless technology in
conjunction with medical devices, the quality of medical service must be good
enough; a few packet losses should not incur a discontinuity of the medical
procedure. Finally, the framework should incorporate abstraction to aid in the
process of the development of clinical applications. The complexity of using
wireless technology as the underlying communication mechanism should not
propagate to the upper layers where clinical control applications are being
designed and developed. If the actual communication mechanism is not ab-
stracted away then system architects cannot concentrate on the design of the
clinical application logic, thus degrading the overall system.

To address these issues, we present a new Pre-Verified Safety Control
(PVSC) framework. We proposed such a framework called NASS frame-
work [KSM+10] in the form of finite state machine (FSM), but PVSC simpli-
fies the approach by employing Boolean logic instead of FSM. PVSC proposes
a reliable control messaging framework and a system-wide protocol for wire-
less communication that can be used in conjunction with integrated clinical
control systems (ICCSs), where the medical device controls are performed
through the closed loop, but the safety of the patient can be secured in an
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open loop situation. The application logic have no knowledge of the compli-
cations of using wireless communication handled by the framework. The basic
idea is to deliver messages that set the pre-verified safety controls for a long
period of time in the future. Hence, even if messages are lost, the system
will be in a predictable state. Furthermore, verifying safety under the gen-
eral asynchronous environment of wireless communication is non-trivial. An
unverifiable system cannot be considered a safe one. Thus, we simplify the
analysis by imposing a synchronous control messaging system structure on
the system. Furthermore, we describe the standard preverified software ar-
chitecture blocks that can be automatically generated and deployed for the
medical safety. To the best of our knowledge, this is the first such framework
that systematically provides the ability to use wireless communication that
preserves safety and is grounded in formal guarantees. The main contributions
of the PVSC framework are:

1. Preserving Safety : Safety requirements written for an ideal clinical en-
vironment (with robust communication scheme) are automatically trans-
formed to the safety validation engine for PVSC framework in wireless
networks, thus preserving safety. These are explained in further detail in
Section 4.

2. Abstraction: Clinical control applications built on top of the PVSC frame-
work can be developed independent of the underlying complications of
wireless communication. The PVSC framework hides these complications
from the application logic, as explained in Section 3.

The degradation of the quality of service caused by packet drops is unavoid-
able, but, the PVSC framework is able to minimize such losses. We are also
able to achieve a decoupling between the safety and the application logic.
Hence, the clinical application development life-cycle becomes shorter while
still preserving the safety and real-time constraints.

This paper is organized as follows. Section 2 presents the background,
benefits and overview of PVSC using an example. Section 3 shows how to
hide the complications of wireless communications from the application logic.
The safety preserving method by automatic generation of safety validation
engine is presented in Section 4. Section 5 briefly introduces our prototype
system, and Section 6 presents the related work while Section 7 concludes the
paper.

2 Airway-Laser Interlock Example

Laser cutters are often used in operating rooms these days. During surgery to
the airway5, if such a laser is used, then there is the potential for fatal burns
to the patient if the concentration of oxygen in the airway is high. Hence,

5The passage by which air reaches a person’s lung
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during such surgery, it is recommended that the oxygen pump connected to
the ventilator6 be blocked. Unfortunately, this guideline is sometimes over-
looked, and serious, perhaps fatal, injuries occur. The 2006 American Society
of Anesthesiologists meeting estimated that roughly 100 such fires occur each
year in U.S. hospitals, causing roughly 20 serious injuries and one or two
deaths [Mar07].

To prevent such problems, an airway-laser interlock must be enforced by
use of an automated ICCS that maintains mutual exclusion between the ac-
tivities of a ventilator and an airway laser. Hence, whenever an ‘airway laser’
is used, (1) the air path from the oxygen concentrate at the ventilator must be
minimized and (2) the oxygen proportion in the airway must be guaranteed
to be lower than a predetermined safety threshold. On the other hand, the
safety of the patient should not be compromised due to the reduced oxygen
flow. A pulse oximeter7 is used to measure the SpO2 (Saturated Peripheral
O2) during this surgical procedure to track the amount of oxygen in the blood.
If the SpO2 readings are below a predefined “watch level,” then the oximeter
produces an alarm. The surgeon can then stop using the laser instrument and
restore the flow of oxygen between the oxygen concentrate and the ventilator,
manually. If the medical personnel ignore such alarms and the SpO2 reaches
the lower threshold and is in danger of dropping further, then an automated
controller should disable the use of the laser and restart the flow of oxygen
again. Hence, the safety requirements of the airway laser interlock are:

S1 The airway laser and the oxygen concentrate should not be activated
together.

S2 The airway laser should not be activated if the proportion of oxygen in
the airway is higher than a predetermined threshold (e.g. 25% [Gol09]).

S3 If patient’s SpO2 is lower than the lower threshold value, then the oxygen
concentrate must be activated through a ventilator.

