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The rotation group

In this Chapter we give a short account of the main properties of the three-
dimensional rotation group SO(3) and of its universal covering group SU(2).
The group SO(3) is an important subgroup of the Lorentz group, which will
be considered in the next Chapter, and we think it is useful to give a separate
and preliminary presentation of its properties. After a general discussion of
the general characteristics of SO(3) and SU(2), we shall consider the corre-
sponding Lie algebra and the irreducible representations of these groups. All
the group concepts used in the following can be found in the previous Chapter.

2.1 Basic properties

The three-dimensional rotations are defined as the linear transformations of
the vector x = (x1, x2, x3)

x′i =
∑

j

Rijxj , (2.1)

which leave the square of x invariant:

x′2 = x2 . (2.2)

Explicitly, the above condition gives

∑

i

x′2i =
∑

ijk

RijRikxjxk =
∑

j

x2
j , (2.3)

which implies
RijRik = δjk . (2.4)

In matrix notation Eqs. (2.1) and (2.4) can be written as

x′ = Rx (2.5)
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28 2 The rotation group

and
R̃R = I , (2.6)

where R̃ is the transpose of R. Eq. (2.6) defines the orthogonal group O(3);
the matrices R are called orthogonal and they satisfy the condition

detR = ±1 . (2.7)

The condition
detR = +1 (2.8)

defines the special orthogonal group or rotation group SO(3)1. The correspond-
ing transformations do not include space inversions, and can be identified with
pure rotations.

A real matrix R satisfying Eqs. (2.6), (2.8) is characterized by 3 indepen-
dent parameters, i.e. the dimension of the group is 3. One can choose different
sets of parameters: a common parametrization, which will be considered ex-
plicitly in Section 2.4, is in terms of the three Euler angles. Another useful
parametrization consists in associating to each matrix R a point of a sphere
of radius π in the Euclidean space R3 (Fig. 2.1). For each point P inside the
sphere there is a corresponding unique rotation: the direction of the vector
OP individuates the axis of rotation and the lenght of OP fixes the angle φ
(0 ≤ φ ≤ π) of the rotation around the axis in counterclockwise sense. How-
ever, if φ = π, the same rotation corresponds to the antipode P ′ on the surface
of the sphere. We shall come back to this point later. Writing OP = φn where

P’

P’

P

φ
O

π

Fig. 2.1. Parameter domain of the rotation group.

n = (n1, n2, n3) is a unit vector, each matrix R can be written explicitly in
terms of the parameters φ and n1, n2, n3 (only two of the ni are independent,
since

∑
n2
i = 1). With the definitions cφ = cosφ, sφ = sinφ, one can write

explicitly:

1 For a detailed analysis see E.P. Wigner, Group Theory and its applications to the
quantum mechanics of atomic spectra, Academic Press (1959).
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R =




n2
1(1 − cφ) + cφ n1n2(1 − cφ) − n3sφ n1n3(1 − cφ) + n2sφ

n1n2(1 − cφ) + n3sφ n2
2(1 − cφ) + cφ n2n3(1 − cφ) − n1sφ

n1n3(1 − cφ) − n2sφ n2n3(1 − cφ) + n1sφ n2
3(1 − cφ) + cφ


 .

(2.9)
From Eq. (2.9), one can prove that the product of two elements and the inverse
element correspond to analytic functions of the parameters, i.e. the rotation
group is a Lie group.

If one keeps only the orthogonality condition (2.6) and disregard (2.8),
one gets the larger group O(3), which contains elements with both signs,
detR = ±1. The groups consists of two disjoint sets, corresponding to detR =
+1 and detR = −1. The first set coincides with the group SO(3), which is
an invariant subgroup of O(3): in fact, if R belongs to SO(3) and R′ to O(3),
one gets

det(R′RR′−1) = +1 . (2.10)

The group O(3) is then neither simple nor semi-simple, while one can prove
that SO(3) is simple.

The elements with detR = −1 correspond to improper rotations, i.e. ro-
tations times space inversion Is, where

Isx = −x i.e. Is =




−1
−1

−1


 . (2.11)

The element Is and the identity I form a group J which is abelian and
isomorphic to the permutation group S2. It is an invariant subgroup of O(3).
Each element of O(3) can be written in a unique way as the product of a
proper rotation times an element of J , so that O(3) is the direct product

O(3) = SO(3) ⊗ J . (2.12)

It is important to remark that the group SO(3) is compact; in fact its pa-
rameter domain is a sphere in the euclidean space R3, i.e. a compact domain.
From Eq. (2.12) it follows that also the group O(3) is compact, since both the
disjoint sets are compact.

