
Chapter II
�p-spaces

6 Entropy numbers and eigenvalues
6.1 Preliminaries and notation
The main aim of Chapter II is to study entropy numbers in (weighted) �p-spaces.
This will be done in the Sections 7–9. In the present section we describe briefly the
necessary abstract background without proofs. We follow closely [ET96] where
proofs, further details, explanations, and more references are given.

A quasi-norm on a complex linear space B is a map � · |B� from B to the
non-negative reals �+ such that

�x|B� = 0 if, and only if, x = 0, (6.1)

�λx|B� = |λ| �x|B� for all scalarsλ ∈ � and all x ∈ B, (6.2)

there is a constant C such that for all x ∈ B and y ∈ B

�x + y|B� ≤ C(�x|B� + �y|B�). (6.3)

Plainly C ≥ 1; if C = 1 is allowed then � · |B� is a norm in B. As usual, B is
called a quasi-Banach space if every Cauchy sequence with respect to � · |B� is
a convergent sequence.

Given any p ∈ (0, 1], a p-norm on a complex linear space B is a map
� · |B� → �+ which satisfies (6.1), (6.2), and instead of (6.3),

�x + y|B�p ≤ �x|B�p + �y|B�p for x, y ∈ B. (6.4)

Two quasi-norms or p-norms � · |B�1 and � · |B�2 are said to be equivalent if there
is a constant c ≥ 1 such that for all x ∈ B,

c−1�x|B�1 ≤ �x|B�2 ≤ c �x|B�1. (6.5)

It can be shown (see [Kön86], p. 47 or [DeVL93], p. 20) that if � · |B�1 is a
quasi-norm on B then there exists p ∈ (0, 1] and a p-norm � · |B�2 on B which is
equivalent to � · |B�1.

Let A,B be quasi-Banach spaces and let T : A → B linear. Just as for the
Banach space case, T will be called bounded or continuous if

�T� = sup{�Ta|B� : a ∈ A, �a|A� ≤ 1} < ∞. (6.6)
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The family of all such T will be denoted by L(A,B) or L(A) if A = B. Otherwise
terminology which is standard in the context of Banach spaces will be taken
without further comment to quasi-Banach spaces. In particular if T ∈ L(B) then
σ(T) stands for its spectrum.

In [ET96], pp. 3–7, we developed a Riesz theory for compact operators T ∈
L(B) in quasi-Banach spaces B parallel to the well-known assertions in the Banach
spaces case. Especially, if

T ∈ L(B) is compact, then σ(T) \ {0} consists of an at most countably infinite
number of eigenvalues of finite algebraic multiplicity which may accumulate only
at the origin.

If B is a quasi-Banach space then UB = {b ∈ B : �b|B� ≤ 1} stands for the
unit ball in B.

6.2 Definition Let A,B be quasi-Banach spaces and let T ∈ L(A,B). Then for
all k ∈ �, the k th entropy number ek (T) of T is defined by

ek (T) =

inf


ε > 0 : T(UA) ⊂

2k−1�
j=1

(bj + εUB) for some b1, . . . , b2k−1 ∈ B


 .

(6.7)

6.3 Remark This formulation coincides with the definition given in [ET96], p. 7,
which simply generalizes to quasi-Banach spaces what has been done before for
Banach spaces. Further comments and some discussions may be found in [ET96],
pp. 7–9, and, in greater detail, in [CaS90] and [EEv87].

6.4 Proposition Let A, B, C be quasi-Banach spaces, let S,T ∈ L(A,B) and
suppose that R ∈ L(B,C).

(i) �T� ≥ e1(T) ≥ e2(T) ≥ . . . ; e1(T) = �T� if B is a Banach space.

