

Jan Gehrke

Mathematik im Studium

Brückenkurs für Wirtschafts- und Naturwissenschaften

Mathematik im Studium

Brückenkurs für Wirtschaftsund Naturwissenschaften

Von

Diplom-Physiker Jan Gehrke

Duale Hochschule Baden-Württemberg Stuttgart

Oldenbourg Verlag München

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© 2010 Oldenbourg Wissenschaftsverlag GmbH Rosenheimer Straße 145, D-81671 München Telefon: (089) 45051-0 oldenbourg.de

Das Werk einschließlich aller Abbildungen ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen.

Lektorat: Rainer Berger Herstellung: Anna Grosser

Coverentwurf: Kochan & Partner, München Coverbild: Turin Olympic Bridge, iStockphoto Gedruckt auf säure- und chlorfreiem Papier

Gesamtherstellung: Grafik + Druck GmbH, München

ISBN 978-3-486-59910-7

Für meine Eltern

Herbert und Petra

Inhaltsverzeichnis

Vor	wort		xiii		
ı	Einfü	Einführung			
	I.1	Ein paar Beispiele	1		
	I.2	Interpretation von Schaubildern	3		
	I.3	Mathematische Beschreibung von Abhängigkeiten	7		
	I.4	Der Begriff der Funktion	7		
	I.5	Einteilung des Zahlenstrahls - Intervalle	10		
П	Linea	re Funktionen	13		
	II.1	Die Streckenlänge im kartesischen Koordinatensystem	13		
	II.2	Der Mittelpunkt einer Strecke im kartesischen Koordinatensystem	15		
	II.3	Die Hauptform der Geradengleichung	18		
	II.4	Die gegenseitige Lage von Geraden	24		
	II.5	Über Schnittwinkel und orthogonale Geraden	27		
		II.5.1 Eine neue Möglichkeit, die Steigung zu berechnen	27		
		II.5.2 Zueinander orthogonale Geraden	29		
		II.5.3 Der Schnittwinkel zweier Geraden	32		
Ш	Quad	ratische Funktionen	37		
	III.1	Die Binomischen Formeln	37		
		III.1.1 Die 1. Binomische Formel	37		
		III.1.2 Die 2. Binomische Formel	38		
		III.1.3 Die 3. Binomische Formel	38		
		III.1.4 Der Weg zurück - Die Binomischen Formeln im Rückwärtsgang	39		
	III.2	Der Umgang mit quadratischen Funktionen	41		
		III.2.1 Die Mitternachtsformel (MNF)	41		
		III.2.2 Von der Scheitelform zur Normalform und wieder zurück -			
		There and back again	44		
		III.2.3 Scheitelermittlung durch "Absenken"	48		
	III.3	Die Herleitung der Mitternachtsformel	51		
	III.4	Der Umgang mit Parabelscharen - Grundlagen Parameterfunktionen	56		
	III.5	Zusammenfassung des Unterkapitels über Parameterfunktionen	70		
IV/	Grun	dlagen Potenzfunktionen	73		