The rotation group SO(3) is connected: in fact, any two points of the
parameter domain can be connected by a continuous path. However, not all
closed paths can be shrunk to a point. In Fig. 2.2 three closed paths are shown.
Since the antipodes correspond to the same point, the path in case b) cannot
be contracted to a point; instead, for case c), by moving P ′ on the surface,
we can contract the path to a single point P . Case c) is then equivalent to
case a) in which the path can be deformed to a point. We see that there are
only two classes of closed paths which are distinct, so that we can say that
the group SO(3) is doubly connected. The group O(3) is not connected, since
it is the union of two disjoint sets.
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Fig. 2.2. Different paths for SO(3).

Since the group SO(3) is not simply connected, it is important to consider
its universal covering group, which is the special unitary group SU(2) of order
r = 3. The elements of the group SU(2) are the complex 2 × 2 matrices u
satisfying

uu† = u†u = I , (2.13)

detu = 1 , (2.14)

where u† is the adjoint (conjugate transpose) of u. They can be written, in
general, as

u =

(
a b

−b∗ a∗

)
(2.15)

where a and b are complex parameters restricted by the condition

|a|2 + |b|2 = 1 . (2.16)

Each matrix u is then specified by 3 real parameters. Defining

a = a0 + ia1 , (2.17)

b = a2 + ia3 , (2.18)

Eq. (2.16) becomes
a2
0 + a2

1 + a2
2 + a2

3 = 1 . (2.19)

The correspondence between the matrices u and the matrices R of SO(3)
can be found replacing the orthogonal transformation (2.5) by

h′ = uhu† , (2.20)

where

h = σ · x =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (2.21)

and σ = (σ1, σ2, σ3) denotes the three Pauli matrices
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σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.22)

which satisfy the relation

Tr(σiσj) = 2δij . (2.23)

Making use of eqs. (2.1), (2.20), one can express the elements of the matrix
R in terms of those of the matrix u in the form:

Rij = 1
2Tr(σiu σju

†) . (2.24)

Since this relation remains unchanged replacing u by −u, we see that for each
matrix R of SO(3) there are two corresponding matrices u and −u of SU(2).

The group SU(2) is compact and simply connected. In fact, if we take the
real parameters a0, a1, a2, a3 to characterize the group elements, we see that
the parameter space, defined by Eq. (2.19), is the surface of a sphere of unit
radius in a 4-dimensional euclidean space. This domain is compact and then
also the group SU(2) is compact. Moreover, all the closed paths on the sur-
face can be shrunk continuously to a point, so that the group SU(2) is simply
connected. Since SU(2) is homomorphic to SO(3) and it does not contain
simply connected subgroups, according to the definition given in Subsection
1.2.1, SU(2) is the universal covering group of SO(3). The kernel of the ho-
momorphism is the invariant subgroup E(I,−I), and then the factor group
SU(2)/E is isomorphic to SO(3).

E’

P

O

P’

E

P’’
Q

Q’

Fig. 2.3. Parameter space for SU(2) and SO(3).

The homomorphism between SO(3) and SU(2) can be described in a pic-
torial way, as shown in Fig. 2.3. The sphere has to be thought of as a 4-
dimensional sphere, and the circle which divides it into two hemispheres as a
three-dimensional sphere. The points E,E′ correspond to the elements I and
−I of SU(2). In general, two antipodes, such as P and P ′, correspond to a pair
of elements u and −u. Since both u and −u correspond to the same element
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of SO(3), the parameter space of this group is defined only by the surface of
one hemisphere; this can be projected into a three-dimensional sphere, and
we see that two opposite points Q,Q′ on the surface (on the circle in Fig. 2.3)
correspond now to the same element of the group.