(ii) For all k , l ∈ �

ek+l−1(R ◦ S) ≤ ek (R) el(S). (6.8)

(iii) If B is a p-Banach space, where 0 < p ≤ 1, then for all k , l ∈ �

ep
k+l−1(S + T) ≤ ep

k (S) + ep
l (T). (6.9)

6.5 Remark This formulation coincides with Lemma 1 in [ET96], pp. 7,8, where
also a simple proof may be found. In case of quasi-Banach spaces it may happen
that �T� > e1(T), see [ET96], Remark 4 on p. 9.
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6.6 Compact operators
Recall that T ∈ L(B) is compact if, and only if, for every ε > 0 there is a finite
ε-net covering T(UB). By (6.7) this is the same as

T ∈ L(B) is compact if, and only if, ek (T) → 0 for k → ∞. (6.10)

6.7 Interpolation properties
The entropy numbers behave very well with respect to real interpolation of quasi-
Banach spaces. We gave in [ET96], pp. 13–15, a rather careful treatment of this
subject, which in turn was based on [HaT94a]. Further properties in the context
of Banach spaces and historical comments may be found in [Tri78], 1.16.2, and
[Pie80], 12.1.

6.8 Eigenvalues
Again let B be a (complex) quasi-Banach space and let T ∈ L(B) be compact.
As we mentioned at the end of 6.1 the spectrum of T, apart from the point 0,
consists solely of eigenvalues of finite algebraic multiplicity: let {µk (T)}k∈� be
the sequence of all non-zero eigenvalues of T, repeated according to algebraic
multiplicity and ordered so that

|µ1(T)| ≥ |µ2(T)| ≥ . . . → 0. (6.11)

If T has only m(< ∞) distinct eigenvalues and M is the sum of their algebraic
multiplicities we put µn(T) = 0 for all n > M.

6.9 Theorem Let T and {µk (T)}k∈� be as in 6.8. Then

�
k�

m=1

|µm(T)|
� 1

k

≤ inf
n∈�

2
n

2k en(T), k ∈ �. (6.12)

6.10 Corollary For all k ∈ �

|µk (T)| ≤
√

2 ek (T). (6.13)

6.11 Remark This is Carl’s famous inequality which connects spectral properties
of compact operators with the geometry of the map T described in terms of entropy
numbers. (6.13) in the context of Banach spaces was proved by Carl in [Carl81].
In [ET96], pp. 18–20, we gave a proof of (6.12) which generalizes the proof given
in [CaT80] from Banach spaces to quasi-Banach spaces. Plainly, (6.13) follows
from (6.11) and (6.12) with n = k .

6.12 Remark Further results, comments, references and, in particular compar-
isons of entropy numbers with other geometric quantities, especially approxima-
tion numbers, may be found in [ET96], [CaS90], [EEv87], [Kön86], [Pie87], and
[LGM96].
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7 The spaces �M
p

7.1 Preliminaries and notation
We follow again [ET96], p. 97. Let M ∈ � and let 0 < p ≤ ∞. By �M

p we
shall mean the linear space of all complex M-tuples y = (yj), endowed with the
quasi-norm

�y|�M
p � =




M�
j=1

|yj |p



1
p

, if 0 < p < ∞, (7.1)

and
�y|�M

∞� = sup
j
|yj |, if p = ∞. (7.2)

Let
UM

p = {y ∈ �M
p : �y|�M

p � ≤ 1} (7.3)

be the closed unit ball in �M
p . Since �M may be identified with �2M, we shall

understand by the volume of UM
p the Lebesgue measure of


(x1, . . . , x2M) ∈ �2M :

M�
j=1

(x2
2 j−1 + x2

2 j)
p
2 ≤ 1


 . (7.4)

Let p ∈ (0,∞] be given. There are two positive constants c1 and c2 (which may
depend on p) such that for all M ∈ �

c1 M− 1
p ≤

�
vol UM

p

� 1
2M ≤ c2M− 1

p . (7.5)

This follows from the Proposition in [ET96], p. 97, and the end of the proof on
p. 98.

Plainly the identity from �M
p1

in �M
p2

is a compact operator. Our aim is to
estimate the corresponding entropy numbers according to Definition 6.2. In what
follows we assume that log = log2 is taken with respect to the base 2. First we
complement the results in [ET96], p. 98.

7.2 Proposition Let 0 < p1 ≤ ∞, 0 < p2 ≤ ∞ and for each k ∈ � let ek be the
entropy numbers of the embedding

id : �M
p1

→ �M
p2
.

