
Chapter 2 

Comparability of Projections 

5 11. Orthogonal Additivity of Equivalence 

Let A be a Baer *-ring, let (e,),,, and ( f , ) , , ,  be orthogonal families 
of projcctions indexed by the same set I ,  let e=supe,, f =sup f,, and 
suppose that el-  f ,  for all L E I .  Does it follow that e -  f? 

I don't know (see Exercise 3). If the index set I is finite, the question 
is answered affirmatively by trivial algebra [$ 1, Prop. 81. The present 
section settles the question affirmatively under the added rcstriction 
that e f  = 0; this restriction is removed in Section 20, but only under 
an extra hypothesis on A .  Some terminology helps to simplify the 
statements of these results: 

Definition 1. Let A bc a Baer *-ring (or, more generally, a *-ring 
in which the suprema in question are assumed to exist). If the answer 
to the question in the first paragraph is always affirmative, we say that 
equivalence in A is additive (or 'completely additive'); if it is affirmative 
whenever card 1 1  N, we say that equivalence in A is N-udditive; if it 
is affirmative whenever ef = 0, we say that equivalence in A is orthogo- 
nally additive (see Theorem 1).  The term orthogonally N-additive is self- 
explanatory. 

Suppose, more precisely, that the equivalences e l -  f ,  in question 
are implemented by partial isometries w, ( 1  E I ) .  We say that partial 
isometries in A are addable if e - f via a partial isometry w such that 
we, = w, = f, w for all L E I .  The terms N-addable, orthogonally addable, 
and orthogonally N-addable are self-explanatory. The main result of 
the section: 

Theorem 1. In any Buer *-ring, partial isometries are orthogonullq, 
addable; in particular, equivalence is orthoyonally additive. 

Four lemmas prepare the way for the proof of Theorem 1. 

Lemma 1. In a weakly Rickart *-ring, suppose (lz,),,, is an orthogonal 
family of projections, and (e,),,, is a (necessarily ortlzogonal) family 
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of projections such that el _< h, for all r and such tlzat rj = sup r ,  cxi,rts. 
Then e,  = h,e for all 1 .  

Prood. Fix r and set x=h,e-el ;  obviously x e = x .  If x f r then 
xe, = h,e, - e,e,= 0 by the assumed orthogonality; also xe,= h , e , c ,  = 0 ;  
therefore x e =  0 [$ 5, Exer. 41, that IS, .x=O. I 

Lemma 2. If' A is a Rickart *-ring containing u projec.tion e .\uclz 
that e - I - c., then 2 = 1 + 1 is invertible in A .  

Proof. Let w be a partial isometry such that w* w = e ,  ww* = 1 e ,  
and write R ( { e  w*)) = fA,  f a projcction; wc show that x= fe + wf - 11. 
satisfies 2x = 1. 

From (e  - w*) j = 0, wc have f w = / e.  Since t v ~ ( 1 -  e) Ac, it fol- 
lows that (e  - w*) (e  + MI) = 0, therefore f ( P  + n,) = r + w; notliig that 
f w = f P ,  this yields 

Right-multiplying (*) by IV*, we have MI* = 2 fw* - ( 1  - r ) ;  taking ad- 
joints, we obtain 

Addition of (*) and (**) yields 1 = 2x. I 

Lemma 3. Let A be a ~ e a k l y  Riclcurt *-ring in which e o e v  ortlzogonr~l 
,family of' projections of' cardinality < X hc~s LI supremum. 

Let (h,),,, be an orthogonal firmilv of' central projections, ~ ~ i t h  
card I I K, and suppose tlzat, fbr ecrclz 1, e, and f ;  are ortlzogonal projc~c- 
tions with el+ f ; =  h,, c . , - , / ; .  Let e=sup e,, J '=sup f;. 

Tlzen e - /: More prrcisc~ly, jf' the equinalences r ,  - f ;  ure inzpke- 
nzented by purtic~l isometries w,, then there c.xist.s u partial isomc7trj3 
implemcntin~g e -- J; such tlzat wr, = w ,  = ,J'w ,fbr all I .  

Procf. Since h, A is a Rickart *-ring [$ 5, Prop. 61 and w , t h ,  A ,  we 
have e l -  f ;  in h ,A .  By Lemma 2, 2h, is invertible in lz, A ;  say a , ~ l z ,  A 
with lz,=(2/z,)a,=2n1. Since 2h,  is self-adjoint and central in h,A, so 
is a,. 

Write u,= M ~ , + w T ;  clearly u, is a symmetry (=  self-adjoint unitary) 
in Iz, A .  that is, uT =u,, uf =h,. Defining 

(informally, y, = (112) (Ill+ w,+ w?)), it is easy to check that I/, is a pro- 
jection in h, A .  

Define g = sup q,. Citing Lemma I, we have Iz,g = g,, Iz,e = r , ,  
h, f = f ; .  Finally, define 

w = 2 . f j e ;  
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the proof will be concluded by showing that M? is a partial isometry 
having the desired properties. 

Note that j ;u ,  = w,= u,e,;  it follows easily that 

J ; u , P ,  = a,w,,  

therefore 2 ,f',g,e, = 2 a, w, = lz, MI, = w,. Then 

(1 ) 17, kt' = W ,  ; 

for, lz,w= h , (2 , f ge )  =2(/z,.f ')  ( h , ~ l )  (h,e)=2,/ ' ,q1c~,  = M),. It follows that 

(2 )  w e = w = / ‘  r r . l W ;  

for example, wc ,=~~~( /~ , e , )=( l z ,w)e ,=w~,c ,=w, .  
It remains to show that w* w= c and WJ w* = J'. Let h = sup 11,. 

Since e,<lz, </ I ,  we have r 5 h, and similarly f _< 11, g _< 11. It follows 
that wIz=w, w*h=w*. For all I ,  we have 

(w* w - t~) l l ,  = (12, cv)* (12, w) - 12, c = w: w, - c, = 0,  

therefore (w* 1.1: - c)  h = O [$ 5, Exer. 41, thus w* w - e = 0. Similarly 
w w * f = O .  I 

Lemma 4. I f '  A is u weakly Rickart *-ring in whiclz every or/hogonul 
,fumily of  projection.^ oj' cardinality 5 W has a .suprmzum, then partial 
isometries in A are orthogonally W-crdduhle. 

Proof: Let (w,),,, be a family of partial isometrics, card l <  W ,  
with orthogonal initial projections e,, orthogonal final projections Ji, 
and such that, setting e = sup el ,  f = sup ,I;, we have cf'= 0. We seek 
a partial isometry w such that w* w=e,  w w * = f  and we,=w,=,f;w 
for all 1 .  

Write h,= el + j;, S = (h,:  1 E 11, and let B = S'. According to [$ 5, 
Prop. 51, B is also a wcakly Rickart *-ring, with unambiguous KP's. 
Since the h, are orthogonal, S is a commutative set; it follows that 
B 3 B', and that B has center B n B' = B' = S". In particular, the h, are 
central projections in B. 

Each w, belongs to B;  for, 11, w, = w, h, (=  w,) and 17, w, = MI, h, (=  0) 
whenever x # 1 ,  thus ~ , E S '  = B. In particular, el - ,/; in B. Finally, it 
is clear that e ,  ,f E B  (cf. the proof of L$ 3, Prop. I l l ) ,  thus the desired w 
exists by Lemma 3. 1 

Proof of' Theorem I .  When A is a Baer *-ring, thc hypothesis of 
Lemma 4 is verilied for every W. I 

We now take up several other useful consequences of Lemma 4. 

Proposition 1. L6.t A he u weakly Rlckort *-ring in whiclz every ortlzog- 
onul funzily of projections of cc~vciinality 5 W has a supremum. 
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Let (e,),,, be an infinite family of mutually equivalent, orthogonal 
projections, with card 1 5 K, and let J c 1 with card J = card I .  Define 

e = s u p { e , : ~ ~ ~ } ,  f = s u p ( e , : ~ ~ J )  
Then e -  f .  

Proof. Dropping down to eAe, we can suppose that A is a Rickart 
*-ring [tj 5, Prop. 61. Write J = J' u J " ,  where J' n J" = ja and card J' 
= card J" = card J ( = card I ) .  Define 

Since the e, are orthogonal, clearly f ' g  = O ,  thus sup -( f ' , g )  = ,f '  + g ;  
but J' u [J" u (I  - J ) ]  = I ,  therefore 

by the associativity of suprema. Similarly, 

(2 )  f = f f + . f " .  

Since J' and J" u ( I  - J )  have the same cardinality, and since f 'g=O, 
we have 

(3) f ' - s  

by Lemma 4. Similarly, 

(4)  f "  - f " .  

Adding (3) and (4), we have f '  + f"  - g + ,f", that is, citing (1) and (2), 
f - e .  I 

Proposition 2. Let A be a Buer *-ring, e and f projections in A with 
e f  = 0, (h,) an orthogonal ,fhmily of central projections, und h = sup ha. 

