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Chapter 1

The Earth’s main field

1.1 Introduction
The science of geomagnetism developed slowly. The earliest writings
about compass navigation are credited to the Chinese and dated to
250 years B.C. (Figure 1.1). When Gilbert published the first textbook on
geomagnetism in 1600, he concluded that the Earth itself behaved as a
great magnet (Gilbert, 1958 reprint) (Figure 1.2). In the early nineteenth
century, Gauss (1848) introduced improved magnetic field observation
techniques and the spherical harmonic method for geomagnetic field
analysis. Not until 1940 did the comprehensive textbook of Chapman
and Bartels bring us into the modern age of geomagnetism. The bibli-
ography in the Appendix, Section B.7, lists some of the major textbooks
about the Earth’s geomagnetic field that are currently in use.

For many of us the first exposure to the concept of an electromagnetic
field came with our early exploration of the properties of a magnet. Its
strong attraction to other magnets and to objects made of iron indicated
immediately that something special was happening in the space between
the two solid objects. We accepted words such as field, force field, and
lines of force as ways to describe the strength and direction of the push
or pull that one magnetic object exerted on another magnetic material
that came under its influence. So, to start our subject, I would like to
recall a few of our experiences that give reality to the words magnetic
field and dipole field.

Toying with a couple of bar magnets, we find that they will attract
or oppose each other depending upon which ends are closer. This exper-
imentation leads us to the realization that the two ends of a magnet have

1



2 The Earth’s main field

Figure 1.1. The Chinese
report that the compass
(Si Nan) is described in the
works of Hanfucious, which
they date between 280 and
233 B.C. The spoon-shaped
magnetite indicator, balancing
on its heavy rounded bottom,
permits the narrow handle to
point southward, to align with
the directions carved
symmetrically on a
nonmagnetic baseplate. This
photograph shows a recent
reproduction, manufactured
and documented by the
Central Iron and Steel
Research Institute, Beijing.

Figure 1.2. Diagram from
Gilbert’s 1600 textbook on
geomagnetism in which he
shows that the Earth behaves
as a great magnet. The field
directions of a dip-needle
compass are indicated as tilted
bars.
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oppositely directed effects or polarity. It is a short but easy step for us to
understand the operation of a compass when we are told that the Earth
behaves as a great magnet.

In school classrooms, at more sophisticated levels of science explo-
ration, many of us learned that positive and negative electric charges
also have attraction/repulsion properties. The simple arrangement of
two charges of opposite sign constitute an electric dipole. The product
of the charge size and separation distance is called the dipole moment;
the pattern of the resulting electric field is called dipolelike.

The subject of this chapter is the dipolelike magnetic field that we
call the “Earth’s main field.” I will demonstrate that this magnetic field
shape is similar in form to the field from a pair of electric charges
with opposite signs. Knowing that a loop of current could produce a
dipolelike field, arguments are given to discount the existence of a large,
solid iron magnet as the Earth-field source. Rather, the main field ori-
gin seems to reside with the currents flowing in the outer liquid core of
the Earth, which derive their principal alignment from the Earth’s axial
spin.

To bring together the many measurements of magnetic fields that
are made on the Earth, a method has been developed for depicting the
systematic behavior of the fields on a spherical surface. This spherical
harmonic analysis (SHA) creates a mathematical representation of the
entire main field anywhere on Earth using only a small table of num-
bers. The SHA is also used to prove that the main field of the Earth
originates mostly from processes interior to the surface and that only a
minor proportion of the field arises from currents in the high and distant
external environment of the Earth. We shall see that the SHA divides
the contributions of field into dipole, quadrupole, octupole, etc., dis-
tinct parts. The largest of these, the dipole component, allows us to fix a
geomagnetic coordinate system (overlaying the geographic coordinates)
that helps researchers easily organize and explain various geophysical
phenomena.