Then
ek ≥ c i f 1 ≤ k ≤ log(2M), (7.6)

and

ek ≥ c2−
k

2M (2M)
1

p2
− 1

p1 if k ∈ �, (7.7)

where c is a positive constant which is independent of M (and k) but may depend
upon p1 and p2.
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Proof.
Step 1. We prove (7.6). Let y = (yj) ∈ �M

p for some p where all components yj
are zero with exception of one component which is either 1 or −1. There are 2M
such elements belonging to UM

p1
and UM

p2
. Let y1 and y2 be two such points and

assume that they belong to the same �M
p2

-ball of radius ε, hence

y1 ∈ x + εUM
p2

and y2 ∈ x + εUM
p2

for some x ∈ �M
p2
. (7.8)

For some c which is independent of M and p2 = min(p2, 1) we have

c ≤ �y1 − y2|�M
p2
�p2 ≤

�y1 − x|�M
p2
�p2 + �y2 − x|�M

p2
�p2 ≤ 2εp2 . (7.9)

Now (7.6) follows from (7.9), 2k−1 ≤ M < 2M and (6.7).

Step 2. We prove (7.7). We cover UM
p1

with 2k−1 balls in �M
p2

of radius ε chosen
in an appropriate way. Then we have by the interpretation (7.4)

vol UM
p1

≤ 2k−1ε2M vol UM
p2

≤ 2k e2M
k vol UM

p2
.

(7.10)

Now (7.7) follows from (7.10) and (7.5).

7.3 Theorem Let 0 < p1 ≤ p2 ≤ ∞ and for each k ∈ � let ek be the k th entropy
number of the embedding

id : �M
p1

→ �M
p2
.

Then
c1 ≤ ek ≤ c2 if 1 ≤ k ≤ log(2M), (7.11)

ek ≤ c2

�
k−1 log(1 +

2M
k

)
� 1

p1
− 1

p2
if log(2M) ≤ k ≤ 2M, (7.12)

c12−
k

2M (2M)
1

p2
− 1

p1 ≤ ek

≤ c22−
k

2M (2M)
1

p2
− 1

p1 if k ≥ 2M,

(7.13)

where c1 and c2 are positive constants which are independent of M (and k ) but
may depend upon p1 and p2.

7.4 Remark The estimate from below is covered by Proposition 7.2. A proof of
the estimate from above may be found in [ET96], pp. 98–101.

7.5 Remark If 1 ≤ p1 < p2 ≤ ∞, then also the estimate (7.12) is an equivalence
as in the two other cases: see [Schü84] and [Kön86], 3.c.8, pp. 190–191.
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8 Weighted �p-spaces
8.1 Preliminaries and notation
Let d > 0, δ ≥ 0 and (Mj) j∈�0

be a sequence of natural numbers. We always
assume that there are two positive numbers c1 and c2 with

c1 ≤ Mj 2− jd ≤ c2 for every j ∈ �0. (8.1)

Let 0 < p ≤ ∞ and 0 < q ≤ ∞. Then by �q(2 jδ�
Mj
p ) we shall mean the linear

space of all complex sequences x = (xj,l : j ∈ �0; l = 1, . . . ,Mj) endowed with
the quasi-norm

�x|�q(2 jδ�
Mj
p )� =




∞�
j=0

(
Mj�
l=1

2 jδp|xj,l |p)
q
p




1
q

(8.2)

with the obvious modifications according to (7.2) if p = ∞ and/or q = ∞. In case

of δ = 0 we write �q(�
Mj
p ) and if, in addition p = q, then we have the �p-spaces

with the components ordered in the given way. Plainly, �q(2 jδ �
Mj
p ) consists of

dyadic blocks of spaces �
Mj
p as introduced in 7.1 clipped together via the weights

2 jδ . We are interested in the counterpart of Theorem 7.3. Let d > 0, δ > 0 and

0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ ∞, 0 < q2 ≤ ∞. (8.3)

Then the identity map

id : �q1(2
jδ �

Mj
p1 ) → �q2(�

Mj
p2 ) (8.4)

is compact, where Mj is restricted by (8.1). To prove this claim we use the de-
composition

id =
∞�
j=0

idj (8.5)

where
idj x = (δ j k xk ,l : k ∈ �0; l = 1, . . . ,Mk )

= (0, . . . , 0, xj,1, . . . , xj,Mj , 0, 0, . . .)
(8.6)

selects the jth block. We have

�id j x|�q2(�
Mk
p2

)� = �(xj,l)| �
Mj
p2 �

≤ �(xj,l)| �
Mj
p1 �

≤ 2− jδ �x| �q1(2
kδ �Mk

p1
)�.