2.2 Infinitesimal transformations and Lie algebras of the
rotation group

In order to build the Lie algebra of the rotation group, we consider the in-
finitesimal transformations of SO(3) and SU(2) in a neighborhood of the
unit element. There is a one-to-one correspondence between the infinitesimal
transformations of SO(3) and SU(2), so that the two groups are locally iso-
morphic. Therefore, the groups SO(3) and SU(2) have the same Lie algebra.
We can build a basis of the Lie algebra in the following way. We can start
from the three independent elements R1, R2, R3 of SO(3) corresponding to
the rotations through an angle φ around the axis x1, x2, x3 respectively. From
Eq. (2.9) we get

R1 =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


 , R2 =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


 , R3 =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1




(2.25)
and, according to Eq. (1.30), we obtain the generators of the Lie algebra. For
the sake of convenience, we use the definition:

Jk = i
dRk(φ)

dφ

∣∣∣∣∣
φ=0

(k = 1, 2, 3) , (2.26)

so that the three generators are given by

J1 =




0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 i
0 0 0
−i 0 0


 , J3 =




0 −i 0
i 0 0
0 0 0


 . (2.27)

We can take J1, J2, J3 as the basis elements of the Lie algebra; making use
of the relation between linear Lie algebras and connected Lie groups (see
Subsection 1.2.2), the three rotations (2.25) can be written in the form:

R1 = e−iφJ1 , R2 = e−iφJ2 , R3 = e−iφJ3 . (2.28)

In general, a rotation through an angle φ about the direction n is represented
by

R = e−iφJ·n . (2.29)

We have considered the specific case of a three-dimensional representation
for the rotations Ri and the generators Ji; in general, one can consider Ji as
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hermitian operators and the Ri as unitary operators in a n-dimensional linear
vector space. One can check that J1, J2, J3 satisfy the commutation relations

[Ji, Jj ] = iǫijkJk , (2.30)

which show that the algebra has rank 1. The structure constants are given by
the antisymmetric tensor ǫijk, and Eq. (1.35) reduces to

gij = −δij . (2.31)

Since the condition (1.42) is satisfied, the algebra is simple and the Casimir
operator (1.36) becomes, with a change of sign,

C = J2 = J2
1 + J2

2 + J2
3 . (2.32)

The above relations show that the generators Jk have the properties of the
angular momentum operators2.

2.3 Irreducible representations of SO(3) and SU(2)

We saw that the group SO(3) can be defined in terms of the orthogonal trans-
formations given in Eq. (2.1) in a 3-dimensional Euclidean space. Similarly,
the group SU(2) can be defined in terms of the unitary transformations in a
2-dimensional complex linear space

ξ′i =
∑

j

uijξ
j . (2.33)

This equation defines the self-representation of the group. Starting from
this representation, one can build, by reduction of direct products, the higher
irreducible representations (IR’s). A convenient procedure consists in building,
in terms of the basic vectors, higher tensors, which are then decomposed into
irreducible tensors. These are taken as the bases of irreducible representations;
in fact, their transformation properties define completely the representations
(for details see Appendix B).

However, starting from the basic vector x = (x1, x2, x3), i.e. from the
three-dimensional representation defined by Eq. (2.1), one does not get all
the irreducible representations of SO(3), but only the so-called tensorial IR’s
which correspond to integer values of the angular momentum j. Instead, all the
IR’s can be easily obtained considering the universal covering group SU(2).
The basis of the self-representation consists, in this case, of two-component
vectors, usually called spinors3, such as

2 We recall that the eigenvalues of J2 are given by j(j + 1); see e.g. W. Greiner,
Quantum Mechanics, An Introduction, Springer-Verlag (1989).

3 Strictly speaking, one should call the basis vectors ξ ”spinors” with respect to
SO(3) and ”vectors” with respect to SU(2).
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ξ =

(
ξ1

ξ2

)
, (2.34)

which transforms according to (2.33), or in compact notation

ξ′ = uξ . (2.35)

We call ξ controvariant spinor of rank 1. In order to introduce a scalar product,
it is useful to define the covariant spinor η of rank 1 and components ηi, which
transforms according to

η′ = ηu−1 = ηu† , (2.36)

so that
ηξ = η′ξ′ =

∑

i

ηiξ
i . (2.37)

In terms of the components ηi:

ηi
′ =

∑

j

u†jiηj =
∑

j

u∗ijηj . (2.38)

Taking the complex conjugate of (2.33)

ξ′∗i =
∑

j

u∗ijξ
∗j , (2.39)

we see that the component ξi transform like ξ∗i, i.e.