If hue 5 h, f jbr all a ,  then h e  5 h f: More precisely, if,  for each cc, 
w, is a partial isometry such that w,* w, = h,e and w, w,* = , fa  5 ha f ,  then 
there exists a partial isometry w such that w* w = h e  and w(h,e)= w, 
= f,w f i r  all a .  

Proof. Since (sup h,e) (sup f , )  = h e  sup f ,  5 h e f = 0, and since the 
f ,  are also mutually orthogonal (because the ha are), Lemma 4 is appli- 
cable to the partial isomctries w,. I 

In a weakly Rickart C*-algebra, countable suprema are available 
[$ 8, Lemma 31, thus Lemma 4 holds with N = KO, implying the obvious 
sequential forms of Propositions 1 and 2. 
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Exercises 

1A. Let e, f be orthogonal projections in a Rickart *-ring. In order that e - J; 
it is necessary and sufficient that there exist a projection g such that 2ege=e, 
2fg.f=f; 2geg=2gfg=g.  

2A. Let C be a Baer *-ring possessing a projection e such that a-I  -e (for 
example, the *-ring of all 2 x 2 complex matrices). Let B be the complete direct 

00 

product of EC,  copies of C, that is, B = n A, with A,= C for all n [cf. 1, Exer. 131. 

Let B, be the weak direct product of the A,, that is, the ideal of all x=(u,) in B 
such that a,=O for all but finitely many n. Write f =  I -e, F=(e, e, e, .. .), 
S=(,f,,f,,f; . _ ) = I F ,  and let S be the *-subring of B  generated by F and 1; thus, 
S= {mF+n f ' :  m, n integers). Define A = B ,  + S ;  thus, A is the *-subring of B ge- 
nerated by B,, 4 and l. If the additive group of C is torsion-free, then A is a Kickart 
*-ring. 

For m = I, 2, 3, . . . write em = (6,, e), ,f, = (S,,J'). Then, relative to the *-ring A, 
we have em- f, for all m, sup e,=F, sup J,= f ,  Ff = 0, but F is not equivalent 
to 7. Thus Theorem 1 does not generalize to Rickart *-rings. 

3D. Let C be a Baer *-ring, let C" be the reduced ring of C [$3, Exer. 181, and 
suppose there exists an equivalence e - f  in C which cannot be implemented by 
any partial isometry in C" (that is, e - J' but not e 2 f). 

Let A be the P*-sum of No copies of C [cf. $4, Exer. 81. For m= I, 2, 3, ... let 
em and f, be the projections in A defined by the sequences e, = (6,, e), j = (6,,J'). 
Then em -I, for all m, but sup em is not equivalent to SUP./,. 

Problem: Does therc cxist such a Bacr *-ring C? (Cf. [$17, Exer. 201.). 

4D. Problem: Is equivalence No-additive (i.e., 'countably additive') in a Kickart 
C*-algebra'? 

5A. If A is a Baer *-ring such that the ring A,  of all 2 x 2 matrices over A is 
also a Baer *-ring (with *-transpose as involution), then partial isometrics in A 
are addable. 

6A. In the notation of Definition 1, if there exists an element x such that 
xe,=w,=f;x for all 1 ,  then the partial isometries w, are addable (the desired 
partial isometry is w=xe). 

5 12. A General Schriider-Bernstein Theorem 

We say that the Schrodev-Bernstein theorem holds in a *-ring if the 
relations e 5 f and f 5 e imply e - ,f. In Section 1, it was shown that 
the Schroder-Bernstein theorem holds in any *-ring whose set of pro- 
jections is conditionally complete [$ 1, Th. 11-in particular, i t  holds in 
any Baer *-ring [cf. 4 4, Prop. I]. The fixed-point theorem employed 
there requires lattice completeness; by reverting to the format of the 
classical set-theoretic proof, one can get along with countable lattice 
operations : 
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Proposition 1. If  A is a weakly Kickart *-ring in which etery countable 
family o f  orthogonal projections has a supremum, then the Schroder- 
Bernstein theorem holds in A. 

It is convenient to separate out an elementary lemma: 

Lemma. If (., is u decr~xzsinq sequence of projections in such a *-ring. 
that is, if el 2 r ,  2 e,  > . . . , then inf e, exists. Explicitly, 

inf en = el g ,  

where g=sup{e,-e,+,:n=1,2,3 ,... ) .  

Pro<$ of' Proposition 1. Assuming e - f" 5 f '  and f'- e' 5 cJ, it is 
to be shown that e - j'. 

Let w be a partial isometry such that w* ltl= f ,  w w* =el. Sctting 
v=M'f",  we have v* r;= f " ;  thus 2. is a partial isometry, and, writing 
e" = 11 2 : * ,  we have 

j" - c" 5 e' . 

Combining this with e - f ' ,  we have the following situation 

( 1  c" 5 e' < e and e" - P .  

On the basis of (I), it will be shown that e'-e (the observation 
f - e' - e then ends the proof); no further reference to f is necessary. 

By (I), there exists a partial isometry u such that 

u*u = (." , uu* = 6'. 

Since g ++ cp(g)=u*gu is an order-preserving bijection of LO, c] onto 
10, e"] (scc [$ 1, Prop. 9]), we may define a sequence r , ,  r , ,  e,, . . .,c ,,,. . . 
of subprojections of r as follows: 

Define another sequence c,,c,,c,, . . ., r , ,  ,, . .. of subprojections of 
by the same technique, starting with e': 
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Observe that 

(Indeed, (1) may be written e,, 2 P ,  2 r , ;  application of q yields 
e, 2 e, > e4; etc.) 

We now look at the 'gaps' in the decreasing sequence (2). Since, by 
definition, u*e,u=e,,+, (n=0,1,2,3 ,... ), we have ~*(c, , - (~,+,)u 
- -en+ - en+ ,, thus 

(3) ~ ~ - e , , + ~  -en+,-en+, (n=0,1,2,3 ,...) 

(the equivalence (3) is implcmcnted by the partial isometry u*(cn - en + ,)). 
By the lemma, we may define 

Obviously any truncation of the sequence en has the same infimum, in 
particular, 

Consider the following two sequences of orthogonal projections: 

(the second sequence merely omits the second term of the first sequence). 
In view of (4), it follows from the lemma that 

thus, by the associativy of suprema, the sequence (*) has supremum 
em, +(e, - e x ) =  e, = e. It follows similarly from (5) that the sequence (**) 
has supremum e ,  +(el - e ,) = e, = e'. 

The desired equivalence e-e' is obtained by putting together the 
pieces in (*) and (**) in another way. We define 

I y = s ~ p ( ~ ~ - e , , e , - e , , e ~ - ~ , ,  ...,, 
q' = sup (P, - e,, cJ4 - e5, e6 - e7, . . .}, 
h=e,,+sup{e, -e,, e,-e,, e,-e,, ...). 

By the associativity of suprema, q + h  coincides with the supremum of 
the scquence (*), thus 

similarly, y' + h is the supremum of the scquencc (**), thus 
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It follows from (3), and the definitions of g and g', that g - g' [$11, 
Prop. 11; in view of (6) and (7), this implies e - e'. I 

The principal applications: 

Corollary. The SchrBder-Bernstein theorem holds (i) in any Baer 
*-ring, and (ii) in any weakly Rickart C*-algebra. 

Proof. Of course (i) is also covered by 151, Th. 11; (ii) follows from the 
fact that every sequence of projections in a weakly Rickart C*-algebra 
has a supremum [$8, Lemma 31. 1 

Exercises 

1A. Let A be a weakly Rickart *-ring in which every countable family of orthog- 
onal projections has a supremum. If e is any projection, write [el for the equi- 
valence class of e with respect to -, that is, [el = ( / : / - e}. Define [el I [ f ] iff 
ed f .  This is a partial ordering of the set of equivalence classes. 

2A. The Schroder-Bernstein theorem holds trivially in any finite *-ring. (A *-ring 
with unity is said to be finite [9:15, Def. 31 if e - 1 implies e = I.) 

3A. Let .%? be a separable, infinite-dimensional Hilbert space, with orthonormal 
basis e,,e,,e ,,.... Let T be the operator such that Te,=e,+, for all n;  thus 
T* T= I, T T* = E, where E is the projection with range re,, e,, e5, . . .1. Let F be the 
projection with range [e,, e3, e,, . . . I .  Finally, let .d be The *-ring generated by T 
and F. 

The relations T* T= I, TT* = E 5 F and F I I show that Is F and F <  I 
relative to the *-ring d. Is F - I relative to .&? 