viii Inhaltsverzeichnis

	IV.1	Potenzf	unktionen - Definition und ein paar Eigenschaften	73
		IV.1.1	Parabeln n-ter Ordnung	73
		IV.1.2	Hyperbeln n-ter Ordnung	76
	IV.2	Die Pot	enzgesetze	79
		IV.2.1	Warum Hochzahlen praktisch sind	79
		IV.2.2	Das "nullte" Potenzgesetz und noch eine Definition	
		IV.2.3	Das erste Potenzgesetz	81
		IV.2.4	Das zweite Potenzgesetz	
		IV.2.5	Das dritte Potenzgesetz	82
		IV.2.6	Das vierte Potenzgesetz	83
		IV.2.7	Das fünfte Potenzgesetz	83
		IV.2.8	Rationale Hochzahlen	
		IV.2.9	Rechnen ohne Klammern - Vorfahrtsregeln beim Rechnen	
	IV.3		n mit Wurzeln - Einfache Wurzelgleichungen	
	IV.4	Die Log	garithmengesetze	93
V	Ganzı	rationale	Funktionen - Eine Einführung	101
	V.1		on und Grenzverhalten	101
	V.2	Zur Syr	nmetrie bei ganzrationalen Funktionen	105
	V.3		ehr Symmetrie - Symmetrie zu beliebigen Achsen und Punkten	
	V.4	Ganzra	tionale Funktionen und ihre Nullstellen	
		V.4.1	Warum die Polynomdivision funktioniert	110
		V.4.2	Das Horner-Schema	
		V.4.3	Nullstellen und Substitution bei ganzrationalen Funktionen	
	V.5	Das Ba	ukastenprinzip - Zusammengesetzte Funktionen	
		V.5.1	Addition und Subtraktion von Funktionen	
		V.5.2	Multiplikation und Division von Funktionen	
	V.6		erblick behalten - Gebietseinteilungen vornehmen	
	V.7	Beträge	e von Zahlen/Funktionen und Betragsgleichungen	
		V.7.1	Vom Betrag einer Zahl und und den zugehörigen Rechenregeln	127
		V.7.2	Der Betrag einer Funktion oder Ebbe in den Quadranten Nummer III und IV	120
		V.7.3	Die abschnittsweise definierte Funktion in Gleichungen - Jetzt	130
		V . I . O	wird's kritisch!	135
		V.7.4	Betragsgleichungen	
\ /I	D:-	- 11 - 1 22 - 12		
VI	VI.1		ge Induktion und (ihre) Folgen	147
	V 1.1	VI.1.1	Agen	
			Ein paar Spielregeln zu Beginn	
		VI.1.2 VI.1.3	Darstellungsformen von Folgen	
		VI.1.3 VI.1.4	Der Nachweis der Monotonie	
		VI.1.4 VI.1.5	Beschränktheit	
	VI 2		enzwert einer Folge	
	V 1.2		JHZWVJU VIIIVI EVIRE	1.07/

Inhaltsverzeichnis ix

		VI.2.1	Die Definition des Grenzwertes	152
		VI.2.2	Zwei Sätze und ein paar Begriffe	
	VI.3	Die Gre	nzwertsätze	154
		VI.3.1	Die 3 Grenzwertsätze	154
		VI.3.2	Ein Beweis zu den Grenzwertsätzen	155
		VI.3.3	Berechnung der Grenzwerte bei rekursiven Folgen	156
	VI.4	Arithme	etische und geometrische Folgen	157
		VI.4.1	Arithmetische Folgen I - Ein paar Grundlagen	157
		VI.4.2	Geometrische Folgen I - Ein paar Grundlagen	158
	VI.5	Die voll	ständige Induktion - Ein mächtiges Beweisverfahren	
		VI.5.1	Arithmetische Folgen II - Die Summe der Folgenglieder .	
		VI.5.2	Geometrische Folgen II - Die Summe der Folgenglieder .	
		VI.5.3	Vollständige Induktion in Beispielen	168
	VI.6		t alles Gelernten - Die Fibonacci-Zahlenfolge	
		VI.6.1	Einführung und historischer Abriss	
		VI.6.2	Die Fibonacci-Zahlenfolge - Grundlagen	
		VI.6.3	Die Kaninchen-Aufgabe	
		VI.6.4	Der Goldene Schnitt	
		VI.6.5	Die Herleitung der expliziten Formel	184
VII			die Differentialrechnung	193
	VII.1	Vom Di	fferenzen- zum Differentialquotienten	191
	VII.2	Die Abl	eitung einer Potenzfunktion und die Tangentengleichung .	
		VII.2.1	Der Umgang mit Berührpunkten	
	VII.3		leitungen der Ableitungsregeln	
		VII.3.1	Die Summenregel	
		VII.3.2	Die Faktorregel	
		VII.3.3	Die Produktregel	
		VII.3.4	Die Quotientenregel	
		VII.3.5	Die Kettenregel	
	VII.4	_	e Punkte eines Funktionsgraphen	
		VII.4.1	Extrempunkte	
		VII.4.2	Wendepunkte	
		VII.4.3	Neu und alt - Ableitung trifft Parameter	
	VII.5	_	eit, Differenzierbarkeit, Monotonie und die Wertetabelle	
		VII.5.1	Stetigkeit - Ohne Sprung ans Ziel	
		VII.5.2	Differenzierbarkeit - Knickfrei durch's Leben	
		VII.5.3	Monotonie - Wo geht's denn hin?	
	1711 C	VII.5.4	Die Wertetabelle - Eine oft ignorierte Zeichenhilfe	
	VII.6	Die Kui	rvendiskussion - Gesamtübersicht mit Beispiel	256
VIII			en linearer Gleichungssysteme	26
	VIII.1		t 2 Unbekannten und 2 Gleichungen	
		VIII.1.1	Das Gleichsetzungsverfahren	262