The slow changes of flow processes in the Earth’s deep liquid in-
terior that drive the geomagnetic field require new sets of SHA tables
and revised geomagnetic maps to be produced regularly over the years.
Such changes are typically quite gradual so that some of the past and
future conditions are predictable over a short span of time. A special
science of paleomagnetism examines the behavior of the ancient field
before the Earth assumed its present form. Paleomagnetic field changes,
for the most part, are not predictable and give evidence of the magnetism
source region and the Earth’s evolution.

Also, in this chapter we will look at the definitions of terms used to
represent the Earth’s main field. We will see how the descriptive maps
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and field model tables are obtained and appreciate the meaning that these
numbers provide for us.

1.2 Magnetic Components
A typical inexpensive compass such as a small needle dipole magnet
freely balanced, or suspended at its middle by a long thread, will align
itself with the local horizontal magnetic field in a general north–south
direction. The north-pointing end of this magnet is called the north pole;
its opposite end, the south pole. Because opposite ends of magnets,
or compass needles, are found to attract each other, the Earth’s dipole
field, attracting the north pole of a magnet toward the northern arctic
region, should really be called a south pole. Fortunately, to avoid such
confusion, the convention is ignored for the Earth so that geographic
and geomagnetic pole names agree. Other adjectives sometimes given
are Boreal for the northern pole and Austral for the southern pole. We
say that our compass points northward, although, in fact, it just aligns
itself in the north–south direction. The early Chinese, who first used a
compass for navigation (at least by the fourteenth century) considered
southward to be the important pointing direction (Figure 1.1). Naturally
magnetized magnetite formed the first compasses. Early Western civi-
lization called that black, heavy iron compound lodestone (sometimes
spelled loadstone) meaning “leading stone.” It is believed that the word
“magnet” is derived from Magnesia (north-east of Ephesus in ancient
Macedonia) where lodestone was abundant.

By international agreement, a set of names and symbols is used to de-
scribe the Earth’s field components in a “right-hand system.” Figure 1.3
illustrates this nomenclature for a location in the Northern Hemisphere
where the total field vector points into the Earth. The term right-hand
system means that if we aligned the thumb and first two fingers of our
right hand with the three edges that converge at a box corner, then the x
direction would be indicated by our thumb, the y direction by our index
(pointing) finger, and the z direction by the remaining finger. We say
these are the three orthogonal directions along the X , Y , and Z axes in
space because they are at right angles (90◦) to each other. When a mea-
surement has both a size (magnitude) and a direction, it can be drawn
as an arrow with a particular heading that extends a fixed distance (to
indicate magnitude) from the origin of an orthogonal coordinate system.
Such an arrow is called a vector (see Section A.6). Any vector may be
represented in space by the composite vectors of its three orthogonal
components (projections of the arrow along each axis).

A magnetic field is considered to be in a positive direction if an
isolated north magnetic pole would freely move in that field direction.
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Figure 1.3. Components of
the geomagnetic field
measurements for a sample
Northern Hemisphere total
field vector F inclined into the
Earth. An explanation of the
letters and symbols is given in
the text.

Observers prefer to describe a vector representing the Earth’s field in
one of two ways: (1) three orthogonal component field directions with
positive values for geographic northward, eastward, and vertical into
the Earth (negative values for the opposite directions) or (2) the hori-
zontal magnitude, the eastward (minus sign “–” for westward) angular
direction of the horizontal component from geographic northward, and
the downward (vertical) component. The first set is typically called the
X , Y , and Z (XYZ-component) representation; the last set is called the
H (horizontal), D (declination), and Z (into the Earth) (HDZ-component)
representation (or sometimes DHZ ). In equations, a boldface on a field
letter (e.g., H) will be used to emphasize the vector property; without
the boldface we will just be interested in the size (magnitude).

In the early days of sailing-ship navigation the important measure-
ment for ship direction was simply D, the angle between true north and
the direction to which the compass needle points. Ancient magnetic ob-
servations therefore used the HDZ system of vector representation. By
simple geometry we obtain

X = H cos(D), Y = H sin(D). (1.1)

(See Section A.5 for trigonometric functions.) The total field strength,
F (or T ), is given as

F =
√

X 2 + Y 2 + Z2 =
√

H2 + Z2. (1.2)
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The angle that the total field makes with the horizontal plane is called
the inclination, I, or dip angle:

Z

H
= tan(I). (1.3)

The quiet-time annual mean inclination of a station, called its “Dip
Latitude”, becomes particularly important for the ionosphere at about
60 to 1000 km altitude (Section 2.3) where the local conductivity is
dependent upon the field direction.