2.1 PVSC Framework Overview

Let us recall the airway-laser example to better understand the control flow
of the PVSC framework. The operational sequence of the system in a round
is as follows: ① at the end of the previous round acknowledgement packets
from participating devices (a PCA pump, an oximeter and a capnometer) have
been received by the ICCS manager and delivered up to the virtual devices.
These virtual devices update their state information based on the information
contained in the packets. According to our measurement results, ② the patient
state estimator is not only able to gauge the patient’s current states but also
μ future states of control rounds. The patient state estimator generates two
kinds of future patient states: strict worst case states for the safety layer, and

6An appliance for artificial respiration
7An instrument measuring the oxygenated hemoglobin in the blood
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Fig. 1. Control flow example of airway laser interlock

realistic states for the application logic. How to generate them is the out of
scope of this paper.

Then, ③ each virtual actuator, virtual airway laser in this example, pre-
pares application-planned controls for each rounds k (current round) to k + μ
where μ denotes the number of future rounds for which the framework provides
back-up plans, i.e., [a(laser)

k,k , a
(laser)
k,k+1 , · · · a(laser)

k,k+μ]. a
(laser)
k,l denotes an application-

planned control for the usage allowance of the airway laser for the future
(or current) round k generated at round l. The number of future rounds de-
cided at each round, μ, is supposed to be given by system designer based
on the system communication characteristics and the system requirements.
Application-planned controls are generated by the PVSC application engine
that exploits the application logic in which the airway laser’s logical operations
are implemented. Recall that application logic is not aware of the planning
mechanism of the framework. It is developed so as to operate round-by-round
in monotonic time sequence. However, in order to provide back-up plans, the
PVSC application engine has to virtually perform setting back a clock at each
round. How the PVSC application engine provides an abstracted view of the
system to the application logic is discussed in Section 3.

Once such application-planned controls are generated ④ the PVSC safety
layer verifies their safety properties. The safety-checked sequence of controls
are called pre-verified safety controls, denoted by [p(laser)

k,k , p
(laser)
k,k+1 , · · · , p(laser)

k,k+μ]
to represent the usage allowance of the airway laser. If the application-planned
controls satisfy the safety invariants they are delivered to the device without
modification by the safety layer. Otherwise, the layer modifies the necessary
control value(s) to ensure safety. The details of how to produce the PVSC
safety layer from the invariants and how to enforce safety into the application-
planned controls are presented in Section 4. A command packet delivers these
pre-verified safety controls to a device⑤, the airway-laser or the ventilator in
this example. Then, ⑥ the device executes these safety controls thus maximiz-
ing the effectiveness of the system for each round. The selection mechanism
is explained in Section 3 along with the PVSC application engine.



26 Cheolgi Kim, Mu Sun, Heechul Yun, and Lui Sha

3 Provision of Abstraction to Application Logic

When the PVSC application engine produces application-planned controls
exploiting the application logic, there are two main issues to be addressed.
The first one is to hide the planning mechanism from the application logic.

To support the planning mechanism, the application engine has to set back
a clock at the beginning of each round. When the PVSC application engine
generates back-up plans at round k, it produces the plans for the rounds from
k to (k+μ). At the next round, the plan generation starts from round (k+1),
setting back a clock from round (k+μ) to round (k+1). However, it should be
hidden from the application logic for the simpler development environment.

To enable setting back a clock, the PVSC application engine takes a snap-
shot of the active object of the application logic whenever a control for a round
is generated. At round k, the engine generates a

(laser)
k,k as the first application-

planned control. Then, it takes a snapshot of the running algorithm, and
requests the next round control, a

(laser)
k,k+1 by running application logic again

to virtually have the next round. The snapshot of the algorithm after a
(laser)
k,k+1

generation is taken, too. This iteration is repeated until a
(laser)
k,k+μ is generated.

Because the engine has the full snapshots of the application logic, setting back
a clock is obviously realized by recalling an appropriate snapshot. Each snap-
shot is kept until it becomes useless (i.e. after projected execution round is
expired).

Another issue is to ensure a single flow of the logic executed by a de-
vice. Suppose that a medicine infusion is controlled by an ICCS. The infusion
pump always applies the most recently received pre-verified safety control for
the infusion, and the application logic proceeds based on the most up-to-date
snapshot of the system. Infusion is supposed to be controlled by occasional
pumping events rather than a continuous infusion rate. At round 1, the appli-
cation logic generates application-planned controls, planning the next infusion
of the medicine at round 6. This plan is repeated until round 4 by the logic.
However, the application logic changes its mind at round 5 to make the next
infusion of the medicine at round 7 instead of round 6. Thus, all application-
planned controls generated from round 6 are changed to have this new plan.
However, the infusion pump infused the medicine at round 6 because it has not
received the updated decision due to the series of packet losses. Then, it finally
received the new plan at round 7, and infused the medicine again according to
the updated control. Consequently, the infusion was doubled unintentionally
because the pump followed the application-planned controls without checking
if the series of decisions are from a single flow of the logic.