ξ∗i ≡ ξi . (2.40)

The representation u∗ is called the conjugate representation; the two IR’s u
and u∗ are equivalent. One can check, using the explicit expression (2.15) for
u, that u and u∗ are related by a similarity transformation

u∗ = SuS−1 , (2.41)

with

S =

(
0 1

−1 0

)
. (2.42)

We see also that the spinor

ξ = S−1ξ∗ =

(−ξ2
ξ1

)
(2.43)

transforms in the same way as ξ. Starting from ξi and ξi we can build all the
higher irreducible tensors, whose transformation properties define all the IR’s
of SU(2). Besides the tensorial representations, one obtains also the spinorial
representations, corresponding to half-integer values of the angular momen-
tum j.
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We consider here only a simple example. The four-component tensor

ζji = ξjξi (2.44)

can be splitted into a scalar quantity

Tr{ζ} =
∑

i

ξiξi (2.45)

and a traceless tensor

ζ̂ji = ξjξi − 1
2δ
j
i

∑

k

ξkξk , (2.46)

where δji is the Kronecker symbol.

The tensor ζ̂ji is not further reducible. It is equivalent to the 3-vector x;

in fact, writing it as a 2 × 2 matrix ζ̂, it can be identified with the matrix h
defined in (2.21)

ζ̂ = σ · x =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (2.47)

Its transformation properties, according to those of ξ, η, are given by

ζ̂′ = uζ̂u† . (2.48)

Let us consider the specific case

u =

(
e−

1
2 iφ 0

0 e
1
2 iφ

)
. (2.49)

Using for ζ̂ the expression (2.47), we get from (2.49):

x′1 = cosφx1 − sinφx2 ,
x′2 = sinφx1 + cosφx2 ,
x′3 = x3 .

(2.50)

The matrix (2.49) shows how a spinor is transformed under a rotation through
an angle φ and it corresponds to the 3-dimensional rotation

R3 =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 (2.51)

given in eq. (2.25). In particular, taking φ = 2π, we get ξ′ = −ξ, i.e. spinors
change sign under a rotation of 2π about a given axis. The angles φ and φ+2π
correspond to the same rotation, i.e. to the same element of SO(3); on the
other hand, the two angles correspond to two different elements of SU(2), i.e.
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to the 2× 2 unitary matrices u and -u. Then to each matrix R of SO(3) there
correspond two elements of SU(2); for this reason, often the matrices u and
-u are said to constitute a ”double-valued” representation4 of SO(3).

In general, we can distinguish two kinds of IR’s

D(u) = +D(−u) , (2.52)

D(u) = −D(−u) , (2.53)

which are called even and odd, respectively. The direct product decomposition
u ⊗ u ⊗ ... ⊗ u, where the self-representation u appears n times, gives rises
to even and odd IR’s according to whether n is even or odd. The even IR’s
are the tensorial representations of SO(3), the odd IR’s are the spinorial
representations of SO(3).

The IR’s are usually labelled by the eigenvalues of the squared angular
momentum operator J2, i.e. the Casimir operator given in Eq. (2.32), which
are given by j(j+ 1), with j integer or half integer. An IR of SO(3) or SU(2)
is simply denoted by D(j); its dimension is equal to 2j+1. Even and odd IR’s
correspond to integer and half-integer j, respectively.

The basis of the D(j) representation consists of (2j + 1) elements, which
correspond to the eigenstates of J2 and J3; it is convenient to adopt the usual
notation | j,m> specified by5

J2 | j,m> = j(j + 1) | j,m> ,

J3 | j,m> = m | j,m> .
(2.54)

Finally, we want to mention the IR’s of O(3). We have seen that the group
O(3) can be written as the direct product

O(3) = SO(3)⊗J , (2.12)

where J consists of I and Is. Since I2
s = I, the element Is is represented by

D(Is) = ±I . (2.55)

According to (2.12), we can classify the IR’s of O(3) in terms of those of
SO(3), namely the D(j)’s. In the case of integer j, we can have two kinds of
IR’s of O(3), according to the two possibilities

D(j)(IsR) = +D(j)(R) , (2.56)

D(j)(IsR) = −D(j)(R) . (2.57)

4 See e.g. J.F. Cornwell, Group Theory in Physics, Vol. 1 and 2, Academic Press
(1984); M. Hamermesh, Group Theory and its Applications to Physical Problems,
Addison-Wesley (1962).

5 M.E. Rose, Elementary Theory of Angular Momentum, John Wiley and Sons
(1957).
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Only the second possibility corresponds to faithful representations, since the
improper rotations IsR are distinguished from the proper rotations R. We
denote the two kinds of IR’s (2.56), (2.57) by D(j+), D(j−), respectively. The
bases of these IR’s are called tensors and pseudotensors; in general, one calls
tensors (scalar, vector, etc.) the basis of D(0+), D(1−), D(2+), ..., and pseu-
dotensors (pseudoscalar, axial vector, etc.) the basis of D(0−), D(1+), D(2−),
etc.