5 13. The Parallelogram Law (P) and Related Matters 

The law in question is reminiscent of the 'second isomorphism 
theorem' of abstract algebra: 

Definition 1. A *-ring whose projections form a latticc is said to 
satisfy the parallelogram law if 

for every pair of projections e, J: 

The projections of every weakly Rickart *-ring form a lattice [$5 ,  
Prop. 71, but even a Baer *-ring may fail to satisfy the parallelogram law 
(Exercise 1). Occasionally, the following variant of (P) is more convenient: 

Proposition 1. Let A he a *-ring with unity, whose projections fbrm 
a lattice. The following conditions are equivalent: 

(a) A satisfies the paralleloyram law ( P ) ;  

(b) e - e n ( 1  - j ') - f - (1 - e) n f for every pair ofprojections e, f .  
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Proof. Replacement o f f  by 1 - f in the relation (P) yields 

e -en(1- j ' ) - [eu( I -  f')]-(1-,f)=,f-[I - e u ( I -  f ' ) ]  

=f - ( I - e )n f .  I 

Proposition 1 may be interpreted as saying that, in the presence 
of (P), certain subprojections of e,f (indicated in (b)) are guaranteed to be 
equivalent; this conclusion reduces to the triviality 0 - 0 precisely when 
e =  e n (I - f ) ,  that is, when ef = 0. 

The projections that occur in (P) are familiar from 155, Prop. 71: 

Proposition 2. IfA is a weakly Rickart *-ring such that LP(x) - RP(x) 
jbr all XEA, then A sati.sfie.~ the parullelogram law (P). 

Proof. Apply the hypothesis to the element x= e-eS [$5, 
Prop. 71. 1 

An important application : 

Corollary. Every von Neumann algebra sati.sfies the purallelogram 
law (P). 

Proof. Let .d be a von Neumann algebra of operators on a Hilbert 
space 2 [$4, Def. 51. If T is any operator on X,  the 'canonical factori- 
zation' T= WR is uniquely characterized by the following three prop- 
erties: (i) R 2 0, (ii) W is a partial isometry, and (iii) W* W is the projection 
on the closure of the range of R, that is, W* W=LP(R) as calculated 
in 9(%). It follows that W* W=RP(T), W W*=LP(T), thus LP(T) 
-RP(T) in 9(,X) .  The proof is concluded by observing that if T e d  
then WE& (therefore LP(T) - RP(T) in .d). 

Suppose T E ~ .  If U ~ .d '  is unitary, then T =  U T U* 
= (U W U*) (UR U*); since the properties (i), (ii), (iii) are satisfied by 
the positive operator UR U* and the partial isometry U W U*, it follows 
from uniqueness that U W U* = W, thus W commutes with U. Since d' 
is the linear span of its unitaries (as is any C*-algebra with unity [cf. 23, 
Ch. I, Ej 1, No. 3, Prop. 3]), it follows that WE(&')' =.d. I 

Later in the section it will be shown, more generally, that every 
A W*-algebra-indeed, any weakly Rickart C*-algebra-satisfies the 
parallelogram law (P). Thc proof will avoid the use of LP - RP (known 
to hold in any A W*-algebra [Ej20, Cor. of Th. 31, but of unknown status 
in Rickart C*-algebras). The general strategy is to reduce the consideration 
of arbitrary pairs of projections e,f to pairs of projections in 'special 
position'; the following concept is central to such considerations: 
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Definition 2. Let A be a *-ring with unity, whose projections form a 
lattice (for example, A any Rickart *-ring). Projections e, f in A arc said 
to be in position p' in case 

{Equivalenty, e n (I - J') = 0 and e u (I - f )  = I ; that is, the projections 
e, 1 - f are comp1ementary.j The condition is obvio~~sly symmetric in 
e andf .  

In Rickart *-rings, the concept has a useful reformulation: 

Proposition 3. In a Rickurt *-ring, the ,fi,llowiny conditions on a pair 
of' projections e, j'imply one another: 

(a) e, f are in position p'; 
(b) LP(ef')=e and RP(ef)=,f .  

Proof: Let .x= e,f= [I -(I - j ) ] .  Citing [$3,  Prop. 71, we have 

LP(x)=e-en(1-  f ' ) ,  R P ( x ) = e u ( I  - f ) - ( I -  f ) ;  

thus, the conditions (b) are equivalent to e n  (I - f )  = 0 and 
e u ( 1 - f ) = I .  I 

In a Rickart *-ring, the parallelogram law can be reformulated in 
terms of position p': 

Proposition 4. The jollowing conditionn on a Rickart *-ring A are 
equivalent: 

(a) A satisfies the parallelogram law (P); 
(b) if e, f are projections in position p', thrn e - f . 
Proof. (a) implies (b): If e n (I  - J') = (I  - e) n f'= 0, then, in the 

presence of (P), e -- J' by Proposition 1. 
(b) implies (a): Let e, f be any pair of projections, and set e'= LP(e.1'). 

j" =RP(ej'). Since e j'= er(e,f'Xl" = e'f", it follows from Proposition 3 
that e1,f '  are in position p'; therefore, by hypothesis, el-j", that is, 

Since e,f are arbitrary, it follows from Proposition 1 that A satisfies 
(P I  I 

The proof of Proposition 4 yields a highly ~~sefu l  decompositioii 
theorem: 

Proposition 5. Let A he a Rickart *-ring suti.s/ying t/?e parallelogranz 
law (P). I f '  e, f i.7 any pair qf'prqjections in A, there c~.~ist orthogonal de- 
compositions 

e=el+e",  j ' =  fl+J'" 
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with e', f '  in position p' (hencc~ e' - f '  by Proposition 4) and e V f =  e f"  = 0. 

Proof. Let e' = L P(e f ) ,  f '  = R P(e f ); as noted in the proof of Propo- 
sition 4, e', f '  are in position p'. Set e" = r  -el, f ' "  = f - f " ;  obviously 
e"(e,f)=(ef)f"=O, thus e " f = e f U = 0 .  I 

The rest of the section is concerned with developing sufficient con- 
ditions for ( P )  to hold. With an eye on Proposition 4, we seek conditions 
ensuring that projections in position p' are equivalent. For the most 
part, victory hinges on being able to analyze position p' considerations 
in terms of the following more stringent relation: 

Definition 3. Let A be a *-ring with unity, whose projections form 
a lattice. Projections e, f in A are said to bc in position p in case 

{Equivalently, each of the pairs e, f and e, I - f is in position p'.) The 
condition is obviously symmetric in e and f. 

Tf e,f  are in position p, then so is any pair g, h, whcrc g = e or I - e, 
and lz= f or I - f .  

In Proposition 3, position p' is characterized in terms of the elemcnt 
e , f ;  the characterization of position p involvcs both e,f and its adjoint: 

Proposition 6. In a Rickart *-riny, theJollowm~g condition., on a puu- 
of  projections e, f imply one another. 

(a) e, f are in position p ;  
(b) RP(ef - fe)= I .  

Proof. (b) implies (a): Set x =  ef - f e. Since R P ( x )  = 1, the relations 
e n  f= 0 and e uf= I are implied by the obvious computations 

But e(1 - f )  - ( I  - f ) e  = x also has right projection 1, therefore 
e n ( 1  - f ) = O  and ~ u ( 1 -  f ) = l .  Thus e n , f = ( l  - e ) n ( I  - f )  
= e n ( I  - f ) = ( l  - e ) n f = O .  

(a )  implies (b): Let x = e f -  fe, g=RP(x) ;  assuming e,f  are in 
position p, it is to be shown that g= 1. (For an insight on the success 
of the following strategem, compute ( a h  - ha)' for a pair of 2 x 2 matrices 
a, h over a commutative ring.} Set z = X* x = - x 2  ; by direct computation, 
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From the last two formulas, it is clear that e and f commute with z.  
On the other hand, 

[$3, Cor. 2 of Prop. 101, therefore g commutes with e and with 1. Set 
h = I - g. Since g = RP(x) and since h commutes with e and f ;  we have 

thus eh, f h  are commuting projections; citing [$I, Prop. 31, we have 

( e h ) ( . f h ) = ( e h ) n ( . f h ) ~ e n . f = O ,  
thus 

(1) (e,f) h = 0 . 
Since e(1- f )  -(I - f ) e =  -x  also has right projection g, and since 
e n  (I  - f )  = 0 by hypothesis, the same reasoning yields 

(2) [e(l- f)]h=O. 

Adding (1) and (2), we have eh = 0. Similarly f h = 0. Thus e I 1 - h = g 
and f l  g ;  since e u f'= I, we conclude that g = 1. I 

An obvious way to fulfill condition (b) of Proposition 6 is to assume 
outright that ef-,fe is invertible; in the next proposition, it is shown 
that the invertibility of ef - fe implies e - f, provided one also assumes 
a condition on the existence of 'square roots'. Historically, the first con- 
dition of this type, considered by I. Kaplansky ([52], [54]), was the follo- 
wing: 

Definition 4. A *-ring is said to satisfy the square-root axiom (briefly, 
the (SR)-axiom) in case, for each element x, there exists r ~ ( x * x ) "  such 
that r*=r  and x*x=r2.  