x Inhaltsverzeichnis

		VIII.1.2	Das Einsetzungsverfahren	. 263
			Das Additionsverfahren	
		VIII.1.4	Der Umgang mit Parametern bei einem LGS	. 265
	VIII.2	LGS mi	t 3 und mehr Unbekannten	. 267
		VIII.2.1	Das Gaußsche Eliminationsverfahren	. 268
		VIII.2.2	Gibt es Lösungen - und wenn ja wie viele?	. 271
	VIII.3		d Funktionen - Bestimmung ganzrationaler Funktionen	
IX	Mit B	Brüchen ı	muss man umgehen können - Gebrochenrationale Funktioner	ւ 289
	IX.1	Grundla	agen - Umgang mit Bruchgleichungen und Brüchen	. 289
	IX.2	Definition	on der gebrochenrationalen Funktionen	. 297
	IX.3	Ein paa	r Besonderheiten - Definitionslücken und Asymptoten	. 297
	IX.4	Ableiter	n gebrochenrationaler Funktionen	. 308
X	Trigo		che Funktionen	313
	X.1	Grundla	agen und Ableitungsregeln	
		X.1.1	Definition und Beispiele	
		X.1.2	Vom Einheitskreis zur Funktion	
		X.1.3	Das Bogenmaß	
		X.1.4	Andere Winkel	
		X.1.5	Der Sinussatz	
		X.1.6	Der Kosinussatz	
		X.1.7	Weitere Betrachtungen zum Einheitskreis	. 326
		X.1.8	Die Ableitungen der trigonometrischen Funktionen - Ein wenig	
		J	Nostalgie bei der Herleitung	
	X.2		ht über die Eigenschaften der trigonometrischen Grundfunktione	
	X.3	Die Mo	difizierung trigonometrischer Funktionen (Sinus und Kosinus)	. 338
ΧI			chön - Exponentialfunktionen	349
	XI.1		agen	
	XI.2		n von Exponentialfunktionen	
	XI.3		um	
		XI.3.1	Lineares Wachstum	
		XI.3.2	Exponentielles/Natürliches Wachstum	
		XI.3.3	Beschränktes Wachstum	
	371.4	XI.3.4	Logistisches Wachstum	
	XI.4	Die Gre	enzen erfahren - Grenzwertuntersuchung mit L'Hospital	. 372
XII			der Umkehrfunktion	377
			eine Umkehrfunktion? - Grundlagen und Begriffe	
	X11.2		n von Umkehrfunktionen	
		XII.2.1	r	
		XII.2.2	Ableiten von Umkehrfunktionen mit der Kettenregel	. 386