Algorithm 3 and Algorithm 4 are the pseudo codes for the PVSC ap-
plication engine and the device control selection to fulfill the single flow re-
quirement, respectively. An application-planned control, a pre-verified safety
control and an executed control are denoted by a

(·)
j,k, p

(·)
j,k and c

(·)
k , respec-

tively, where j is the plan generation round, k is (projected) execution round
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Algorithm 3 Pseudo code of PVSC application engine
Require: Round k has just started
Require: p

(·)
x,k−1 is the pre-validated safety control executed by device at

round (k − 1).
Require: s

(.)
x,y is application logic snapshot for round-y execution, generated

at round x.
Ensure: application-planned controls, [a(·)

k,k, · · · , a(·)
k,k+μ], are ready for PVSC

safety layer
if ack. packet at round (k − 1) is delivered then

s := s
(·)
x,k−1

else s := s
(·)
k−1,k−1

end if
a
(·)
k,k := s.nextRound();

s
(mor)
k,k := s.snapshot();

for i = 1 to μ do
a
(·)
k,k+i := s

(·)
k,k+i−1.nextRound();

s
(·)
k,k+i := s

(·)
k,k+i−1.snapshot();

end for

Algorithm 4 Pseudo code in a device for PSVC selection

Require: Timer for command packet is expired at round k, p
(·)
x,k−1 was exe-

cuted at last round
Ensure: Ack. packet returns x to notify p

(·)
x,k is executed.

if command packet is delivered and p
(·)
k,k is generated from the flow of p

(·)
x,k−1

then
execute p

(·)
k,k, which is c

(·)
k := p

(·)
k,k

x := k
else execute p

(·)
x,k, which is c

(·)
k := p

(·)
x,k

end if

and (·) is reserved for a control identification. For more intuitive explanation,
let us trace an example execution flow presented in Fig. 2. Each sequence
of application-planned controls generated at the same round is grouped by a
looped curve, and the controls for the same round executions are vertically
aligned by rounds. μ is two, and all controls satisfy the safety requirements,
such that p

(·)
j,k = a

(·)
j,k. The bold circled application-planned controls are the

controls that the device ran at the execution round.
At round 1, the device executed a

(·)
1,1, after the successful reception of com-

mand packet. The acknowledgement packet of round 1 notifies the execution
of a

(·)
1,1 back to the PVSC application engine. Thus at round 2, the PVSC ap-

plication engine generates the sequence of application-planned controls from
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Fig. 2. An example behavior of the PVSC application engine and the related device

the snapshot of a
(·)
1,1. The command packet delivery was failed, so the device

executed a
(·)
1,2. Unfortunately, this consequence of the command packet failure

also failed to be notified back through the acknowledgement packet. As a re-
sult, the PVSC engine was not aware of the application-planned control which
the device had executed at round 2. As a result, a

(·)
3,3 was generated from a

(·)
2,2

as a default action, which does not match the real executed control, a
(·)
1,2. Be-

cause of this information gap between the manager and the device, the device
reject applying the up-to-date control, a

(·)
3,3 and used the old one, a

(·)
1,3 for the

single flow requirement. This circumstance was informed back to the manager
through the acknowledgement. So the manager produced application-planned
control from a

(·)
1,3 for the next round. Now, the information gap between the

manager and the device was filled up. By having this sequence of operations,
a single flow of application logic is fulfilled over wireless communications.

4 Auto Generation of Safety Verifier

To understand the proposed verifier, readers are referred to [KSM+10] for
detail of NASS framework. In this section, FSM of NASS framework is trans-
formed into Boolean logic. The section describes and justifies the safety veri-
fier.

Control information, planned by application designers and generated by
the NASS application engine, flows down to the NASS safety layer for the
safety assurance. As mentioned previously, the safety requirements are ex-
pressed as Boolean-invariants. The NASS safety layer that guarantees the
safety of the controls, regardless of packet losses or network disconnections, is
automatically generated from these invariants.

Consider the safety requirements from S1–S3 given in Section 2. These
requirements can be formally expressed by safety invariants as
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c
(laser)
k ∧ c

(oxygen)
k = false (1)

c
(laser)
k ⇒ low(oxygen)

k (2)

¬safe(SpO2)
k ⇒ c

(oxygen)
k (3)

where c
(laser)
k is the allowance of the laser activation c

(oxygen)
k is the enabling

of the oxygen concentrate pathway low(oxygen)
k is the Boolean indicator if the

concentration of oxygen in the airway is lower than the given threshold, and
safe(SpO2)

k is the Boolean indicator if patient’s SpO2 level is higher than the
warning level at round k Eq. (1), (2) and (3) represent S1, S2 and S3, re-
spectively.