Occasionally, the following weaker axiom suffices (later in the section, 
stronger axioms will be employed): 

Definition 5. A *-ring is said to satisfy the weak square-root axiom 
(briefly, the (WSR)-axiom) in case, for each element x, there exists r e  {x* x]" 
(necessarily normal, but not necessarily self-adjoint) such that x* x = r* r 
( = r r*). 

A sample of the wholesome effect of square roots: 

Lemma. If A is a *-ring satisfying the (WSR)-axiom, and if the pro- 
jections e, f are algebraically equivalent in the sense that y x = e  and 
xy = f for suitable elements x, y~ A,  then L. - f .  
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Proof Replacing x  and y  by , f x e  and e y f ,  we can suppose x r f A e ,  
y ~ e A  f: We seek a partial isometry w such that w* w  =c ,  w lu* = ,f'. 

Choose r~  {y* y)" with y* y = r* r  = rr*, and set w = rx.  Then 

On the other hand, ww*=rxxYr*;  to proceed further, we show 
that r commutes with xx* .  Since r ~ { y * y ) " ,  it suffices to note that 
x x * ~ { y * y ) ' ;  indeed, xx* and y*y are self-adjoint elements whose 
product 

( xx* ) ( y*y )  = x (yx )*y  = x e y  = x y  = j 

is also self-adjoint. Thus Y E  (x* x)', and 

W W * = Y X X * Y *  =xx*rr*  = ( x x * ) ( y * y ) = , f .  I 

Armed with square roots, a considerable dent can be made on the 
parallelogram law problem: 

Proposition 7. I f  A  is a  *-ring with unity s~ltisfying the (WSR)-~~xiorn, 
and if e ,  f  are projections in A  such that ef - f e  is invertible, then 
e - f  -1-e-1 -, f .  

Proqf. Since the invertibility hypothesis for the pair e ,  ,f ' clearly 
holds also for the pairs e, I - f  and 1 -e, ,f, it  is sufficient to show 
that e - f .  

Let z=(ej  - je)* (ef - je) = - (ef - je)' and write B={zJr .  As 
noted in the proof of Proposition 6, e,  f  E B. Since ( z )  c { z ) ' ,  we have 
B = {z ) '  2 (z)"  = B', thus B has center B n B' = B' = ( z ) " .  In part~cular, 
z  is central in B. 

We assert that efe  is invertible in eBe.  The proof begins by noting 
that s=zP1  is also central in B ;  then z s=sz=l  implies (eze)  (ese)  
=(ese)  (eze)=e, thus eze=ez  is invertible in eBe.  From one of the 
formulas for z  in the proof of Proposition 6, we have 

thus the invertibility of ez  in e  Be implies that of efe. Let t ~ e  Be with 
t(efe)=(efe)t=e, that is, 

(*I t,fe = yft  = e  

(explicitly, t  =s(e - e.fe)). 

By the lemma, it will suffice to show that e  and f are algebraically 
equivalent. To this end, define 
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Obviously X E  fAe ,  y ~ e A f ;  and .vx=(ef) ( f t )=e,f ' t=e by (a). On the 
other hand, xy=(f ' t )  (cf')= f t f ;  citing (*) at the appropriate step, 
we have 

(gf -,fe)xy = (ef - , / ) f ' t f '=  e f t j ' -  f 'eftf 

= (e, f't) J' - f (e f t )  /' = e f' - j'e J' = (e f - f 'r)  /; 

therefore x y  = f by the invertibility of e f - f e .  I 

The technique of Proposition 7 suffices to establish the parallelo- 
gram law in the C*-algebra case: 

Theorem 1. Every wrakl-y Rickart C*-al~grbt-a sati,sfies tlze purallelo- 
gram law (P). 

Prooj'. If A is a weakly Rickart C*-algebra, then the projections 
of A form a lattice [$ 5, Prop. 71. Let e. f be any pair of projections 
in A. To verify that e, f' satisfy the relation (P), it suffices to work in 
the Rickart C*-algebra (e  u j') A(e u J') [$ 5, Prop. 61; dropping down, 
wc can suppose without loss of generality that A has a unity clement. 

Set z =  (ef - f e)* (e f fe) = ( e  f '  fe)2 and consider the Rickart 
C*-algebra ( z ) '  [$ 3, Prop. 101. As noted in the proof of Proposition 7, 
e, { ~ { z ) '  and {z}' has center (z]". Dropping down to {z)', we can sup- 
pose that z is in the center Z of A .  (This will yield the sharper conclusion 
that the equivalcnce e - n ,f - e u f - ,f can be implemented by a 
partial isometry in {(ef - f'e)2)'.) 

Write Z=C(T) ,  T a compact space with the properties noted in 
[$ 8, Prop. I]. By C*-algebra theory, we have z 2 0 in Z (see the proof 
of [$ 7, Prop. 31); setting 

it follows that U is a clopen set whose characteristic function h is RP(z) 
[$8, Prop. I]. 

If U is empty, that is, if z=0,  then e l '  - f e = O  and the desired rela- 
tion (P) reduces to the triviality r -e f =  ( r  + f -e f ) -  ,f' [$ 1, Prop. 31. 

Assuming U is nonempty, write U = UP,,, where P,, is a scqucncc 
(possibly finite) of disjoint, nonempty clopen sets (cf. the proof of [$ 8, 
Prop. 31). Let h, be the characteristic function of P,; thus the h, arc 
orthogonal central projections with suph,=h (cf. 157, Lemma to 
Prop. I]). 

Since z is bounded below on the compact-open set P,,, it follows 
that zh, is invertible in 11, A; but 

zh,  = -(eJ - f el2 11, = - [(e A,,) ( f lz,,) - ( f 12,) (e h,)I2 , 
therefore 
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by Proposition 7 (note that every C*-algebra satisfies the (SR)-axiom 
by easy spectral theory [cf. 5 2, Example 51). By Proposition 6, ch, 
and fh, are in position p in h,A; in particular, 

therefore (1) may be rewritten as 

Since h, is central, the foregoing relation can, by lattice-thcorctic trivia, 
be rewritten as 

Since hA is the C*-sum of the h,A [$ 10, Prop. 31, and since every 
partial isometry has norm 51, it follows from the relation (1') that 

(2) ( e - en  f )h  - ( r u  f -  f ) h .  

What happens on 1 -lz? Since h=RP(z), we have 

0 = z(1- h) = (ef - f e)* (e f - j'e) (1 - h) , 

therefore (e f - f e )  (I - h) = 0, that is, e(1 - h) and f(1 - h) commute. 
Write e' = e(1- h), f '  = f ( l  - h); as noted earlier, the relation 

- n f" - " J" - f '  

holds trivially, thus 

(3) ( e - e n  f ' ) ( l  -h)  - ( e u  f ' -  f ) ( 1  -11) 

Adding (2) and (3), we arrive at (P). I 

To proceed further, it is necessary to sharpen the conclusion of 
Proposition 7 (the price, of course, is a sharper hypothesis). As it stands, 
the relations e - f and 1 - e - I - f obviously imply that r. and j' arc 
unitarily equivalent, that is, u ru*= f for a suitable unitary clement u; 
the sharper conclusion needed is that u can be taken to be a symmetry 
in the sense of the following definition: 

Definition 6. In a *-ring with unity, a ,sj~nlmetr.y is a self-adjoint 
unitary (u* = u, u2 = 1). 

In a *-ring with unity, the mapping e -t u=2e -  1 transforms pro- 
jections e into symmetries u ;  if, in addition, 2 is invertible. then this 
mapping is onto the set of all symmetries, with inverse mapping 
u*($) (I +u). 

Definition 7. If e, j are projections such that ueu = f for some 
symmetry u (hence also uf'u=e), we say that P and f are exchanged 
by the symmetry u. 
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It can be shown that if, in Proposition 7, one assumes the (SR)- 
axiom, then the projections e, J' can be exchanged by a symmetry (see 
Exercise 5). We content ourselves with a much simpler result (it is 
complicated enough) based on a stronger axiom. The stronger axiom 
depends on a general notion of positivity available in any *-ring (and 
therefore generally useless), consistent with the usual notion of positivity 
in C*-algebras: 

Definition 8. In any *-ring, an element x is called positive, written 
x 2 0, in casc x = yT y, + . . . + y,* y, for suitable elements y,, . . . , y,, . 

The following properties are elementary: (1) if x 2 0 then x* = x ;  
if x 2 0  then y*xy 2 0 for all y; (3) if x 2 0  and y 2 0, then 

-y  2 0 .  (Warning: x 2 0 and -x 2 0  is possible for nonzero x;  
equivalently, the relations x 2 0, y 2 0 and x + y = 0 need not imply 
x=y=O.} 

In particular, elements of the form x*x are positive; thus the fol- 
lowing is an obvious strcngthcning of the (SR)-axiom: 

Definition 9. A *-ring is said to satisfy the positive square-root axiom 
(briefly, the (PSR)-axiom) in case, for every x 2 0, there exists y ~ j x ) "  
with y>O and x=y2 .  