Although the XYZ system provides the presently preferred coordi-
nates for reporting the field and the annual INTERMAGNET data disks
follow this system, activity-index requirements (Section 3.13) and some
national observatories publish the field in the HDZ system. It is a simple
matter to change these values using the angular relationships shown in
Figure 1.3. The conversion from X and Y to H and D becomes

H =
√

(X 2 + Y 2) and D = tan−1(Y/X ). (1.4)

On occasion, the declination angle D in degrees (D◦) is expressed in
magnetic eastward directed field strength D (nT) and obtained from the
relationship

D (nT) = H tan (D◦). (1.5)

Sometimes the change of D (nT) about its mean is called a magnetic
eastward field strength, �E. (For small, incremental changes in a value
it is the custom to use the symbol �.)

In the Earth’s spherical coordinates, the three important directions
are the angle (θ ) measured from the geographic North Pole along a great
circle of longitude, the angle (φ) eastward along a latitude line measured
from a reference longitude, and the radial direction, r, measured from the
center of the Earth. On the Earth’s surface (where x, y, and z correspond
to the −θ, φ, and −r directions) the field, B, in spherical coordinates
becomes

Bθ = −X, Bφ = Y, and Br = −Z. (1.6)

Originally, the HDZ system was used at most world observatories
because the measuring instruments were suspended magnets and there
was a direct application to navigation and land survey. Usually, only
an angular reading between a compass northward direction and geo-
graphic north was needed. In the HDZ system, the data from different
observatories have different component orientations with respect to the
Earth’s axis and equatorial plane. The θφr system is used for mathemat-
ical treatments in spherical analysis (of which we will see more in this
chapter). The X YZ coordinate system is necessary for field recordings
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by many high-latitude observatories because of the great disparity in the
geographic angle toward magnetic north at polar region sites. The X YZ
system is becoming the preferred coordinate system for most modern
digital observatories. Computers have made it simple to interchange the
digital field representation into the three coordinate systems. Figure 1.3
shows the angle of inclination (dip), I , and the total field vector, F.

The unit size of fields is a measurable quantity. We can appreciate this
fact when we consider the amount of force needed to separate magnets
of different strengths or the amount of force that must be used to push a
compass needle away from its desired north–south direction. Let us not
elaborate on tedious details of establishing the unit sizes of fields. What
will be called “field strength” results from a measurement of a quantity
called “magnetic flux density,” B, that can be obtained from a comparison
to force measurements under precisely prescribed conditions. The units
for this field strength have appeared differently over the years; Table 1.1
lists equivalent values of B.

Table 1.1. Equivalent magnetic
field units

B = 104 Gauss

B = 1 Weber/meter2

B = 109 gamma

B = 1 Tesla

At present, in most common usage, the convenient size of mag-
netic field units is the gamma, or γ , a lower-case Greek letter to honor
Carl Friedrich Gauss, the nineteenth-century scientist from Göttingen,
Germany, who contributed greatly to our knowledge of geomagnetism.
The International System (SI) of units, specified by an agreement of
world scientists, recommends use of the Tesla (the name of an early
pioneer in radiowave research). With the prefix nano meaning 10−9, of
course, one gamma is equivalent to one nanotesla (nT), so there should
be no confusion when we see either of these expressions. To familiar-
ize the reader with this interchange (which is common in the present
literature), I will use either name at different times in this book.