4.1 Safety Invariants

The safety invariants are composed of a set of control propositions A and
a set of environmental event propositions E. In the airway-laser example,
we have c

(oxygen)
k , c

(laser)
k ∈ A and low(oxygen)

k , safe(SpO2)
k ∈ E. We abstract

Boolean propositions from continuous values; e.g. low(oxygen)
k and safe(SpO2)

k

are abstracted from continuous values of oxygen concentration, and measured
SpO2.

It is well known from logic that a set of Boolean sentences can be trans-
formed into one sentence in conjunctive normal form (CNF). For example,
CNF of Eq. (1)–(3) is given by

φlaser(A,E) �
(
¬c

(laser)
k ∨ ¬c

(oxygen)
k

)
(4)

∧
(
¬c

(laser)
k ∨ low(oxygen)

k

)
∧
(
c
(oxygen)
k ∨ safe(SpO2)

k

)

Let φ denote the sentence in CNF transformed from safety invariants. A sen-
tence φ in CNF can be represented by a conjunction set (Φ) having disjunc-
tions as the elements. The safety sentence φ in CNF, and its conjunction set
Φ has the relationship of

φ(A,E)⇔
∧

θ∈Φ(A,E)

θ(A,E).

We have the conjunction powerset of φlaser given in Eq. (4):

Φlaser(A,E) =
{
¬c

(laser)
k ∨ ¬c

(oxygen)
k ,¬c

(laser)
k ∨ low(oxygen)

k ,

c
(oxygen)
k ∨ safe(SpO2)

k

}
(5)

4.2 Finding an Open-Loop Safe State

The first step of the safety verifier generation is to find the open-loop safe
states of the system. If a system does not have an open-loop safe state, the
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safety cannot be guaranteed when the network of the system is totally discon-
nected. Finding open-loop safe states is finding the safety bias of each control.
In the airway laser example, the safety bias of airway laser c

(laser)
k is false be-

cause no disjunction in Φlaser has c
(laser)
k from Eq. (5), which means no disjunc-

tion becomes more restrictive by the assignment of c
(laser)
k = false. However,

the oxygen concentrate cannot have safety bias from conjunction set Φlaser

because disjunction c
(oxygen)
k ∨ safe(SpO2)

k has c
(oxygen)
k while another disjunc-

tion ¬c
(laser)
k ∨¬c

(oxygen)
k has ¬c

(oxygen)
k . Suppose that we have c

(laser)
k = false.

Then, disjunction ¬c
(laser)
k ∨ ¬c

(oxygen)
k is cleared by c

(laser)
k . Then, the condi-

tional safety bias of c
(oxygen)
k becomes true, depending on the assignment of

c
(laser)
k = false. We call it a conditional safety bias and c

(oxygen)
k is called to be

safety-biased depending on c
(laser)
k .

If one control proposition, c
(a)
k is safety-biased depending on another con-

trol proposition, c
(b)
k , c

(b)
k must be decided first and then c

(a)
k should follow.

Suppose that c
(laser)
k is decided first to the contrary of the above claim. If

c
(laser)
k is assigned to be false, c

(oxygen)
k ’s safety bias is in trouble. no control

decision of c
(oxygen)
k guarantees the safety of φlaser. Thus, to decide c

(laser)
k first,

it has to look ahead the disjunctions related to the depending control c
(oxygen)
k

in run time. Otherwise, c
(laser)
k must be assigned false for the global system

safety, which is a too restrictive choice. This looking ahead is not required if
c
(oxygen)
k is decided first according to the order of the dependency.

Algorithm 5 presents the algorithm finding the open-loop safe state, s
(α)
safe

of each control proposition, which is the safety-bias, and the control decision
order by finding the safety-bias dependencies. L is the list of control proposi-
tions in the control decision order as an output of the algorithm. Because, the
dependencies between control propositions does not generate a single deci-
sion order of controls, we recommend the designers to input preferred control
decision order manually.

The repeat-until loop finds the safety-bias of controls, and their depen-
dencies. If there is circular dependencies among control propositions, their
safety-biases cannot be found and the loop is terminated. An example of a
circular dependency is:

φcircular � (c(1)
k ∨ ¬c

(2)
k ∨ e

(1)
k ) ∧ (¬c

(1)
k ∨ c

(2)
k ∨ e

(1)
k ) (6)

where c
(1)
k and c

(2)
k are control propositions, and e

(1)
k is a environment propo-

sition. In this case, the algorithm can declare a failure, or optionally the user
can enforce the algorithm to find any possible open-loop safe state by having
exhaustive search. By the enforcement, the open-loop safe states for φcircular

will be found to be either c
(1)
k = true, c

(2)
k = true or c

(1)
k = false, c

(2)
k = false.