(8.7)

Now by (8.5) and (8.7) it follows that id is compact.
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8.2 Theorem Let d > 0, δ > 0, and Mj ∈ � with (8.1). Let p1, p2, q1, q2 be
given by (8.3). Let ek be the entropy numbers of the compact operator id in (8.4)
according to Definition 6.2. There are two positive numbers c and C such that

c k
− δ

d + 1
p2

− 1
p1 ≤ ek ≤ C k

− δ
d + 1

p2
− 1

p1 , k ∈ �. (8.8)

Proof.
Step 1. First we prove the left-hand side of (8.8). In the commutative diagram

Mj
p1

idj
q1

�
2 j Mj

p1

�

id id

Mj
p2

idj
q2

�
Mj
p2

�
� ��

� � �δ

the operator id j is given as in (8.6), now acting in the indicated slightly modified

way, whereas idj maps �
Mj
p1 identically onto 2 jδ �

Mj
p1 interpreted as a dyadic block

of �q1(2
jδ �

Mj
p1 ). In what follows we reserve id for the identity given by (8.4),

otherwise we indicate the spaces involved. Hence

id
�
�

Mj
p1 → �

Mj
p2

�
= idj ◦ id ◦ idj , j ∈ �. (8.9)

Plainly,
�idj� = 2 jδ and �idj� = 1, (8.10)

and consequently by (6.8)

ek

�
id : �

Mj
p1 → �

Mj
p2

�
≤ 2 jδ ek , k ∈ �, j ∈ �. (8.11)

By (7.13) with k = 2Mj we obtain

e2Mj ≥ c 2− jδ 2
jd( 1

p2
− 1

p1
)
, j ∈ �. (8.12)

By (8.1) and the monotonicity properties of the entropy numbers described in
Proposition 6.4(i) it follows that

ek ≥ c k
− δ

d + 1
p2

− 1
p1 , k ∈ �, (8.13)

for some c > 0.
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Step 2. The estimate from above is more complicated. Let J ∈ � and

L δ = J δ + Jd(
1
p1

− 1
p2

) ; (8.14)

in particular L ≥ J. We put et = e[t] if t ≥ 1 and assume L ∈ �. We wish to
prove

e2Jd ≤ c 2
−Jδ+Jd( 1

p2
− 1

p1
)
, J ∈ �. (8.15)

This is equivalent to the estimate from above in (8.8). We split the sum in (8.5)
in three parts,

id =
J�

j=0

idj +
L�

j=J+1

idj +
∞�

j=L+1

idj . (8.16)

Of course here idj is considered as a map between the two spaces in (8.4) according
to (8.6) in contrast to idj in the above diagram in Step 1. There is no danger of
confusion. In particular by (8.7) we have

������
∞�

j=L+1

idj

������
≤ c 2−Lδ, (8.17)

which by (8.14) coincides with the right-hand side of (8.15). Let � = min(1, p2, q2).
It is easy to see that �q2(�

Mj
p2 ) is a �-Banach space. Then we obtain by (6.9), (8.16),

and (8.17)

e�k ≤ c 2−Lδ� +
J�

j=0

e�k j
(idj) +

L�
j=J+1

e�k j
(idj) (8.18)

where k =
L�

j=0

k j . By (8.7) we have

ek j (idj) = 2− jδ ek j

�
id : �

Mj
p1 → �

Mj
p2

�
, (8.19)

and hence by Theorem 7.3
ek j (idj) ≤

c 2− jδ
�

k−1
j log (c 2 jd k−1

j )
� 1

p1
− 1

p2 if k j ≤ 2Mj , (8.20)

which covers also (7.11) and

ek j (idj) ≤ c 2− jδ 2
−

k j
2Mj (2Mj)

1
p2

− 1
p1 if k j > 2Mj . (8.21)
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Now we choose
k j = 2Jd 2−(J− j)ε if j = 0, . . . , J (8.22)

and
k j = 2Jd 2−( j−J)κ if j = J + 1, . . . ,L, (8.23)

where ε and κ are positive numbers which will be chosen later on. We obtain

k ∼ 2Jd, (8.24)

where «∼» indicates equivalences (two-sided estimates up to unimportant positive
constants which are independent of J). We deal with the two sums in (8.18)
separately.