The axiom wc want is still stronger: 

Definition 10. A *-ring is said to satisfy the unique positive squarcJ- 
root axiom (briefly, the (UPSR)-axiom) in case, for every x 2 0, there 
exists a unique element y such that (1) y 2 0, and (2) x=y2;  we assume, 
in addition, that (3) Y E  jx)" (but conditions (1) and (2) are already 
assumed to determine y uniquely). 

Every C*-algebra A satisfies the (UPSR)-axiom. {Proof: If  xgA, 
x 2  0, there exists a unique Y E A  such that y 2 0  and x=y2 ;  since 
x 2 0  as an element of the C*-algebra jx)", it follows from uniqueness 
that y~ (x}".) 

The kcy to the rest of the section is the following result: 

Proposition 8. Let A be a *-ring with unity andproper involution, satis- 
fying the (UPSR)-axiom. If e, f are projections such that e f  - fo  is 
insc>rtible, then e and j can he exchanged by a svmmetry. 

Of course the pair e, 1 - f also satisfies the hypothesis of Propo- 
sition 8, as do the pairs I -e, J' and I -e, 1 - f ;  the statement of the 
conclusion is confined to the pair e, J' for simplicity. {Proposition 8 
holds more generally with (UPSR) weakened to (SR), but with a con- 
siderably more complicated proof (Exercise 5) . )  To break up the rather 
long proof of Proposition 8, we separate out some of the earlier steps, 
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which are valid under a weaker hypothesis, in the form of an admittedly 
ugly lemma: 

Lemma. Let A be a *-ring with unity andproper involution, satisfj,ing 
the (WSR)-axiom, and suppose e ,  f are projections such that e f' - f e  is 
invertible in A. Define x = f e. Then 

(1 ) x* x = e f e is invertible in eAe . 

Let u be the inverse of e f e  in eAe; thus, 

(2) u ~ c A e ,  a*=a,  a ( e f e ) = ( e f e ) a = r  ( t h a t i ~ ,  ~ z f e = e f a = e ) .  

Choose r E {x* x)" with x* x = r* r. Then 

(4) r is invertible in eAe, with inverse. ur* = r* a, 

Define v=xar*. Then 

(8) vv* = l'. 
Proof. ( 1 )  See the proof of Proposition 7.  
(2) The self-adjointness of u follows from that or e J e .  
(3) By the (WSR)-axiom, we may choose rE{x*x)"  = {efe)"  such 

that e fe= r* r= rr*. Since etz je f P ) ' ,  it follows that re = er;  a straight- 
forward calculation then yields (re  - r)* (re  - r) = 0,  therefore re - r = 0 
(the involution is assumed proper). Thus r = r e = e r, r E eAe. 

(4), ( 5 )  Since r* r=rr* =eJe  is invertible in eAe, so is r ;  explicitly, 
the calculations 

e = (e fe )u  = (rr*)u = r(r*u),  

show that the inverse of r in eAe is r* a = ur*. Taking adjoints in the 
last equation, we havc ur= ra .  

(6) Setting v=xarY,  we have c * ~ : = r u x * x a r * = r u [ ( e f e ) u ] r *  
=ruer*=(ra)r*=(ar)r*=a(efe)=e by ( 5 )  and (2). 

(7) v r = ( x a r * ) r = x [ a ( v * r ) ] = x [ a ( e f e ) ] = x e = x .  
(8) Writing g=vv*, it remains to show that q= f: At any rate, q is 

a projection [ i j  2, Prop. 21 and f y  =g (because ~ $ = x a r *  = (f 'e)ar* E f'A), 
thus g 5.f.  To show that f -g=O, it will suffice, by the invcrtibility 
of e f - f ' e ,  to  show that 
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in fact, it will be shown that e f (  f - y)= fe(  f -(1) =O. A straightforward 
computation yields g = f a  f, therefore 

by (2); thus e ( f  -y)=0. On the one hand, this implies f e ( f  -g)=0;  
on the other hand, since f -q <j '  we have also (. f (  f - y) =e( f ' -  y) 
= 0. I 

Proof oJ' Propositiotl 8. With notation as in the lemma, we assume, 
in addition, that r 2 0. 

Similarly, let y = - (1 - f )  (I - e) (the minus sign is intentional) and 
consider y* y = (1 - e) (1 - f )  (1 - e). Since 

(1-e)(1-,/ ')-(I- f ) ( 1 - e ) = ~ , f  - f e  

is invertible, the lemma is again applicable, as follows. 

(1') y*y = (1 e )  (I f )  1 e )  is invertible in (I -e)A(l - e ) .  

If h is the inverse of (I - e) (I - f )  (I - e) in (I - e) A ( l  - e), then 

Choosing s ~ ( ~ * y j "  with s 2 0 and y* =s2, we have 

(4') s is invertible in (I - e) A(l - e), with inverse hs = s h 

(recall that s* =s;  thus (5 ' )  is redundant). Defining w =y  hs, we have 
(the minus sign in the definition of y gives no trouble) 

(6') w*w= I - e ,  

(7') )' = WS, 

Define u=  v +  w. Obviously u is unitary and ueu* = f ; thc proof 
will be concluded by showing that u is self-adjoint. 

Set t =  r+s .  From (4) and (47, it is clear that t is invertible in A 
(with tp'  =ur+hs) .  Since 

ut = ~ l r + c s + w r + w s  = x+O+O+y, 
and since 

x + y =  f'e-(I - f ) ( l - e ) = r +  j -1, 

we have u t = e + j  -1. Thus, setting z = e +  f - I ,  we have 

(*) z = ut ,  

where u and t are invertible and z* = z. Since t = r +s. where r 2 0 
and s 2 0, we have t 2 0. Since, in addition, (*) yields 
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it follows from the (UPSR)-axiom that t is the unique positive square 
root of z2, and in particular t c  (z2}"; but z~ (z2)', therefore tz =z  t, 
that is, z  t p l  = t p l z .  Citing (*), we see that u=z  t p '  = t - '  z is the prod- 
uct of commuting self-adjoints, therefore u* = u . I 

In a Rickart *-ring, a condition weaker than the invertibility of 
e f - f e  is RP(e f - f e)= I, that is, position p (Proposition 6); still 
weaker is position p'. To arrive at the parallelogram law (P), we must 
show that projections in position p' are equivalent (Proposition 4); it 
would suffice to show that they can be exchanged by a symmetry. Thus, 
to establish the parallelogram law, it would suffice to prove the con- 
clusion of Proposition 8 under the weaker hypothesis that e, J' are in 
position p'; this is done in the next group of results (but the proofs 
require added axioms on A). It is convenient to separate out the inter- 
mediate case of position p as a lemma: 

Lemma. Let A he u Buer *-ring suti.yfying the (EP)-ax ion^ und /he 
(UPSR)-uxiom. If e, f are prejections in position p, then c and f '  can he 
exchanged by a symmetry (in particulur, e - f - 1 - e - 1 - f )  . 

Proof. We show that e and ,j '  can be exchanged by a symmetry; it 
is then automatic that 1 -  e -1 - J; and the parenthetical assertion of 
the lemma follows from the observation that e, 1 - f are also in posi- 
tion p. 

Let x = e f  - , f c ~ ,  z = x * x =  -(qf -,f'e)', and write B= ( z ) ' .  As noted 
in the proof of Proposition 7, B has center R'= jz)", and B contains (. 
and J' (hence also x). 

By hypothesis, RP(z) =RP(x) = 1 (Proposition 6); we shall reduce 
matters to the situation of Proposition 8 by constructing a central 
partition of 1 in B such that z  is invertible in each direct summand. 
Lct (12,) be a maximal orthogonal family of nonzero projections in (z)" 
such that, for each 1 ,  zh, is invertible in h,B (the Zorn's lemma argument 
is launched by an application of the (EP)-axiom). We assert that 
sup h,= I (recall that suprema in B are unambiguous [jj 4, Prop. 71). 
Writing h=suph,, it is to be shown that I - h = O ;  since RP(z)=1, 
it will suffice to show that z(1 - 12) =0, equivalently, x(1 l z ) = O .  As- 
sume to the contrary. Then, by the (EP)-axiom, there exists an element 

Y E  ((1 - h)x* s(l - h))" = (z(1 - h))" c { z } "  

such that z(1- h)y  = k ,  k a nonzero projection. Obviously k c { z J " ,  
k I - h, and z k is invertible in k B, contradicting maximality of the 
family (h,). 

We propose to apply Proposition 8 in each h,B; to this end, we 
note that the (UPSR)-axiom is satisfied by B (Exercise 2) and therefore 
by h, B = h, Bh, (Exercise 3). Since 

ieh,) ( fh , )  - (f'h,) (phi) = xhl 
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is invertible in h, B (because (xlz,) ( x  h,)* = x x *  h, = ( x  h,)* ( x  h,) = z h, is 
invertible in h, B), it follows from Proposition 8 that there exists a sym- 
metry u, in h,B such that 

(*) u,(eh,) u, = f h,. 