However, we do not recommend the enforced search for the open-loop safe
state. When there are circular dependencies among control variables, the con-
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Algorithm 5 Find Safety Bias Relationship(Φ,A)
Ensure: L(out): list of controls in control decision order
Ensure: Φ �= ∅ or procedure fails

repeat
for all α ∈ A { A in preferred decision order} do

Φold = Φ
Θα := {θ ∈ Φ | α ∈ θ};Θ¬α := {θ ∈ Φ | ¬α ∈ θ}
if Θ¬α = ∅ then

s
(α)
safe := true

L := [α;L];A := A \ {α};Φ := Φ \Θα

else if Θα = ∅ then
s
(α)
safe := false

L := [α;L];A := A \ {α};Φ := Φ \Θ¬α

end if
end for

until Φ = Φold

if Φ �= ∅ then
Declare failure or
Exhaustively search for the open-loop safe states

end if

trol decision order has an inverse dependency. As we have seen in the example
of inverse dependency of the safety-bias between c

(laser)
k and c

(oxygen)
k , the in-

version requires traverse of inverse dependencies, or pessimistic decision of
the controls. Because the dependency traversal is NP-hard because analyzing
all disjunctions related to the circular dependency is identical to the SAT
problem. To have practical run-time algorithm, our safety verifier takes the
pessimism. (Recall that c

(laser)
k = false is the solution of pessimism for in-

verse dependency.) Because this pessimism may not be what the user wants,
we recommend ‘declaring failure’ when the loop has not found the full safety
biases. If a failure occur, the user can review the invariants and fix them.
In our experiences, all medical interlocks having open-loop safe states have
successfully completed with this algorithm.

4.3 Safety Engine Generation

When the NASS safety layer generates pre-verified safety controls, it has to
ensure the safety in all possible scenarios. The generated controls at each
round can be executed altogether by the connected devices. But sometimes,
the controls that are generated at the various rounds can be executed by the
devices at a round. Therefore, the safety verifier of the NASS safety layer has
to ensure that the generated pre-verified safety controls be always safe when
they are mixed with previously generated pre-verified safety controls that
are possibly effective in the devices. If this joined safety is ensured with the
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previously generated controls. By mathematical induction to the execution
round, the safety of NASS execution is ensured.8

From Algorithm 5, the controls have the decision precedence. For the con-
venience of the analysis, c

(d)
k , p

(d)
j,k and a

(d)
j,k denotes the executed control, pre-

verified safety control and application-planned control of the control decided
in d-th precedence in the safety engine. E.g. c

(1)
k � c

(oxygen)
k and c

(2)
k � c

(laser)
k .

The number of devices is denoted by n.

p
(·)
2,2

p
(·)
4,7

p
(·)
3,6

p
(·)
1,4

p
(·)
4,6

suppose that the only
ack. packet was
received at round 2
saying         is used
at the round 2

P(·)
1,k

P(·)
2,k

P(·)
3,k

P(·)
4,k

nil

p
(·)
1,1 p

(·)
1,2 p

(·)
1,3

p
(·)
2,3 p

(·)
2,4 p

(·)
2,5

p
(·)
3,3 p

(·)
3,4 p

(·)
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p
(·)
4,4 p

(·)
4,5

s
(·)
safe

k = 1 2 3 4 5 6 7 · · ·

···
p
(·)
1,2

elements of H
(·)
j−,k

Fig. 3. Semantic of P(d)
j,k and H

(d)

j−,k

The pre-verified safety controls for a control d, p
(d)
j,k , is explicitly defined

only when k − μ ≤ j ≤ k. We extend this values of p
(d)
j,k to be defined over

every combination of j and k with P(d)
j,k , such that

P(d)
j,k �

⎧
⎪⎨
⎪⎩

nil if j > k,

p
(d)
j,k if j ≤ k ≤ j + μ,

s
(d)
safe if k > j + μ

(7)

where nil is the empty command as depicted in Fig. 3.
Recall that the acknowledgement packet has the round information of

the most recently executed NASS. See the example in Fig. 3. The manager
received acknowledgement packet at round 2 saying that p

(d)
1,2 is executed by

the device at round 2. Then, the latest effective generation round that the
manager knows is round 1. Let βd

j denote the latest effective generation round.

Then, the set of the effective NASS at the beginning of round j, H
(d)
j−,k is

bounded by

H
(d)
j−,k ⊂

j−1⋃

i=β
(d)
j−1

P(d)
i,k (8)

βd
j for j > 1 in this example is 1. but acknowledgement delivery round is 2.

Then we know that all NASS generated at round 2 is not effective because
8As the basis of induction, the safety of all rounds are ensured at the beginning

of operations by all devices being in the open-loop safe states forever.