Step 3. Let j = 0, . . . , J. By (8.22) we have

k j = 2 jd 2(J− j)(d−ε) ≥ 2 jd, (8.25)

where we choose 0 < ε < d. By (8.1) and (8.20), (8.21) it follows that we can
always apply (8.21) in that case. Then we obtain

ek j (idj) ≤ c 2λ j,J (8.26)

with

λ j,J = −Jδ + Jd(
1
p2

− 1
p1

) + (J − j)
�
δ − d(

1
p2

− 1
p1

)
�

− c 2(J− j)(d−ε) (8.27)

and consequently
J�

j=0

e�k j
(idj) ≤ c 2

−Jδ�+J�d( 1
p2

− 1
p1

)
. (8.28)

Step 4. Let j = J + 1, . . . ,L. By (8.23) we have

k j ≤ c 2 jd. (8.29)

Hence we can always apply (8.20) and obtain

ek j (idj) ≤ c 2− jδ
�
2−Jd+( j−J)κ log

�
c 2( j−J)d 2( j−J)κ

�� 1
p1

− 1
p2

≤ c 2
−Jδ+Jd( 1

p2
− 1

p1
)

2
(J− j)[δ+κ( 1

p2
− 1

p1
)] [(d + κ)( j − J)]

1
p1

− 1
p2 . (8.30)

We choose κ > 0 such that

κ (
1
p1

− 1
p2

) < δ (8.31)

and obtain
L�

j=J+1

e�k j
(idj) ≤ c 2

−Jδ�+Jd�( 1
p2

− 1
p1

)
. (8.32)

Step 5. By (8.24), (8.14), (8.18), (8.28), and (8.32) we have

ec 2Jd ≤ c� 2
−Jδ+Jd( 1

p2
− 1

p1
)
, J ∈ �, (8.33)

where c and c� are appropriate positive constants. This coincides essentially with
(8.15) and completes the proof of the right-hand side of (8.8).
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8.3 Remark In the case of Banach spaces, which means that the numbers p1, p2,
q1 and q2 in (8.3) are larger than or equal to 1, the above theorem is more or less
known, see [Kühn84]. In that paper the proof is based on interpolation properties
of entropy numbers and entropy numbers of diagonal operators in �p-spaces due
to Carl, see [CaS90].

8.4 Estimates of constants
Theorem 8.2 is the basis for the study of entropy numbers of embedding operators
in function spaces. Usually, in non-limiting situations, all parameters p1, p2, q1,
q2, d and δ are fixed and there is no need to have additional information on the
dependence of c and C in (8.8) on these parameters. However in some limiting
cases we deal with a sequence of target spaces and we have to know how C in
(8.8) depends on p2, q2 and δ, whereas the dependence of C on p1 , q1 and d is
not so interesting for our later purposes. To facilitate the estimates we assume in
addition

1 ≤ p2 ≤ ∞, 1 ≤ q2 ≤ ∞, and 0 < δ ≤ 1. (8.34)

This is not really necessary, but sufficient for our later purposes.

8.5 Corollary Under the hypotheses of Theorem 8.2, complemented by (8.34), we
have

ek ≤ c δ
−1−2( 1

p1
− 1

p2
)

k
− δ

d + 1
p2

− 1
p1 , k ∈ �, (8.35)

for some positive constant c which is independent of p2, q2, and δ (but may depend
on p1, q1, and d).