Inhaltsverzeichnis xi

XIII	Integr	ralrechnung	389
	XIII.1	Schritt für Schritt zum Ziel - Ober- und Untersumme	389
		XIII.1.1 Ober- und Untersumme	389
	XIII.2	Was haben Stammfunktionen und Integralfunktionen gemeinsam?	397
	XIII.3	Übersicht zu wichtigen Stammfunktionen	401
		XIII.3.1 Aufleiten mittels der linearen Substitution	404
		XIII.3.2 Etwas Interessantes - Die Produktintegration	
		XIII.3.3 Ein praktischer Satz - Über das Aufleiten von Brüchen	
	XIII.4	Flächenberechnung - Worauf man achten sollte	
		Einmal rundherum - Berechnung von Rotationsvolumen	
ΧIV	Rowei	ise mit Vektoren führen	423
// V		Der Vektor in der analytischen Geometrie	
		Linear abhängig und unabhängig	
		Das Prinzip des geschlossenen Vektorzuges	
	A1 V .3	XIV.3.1 Ein Beispiel: Teilverhältnis der Seitenhalbierenden im Dreieck	
	VIV 4		
	A1 V .4	Ein erstes Produkt für Vektoren: Das Skalarprodukt	
		XIV.4.1 Von Vektoren und ihren Beträgen	
		XIV.4.2 Das Skalarprodukt: Die Definition und ihre Konsequenzen	
		XIV.4.3 Was man vom Skalarprodukt zum Beweisen benötigt	
	*****	XIV.4.4 Ein Beispiel: Der Satz des Thales	
	XIV.5	Eine Aufgabe zur Vertiefung	440
ΧV		nen im Raum - Analytische Geometrie	445
		Noch ein Produkt für Vektoren: Das Kreuzprodukt $\ \ldots \ \ldots \ \ldots$	
	XV.2	Geraden und Vektoren	451
	XV.3	Ebenen	453
		XV.3.1 Die Koordinatenform	454
		XV.3.2 Die Normalenform	
		XV.3.3 Umwandeln von Ebenen	459
	XV.4	Lagebeziehungen	
		XV.4.1 Gegenseitige Lagen von Geraden	463
		XV.4.2 Gegenseitige Lagen von Ebenen	
		XV.4.3 Gegenseitige Lagen von Ebene und Gerade	470
	XV.5	Abstände	470
		XV.5.1 Der Abstand zweier Punkte	471
		XV.5.2 Die Hessesche Normalenform - Abstandsbestimmungen bei Ebe-	
		nen	471
		XV.5.3 Abstände, die uns noch fehlen	
	XV.6	Ein kurzes Wort über Schnittwinkel	
		Ein kugelrunder Abschluss	
			101
XVI		's nicht direkt geht - Ein wenig Numerik	491
	XVI.1	Für Nullstellen - Das Newton-Verfahren	491

xii Inhaltsverzeichnis

		XVI.1.1 Wann Newton nicht funktioniert	494
		XVI.1.2 Übersicht mit Beispiel	494
	XVI.	2 Für Flächen - Die Keplersche Fassregel	
		XVI.2.1 Sehnentrapeze	
		XVI.2.2 Tangententrapeze	497
	XVI.	3 Wo Kepler aufhört fängt Simpson an - Die Simpson-Regel $\ \ \dots \ \dots$.	498
Α	Die S	Strahlensätze	501
	A.1	Einführende Betrachtungen	501
	A.2	Der 1. Strahlensatz	502
	A.3	Der 2. Strahlensatz	503
	A.4	"Kurzversion" des 1. Strahlensatzes	504
В	Ungl	eich geht die Welt zu Grunde - Ein paar Infos über Ungleichungen	509
В	Ungl B.1	eich geht die Welt zu Grunde - Ein paar Infos über Ungleichungen Ganz elementare Regeln	
В	_	- · · · · · · · · · · · · · · · · · · ·	509
	B.1 B.2	Ganz elementare Regeln	509
	B.1 B.2	Ganz elementare Regeln	509 510 513
	B.1 B.2 Das	Ganz elementare Regeln	509 510 513 513
B C	B.1 B.2 Das C.1	Ganz elementare Regeln	509 510 513 513 514
C	B.1 B.2 Das C.1 C.2 C.3	Ganz elementare Regeln	509 510 513 513 514