Geomagnetic phenomena have a broad range of scales. The main
field is nearly 60, 000 (6 × 104; see scientific notation in Section A.3)
gamma near the poles and about 30, 000 (3 × 104) gamma near the
equator. A small, 2 cm, calibration magnet I have in my office is
1 × 108 gamma at its pole (about 10,000 times the Earth’s surface field
in strength). Quiet-time daily field variations can be about 20 gamma
at midlatitudes and 100 gamma at equatorial regions. Solar–terrestrial
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disturbance–time variations occasionally reach 1,000 gamma at the au-
roral regions and 250 gamma at midlatitudes. Geomagnetic pulsations
arising in the Earth’s space environment are measured in the 0.01 gamma
to 10 gamma range at surface midlatitude locations. In Chapter 4 we will
see how this great 106 dynamic range of the source fields is accommo-
dated by the measuring instruments.

The magnetic fields that interest us arise from currents. Currents
come from charges that are moving. Much of the research in geomag-
netism concerns the discovery (or the use of) the source currents re-
sponsible for the fields found in the Earth’s environment. Then, we ask,
what about the fields from magnetic materials; where is the current to
be found? A simple “Bohr model” (with planetarylike electrons about a
sunlike nucleus) suffices in our requirements for visualizing the atomic
structure. In this model the spinning charges of orbital electrons in the
atomic structure provide the major magnetic properties. Most atoms in
nature contain even numbers of orbiting electrons, half circulating in
one direction, half in another, with both their orbital and spin magnetic
effects canceling. When canceling does not occur, typically when there
are unpaired electrons, there is a tendency for the spins of adjacent
atoms or molecules to align, establishing a domain of unique field di-
rection. Large groupings of similar domains give a magnet its special
properties. We will discuss this subject further in Section 4.2 on geo-
magnetic instruments. However, for now, we find consistency in the idea
that charges-in-motion create our observed magnetic fields.

1.3 Simple Dipole Field
To many of us, the first exposure to the term “dipole” occurred in learn-
ing about the electric field of two point charges of opposite sign placed
a short distance from each other. Figure 1.4 represents such an arrange-
ment of charges, +q and −q (whose sizes are measured in units called
“coulombs”), separated by a distance, d, along the z axis of an orthog-
onal coordinate system. We call the value (qd ) by the distinctive name
dipole moment and assign it the letter “p.” The units of p are coulomb-
meters. Figure 1.5 shows the dipole as well as symmetric quadrupole
and octupole arrangements of charge at the corners of the respective
figures. The reason for introducing the electric charges and multipoles
here is to help us understand the nomenclature of the magnetic fields,
for which isolated poles do not exist, although the magnetic field shapes
are identical to the shapes of multipole electric fields.

The point P(x, y, z) is the location, for position x, y, and z from the
dipole axis origin, at which the electric field strength from the dipole
charges is to be determined (Figure 1.4). This location is a distance
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Figure 1.4. Electric dipole of
charges, ±q, and the
corresponding coordinate
system. An explanation of the
letters and symbols is given in
the text.

Figure 1.5. Charge
distribution for the electric
dipole, quadrupole, and
octupole configurations.

r =
√

x2 + y2 + z2 from the midpoint between the two charges and at an
angle θ from the positive Z axis. We will call this angle the colatitude
(colatitude = 90◦− latitude) of a location. The angle to the projection
of r onto the X –Y plane, measured clockwise, is called φ. Later we
will identify this angle with east longitude. Sometimes we will see the
letter e, with the r, θ , or φ subscript, used to indicate the respective unit
directions in spherical coordinates. Obviously, there is symmetry about
the Z axis so the electric field at P doesn’t change with changes in φ.
Thus it will be sufficient to describe the components of the dipole field
simply along r and θ directions.

Now I will need to use some mathematics. It is necessary to show
the exact description that defines something we can easily visualize: the
shape of an electric field resulting from two electric charges of opposite
sign and separated by a small distance. I will then demonstrate that such
a mathematical representation is identical to the form of a field from a
current flowing in a circular loop. That proof is important for all our
descriptions of the Earth’s main field and its properties because we will
need to discuss the source of the main dipole field, global coordinate
systems, and main-field models. If the mathematics at this point is too
difficult, just read it lightly to obtain the direction of the development
and come back to the details when you are more prepared.
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Let us start with a property called the electric potential, 	, of a point
charge in air from which we will subsequently obtain the electric field.