Proof. We follow the arguments in the Steps 2–5 of the proof of Theorem 8.2. By
(8.34) we have � = 1 in (8.18). We estimate the constant c in the first term on the
right-hand side of (8.18). By (8.7) and (8.17) we have

������
∞�

j=L+1

idj

������
≤

∞�
j=L+1

�idj� ≤
∞�

j=L+1

2− jδ ≤ c δ−1 2−Lδ, (8.36)

where c is independent of δ. Next we remark that we may assume that the constant
c2 in (7.11)–(7.13) is independent of p2. We refer to [ET96], Remark 2 on p. 101.
But this is not a deep result. It follows immediately from Theorem 7.3 with p2 = ∞
and the interpolation properties of the entropy numbers mentioned in 6.7. Having
this in mind it follows that the constants c in (8.20) and (8.21) are independent of
p2 , q2 and δ. We may choose ε = d

2 in (8.22) and (8.25). Hence ε is not of interest

for us. As for κ in (8.23) and (8.31) we may choose κ = δp1
2 . Then (8.24) must

be substituted now by

2Jd ≤ k ≤ c
δ

2Jd, (8.37)

where c is independent of δ (and p2 and q2). Now by the above remarks about
the constants in Theorem 7.3 and δ ≤ 1 it follows from (8.26) and (8.27) that the
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constant c in (8.28) (now with � = 1) is independent of p2, q2 and δ. We estimate
the constant c in (8.32) (again with � = 1). By the above choice of κ it follows
from (8.30)

L�
j=J+1

ek j (idj) ≤ c1 2
−Jδ+Jd( 1

p2
− 1

p1
)
δ

1
p2

− 1
p1

L−J�
l=1

2−c2lδ (δl)
1

p1
− 1

p2 (8.38)

where c1 and c2 are independent of δ, p2 and q2. The last factor can be estimated
from above by � ∞

0
e−c3δt (δt)

1
p1

− 1
p2 dt ≤ c4 δ

−1. (8.39)

Now by (8.18), (8.36), (8.28) and (8.38) with (8.39) we obtain

ek ≤ c δ
−1− 1

p1
+ 1

p2 2
−Jδ+Jd( 1

p2
− 1

p1
)
, (8.40)

where c is independent of δ, p2, and q2, and k is given by (8.37). With 2Jd ∼ kδ
in (8.40) we have

ek ≤ c δ
−1−2( 1

p1
− 1

p2
)

k
− δ

d + 1
p2

− 1
p1 , k ∈ �. (8.41)

The proof of (8.35) is complete.

8.6 Remark The restrictions p2 ≥ 1 and q2 ≥ 1 are unimportant. Otherwise one
has � < 1 in (8.18). There is no problem to follow the above reasoning in this
more general case.

8.7 Comparison The estimates for entropy numbers of compact embeddings be-
tween function spaces will be based in non-limiting cases on (8.8), whereas in
some limiting cases we need the additional information given in the above corol-
lary. Although the context is slightly different (so far) one can compare the expo-
nent 1 + 2( 1

p1
− 1

p2
) of δ in (8.35) with the exponents 1 + 2

p in [ET96], p. 130,

formula (8), and − 2s
n − ε in [ET96], p. 139, formula (3), where any ε > 0 is ad-

mitted. It comes out that 1+ 2
p originates precisely from 1 +2( 1

p1
− 1

p2
) (restricted

to the treated case), whereas − 2s
n − ε is somewhat better (ε = 1 would be the

direct counterpart). On the other hand the situation considered in [ET96], p. 139,
is more special. We return in 23.5 to these comparisons in greater detail and shed
more light upon these admittedly somewhat cryptical remarks.
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8.8 A digression: Matrix operators
It is not our aim to discuss the spectral theory of compact operators acting in
�p-spaces. This has been done in great detail by A. Pietsch, B. Carl and other
mathematicians. We refer to [Pie87], esp. pp. 230–231, [Kön86], esp. pp. 150–151,
and [CaS90]. Our intention here is simply to demonstrate the power of Theorem
8.2. For that purpose we estimate the distribution of eigenvalues of some matrix
operators in �p-spaces. We avoid any technical complications and we are far from
the most general case which can be treated in that way. In this sense we leave
it to the interested reader to compare the results obtained here with the more
systematic treatments in the above-mentioned books. Let 0 < p ≤ ∞; recall that
�p is the linear space of all complex sequences x = (xk : k ∈ �) endowed with
the quasi-norm

�x|�p� =

� ∞�
k=1

|xk |p
� 1

p

(8.42)

with the obvious modification if p = ∞. Let

A = (al k : l ∈ �, k ∈ �), al k ∈ �, (8.43)

and as usual let

Ax =

� ∞�
k=1

al k xk : l ∈ �

�
for x = (xk : k ∈ �). (8.44)