Vorwort

Über Brückenkurse

Ein Brückenkurs leistet viel: Er wiederholt kompakt den Stoff der Mittel- und Oberstufe, da Studienanfänger hier regelmäßig kleinere oder größere Lücken haben, und greift auf den relevanten weiterführenden Mathematikstoff der Vorlesungen vor. In der Konsequenz hilft er dabei, Studienanfängern den Schock zu ersparen, der viele beim Anwenden der Mathematik als unverzichtbares Werkzeug im wirtschafts- und naturwissenschaftlichen Studium ereilt.

Einsatzmöglichkeiten und Aufbau dieses Buches

Genau hier setzt dieses Buch an: Es bereitet mit klarem Blick auf das im Studium Notwendige vor, wiederholt und vermittelt Neues. Zahlreiche Beispiele veranschaulichen den Stoff. Durch eine Vielzahl von Übungen kann das Gelernte zudem gefestigt werden. Grau unterlegte Boxen heben darüber hinaus das Wichtigste hervor. Dabei gilt es folgende Randnotizen zu unterscheiden:

- D Eine Definition oder ein grundlegender Satz
- F Eine wichtige Formel
- A Eine Anmerkung oder ein Tipp
- M Sollte man sich merken
- ! oder ? Feststellung oder Frage

Natürlich könnten wir einige Boxen dabei mit mehr als einem Buchstaben versehen. Wichtig sind sie aber alle und das Verständnis dieser Boxen kann als Grundvokabular für ein Weitergehen in der Mathematik angesehen werden.

Das sollten Sie sich generell merken: Auch in der Mathematik muss ein gewisser "Grundwortschatz" beherrscht werden, sonst können Sie es vergessen, in dieser Sprache zu spre-

xiv Vorwort

chen. Sie kommen ja auch nicht auf die Idee, in einer fremden Sprache ohne Vokabeln und Grammatik kommunizieren zu wollen.

Das Buch ist in 16 Kapitel und drei Anhänge unterteilt. Ein Großteil nimmt die Behandlung von Funktionen (die Analysis) ein. Als Finale sind für diesen Teil die Kapitel über Umkehrfunktionen und Integralrechnung zu sehen. Die Vektorgeometrie beschränkt sich auf zwei große Kapitel: Eines für Beweise, das andere für konkrete Rechnungen im Raum. Ein kleines Kapitel über zwei einfache numerische Verfahren schließt das Buch ab, um einen kleinen Vorgeschmack auf die Numerik zu vermitteln. Die Anhänge beschäftigen sich mit sehr elementaren Themen, die kein ganzes Kapitel gefüllt hätten.

Internet(t)

Zu diesem Buch werden Zusatzmaterialien online angeboten. Unter www.oldenbourg-wissenschaftsverlag.de den Titel *Mathematik im Studium* aufrufen und die angebotenen Zusatzmaterialien herunterladen.

Errata

Natürlich waren wir bemüht, bei der Entstehung dieses Buches Fehler zu vermeiden. Falls es doch welche gibt (und das ist trotz aller Bemühungen und Mühen sicher), bitten wir dies zu entschuldigen und hoffen, dass der Fehlerfinder diese dem Autor per Mail mitteilt (wiso@oldenbourg.de.) und so zur Verbesserung des Werkes beiträgt.