It remains to join the u, into a symmetry u exchanging e and f'. {If A 
were an AW*-algebra, the C*-sum technique would do the trick; in a 
Baer *-ring, we must be more deft.) The strategy is to express the sym- 
metry u, in terms of a projection g, of h,A (see the remarks following 
Definition 6), take the supremum g of the g,, and define u =2g - 1. 
Part of the conclusion of Proposition 8 is e h,  - h, - e h,; therefore 2 h, 
has an inverse a, in h, B [fj 11, Lemma 21, thus g, = a,(h, + u,) is a pro- 
jection in h, B ,  such that u, = 2g,  - lz,. Define g = sup g,, u = 2g - 1.  
Since gh,=g, for all 1 [$ 11, Lemma I], it follows that 

uh ,  = 2cqh,-h, = 2g,-h, = u , ;  

thus (*) yields (ueu-  f)h,=O for all 1 ,  and u e u -  f = 0  results from 
suph,=I .  I 

The above proof actually yields information for an arbitrary pair of 
projections: 

Theorem 2. Let A be a Baer *-ring satisfying the (EP)-axiom and the 
(UPSR)-axiom. I fe ,  f is anypair ofprojections in A, there exists upvojection 
h, central in the subring B = { - (e  f - f ~ ) ~ ) ' ,  such that (1) e h and f lz are in 
position p in Bh (hence may be exchanged by a symmetry in Bh) ,  and (2)  
e(1 - h) and f ( I  - h)  commute. Explicitly, h = RP(e f - j e ) .  

Proof. With notation as in the proof of the lemma (but with the 
hypothesis R P ( x )  = 1 suppressed), set h = sup h,; the argument given 
there shows that h=RP(x) .  On the one hand, x(1 -h)=O shows that 
e(1- h)  and J'(1- h) commute. On the other hand, (e h)( f h )  - ( f h ) ( e  h)  
=xlz=x has right projection h. therefore e h  and f h  are in position p 
in BIT (Proposition 6). 1 

We now advance to  position p': 

Lemma. Notation as in Theorem 2. 11; in addition, e, f are in position 
p', then e(1 - h)=f  (I - h). 

Proof. Write k =  1 - h and set e" = e  k, f "  = f k ;  we know from 
Theorem 2 that e" and f "  commute. By hypothesis, 

e n ( l  - j ' )  = ( 1  - e ) n  f =  0 ;  

since k is central in B, it follows that 

er 'n(k- , f" ' )  = ( k - e l ' ) n  f " = 0 ,  
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that is, in view o f  the commutativity o f  e" and ,f", 

eU(k - f " )  = (k-e")  f " '=  0 .  

Thus e"=eUf"= f" .  I 

Theorem 3. Let A be a Baer *-ring satisfying the (El')-axiom and the 
(UPSR)-axiom. If e, j' are projections in position p', then e and f can he 
exchanged by a symmetry 29 - 1, g a projection. 

Proof. Wi th  notation as in the proof o f  Theorem 2, set el=ph, 
eU=e(l -h), f l = f h ,  f "=  f ( l  -h); thus 

e=ef+e", f = f f +  f " .  

By Theorem 2, e' and f '  are in positionp in B h, and there exists a symmetry 
u' in Bh  such that u1e'u'= f ' ;  by the lemma, en=f'". Then u=u' 
+(1 -h) is a symmetry in B (hence in A) and it is straightforward to  
check that ueu= f. A second look at the proof o f  Theorem 2 (rather, 
its lemma) shows that u1=2g'-h for a suitable projection g', thus 
u=2g-1, where g=gt+(l -h). I 

Combining Theorem 3 with Proposition 4, we arrive at the climax 
o f  the section (see also Exercise 7 ) :  

Theorem 4. The parallelogram law (P)  holds in any Baer *-ring 
satisfjing the (EP)-axiom and the (UPSR)-axiom. 

Theorems 3 and 4, combined with Proposition 5, yield an important 
decomposition theorem (see also Exercise 8): 

Theorem 5. Let A be a Baer *-ring sutisfjiing the (EP)-axiom and the 
(UPSR)-axiom. If e, f i s  any pair ofprojections in A, there exist orthogonal 
decompositions 

e=ef+e", f =  f f + f "  

such that e' - j ' and e" f = e f " = 0. Explicitly, e' = LP(e f ), f' = RP(e f ), 
e" = e - e', f" = f - f '; e' and f '  are in position p', and can be exchungrd 
by a symmetry. 

Exercises 

1A. In the Baer *-ring of all 2 x 2 matrices over the field of three elements 
[$I, Exes. 171, the parallelogram law (P) fails; so docs the (SR)-axiom; so does the 
(EP)-axiom. 

2A. Let A be a *-ring, B a *-subring such that B = B .  If A satisfies the (WSR)- 
axiom [(SR)-axiom, (PSR)-axiom, (UPSR)-axiom] then so does B. 

3A. Let A be a *-ring with proper involution, and let e be a projection in A .  If 
A satisfies the (WSR)-axiom [(SR)-axiom, (PSR)-axiom, (UPSR)-axiom] then 
so does eAe. 
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4A. If A is a weakly Rickart *-ring satisfying the (WSR)-axiom, and if e, f are 
projections such that ef- fe is invertible in (e u . f )  A(r u j ' ) ,  then e-f - e u  f -e  
-eu . f -  f. 

SC. Let A be a *-ring with unity and proper involution, satisfying the (SR)- 
axiom. If e,f are projections such that ef-  j'e is invertible, then e and f can be 
exchanged by a symmetry. (This generalizes Proposition 8.) 

6C. Let A be a Baer *-ring satisfying the (EP)-axiom and the (SR)-axiom. If e, f 
are projections in position p', then e and,fcan be exchanged by a symmetry. (This 
generalizes Theorem 3.) 

7C. The parallelogram law (P) holds in every Baer *-ring satisfying the (EP)- 
axiom and the (SR)-axiom. (This generalizes Theorem 4.) 

8C. Let A be a Baer *-ring satisfying the (EP)-axiom and the (SR)-axiom. If 
c., f is any pair of projections in A, there exist orthogonal decompositions cJ= e' + c", 
J'=fl + f "  with e', f '  in position p' and e" f =  e f "  = 0; in particular, e' - j", indeed, 
e' and f '  can be exchanged by a symmetry. (This generalizes Theorem 5.) 

9A. The following conditions on a *-ring are equivalent: (a) the involution is 

proper, and the relations x 2 0, y 2 0, x+y=O imply x = y  =O; (b) x, *.y,=O 
implies x, =. . . = x,= 0 (n arb~trary). 1 

IOA. In a *-ring satisfying the conditions of Exercise 9, the (PSR)-axiom and the 
(UPSR)-axiom are equivalent. 

IIA. Let A be a *-ring with proper involution, satisfying thc following strong 
square-root uxiom (SSR): If x t  A, x 2 0 ,  then there exists y ~ ( x ) "  with y*=y 
and x=y2.  (The (SR)-axiom provides such a y only for positives x of the special 
form x =  t* t.) Assume, in addition, that (1) A has a central element i such that 

i2 = - 1 and i* = - i, and (2) 2 x  =0 implies x = 0. Then 1 x,* x, = 0 impl~es 
X I - - x, = 0  (cf. Exercise 9). 1 

12A. Let A be a *-ring with proper involution, satisfying the conditions (I), 
(2) of Exercise 11. In such a *-ring, the (PSR)-axiom and the (UPSR)-axiom are 
equivalent. 

13A. If A is a *-ring satisfying the (WEP)-axiom and the (SK)-axiom, then A 
satisfies the (EP)-axiom. 

14A. Let A be a Bacr *-ring, let (e,),,, and (f,),,, be equipotent families of 
orthogonal projections such that e, - f ,  for all L E  1, and let e =  sup e,, J'= sup j',. 
We know that if ef'=O then e-f [$11, Th. I]. If A satisfies the parallclogram law 
(P), then the weaker condition e n  f =0 also implies r -,f. 

ISA. If e,,fare projections in a *-ring A, such that e-f and ef=O, then e and f 
can be exchanged by a symmetry in (e+f') A(r+f) .  

16A. Theorems 2-5 hold in any Rickart C*-algebra; in particular, any pair 
of projections in position p' can be exchanged by a symmetry. 

17A. Suppose A is a Rickart *-ring in which every pair of' projections in position 
p' can be exchanged by a symmetry. If e, f is any pair of projections in A, there exists a 
symmetry u such that u(e f ) u =  fe. 

18A. In an arbitrary Baer *-ring, projections in positionp necd not be equivalent. 
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19C. In a von Neumann algebra A, projections r ,  f are in position p' (relative to 
A) if and only if e - j' relative to the von Neumann algebra generated by e and 1. 