In the case of half-integer j, since the IR’s of SO(3) are double-valued,
i.e. each element R is represented by ±D(j)(R) also for the improper element,
one gets

IsR→ D(j)(IsR) = ±D(j)(R) . (2.58)

Then, for each half-integer j, there is one double-valued IR of O(3).

2.4 Matrix representations of the rotation operators

For the applications in many sectors of physics one needs the explicit expres-
sions of the rotation matrices in an arbitrary representation. Following the
notation established in the literature, it is useful to specify a rotation R in
terms of the so-called Euler angles α, β, γ. For their definition, we consider a
fixed coordinate system (x, y, z). Any rotation R can be regarded as the result
of three successive rotations, as indicated in Fig. 2.4.

O

x′′

α α
β

β

γ

γ

x′′′

x′x y y′ = y′′

z′′= z′′′

y′′′

z = z′

Fig. 2.4. Sequence of rotations that define the three Euler angles α, β and γ. The
planes in which the rotations take place are also indicated.
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1. Rotation Rα ≡ Rα(z) through an angle α (0 ≤ α < 2π) about the z-axis,
which carries the coordinate axes (x, y, z) into (x′, y′, z′ = z);

2. Rotation R′β ≡ Rβ(y
′) through an angle β (0 ≤ β ≤ π) about the y′-axis,

which carries the system (x′, y′, z′) into (x′′, y′′ = y′, z′′);
3. RotationR′′γ ≡ Rγ(z

′′) through an angle γ (0 ≤ γ < 2π) about the z′′-axis,
which carries the system (x′′, y′′, z′′) into (x′′′, y′′′, z′′′ = z′′).

The three rotations can be written in the form

Rα = e−iαJz , R′β = e−iβJy′ , R′′γ = e−iγJz′′ , (2.59)

where Jz , Jy′ and Jz′′ are the components of J along the z, y′ and z′′ axes.
The complete rotation R is then given by:

R(α, β.γ) = R′′γR
′
βRα = e−iγJz′′e−iβJy′ e−iαJz . (2.60)

We leave as an exercise the proof that the three rotations can be carried out
in the same coordinate system if the order of the three rotations in inverted,
i.e. Eq. (2.60) can be replaced by

R(α, β, γ) = RαRβRγ = e−iαJze−iβJye−iγJz . (2.61)

The procedure for determining the rotation matrices, i.e. the matrix rep-
resentations of the rotation operator R, is straightforward, even if the relative
formulae may appear to be rather involved. One starts from the basis | j,m>
given in Eq. (2.54) and considers the effect of a rotation R on it:

R | j,m>=
∑

m′

D
(j)
m′m(α, β, γ) | j,m′> . (2.62)

An element of the rotation matrix D(j) is given by

D
(j)
m′m(α, β, γ) =<j,m′ | e−iαJze−iβJye−iγJz | j,m>= e−iαm

′

d
(j)
m′m(β)e−iγm ,

(2.63)
where one defines

d
(j)
m′m(β) =<j,m′ | e−iβJy | j,m> . (2.64)

There are different ways of expressing the functions djm′m; we report here
Wigner’s expression6:

d
(j)
m′m(β) =

∑

s

(−)s[(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

s!(j − s−m′)!(j +m− s)!(m′ + s−m)!
×

×
(

cos
β

2

)2j+m−m′−2s(
− sin

β

2

)m′−m+2s

,

(2.65)

6 See e.g. M.E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons (1957).
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where the sum is over the values of the integer s for which the factorial argu-
ments are equal or greater than zero.

It is interesting to note that, in the case of integral angular momentum,
the d-functions are connected to the well-known spherical harmonics by the
relation:

dℓm,0(θ) =

√
4π

2ℓ+ 1
Y mℓ (θ, φ)e−imφ , (2.66)

where θ and φ are the angles of the spherical coordinates. In fact, Y mℓ (θ, φ)
represents the eigenfunction corresponding to the state | j,m> of a particle
with orbital angular momentum j = ℓ.

In Appendix A we collect the explicit expressions of the spherical harmon-
ics and the d-functions for the lowest momentum cases.

2.5 Addition of angular momenta and Clebsch-Gordan
coefficients

An important application of the IR’s of the rotation group is related to the
addition of angular momenta and the construction of the relevant orthonormal
bases7.