Dank

Bei der Entstehung eines solchen Buches gibt es vielen Leute zu danken. Ich möchte hier die wichtigsten Menschen erwähnen und vergesse dabei hoffentlich niemanden:

- Zu allererst danke ich meiner Familie, als da wären meine Eltern, denen dieses Buch gewidmet ist, meine beiden Schwestern Kerstin und Svenja und meine Désirée, für Ihr Vertrauen in mich, ihre Liebe und ihre immer währende Unterstützung. Ohne sie (und das ist sicher) gäbe es dieses Buch nicht.
- Weiterer Dank gilt Herrn Studiendirektor i.R. Klaus Hewig, der mir die interessanten Seiten der Mathematik gezeigt und mich gefördert hat. Gäbe es mehr Lehrer von seiner Sorte, so könnten wir uns Brückenkurse sparen.
- Ich bedanke mich auch bei Herrn Dr. Holger Cartarius, der den Stein ins Rollen brachte.
- Des Weiteren danke ich dem Oldenbourg-Verlag und hier ganz besonders Herrn Rainer Berger für die stets kooperative und angenehme Zusammenarbeit.

Vorwort

• Nicht zuletzt gilt mein Dank Herrn Prof. Dr. Hans-Joachim Elzmann und Herrn Prof. Dr. Dirk Reichardt, die es mir ermöglichten, dieses Buch zu schreiben und die mich in meinem Vorhaben stets bestärkten.

Jetzt bleibt mir nur noch, jedem Leser viel Freude mit diesem Buch zu wünschen. Möge es seinen Zweck erfüllen und Ihnen einen erfolgreichen Start in Ihr Studium ermöglichen.

Merklingen, im Sommer 2010

Jan Peter Gehrke

I Einführung

Wir beginnen unseren Weg hin zu unserem angestrebten Ziel, der Aufarbeitung der für den Beginn eines Studiums relevanten Mathematik, mit ein paar einfachen Beispielen, die uns verdeutlichen sollen, welchen Problemen wir uns u.a. zu stellen haben. Die vollständige Lösung der in den folgenden Beispielen angesprochenen Aufgaben ist dem Leser allerdings erst später, nach der Lektüre der entsprechenden Kapitel (u.a. Kapitel VII), möglich und zwar dann, wenn die benötigten mathematischen Hilfsmittel erarbeitet wurden.

I.1 Ein paar Beispiele

Beispiel 1 - Die Suche nach dem größten Schächtelchen

Gegeben ist ein quadratisches Stück Papier mit der Seitenlänge a=20 cm.

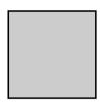


Abbildung I.1.1: Ein quadratisches Blatt Papier.

Nun soll das Papier auf folgende Weise zurechtgeschnitten und gefaltet werden:

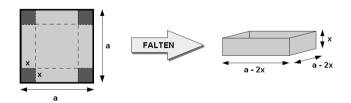


Abbildung I.1.2: Das zurechtgeschnittene Blatt Papier und die daraus faltbare Schachtel mit dem Volumen $V(x) = (a - 2x)^2 \cdot x$.

2 I Einführung

Das x ist hier derart zu wählen, dass das Volumen der entstehenden Schachtel maximal, also möglichst groß, wird. Es stellt sich für uns dabei die Frage:

Für welches x wird das Volumen V des Schächtelchens maximal?

Eine erste Abschätzung der "besten Wahl von x" kann an Hand einer Tabelle erfolgen:

Versuch	x	$\mathbf{Volumen} \ \mathbf{V} = (20 - \mathbf{2x})^{2} \cdot \mathbf{x}$
1	1 cm	$324 \; {\rm cm}^3$
2	2 cm	$512 \mathrm{cm}^3$
3	3 cm	$588 \; { m cm}^{3}$
4	4 cm	576 cm^3
usw.		

Tabelle I.1.1: Schächtelchenvolumen für verschiedene x.

Es sieht so aus, dass für x=3 cm das maximale Volumen erreicht wird. Aber ist dem wirklich so?

Beispiel 2 - Die optimale Einzäunung

?

Es sind 100 Meter Maschendrahtzaun gegeben. Wir sollen hiermit ein rechteckiges Gebiet so einzäunen, dass der Flächeninhalt des entstehenden Gatters maximal wird.



Abbildung I.1.3: Der Zaun mit dem Umfang U=2a+2b=100 Meter. Wir wählen a und bestimmen damit b. Der Flächeninhalt ist $A=a\cdot b$.