Let d > 0 and δ > 0, and Mj ∼ 2 jd according to (8.1) with j ∈ �0. We put

Mj =
j−1�
m=0

Mm ∼ 2 jd, j ∈ �; and M0 = 0, (8.45)

and assume that the entries al k can be represented as

al k = 2− jδ bj
lm, l ∈ �, (8.46)

k = Mj + m for j ∈ �0 and m = 1, . . . ,Mj , (8.47)

and
∞�

l=0




∞�
j=0

Mj�
m=1

|bj
lm|




p

< ∞, 0 < p ≤ ∞, (8.48)

with the obvious modification if p = ∞. In other words, for fixed l we sum first
the absolute values of the entries in the lth row. Hence,

B = (bl k = bj
lm : l ∈ �, k given by (8.47) ) (8.49)
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is a so-called Hille-Tamarkin matrix, see the above references. In particular, A can
be decomposed by

A = B ◦ D, (8.50)

where D is a diagonal matrix with the entries dk = 2− jδ , where k is given
by (8.47). As we shall see, A generates a compact operator in �p. Then we can
apply the Riesz theory mentioned in 6.1, 6.6 and 6.8. In particular, the non-
zero eigenvalues µk (A) of A, repeated according to algebraic multiplicity, can be
ordered as in (6.11).

8.9 Proposition Let 0 < p ≤ ∞ and let A be the above operator. Then there is a
positive constant c such that

|µk (A)| ≤ c k− δ
d−

1
p , k ∈ �. (8.51)

Proof. We decompose A as

A = B ◦ id ◦ D, (8.52)

where D and B have the above meaning. We claim

D : �p → �p (2 jδ �
Mj
p ),

id : �p (2 jδ �
Mj
p ) → �∞,

B : �∞ → �p.

(8.53)

The first line is obvious where we used the notation introduced in (8.2). By The-
orem 8.2 the operator id is compact and

ek (id) ≤ C k− δ
d−

1
p , k ∈ �. (8.54)

Let x = (xk : k given by (8.47)) ∈ �∞. Then by (8.49)

|(Bx)l | =

������
∞�
j=0

Mj�
m=1

bj
lm xM j+m

������

≤ �x|�∞�
∞�
j=0

Mj�
m=1

|bj
lm|.

(8.55)

Now the last line in (8.53) is a consequence of (8.48) and (8.55). Since D and B
are bounded, (8.52), (8.54), and (6.8) prove

ek (A) ≤ c k− δ
d−

1
p , k ∈ �. (8.56)

Finally, (8.51) is a consequence of Corollary 6.10.
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8.10 Remark It can be easily seen that the exponent in (8.51) is sharp: Let A be
a diagonal operator, akl = 0 if k �= l and

ak k = k− δ
d−

1
p (log k)α. (8.57)

By (8.47) and (8.48) with (8.45) we have

∞�
l=0




∞�
j=0

Mj�
m=1

|bj
lm|




p

∼
∞�
j=0

2− jd jαp 2 jd < ∞ (8.58)

if α < − 1
p . In that case A has the required properties. On the other hand, ak k are

the eigenvalues of A. Hence the exponent in (8.51) is the best possible.

9 Weighted �p-spaces: a generalization
9.1 Preliminaries and notation
Unfortunately Theorem 8.2 and Corollary 8.5 are not completely sufficient for our
later purposes. We need something like an �u-version of these two assertions. For-
tunately it comes out that these generalizations are nothing more than a technical
appendix to the results just mentioned. We use the same notation as in 8.1. In
particular, let d > 0, δ ≥ 0 and (Mj) j∈�0

be a sequence of natural numbers with

(8.1) for some positive numbers c1 and c2. Let again �q(2 jδ �
Mj
p ) with 0 < p ≤ ∞

and 0 < q ≤ ∞ be the quasi-Banach space introduced in 8.1 and quasi-normed
by (8.2). Let, in addition, µ ≥ 0 and 0 < u ≤ ∞. Then by

�u

�
2µm �q (2 jδ �

Mj
p )
�

we shall mean the linear space of all �q(2 jδ �
Mj
p )-valued sequences x = (xm : m ∈