We start from the IR’s D(j1) and D(j2) and the direct product decompo-
sition

D(j1) ⊗D(j2) = D(j1+j2) ⊕D(j1+j2−1) ⊕ ....⊕D(|j1−j2|) . (2.67)

The IR’s on the r.h.s. correspond to the different values of total angular mo-
menta obtained by the quantum addition rule

J = J1 + J2 , (2.68)

with |J1 − J2| ≤ J ≤ J1 + J2. From the commutation properties of angular
momentum operators, one finds that the eigenvectors

| j1, j2;m1,m2>≡| j1,m1> ⊗ | j2,m2> (2.69)

constitute an orthogonal basis for the direct product representation, while the
eigenvectors

| j1, j2; j,m> (2.70)

are the bases of the IR’s on the r.h.s. of eq. (2.67). One can pass from one
basis to the other by a unitary transformation, which can be written in the
form

7 For a detailed treatment of this subject see e.g.W. Greiner, Quantum Mechanics,
An Introduction, Springer-Verlag (1989) and M. Hamermesh, Group Theory and
its Applications to Physical Problems, Addison-Wesley (1962).
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| j1, j2; j,m>=
∑

m1,m2

C(j1, j2, j;m1,m2,m) | j1, j2;m1,m2> . (2.71)

The elements of the transformation matrix are called Clebsh-Gordan coeffi-
cients (or simply C-coefficients), defined by

C(j1, j2, j;m1,m2,m) =<j1, j2;m1,m2 | j1, j2; j,m> , (2.72)

where m = m1 +m2. With the standard phase convention the C-coefficients
are real and they satisfy the orthogonality relation (replacing m2 by m−m1):

∑

m1

C(j1, j2, j;m1,m−m1)C(j1, j2, j
′;m1,m−m1) = δjj′ . (2.73)

Moreover, the transformation (2.71) is orthogonal, and the inverse transfor-
mation can be easily obtained:

| j1, j2;m1,m2>=
∑

j,m

C(j1, j2, j;m1,m−m1) | j1, j2; j,m> . (2.74)

We report the values of the Clebsh-Gordan coefficients for the lowest values
of j1 and j2 in Appendix A, while for other cases and for a general formula
we refer to specific texbooks8.

In connection with the C-coefficients it is convenient to quote without
proof the Wigner-Eckart theorem which deals with matrix elements of tensor
operators. An irreducible tensor operator of rank J is defined as a set of
(2J +1) functions TJM (where M = −J,−J+1, ..., J −1, J) which transform
under the (2J + 1) dimensional representations of the rotation group in the
following way:

RTJMR
−1 =

∑

M ′

DJ
M ′M (α, β, γ)TJM ′ . (2.75)

The Wigner-Eckart theorem states that the dependence of the matrix element
< j′,m′ | TJM | j,m> on the quantum number M,M ′ is entirely contained
in the C-coefficients:

<j′,m′ | TJM | j,m>= C(j, J, j′;m,M,m′)< j′ | TJ | j> . (2.76)

We note that the C-coefficient vanishes unless m′ = M +m, so that one has
C(j, J, j′;m,M,m′) = C(j, J, j′;m,m′−m). The matrix element on the r.h.s.
of the above equation is called reduced matrix element.

8 See e.g. D.R. Lichtenberg,Unitary Symmetry and Elementary Particles, Academic
Press (1970); M.E. Rose, Elementary Theory of Angular Momentum, John Wiley
and Sons (1957).
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Problems

2.1. Give the derivation of Eq. (2.24) and write explicitly the matrix R in
terms of the elements of the u matrix.

2.2. Consider the Schrödinger equation H |ψ> = E |ψ> in which the Hamil-
tonian H is invariant under rotations. Show that the angular momentum J
commutes with H and then it is conserved.

2.3. The πN scattering shows a strong resonance at the kinetic energy about
200 MeV; it occurs in the P-wave (ℓ = 1) with total angular momentum
J = 3

2 . Determine the angular distribution of the final state.

2.4. Prove the equivalence of the two expressions for a general rotation R
given in Eqs. (2.60) and (2.61).

2.5. Consider the eigenstates |12 ,± 1
2 > of a particle of spin 1

2 and spin com-
ponents ± 1

2 along the z-axis. Derive the corresponding eigenstates with spin
components along the y-axis by a rotation about the x-axis.



http://www.springer.com/978-3-642-15481-2
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