	 = q

4π ∈0 r
, (1.7)

where q is the coulomb charge, r is the distance in meters to the observa-
tion, ∈0 (the “inductive capacity of free space”) is a constant typical of
the medium in which the field is measured, and 	 is measured in volts.

For two charges with opposite signs, separated by a distance, d, the
potential at point r at x, y, z coordinate distances becomes

	 = 1

4π ∈0

[
q√

(z − d/2)2 + x2 + y2
+ −q√

(z + d/2)2 + x2 + y2

]
(1.8)

Now, for the typical dipole, d is very small with respect to r so, with
some algebraic manipulation, we can write

	 = q

4π ∈0 r

[(
1 + zd

2r2

)
−

(
1 − zd

2r2

)]
+ �A, (1.9)

where �A represents terms that become negligible when d = r. Because
(z/r) = cos(θ ), Equation (1.9) can be written in the form

	 = qd cos(θ )

4π ∈0 r2
. (1.10)

Now let us see the form of the electric field using Equation (1.7).
We are going to be interested in a quantity called the gradient or grad
(represented by an upside-down Greek capital delta; see Section A.8) of
the potential. In spherical coordinates the gradient can be represented by
the derivatives (slopes) in the separate coordinate directions:

∇	 = er

(
δ	

δr

)
+ eθ

(
δ	

rδθ

)
+ eφ

(
1

r (sin θ )

δ	

δφ

)
, (1.11)

where the es are the unit vectors in the three spherical coordinate direc-
tions, r, θ , and φ. The electric field, obtained from the negative of that
gradient, is given as

Er = − δ	

δr
= p

2π ∈0

(
cos θ

r3

)
er (1.12)

and

Eθ = −1

r

δ	

δθ
= p

4π ∈0

(
sin θ

r3

)
eθ , (1.13)

where p is the electric dipole moment qd.
Symmetry about the dipole axis means 	 doesn’t change with angle

φ, so E in the φ direction is zero. Equations (1.12) and (1.13) define the
form of an electric dipole field strength in space. If we would like to draw
lines representing the shape of this dipole field (to show the directions
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Figure 1.6. Electric dipole (of
moment p) field configuration
with directions for the
components of electric field
vectors E in the r and θ

directions to an arbitrary
observation point P ; h is the
equatorial field line distance.

that a charge would move in its environment), there is a convenient
equation,

r = h sin2(θ ), (1.14)

that can be used, in which h is the distance from the dipole center to the
equatorial crossing (at θ = 90◦) of the field line (Figure 1.6).

These field descriptions (Equations (1.11) to (1.13)) come from sci-
entists, mainly of the late eighteenth and early nineteenth centuries, who
interpreted laboratory measurements of charges, currents, and fields
to establish mathematical descriptions of the natural electromagnetic
“laws” they observed. At first there was a multitude of laws and equa-
tions, covering many situations of currents and charges and relating
electricity to magnetism. Then by 1873, James Clerk Maxwell brought
order to the subject by demonstrating that all the “laws” could be derived
from a few simple equations (that is, “simple” in mathematical form). For
example, in a region where there is no electric charge, Maxwell’s equa-
tions show that there is no “divergence” of electric field, a statement that
mathematical shorthand shows as

∇ · E = 0, (1.15)

where the “del-dot” symbol is explained in Section A.8. But E is given
as – grad	 (which is titled “the negative gradient of the scalar potential”).
Thus, for the mathematically inclined, it follows that

∇ · E = −∇∇	 = 0 (1.16)

or

∇2	 = 0, (1.17)
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for which Equation (1.10) can be shown (by those skilled in mathematical
manipulations) to be a solution for a dipole configuration of charges.

A simple experiment, often duplicated in science classrooms, is to
connect a battery and an electrical resistor to the ends of an iron wire
(with an insulated coating) that has been wrapped in a number of turns,
spiraling about a wooden matchstick for shape. It is then demonstrated
that when current flows, the wire helix behaves as if it were a dipole
magnet aligned with the matchstick, picking up paper clips or deflecting
a compass needle. If the current direction is reversed by interchanging
the battery connections, then the magnetic field direction reverses.