�0) endowed with the quasi-norm

���x | �u

�
2µm �q (2 jδ �

Mj
p )
���� =

� ∞�
m=0

2µmu
���xm|�q(2 jδ �

Mj
p )
���u
� 1

u

(9.1)

with the obvious modification according to the vector-valued version of (7.2) if

u = ∞. In case of µ = δ = 0 we write �u [ �q(l
Mj
p ) ] in accordance with the

notation introduced in 8.1. We are interested in an extension of Theorem 8.2. Let
d > 0, δ > 0, µ > 0,

0 < p1 ≤ p2 ≤ ∞ (9.2)

and
0 < q1 ≤ ∞, 0 < q2 ≤ ∞, 0 < u1 ≤ ∞, 0 < u2 ≤ ∞. (9.3)
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Then the identity map

id : �u1

�
2µm �q1 (2 jδ �

Mj
p1 )
�

→ �u2 [�q2 (�Mj
p2 )] (9.4)

is compact. This is simply the extension of what had been said in 8.1, see (8.4)–
(8.7), from the scalar case to the �u-valued case. However this generalization is an
immediate consequence of µ > 0. Now Theorem 8.2 can be rather easily extended
to the vector-valued case.

9.2 Theorem Let d > 0, δ > 0, µ > 0, and Mj ∈ � with (8.1). Let p1, p2, q1, q2,
u1, u2 be given by (9.2) and (9.3). Let ek be the entropy numbers of the compact
operator id according to (9.4). There are two positive numbers c and C such that

c k
− δ

d + 1
p2

− 1
p1 ≤ ek ≤ C k

− δ
d + 1

p2
− 1

p1 , k ∈ �. (9.5)

Proof.
Step 1. The estimate from below is covered by Step 1 of the proof of Theorem
8.2.

Step 2. We reduce the estimate from above to the corresponding scalar case in
Theorem 8.2. Let

idm : x �→ xm, where x = (xl)l∈�0
(9.6)

has the same meaning as in (9.1). Then we have

id =
∞�

m=0

idm. (9.7)

Let, for brevity, a = δ
d + 1

p1
− 1

p2
, and let J ∈ � and

L = [
a
µ

J] ∈ �0. (9.8)

Of course a > 0. Then it follows that�����
∞�

l=L+1

idl

����� ≤ c 2−µL ≤ c� 2−aJ . (9.9)

Let
kl = 2J 2−lε where l = 0, . . . ,L and εa < µ. (9.10)

Then we have

k =
L�

l=0

kl ∼ 2J (9.11)

and by (8.8)
ekl (idl) ≤ c 2−µl 2−aJ 2laε; l = 0, . . . ,L. (9.12)

Now by (9.9)–(9.11) and (6.9) it follows that

ec1 2J (id) ≤ c2 2−aJ , J ∈ � , (9.13)

for some c1 > 0 and c2 > 0. This proves the right-hand side of (9.5).
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9.3 Remark We are also interested in an extension of Corollary 8.5 to the vector-
valued case. In accordance with (8.34) we assume in addition

1 ≤ p2 ≤ ∞, 1 ≤ q2 ≤ ∞, 1 ≤ u2 ≤ ∞, and 0 < δ ≤ 1. (9.14)

Again, these conditions are not really necessary, but sufficient for our later pur-
poses.

9.4 Corollary Under the hypotheses of Theorem 9.2 complemented by (9.14) we
have

ek ≤ c δ
−1−2( 1

p1
− 1

p2
)

k
− δ

d + 1
p2

− 1
p1 , k ∈ �, (9.15)

for some positive constant c which is independent of p2, q2, u2, and δ (but may
depend on p1, q1, u1, d and µ).

Proof. By slight modification we may assume that L in (9.8) and ε in (9.10) are
chosen independently of the indicated numbers. Then we have the same situation
in (9.9) and (9.11) by a similar argument as in (8.36). Replacing the constant c in
(9.12) by the corresponding constant on the right-hand side of (8.35) we obtain
(9.13) with the desired constant. This proves (9.15).

9.5 Remark As for comments we refer to 8.6 and 8.7.
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