A Medical Device Safety Supervision over Wireless 33

the device informed that it used NASS generated at round 1 even after round
2 command packet is delivered. From this intuition, we have

H
(d)
j−,k = P(d)

β
(d)
j−1,k,k

∪
j−1⋃

i=γ
(d)
j−1+1

P(d)
i,k (9)

where γ
(d)
j is the most recent round at which an acknowledgement packet was

received about control (d). While H
(d)
j−,k denotes the set of the still effective

NASSs before the NASS generation at round j, H
(d)
j+,k denotes the set of the

still effective NASSs after the generation, such that

H
(d)
j+,k = H

(d)
j−,k ∪ P

(d)
j,k (10)

Consequently, the safety verifier must ensure that any control proposition
combination of

(
H

(1)
j+,k ×H

(2)
j+,k × · · ·H

(n)
j+,k

)
satisfies safety statement φ. Let

us define another statement, φ̂ to check if the whole combinations satisfy such
that

φ̂
((

S(d1), S(d2), · · · , S(dn)
)
, E
)

⇔
(
∀x ∈ (S(d1) × S(d2) × · · · × S(dn)

)
, φ(x,E)

)
(11)

where S(dd) denotes a non-empty set of Boolean values that can be applied
for control (d). φ̂ receives the tuple of sets of Boolean values rather than the
tuple of Boolean values, for the control propositions. φ̂ is defined by

φ̂
((

S(d1), S(d2), · · · , S(dn)
)
, E
)

�
∧
θ∈φ

worst
(
θ,
(
S(d1), S(d2), · · · , S(dn)

)
, E
)

(12)

where

worst
(
θ,
(
S(d1), S(d2), · · · , S(dn)

)
, E
)

� θ(·, E) (13)

∨
((∀a(d) ∈ θ, false /∈ S(dd)

) ∧ (∀¬a(d) ∈ θ, true /∈ S(dd)
))

The definition of φ̂ in Eq. (13) obviously derives Eq. (11) because φ̂ checks
if there is a combination of control propositions killing any disjunction, and
that combination violates φ if there is one.

The safety verifier algorithm is presented in Algorithm 6. The algorithm
employs the function safety-check (d)

j,k

(
a
(d)
j,k

)
presented in the middle of proof by

Eq. (19)
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Algorithm 6 The safety verifier

Require: all effectiveness control decisions, a
(1)
j,j · · · a(n)

j,j+μ

for k = j to j + μ do
for all a

(d)
j,k as effectiveness controls in order do

if safety-check (d)
j,k

(
a
(d)
j,k

)
= true {from Eq. (19)} then

p
(d)
j,k = a

(d)
j,k

else p
(d)
j,k = ¬a

(d)
j,k

end if
end for

end for

Lemma 1 Algorithm 6 always generates pre-verified safety controls guaran-
teeing the safety invariants.

Proof. The proof is by mathematical induction.
Basis:

φ̂
((

H
(1)
k−μ−1+,k,H

(2)
k−μ−1+,k, · · ·,H(n)

k−μ−1+,k

)
, Êk−μ−1,k

)

= true (14)

where Êj,k is the worst case estimations of environmental propositions pro-
vided by patient state estimator. The basis is satisfied because H

(d)
k−μ+1+,k =

{s(d)
safe} from P(d)

m,k = s
(d)
safe if m < k−μ. The safety invariants are always safe if

all controls are open-loop safe state regardless of the environmental variables.
Inductive step:
For inductive step, we prove:
if the following holds:

φ̂
((

H
(1)
j−1+,k,H

(2)
j−1+,k, · · · ,H(n)

j−1+,k

)
, Êj−1,k

)
= true, (15)

the following also holds:

φ̂
((

H
(1)
j+,k,H

(2)
j+,k, · · · ,H(n)

j+,k

)
, Êj,k

)
= true. (16)

As a intermediate step from Eq. (15) to Eq. (16), we have

φ̂
((

H
(1)
j−,k,H

(2)
j−,k, · · · ,H(n)

j−,k

)
, Êj,k

)
= true (17)

because we have H
(d)
j−,k ⊂ H

(d)
j−1+,k for every device (d) from the fact that an

incoming acknowledgement packet gives more information on the device side,
and can drop some previously effective NASSs, but cannot add additional
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effective NASSs. Moreover, Ê
,j−1,k is always more pessimistic than Ê

,j,k be-
cause of the nature of strict worst-cases.

Algorithm 6 must produce the series of [p(1)
j,k , p

(2)
j,k , · · · , p(n)

j,k ] making Eq. (16)
be satisfied from the assumption of Eq. (17). The proof of the correctness of the
NASS generation is also shown by mathematical induction. The correctness of
Basis is given by Eq. (17) because it is the initial state before control p

(1)
j,k has

not been produced yet. In the algorithm, control variables are verified one-by-
one in the given dependency order. As an induction step, we assume that all
of the NASS of the previously decided devices before device (d), satisfy the
safety invariants such that

φ̂
(((

H
(1)
j−,k ∪ p

(1)
j,k

)
,
(
H

(2)
j−,k ∪ p

(2)
j,k

)
, · · · , (H(d−1)

j−,k ∪ p
(d-1)
j,k

)
,

H
(d)
j−,k,H

(d+1)
j−,k , · · · ,H(n)

j−,k

)
, Êj,k

)
= true. (18)