Now let us illustrate with mathematics how a current flowing in a
simple wire loop produces a magnetic field in the same form as the elec-
tric dipole. My purpose is to help us visualize a magnetic dipole, when
there isn’t a magnetic substance corresponding to the electric charges,
so that we can later understand the origin of the main field in the liquid
flows of the Earth’s deep-core region.

Consider Figure 1.7, in which a current, i, is flowing in the X –Y plane
along a loop enclosing area, A, of radius b, for which Z is the normal
(perpendicular) direction. Let P be any point at a distance, r, from the
loop center and at a distance, R, from a current element moving a distance,
ds. The electromagnetic law for computing the element of field, dB, from
the current along the wire element, ds, is

dB = µ0i

4π

ds R sin(α)

R3
, (1.18)

where α is the angle between ds and R, so that dB is in the direction that

Figure 1.7. Coordinate
system for a loop of current i ,
having radius b, area A, and
enclosed perimeter of element
length ds. The magnetic field
vectors of B in the r and θ

directions with respect to an
orthogonal (right-hand) x, y, z
coordinate system are shown.
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a right-handed screw would move when turning from ds (in the current
direction) toward R (directed toward P). The magnetic properties of the
medium are indicated by the constant, µ0, called the “permeability of
free space.” We wish to find the r and θ magnetic field components of B,
at any point in space about the loop, with the simplifying conditions that
r � b. Using the electromagnetic laws, we sum the dB contributions to
the field for each element of distance around the loop, and after some
mathematics obtain

Br = µ0i A cos(θ )

2πr3
(1.19)

and

Bθ = µ0i A sin(θ )

4πr3
. (1.20)

Comparing these two field representations with those we obtained for
the electric dipole (Equations (1.12) and (1.13)), we see that the same
field forms will be produced if we let the current times the area (i A)
correspond to p, the electric dipole moment, qd. Thus, calling M the
magnetic dipole moment,

M = iA (1.21)

or

M = md, (1.22)

where d becomes the equivalent separation of hypothetical magnetic
poles of strength m.

We saw, in the parallel case of the electric dipole, that E was obtained
from the scalar potential in a charge-free region. In a similar fashion,
Maxwell’s equations show that

B = −∇V, (1.23)

where V is called the magnetic scalar potential. Then, a person with math
competence can write, for a current-free region (where curl B = 0),

∇2V = 0 (1.24)

and obtain a dipole solution

V = µ0M cos(θ )

4πr2
. (1.25)

To a first approximation, the Earth’s field in space behaves as a
magnetic dipole. At the Earth’s surface we call r = a. Then

Br = −Z = 2[µ0M cos(θ )]

4πa3
= Z0 cos(θ ) (1.26)
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and

Bθ = −H = µ0M sin(θ )

4πa3
= H0 sin(θ ), (1.27)

where constant H0 = Z0/2. The total field magnitude, F, is just

F =
√

H2 + Z2. (1.28)

On average, about ninety percent of the Earth’s field is dipolar so we can
use the approximation, H0 = 3.1 × 104 gamma, for rough field model-
ing. In Equations (1.26) and (1.27), recall (Section A.5) that sin(90◦) =
1, sin(0◦) = 0, cos(90◦) = 0, and cos(0◦) = 1. For the Southern
Hemisphere, where 90◦ < θ ≤ 180◦, note that sin(180◦ − θ ) = sin(θ )
and cos(180◦ − θ ) = − cos(θ ). So the magnitude of the Earth’s field
at the equator (θ = 90◦) is just H0 and at the poles (θ = 0◦ or 180◦)
just 2H0.

For the dipole, the inclination, I (direction of the Earth’s field away
from the horizontal plane), at any θ is defined from

tan(I) = Z

H
= 2 cot(θ ). (1.29)

This is a valuable relationship for measurements of continental drift
(see Section 5.10). It means that we can determine our geomagnetic
latitude (90◦ − θ ) from field measurements of H and Z. Using ancient
rocks to tell the field direction in an earlier geological time, the ap-
parent latitude of the region can be fixed by Equation (1.29). Later, in
Section 1.9, there will be more details regarding this paleomagnetism
subject.