Nun können wir (wie in Beispiel 1) erneut eine Tabelle aufstellen und mittels dieser abschätzen, für welche Wahl der Seitenlängen der Flächeninhalt am größten wird. Wir beachten vor dem Aufstellen der Tabelle, dass

$$U = 2a + 2b = 100 \Leftrightarrow a + b = 50 \Leftrightarrow b = 50 - a$$

ist. Wir geben also nur eine der beiden Seitenlängen vor und die andere ergibt sich sofort aus der Bedingung, dass wir 100 Meter Maschendrahtzaun zu verbrauchen haben. Dies ist also allen Möglichkeiten gemeinsam, dass sie alle den gleichen Umfang haben. Dies sei aber nur eine Bemerkung am Rande. Stellen wir nun unsere Tabelle auf (siehe Tabelle I.1.2).

Versuch	a	$\mathbf{b} = 50 - \mathbf{a}$	Fläche $A = a \cdot b$	$Umfang\ U=2a+2b$
1	5 m	45 m	225 m^2	100 m
2	10 m	40 m	400 m^2	100 m
3	15 m	35 m	525 m^2	100 m
4	20 m	30 m	600 m^2	100 m
5	25 m	25 m	625 m^2	100 m
6	30 m	20 m	600 m^2	100 m
usw.				

Tabelle I.1.2: Fläche und Umfang des eingezäunten Gebiets für verschiedene Seitenlängen.

In diesem Beispiel scheint der größte Flächeninhalt für a=b=25 m angenommen zu werden. Dies ist in der Tat das tatsächliche Maximum aller Flächeninhalte bei diesem Problem. Die Begründung hierfür kann mit dem Wissen aus Kapitel VII gegeben werden, aber auch schon mit Hilfe der quadratischen Funktionen aus Kapitel III ist die Angabe des Maximums (in diesem Fall) zweifelsfrei möglich. Vielleicht bemerken wir schon jetzt, dass in beiden Beispielen nur ein gewisser Zahlenbereich für die gesuchten Größen sinnvoll ist. Diese Feststellung bringt uns viel später zur sog. Untersuchung der Randwerte.

Aus den beiden Beispielen ist zu ersehen, welcher Problematik wir uns zu stellen haben: In beiden Fällen versuchten wir, einen größtmöglichen Wert für eine bestimmte Größe bei der Lösung des Problems zu erhalten. Diese Größe hing von anderen Größen ab, welche wir frei wählen konnten. Je nach Wahl veränderte sich die zu maximierende Größe. Die mit den Tabellen gefundenen Werte haben wir uns im Hinterkopf vermerkt. Doch sind die so gefundenen Werte wirklich die allerbesten? Können wir das noch genauer untersuchen? Diese Fragen müssen wir zum jetzigen Zeitpunkt leider hinten anstellen, denn ihre Beantwortung muss bis Kapitel VII warten. Dort werden wir das Bestreben, den größtmöglichen Wert zu finden, als Suche nach den Extrema einer Funktion wieder aufgreifen.

1.2 Interpretation von Schaubildern

Auch in diesem Unterkapitel wollen wir anhand zweier Beispiele, die selber gerechnet werden können und sollen, einen weiteren Schritt auf unserem langen Weg tun.

Bisher haben wir voneinander abhängige Werte zur besseren Übersicht in Tabellen eingetragen (Unterkapitel I.1). Zwei voneinander abhängige Größen lassen sich jedoch zumeist in einem Schaubild sehr gut grafisch darstellen und veranschaulichen.

Aus Schaubildern können wir Werte schneller ablesen und auch einfacher Überlegungen anstellen, wie der weitere Verlauf aussehen könnte bzw. der zu sehende Verlauf zu interpretieren ist. Im Folgenden wollen wir uns in der Interpretation von Schaubildern üben und uns an den Umgang mit ihnen gewöhnen, da sie in Zukunft eine wichtige Rolle spielen werden.