5 14. Generalized Comparability 

Projections e,,fin a *-ring A are said to be comparable if either e 5 j 
or f 5 e. Rings in which any two projections are comparable are of 
interest in the same way that simply ordered sets are interesting examples 
of partially ordered sets [cf. 8 12, Exer. I ] .  In general, the concept of 
comparability is of limited use. (For example, if A contains a central 
projection h different from 0 and 1, and if e, f are nonzero projections such 
that e I h and f I 1 - h, then e and f cannot be comparable.) The pertin- 
ent concept in general *-rings is as follows: 

Definition 1. Projections e, f i n  a *-ring A are said to be generalized 
comparable if there exists a central projection h such that 

(When A has no unity element, the use of 1 is formal and the condition 
need not be symmetric in e and f : )  We say that A has generalized compara- 
bility (briefly, A has GC) if every pair of projections is generalized 
comparable. 

Generalized comparability may be reformulated in terms of the 
following concept, which generalizes, and is consistent with, an earlier 
definition [§ 6, Def. 21 : 

Definition 2. Projections e, f in a *-ring A are said to be very orthogonal 
if there exists a central projection lz such that h e  = e and 12 f = 0. (That is, 
e 5 h and f I I -h, where 1 is used formally when A has no unity 
element--in which case, the relation need not be symmetric in e and J:) 

If e, fare projections in a Baer *-ring A, then the following conditions 
are equivalent: (a) e, f a r e  very orthogonal; (b) C(e)C(j')= 0; (c) e A  f =  0 
[46, Cor. 1 of Prop. 31. 

The relevance of very orthogonality to generalized comparability 
is as follows: 

Proposition 1. If e, j'areprojection.~ in a *-ring, the J~llowing conditions 
are equivalent: 

(a) e, fare  generalized comparable; 
(b) there exist orthogonal decompositions e= e ,  + e,, f '=  f', +f,  

with el  - j ' , and f ,, e,  very orthogonal. 
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Proof. (a) implies (b): Choose h as in Definition 1, say 

h e - f ; < h , f ,  (1-1z) f -ey<(l-h)e.  

Writing e; =he and f ; '=(1-  h)J; we have 

(*) e i - I ; ,  e ; - f ; ' .  

Obviously el e'; = O  and f ;  f ;' = 0 ;  setting 

el=c>', +e; ,  f ' , = f ;  + f ; ' ,  

it follows from (*) that el  - f ,  [$I, Prop. 81. Since el < r  and f ', I f ;  
we may define e, = e - e l ,  f ,  = f - f ,  ; it is routine to check that /ze, = O  
and h,f2 = f,. 

(b) implies (a): Assuming there exists such a decomposition, let I1 be 
a central projection such that h f;=.fz and he,=O. Then he= he,  - h f l  5 h f [$ I ,  Prop. 71, thus he 5 hj', and similarly ( I  - h)j' 
( I  h e .  I 

If e,j' are generalized comparable, but are not very orthogonal, then 
Proposition 1 shows that e, {have nonzero subprojections e,,j', such 
that el - f ,  ; this is a phenomenon worth formalizing: 

Definition 3. Projections e, f in a *-ring A are said to be partially 
comparable if there exist nonzero subprojections e, < e, J',, < f  such 
that eo -,A. We say that A has partial comparability (briefly, A has PC) 
if eA f #  0 implies e, j 'are partially comparable. 

GC is stronger than PC: 

Proposition 2. I f A  is a *-ring with GC, then A has PC. 

Proof. Assuming e , f  are projections that are not partially comparable, 
it is to be shown that eAf=O. Write e=r ,  +e,, f =  f ,  +f; as in Pro- 
position 1. By the hypothesis on e, J; necessarily r l  =,f ,  =0, thus f ;  e 
are very orthogonal; if h is a central projection with h f = J' and he=O, 
then eAf=eAIzf=elzA,f=O. I 

PC is implied by axioms of 'existence of projections' type; for instance: 

Proposition 3. If A is a *-ring sutisjying the (VWEP)-axiom, then A 
has PC. 

Proof. Suppose e, f are projections such that eAf # 0, equivalently, 
f A e f  0. Let x ~ f A e ,  x f  0. By hypothesis, there exists an element 
Y E  {x* x)' with b* y) (x*x)  = e,, e, a nonzero projection 157, Def. 31, 
thus e, =y*(x*x)y=(xy)*(xy) .  Writing w = x y ,  we have w* w=e,; 
since the involution of A is proper [$2, Exer. 61, w is a partial isometry 
[$2, Prop. 21. Set fo  = w w*. Since x ~ . f A e ,  the formula e, =(y* y) (x*x)  
shows that e, < e, and , f o  = w w* = ( x y )  w* shows that fb I j'. I 
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In Baer *-rings, generalized comparability is intimately related to 
additivity of equivalence [ijll, Def. I]; in fact, a Baer *-ring has GC if 
and only if it has PC and equivalence is additive [$20, Th. 21. The "only 
if" part appears to be fairly difficult--the proof we give in Section 20 
involves most of the structure theory discussed in Part 2. The "if' part is 
easy: 

Proposition 4. 1fA is a Baer *-ring with PC and if equivalence in A 
is additive, then A has GC. 

Proof. Let e,fbe any pair of projections in A. If eAf=O then e, f '  
arc vcry orthogonal and the gencralizcd comparability of e and f is 
trivial.Assuming eAf# 0, let (e,),,,, (f,),,, be a maximal pair of orthogonal 
families of nonzero projections such that e, I e, f ,  sf and e, - J; for 
all 161 (an application of PC starts the Zorn's lemma argument). 
Set e' =supe,, f l = s u p  f,, el'=e-e', f "  = f  -f'. On the one hand, e' -f" 
by the assumed additivity of equivalence. On the other hand, e" Af"' = 0 
(if not, an application of PC would contradict maximality), therefore 
e",f" are very orthogonal. In view of Proposition 1, the decompositions 
e = e' + e", f =  f '  + f"  show that e, f are generalized comparable. I 

It is a corollary that every von Neumann algebra A has GC; for, 
it is easy to see that partial isometries in A are addable (e. g., they can 
be summed in the strong operator topology), and the validity of the 
(EP)-axiom [ij 7, Cor. of Prop. 31 ensures, via Proposition 3, that A 
has PC. For AW*-algebras, essentially the same argument may be 
employed (except that the proof of addability is hardcr-see Section 20), 
but an alternative proof will shortly be given. 

Proposition 4, and the fact that equivalence is orthogonally additive 
in any Baer *-ring [ij 11, Th. I], naturally suggest the following definition: 

Definition 4. We say that a *-ring has orthogonal GC if every pair 
of orthogonal projections is generalized comparable. 

This condition is automatically fulfilled in a Baer *-ring with PC: 

Proposition 5. If A is a Burr *-ring with PC, then A has orthog- 
onal GC. 

Proof. Let e, f be projections with ej '= 0. The proofs proceeds as 
for Proposition 4, except that el- f '  results from a theorem [jj 11, 
Th. I] rather than an assumption. I 

In the presence of the parallelogram law, GC and orthogonal GC 
are equivalent hypotheses: 
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Proposition 6. l f  A is a Rickart *-ring with orthogonal GC, and iJ' 
A satisfies the parallelogram law (P), then A has GC. 

Pvoqf. Let e, f be any pair of projections in A. By the parallelogram 
law, write 

e=e1+e" ,  f ' = f " + f "  

with el- f '  and e" f = e f "  = O  [$ 13, Prop. 51. Since, by hypothesis, 
the orthogonal projections e", j" are generalized comparable, Propo- 
sition 1 yields decompositions 

?ti = e 1+e2, f " = f l + f ~  

with el - J; and e,, , f2  very orthogonal. Then 

where e' + e, - f '  + f ;  and e2,  fz  are very orthogonal, therefore e,  f 
are generalized comparable by Proposition 1. I 

In a Baer *-ring satisfying the parallelogram law, the concepts PC, 
G C  and orthogonal GC merge: 

Proposition 7. If' A is a Baer *-ring satisfying the parallelogram law 
(P), then the following conditions on A are equivalent: (a) A has PC; 
(b) A has orthogonal GC; (c) A has GC. 

Proqf. (a) implies (b) by Proposition 5; in the presence of (P), 
(b) implies (c) by Proposition 6; and (c) implies (a) by Proposition 2. 1 

Corollary 1. Every AW*-al~gebra has GC. 

Proof: An AW*-algebra A satisfies the parallelogram law (P) [$ 13, 
Th. I]; since A satisfies the (EP)-axiom [$ 7, Cor. of Prop. 31, and 
therefore has PC (Proposition 3), it follows from Proposition 7 that A 
hasGC. I 

Corollary 2. I f  A is a Baer *-ring such that LP(x) - RP(x) for all x 
in A ,  then A has GC and sat is fie.^ the parallelogram law ( P ) .  