Conjugate points on the Earth’s surface are locations P and P′ that
can be connected by a single dipole field line (Figure 1.8). The relatively
strong Earth’s field lines become guiding tracks for charged particles in
the magnetosphere. The positions for conjugate points are used in studies
of the Earth arrival of these phenomena from distant locations in space.
The dipole field lines will extend out into the equatorial plane a distance,
re. Up to about 65◦ geomagnetic latitude, θ ′ (in degrees), the length of
this field line can be approximated by the relationship

length ≈ 0.38θ ′re (1.30)

where the length and re are in similar units (e.g., kilometers or Earth
radii). Figure 1.9 shows the relationship of latitude and field-line equa-
torial distance. As an illustration, at 50◦ geomagnetic latitude, read the
appropriate x-axis scale; move vertically to the curve intersection, then
read horizontally to the corresponding y-axis scale, obtaining 2.5 Earth
radii for the distant extent of that field line. We shall see, in Chapter 3,
that the outermost field lines of the Earth’s dipole field are distorted
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Figure 1.8. Geomagnetic
locations, based on a spherical
coordinate system aligned
with respect to the dipole
field, with latitude θ ′ = 90 − θ

(where θ is the colatitude) and
longitude φ. A dipole field line
of length l , connecting the
conjugate points at P and P ′,
extends to a distance re in the
equatorial plane from the
dipole center 0.

by a wind of particles and fields that arrive from the Sun; such change
becomes quite noticeable above 60◦.

The magnetic shell parameter, L shell, is an effective mean equa-
torial radius of a magnetic field shell, which, for a given field strength,
B, defines the trapped-particle flux in the space about the Earth. Com-
putation of the L shells for the Earth’s field is complex. However, for
a dipole field, the L-shell values may be considered almost equiva-
lent to the number of Earth radii that the field line extends into space,
re, and is a good approximation for all but the high latitudes. The
invariant latitude (in degrees) of a location is obtained from L by the
relationship

cos (invariant latitude) = 1√
L

(1.31)

Figure 1.10 shows polar views of the L-shell contours for the two
hemispheres, computed for the model, extremely quiet field of 1965.
Many of the high-latitude geomagnetic phenomena are best orga-
nized when plotted with respect to their L shell or invariant latitude
positions.

1.4 Full Representation of the Main Field
Now comes the most difficult part of this book, the representation of
the main field by equations and tables. There is a considerable amount
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Figure 1.9. Equatorial radial
extent re (from the Earth’s
center) of a dipole field line
starting from latitude θ ′ at the
Earth’s surface.

of mathematics here, with analysis techniques and shorthand math
symbols that can frighten the casual reader. I will try to step gently
in this section, but it is necessary for us to go through the details be-
cause there will be so many important physical results we can prop-
erly appreciate later if we understand their origin in the main field
representation.

We will start with some of Maxwell’s equations and show how the
relationships appear in a spherical coordinate system. Then we will look
for a solution of the equations of a type that will let us separate current
sources that arise above and below a sphere’s surface. Next, we will look
at a method for fitting the measurements from a surface of observatory
field values into the equations that produce our Earth’s field models. It
is important to know some of the strengths and failings of the methods
so that we understand their successful application in geophysics. We
will also find the main field representation important in the chapter on



Figure 1.10. L -shell contours,
computed for 100-km
altitude, in the Northern (top)
and Southern (bottom)
Hemisphere regions.
Geographic east and west
radial longitude lines and
circles of latitude (from 30◦ to
the pole) are shown. These
L -values were computed for
the extremely quiet year,
1965, when there was a
minimum distortion of the
polar contours by solar wind.
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quiet-field variations as well as in our discussion of solar–terrestrial
disturbances. If you are not ready for the mathematics at this time, at
least read through the steps lightly to focus upon what is being computed
and the sequence followed.