Algorithm 6 checks the following function for a
(d)
j,d :

safety-check (d)
j,k

(
a
(d)
j,k

)
� φ̂

(((
H

(1)
j−,k ∪ p

(1)
j,k

)
,
(
H

(2)
j−,k ∪ p

(2)
j,k

)
,

· · · , (H(d−1)
j−,k ∪ p

(d-1)
j,k

)
, a

(d)
j,k ,H

(d+1)
j−,k , · · · ,H(n)

j−,k

)
, Êj,k

) (19)

and the decision of the function safety-check (d)
j,k

(
a
(d)
j,k

)
is projected to the pre-

verified safety control, p
(d)
j,k such that

p
(d)
j,k =

{
a
(d)
j,k if safety-check (d)

j,k

(
a
(d)
j,k

)
= true

¬a
(d)
j,k otherwise.

(20)

In Eq. (17), the first case is trivial because the fact that the function
safety-check (d)

j,k

(
a
(d)
j,k

)
is true is that the effectiveness control, a

(d)
j,k is safe

with any possible combinations of other controls decided until the decision
of p

(d)
j,k . The point is if ¬a

(d)
j,k can be applied for the safety assurance when

safety-check (d)
j,k rejects a

(d)
j,k .

If a
(d)
j,k ∈ H

(d)
j−,k, a

(d)
j,k passes safety-check (d)

j,k(a(d)
j,k ) because of Eq. (18). If

a
(d)
j,k /∈ H

(d)
j−,k, it may not pass the filter. However, H

(d)
j−,k = {¬a

(d)
j,k} is derived

from a
(d)
j,k /∈ H

(d)
j−,k because H

(d)
j−,k is not an empty set, but a set with Boolean

values. Thus, from Eq. (18), and H
(d)
j−,k = {¬a

(d)
j,k}, ¬a

(d)
j,k satisfy the filter if a

(d)
j,k

does not. Consequently, the verifier of Eq. (20) always generates pre-verified
safety controls satisfying the safety.

After the last control, p
(n)
j,k is decided, we have

φ̂
(((

H
(1)
j−,k ∪ p

(1)
j,k

)
,
(
H

(2)
j−,k ∪ p

(2)
j,k

)
, · · · ,

(
H

(n)
j−,k ∪ p

(n)
j,k

))
, Êj,k

)
= true (21)
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by induction. Because H
(d)
j+,k = H

(d)
j−,k∪p

(d)
j,k , we are aware that Eq. (16) holds.

�
The devices in the real world experience some delay in actuation, so the

states do not immediately change as our current representation shows. We
have extended our algorithm to cover the case of time delays in actuation
also.

S1’ Between the activities of airway laser and oxygen concentrate, 1 s guard
time is required.

The safety invariant for S1’ is given by

c
(oxygen)
k ∧ c

(laser)
l = false if |k − l| < Δ1s (22)

where Δ1s is the number of rounds per second. This kind of delay dependent
safety invariant can employ our safety engine as long as the pre-verified period
is longer than the time duration required to be checked. Compensating for
delay requires a minor change in the filter function by expanding the potential
states of a device at round j to also include states from all previous rounds
between j −Δ1s and j.

4.4 Case Study of Safety Layer Operations

a
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j,k

a
(oxygen)
j,k

c
(oxygen)
k

c
(oxygen)
k

c
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k

c
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t

t

t

t

t

t

f

f

f

f

f
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f

f
t

µ = 0

(µ = 1)
(µ = 1)

Fig. 4. Example operational sequence of airway-laser interlock case

We have simulated the original airway-laser interlock case given in Sec-
tion 2. Fig. 4 shows the simulated results of the airway-laser example se-
quences. There is no packet loss and all environments are estimated to be safe
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for all instances in the simulation. The sequence ① presents the application
logic output. The application logic wants to turn on the laser at round 8 and
to turn off the laser at round 16. For these operations, it wants to pause the
oxygen concentrate for the same duration of the laser activation.

Suppose that μ = 1 and all these application decisions are planned one
round ahead (② of Fig. 4). Then, at round 7, the application logic generates the
application-planned controls for round 8 to be a

(oxygen)
7,8 = false, a

(laser)
7,8 = true.

After safety layer processing, the NASSs for round 8 become p
(oxygen)
7,8 = false,

p
(laser)
7,8 = false. The reason why p

(laser)
7,8 = false is that c

(oxygen)
8 can become

true, which is s
(oxygen)
safe , if all command packets until round 8 are dropped.

However, the following packet exchanges were successful in reality, and the
planned controls at round 8 are the same as the previous round. Then the
NASSs become p

(oxygen)
8,8 = false, p

(laser)
8,8 = true because s

(oxygen)
safe is not an

option for round 8 any more. Then, the devices flip their states together at
round 8.