Prod.  Since A satisfies (P) [$ 13, Prop. 21, by Proposition 7 it suf- 
fices to show that A has PC. Suppose e ,  f are projections such that 
eAf #O,  say x = e a f  #0; then e,=LP(x), f,=RP(x) are nonzero 
subprojections of e ,  f such that e, - f,. I 

The parallelogram law is not the most natural of hypotheses. Some 
ways of achieving it were shown in Section 13; an application (see also 
Exercise 5): 

Theorem 1. If A is a Baer *-ring satisfying the (EP)-axiom and the 
(UPSR)-axiom. then A has GC and satisfies the parallelogram law (P). 
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Proqf. A satisfies (P)  [§ 13, Th. 41 and has PC (Proposition 3), there- 
fore A has GC by Proposition 7 .  1 

Incidentally, Theorem 1 provides a second proof of the AW* case 
(Corollary 1 of Proposition 7).  

We close the section with two items for later application. The first 
is for application in Section 17 [§ 17, Th. 21: 

Proposition 8. Let A be a Rickart *-ring with GC, satisfying the 
parallelogram law (P). If e ,  f is any pcrir of' projections in A, there exists 
a centrul projection h such that 

Proef. Apply GC to the pair e n  ( I  - f ) ,  (1 -e)  n,f: there cxists a 
central projection h such that 

( 1  h [ e n ( I - f ) ] 5 h [ ( 1  - e ) n f ] ,  

(2) (1 - h)  [(I - e) n f ]  5 (1 -h) [ e n  (1 -.f)]. 

It follows from the parallelogram law (see [$ 13, Prop. I ] )  that 

e - e n ( 1 -  f ) -  f - ( 1 - e ) n  f' 

and (replacing e ,  f by 1 - e,  1 - f )  

( I  -e)-(I  - e ) n  f -  ( I  - f ) - e n ( 1  - j ' ) ,  
therefore 

Adding (1)  and (3)  yields h e  5 h f ;  while (2)  and (4) yield (1  - h)  ( I  - e)  
5 - 1  f 1 

The final proposition is for application in [$ 18, Prop. 51: 

Proposition 9. Let A be a Baer *-ring with PC, and suppose (e,),,, 
is u family of projections in A wlth the jollowiny property. for every 
rzonzero central projection h ,  the set of indices 

is infinite; in other words, there exists no direct summand qf' A (other 
than 0) on which all but finitely many of' the el vanish. 

Then, given any positi~~e integer n ,  there exisl n dislinct indices 
i,, . . . , in, and nonzero projections g, I e," (v = 1,. . . , n), such that 
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Proc?f'. The proof is by induction on n. The case n = l  is trivial: 
the set { I :  1 el # 0) is infinite, and any of its members will serve as I , ,  

with g ,  = el , .  
Assume inductively that all is well with n -  I ,  and consider n. By 

assumption, there exist distinct indices I,, . . . , i n  and nonzero projec- 
tions ,f,,. . ., f , - ,  such that f, 5 el,, (v = I , .  . . ,n - I )  and f ,  - ... - f,._ ,. 

Since C(f ; )  # O ,  it is clear from the hypothesis that there exists 
an index I ,  distinct from L, ,  . . ., I , _ ,  such that C(J; )e ln  # 0. Then 
C(J;)C(eln)  # 0, thus f l  A elm # 0 [$ 6, Cor. 1 of Prop. 31; citing PC, 
there exist nonzero subprojections g ,  5 j; and g, < eln such that 
g1  - g,. For v = 2 , .  . . , n - I, the equivalencc f ;  - f ;  transforms g, into 
a subprojection g,< f ,  with g l - g , .  Thus g , - g l - g ,  (v=2 ,..., n-1) .  

{The proof shows that the indices for n may be obtained by aug- 
menting the indices for n -  I ;  but as n increases, the projections y, 
will in general shrink.] I 

Exercises 

1A. A Baer *-ring with orthogonal GC, but without PC (hence without GC): 
the ring of all 2 x 2 matrices over the field of three elements [$I, Exer. 171. 

2B. A Baer *-ring A has GC if and only if (i) A has PC, and (ii) equivalence in A 
is additive. 

3A. In a Baer *-ring with finitely many elements, PC and GC are equivalent. 

4B. In a properly infinite Baer *-ring [§ 15, Def. 31, PC and GC are equivalent. 

5C. If A is a Baer *-ring satisfying the (EP)-axiom and the (SR)-axiom, then A 
has GC and satisfies the parallelogram law (P). (This gcneralizcs Theorem 1 .) 

6A. (i) If A is a *-ring with GC and if y  is any projection in A, then gAg has GC. 
(ii) If A is a Baer *-ring, if g  is a projection in A, and if e, f are projections in gAg 

that are generalized comparable in g A g ,  then e, f are generalized comparable in A. 

7A. Ife,f are partially comparable projections in aBaer *-ring, then C(e) C(,f )  #O. 

8A. If A is a Rickart *-ring satisfying the parallelogram law (P), and if e.j are 
projections in A such that r  f # 0 ,  then e, f are partially comparable. 

9A. Let A be a Baer *-ring satisfying the parallelogram law (P). If A satisfies 
any of the following conditions, then A has GC: 

(1) For every projection r, C(r) = sup {e' : r' - e) [cf. 4 6, Exer. 71. 
(2) If e,J' are projections such that PA,\'# 0. then there exists a unitary u such 

that r u f  # 0. 
(3) If e, f ' are projections such that eAf #O, then there exists a projection g 

such that e(2g) j'# 0. 

10A. The following conditions on a *-ring A are equivalent: (a) A has GC; 
(b) A has orthogonal GC and, for every pair of projections e, f ,  there exist orthogonal 
decompositions e =  e'+ en, f '= f l+ , f "  with e'- J" and e"f" = j'" en. 

11A. Let A be a Rickart *-ring in which every sequence of orthogonal projections 
has a supremum. As in [ij 12, Exer. I], write [el = { J : j  - e} and define [ r ]  5 [ J  ] 
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iff e 5 f .  If A has GC then the set of equivalence classes is a lattice with respect 
to this ordering. 

12A. Let A be a Baer *-ring satisfying the (EP)-axiom and the (SK)-axiom (or 
let A be a Rickart C*-algebra with GC). If e,f is any pair of projections in A,  therc 
exist orthogonal decompositions e = e ,  +e,, f = f ,  +j', such that c ,  and r ,  arc 
exchangeable by a symmetry and e,, fz are very orthogonal. 

13B. If A is a Baer *-ring satisfying the (WEP)-axiom, then thc following con- 
ditions are equivalent: (a) A has GC; (b) LP(x)-RP(x) for all x t  A ;  (c) A satisfies 
the parallelogram law (P). 

14B. Let A be a Baer *-ring with GC, and let e,f be any pair of projections in A.  
Either (1) f 5 e, or (2) there exists a central projection h with the following property: 
for a central projection k, k e 5  k f iff k<  h. In case (2), such a projection h is unique. 
h21-C(e), and (1-h)f5(1 -h)e. 

15A. If A is a Baer *-ring with PC, the following conditions on a pair of pro- 
jections e, f'imply one another: (a) C(e) _< C ( f ) ;  (h) e = sup (., with (e,) an orthogonal 
family of projections such that e, 5 f for all 1 ;  (c) e = sup e, with (c,) a family of 
projections such that e, 5 j' for all 1 .  

16A. Let A be a Rickart *-ring with GC, let n be a positive integcr, and suppose 
that the n x n matrix ring A, is a Rickart *-ring satisfying the parallelogram law (1'). 
Then A ,  has GC. 

17C. Let A be a Rickart *-ring with orthogonal GC (e.g., let A be a Baer 
*-ring with PC) and let e be a projection in A. The following conditions on cJ are 
equivalent: (a) e is central in A ;  (b) e commutes with every projection in A (that 
is, e is central in the reduced ring A"); (c) e has a unique complement. 

18A. (i) If A is a Baer *-ring with PC, then a projection in A is central iff it 
commutes with every projection of A (thus a projection is central in A in it is central 
in the reduced ring A" [$3, Exer. 181). 

(ii) The converse of (i) is false: there exists a Bacr *-ring A such that A' = A  
but A does not have PC. 

19A. Let A be a *-ring with unity. A partial isometry u in A is said to be c~.ut/.rmol 
if the projections I -u*u and 1 u u *  arc very orthogonal in the sense of De- 
finition 2. {The terminology is motivated by the fact that if A is an A w*-algebra, 
then the closed unit ball of A is a convex sct whose extremal points are precisely 
the extremal partial isometrics.) For example, if u is an isometry (u*u= 1) or a 
co-isometry (uu* = I) then u is an extremal partial isometry; when A is factorial, 
there are no others 196, Def. 31. 

If A has GC and if w is any partial isometry in A, then there exists an extremal 
partial isometry u that 'extends' w, in the sense that u(w* w)= MI. 

20D. Problem: If A is a Baer *-ring with PC, does it follow that A has GC? 

21D. Problem: If A is a Baer *-ring satisfying the parallelogram law (P), does 
it follow that A has PC? 

22D. Problem: If A is a Baer *-ring with PC, does it follow that A satisfies thc 
parallelogram law (P)? 
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