Maxwell’s great contribution to the understanding of electromag-
netic phenomena was to show that all the measurements and laws
of field behavior could be derived from a few compact mathematical
expressions. We will start with one of these equations, adjusted for
the assumptions that only negligible electric field changes occur and
that the amount of current flowing across the boundary between the
Earth and its atmosphere is relatively insignificant. Then, at the Earth’s
surface

∇ × B = i

(
δBz

δy
− δBy

δz

)
+ j

(
δBx

δz
− δBz

δx

)
+ k

(
δBy

δx
− δBx

δy

)
= 0, (1.32)

where i, j, k represent the three orthogonal directions and δ indicates that
“partial” derivatives are used (see Section A.7). This equation is read “the
curl of B equals zero” and requires that the field can be obtained from
the “negative gradient of a scalar potential” so

B = −
[

i
δV

δx
+ j

δV

δy
+ k

δV

δz

]
= −∇V. (1.33)

The other Maxwell’s equation that we will use is

∇ · B =
[

δBx

δx
+ δBy

δy
+ δBz

δz

]
= 0. (1.34)

This equation is read “the divergence of the field is zero.” Now, putting
Equations (1.33) and (1.34) together, we obtain

∇ · ∇V = ∇2V = 0, (1.35)

which is read as “the Laplacian of scalar V is zero.” This potential
function will be valid over a spherical surface through which cur-
rent does not flow. In spherical coordinate notation, Equation (1.35)
becomes

δ

δr

(
r2 δV

δr

)
+ 1

sin θ

δ

δθ

(
sin θ

δV

δθ

)
+ 1

sin2 θ

δ2V

δφ2
= 0, (1.36)

in which r, θ , and φ are the geographic, Earth-centered coordinates of
the radial distance, colatitude, and longitude, respectively.

Now, the solution (i.e., solving the equation for an expression of V
by itself ) that is sought is one that is a product of three expressions.
The first of these expressions is to be only a function of r; the second,
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only a function of θ ; and the third, only a function of φ. That is what
mathematicians call a “separable” solution of the form

V (r, θ, φ) = R(r) · S(θ, φ), where S(θ, φ) = T(θ ) · L(φ). (1.37)

A solution of the potential function V for the Earth’s main field satisfying
these requirements has the converging series of terms (devised by Gauss
in 1838)

V = a
∞∑

n=1

[( r

a

)n
Se

n +
(a

r

)n+1
Si

n

]
, (1.38)

where the
∑

means the sum of terms as n goes from 1 to an extremely
large number, and for our studies, a is the Earth radius, Re. The series
solution means that for each value of n the electromagnetic laws are
obeyed as if that term were the only contribution to the field. We will
soon see that solving this equation for V allows us to immediately recover
the strength of the magnetic field components at any location about the
Earth.

There are two series for V . The first is made up of terms in rn. As
r increases, these terms become larger and larger; that means we must
be approaching the current source of an external field in the increasing
r direction. These terms are called Ve, “the external source terms of the
potential function” (and our reason for labeling the Sn functions with a
superscript e). By a corresponding argument for the second series, the
(1/r)n terms become larger and larger as r becomes smaller and smaller,
which means we must be approaching the current source of an internal
field in the decreasing r direction. Scientists call these terms Vi, “the
internal source terms of the potential function” (the reason for labeling
the corresponding Sn functions with a superscript i).

The S(θ, φ) terms of Equation (1.37) represent sets of a special class
of functions called Legendre polynomials (see Section C.11) of the inde-
pendent variable θ that are multiplied by sine and cosine function terms
of independent variable φ. I shall leave to more detailed textbooks the
explanation of what is called the required “orthogonality” properties and
“normalization” and simply define the “Schmidt quasi-normalized, as-
sociated Legendre polynomial functions” that are used for global field
analysis. Here I will abbreviate these as Legendre polynomials, Pm

n (θ ),
realizing they are a special subgroup of functions. The integers, n and m,
are called degree and order, respectively; n has a value of 1 or greater,
and m is always less than or equal to n.

When V is determined from measurements of the field about the
Earth, analyses show that essentially all the contribution comes from the
Vi part of the potential function expansion. For now, let us just call this
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