If the application decides the state flipping at the flipping rounds, the
behaviors of the devices are like sequence ③. In this case, the application-
planned controls and the NASSs at round 7 are a

(oxygen)
7,8 = p

(oxygen)
7,8 = true

and a
(laser)
7,8 = p

(laser)
7,8 = false without being aware of flipping of the next round

at round 7. At round 8, the application changes its mind and generates the
plan, such as a

(oxygen)
8,8 = false and a

(laser)
8,8 = true. However, the safety engine

disallows a
(laser)
8,8 because p

(oxygen)
7,8 = true, which can be employed by the

device at round 8, making conflict. Thus, the laser is allowed after the oxygen
concentrate is cleared. Even though the safety engine delays the operations,
it is the best for the guaranteed safety.

5 Prototype System

We have implemented a prototype of the PVSC framework in our medical
tested. Our testebed consists of three computers connected through a private
IEEE 802.11g wireless network in a non–line-of-sight configuration in 5 m
distances to demonstrate operating room scenario. One computer served as
the ICCS manager and the others demonstrate device controls, sometimes
connected to experimental medical devices such as infusion pumps. We have
implemented the synchronous communication layer in conjunction with the
PVSC framework. The round duration is set to 100 ms and command packets
are supposed to come in 40 ms from the beginning of a round. Acknowledge-
ment packets must be received before the end of a round. μ was set to be 20.
The packet drop rate was 0.24% during 9 hours of experiments. The maximum
number of consecutive rounds with series of packet drops was 11 (i.e. for 1.1
s) but mostly less than 5. The safety of the system was ensured as designed.
The software environment is Java2 Runtime Environment 1.5.0 and we em-
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ployed [Cri89] for clock synchronization between the ICCS manager and the
devices. The application logic is developed as using robust communications.

Even though the packet drop rate was quite low, some noticeable consec-
utive rounds had series of packet losses. If we use the time difference between
the control generation and the execution as the quality of service metric, we
found that the PVSC framework has served quite optimized quality of ser-
vice to the devices adapting itself. At the most of rounds (99.76%) when the
channel condition was good, the devices apply the controls made at the same
round. Only when there are packet losses, the devices used some aged controls.
And that ages of controls were identical to the number of consecutive rounds
without delivered packets.

6 Related Work

Our work is motivated by the on going initiative of Medical Device Plug-and-
Play [Gol09]. We proposed a framework, called NASS framework [KSM+10],
for the same purpose of this paper in the form of finite state machine (FSM),
but PVSC simplifies the approach by employing Boolean logic instead of FSM.
This initiative has been quite active for the past ten years resulting in the
ISO/IEEE 11073 family of communications standards [SFWS07], healthcare
alliances such as Continua, and specification alliances such as Bluetooth and
ZigBee.

Although wireless technology is readily available inside current medical
devices [BH08], few have been used for control. The techniques of deploying
safe interoperability in medical devices (wired or wireless) have only recently
gained momentum. Arney et. al demonstrated synchronization techniques of
medical devices with an X-ray and a ventilator [AJJ+07]. Fischmeister et. al.
applied their work for the Network Code Machine [FSL07] to be deployed in
medical systems providing verifiable real-time performance demonstrated in
HIMSS ’08. Software architectures for communications in medical plug-and-
play systems have also been explored by King et. al. [Ke08] using publish-
subscribe architectures for dynamic information flow. Currently, much of the
work for medical plug-and-play focus on estabilishing dynamic connectivity of
devices, device-to-device synchronization, and ensuring fair access to a com-
munication medium not focusing on enforcing generic types of safety con-
straints with the addition of wireless.

On the other end of the spectrum, medical device safety has been a
very prevalent issue dating back to the infamous incidents in the 80’s in-
volving the Therac 25 radiation therapy machines [LT93]. Since then, much
work has been done to apply formal methods to medical devices analy-
sis [AJJ+07,RC04,AAG+04]. The use of formal methods may even start to
influence actual medical device review procedures [JIJ06]. However, much of
the formal analysis work has been done on individual devices without any
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interoperable behavior between a network of devices. We have taken the ini-
tiative to move forward in this direction.

7 Concluding Remarks

It is important to provide the best convenience to caregivers for patient safety
in a health-care environment; providing wireless connectivity for medical de-
vices is one of them. We presented the pre-verified safety control framework
interconnecting and managing medical devices through wireless with guaran-
teed safety and high quality of service. Even though this framework is based
on a non-trivial pipeline planning method, all of the complications are hid-
den from the application logic by the application engine. The provable safety
verifier is automatically generated from the given safety invariants in Boolean
logic.

From our prototype, we found the application logic and the end devices are
well protected from external flaws and complications by applying the NASS
framework in Boolean logic. Furthermore, the quality of the communication
support was also decent.
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