
Chapter 2
General Properties of Diffraction Radiation

2.1 Diffraction Radiation as Radiation from Polarization
Currents

As mentioned above, diffraction radiation can be considered as radiation generated
by polarization currents induced in a medium by the field of a moving charge. The
distance between the charge trajectory and medium surface is usually much larger
than the mean intermolecular distance in the medium. At the same time, it is well
known that the field of the charge moving in vacuum with velocity v and energy E =
γmc2 decreases as exp(−hω/γ v) with distance h in the direction perpendicular to
the velocity. Hence, polarization currents are located in a layer close to the surface
and the properties of diffraction radiation depend strongly on the properties of this
layer. In particular, radiation does not appear from a charged particle uniformly
moving in parallel to the infinite plane surface of a homogeneous medium, because
the conservation laws for radiation forbid the transfer of the longitudinal momentum
to the medium in such a geometry. However, if the medium is inhomogeneous or
its surface is not planar, the field can transfer the longitudinal momentum to the
medium and radiation can appear.

As known, a medium with an electromagnetic field can be considered as homo-
geneous if not only the average density of the number of atoms is constant, but also
the intermolecular distances are much smaller than the field wavelength. Therefore,
the medium can be treated as homogeneous in the optical frequency range, but it
should be considered as inhomogeneous in the high-frequency range. This means
that diffraction radiation from the same surface must be considered in different ways
in different frequency ranges.

Charge e whose motion in the homogeneous medium with relative permittivity
ε(ω) is described by the law x = 0, y = 0, and z = vt creates a field with the vector
potential whose Fourier transform in space and time has the form

A(q, ω) = ev
2π2

δ(ω − qv)
q2 − (ω/c)2ε(ω)

(2.1)
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30 2 General Properties of Diffraction Radiation

In order to determine the distance dependence of the Fourier transform of the field
of such a charge with frequency ω, we consider the time Fourier transform of the
vector potential:

A(r, ω) = ev
2π2

∞∫

−∞

∞∫

−∞
dqx dqy

exp{iqx x + iqy y + i(ωz/v)}
q2

x + q2
y + (ω/v)2[1 − (v/c)2(ε(ω))] (2.2)

We consider only the case, where Cherenkov radiation is absent at the frequency
under consideration and the following condition is satisfied:

(v/c)2ε(ω) < 1 (2.3)

In this case, the denominator of the integrand in Eq. (2.2) is positive. The leading
contribution to the integral comes from the d2

x and d2
y values smaller than or about

[1 − (v/c)2(ε(ω))], when the denominator in Eq. (2.3) is close to its minimum
value. However, if x or y values are sufficiently large so that qx x � 1 or qy y � 1,
the exponent in the numerator of the integrand in Eq. (2.2) oscillates rapidly and
significantly reduces the integral. This does not occur if the coordinates x and y are
smaller than or about the limiting values x0 and y0 determined from the conditions

x2
0 (ω/v)2

[
1 − (v/c)2 ε (ω)

]
= 1, y2

0 (ω/v)2
[
1 − (v/c)2 ε (ω)

]
= 1. (2.4)

Hence, the time Fourier component of the vector potential is large in the region,
where the x and y coordinates are smaller than or about values x0 and y0, and is
small beyond this region. The calculation of the integral shows that the x depen-
dence has the form exp (−x/x0). The dependence of the scalar potential, electric
field, and magnetic field of the charge is the same. Thus, the ω-frequency Fourier
component of the field of the charge uniformly moving in the medium decreases

as exp

{
− hω

v

√
1 − (v/c)2 ε (ω)

}
in the direction transverse to the velocity. If rel-

ative permittivity ε (ω) is not close to one, the difference 1 − (v/c)2 ε (ω) is not
small and is on the order of one. Therefore, the exponent is comparable to −xω/v;
i.e., it depends only slightly on the energy of the fast particle. However, for fre-
quencies much higher than atomic frequencies, the relative permittivity is close
to one and has the form ε (ω) = 1 − (

ωp/ω
)2. For ultrarelativistic particles

and high frequencies, 1 − (v/c)2 ε (ω) ≈ (
ωp/ω

)2 + γ−2 and the ω-frequency
Fourier component of the field of the charge moving in the medium decreases as

exp

{
− hω

v

√(
ωp/ω

)2 + γ−2

}
in the direction x transverse to the velocity.

Thus, the effective range of the field of the ultrarelativistic charged particle mov-
ing in vacuum increases linearly with the particle energy at frequency ω, whereas the
energy dependence of the range of the field of the ultrarelativistic charged particle
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moving in the medium is more complex. Under condition (2.3), the range of the field
increases only for frequencies much higher than atomic frequencies. This means
that the polarization currents induced by the uniformly moving charged particle are
primarily concentrated in a layer with thickness λ (v/c) and they are concentrated

in a wider layer with a thickness of about λ (v/c)
((

ωp/ω
)2 + γ−2

)−1/2
only for

high frequencies.
The source of diffraction radiation is the polarization current that is generated by

the field of the particle and whose time Fourier transform can be represented in the
form

j (r, ω) = iω

4π
{1 − ε (r, ω)} E (r, ω) ≡ σ (r, ω)E (r, ω) , (2.5)

where ε (r, ω) is the relative permittivity and σ (r, ω) is the conductivity of the
medium.

If the layer in which polarization currents appear is sufficiently thin, the effect of
the polarization currents can be considered as small perturbation and this circum-
stance allows one to solve the problem by the method of successive approximations.
To this end, the fields are represented in the form of power series in the polarization
current. In the zeroth approximation, the polarization currents can be disregarded in
microscopic Maxwell’s equations, so that the field in this approximation coincides
with the field of the charge uniformly moving in vacuum. In the first approximation,
the polarization currents in Maxwell’s equations are considered to be generated by
the zeroth approximation field, and exact field E (r, ω) induced by the fast particle
in the medium can be replaced in expression (2.5) for the polarization current by the
field E0 (r, ω) of this particle in vacuum.

Let us take into account that, if the homogeneous medium is bounded by the
x = 0 plane, the uniform motion of the charged particle in parallel to the z axis does
not induce the radiation field. Diffraction radiation appears if the region occupied
by the medium is specified by a more general condition of x < ς (y, z). Let us find
the point with the minimum x coordinate on the medium surface x = ς (y, z) and
chose the coordinate axes so that the x = 0 plane pass through this point. In this
case, all inhomogeneities are located inside the layer between the x = ς (y, z) and
x = 0 surfaces.

The diffraction radiation intensity depends strongly on the relation between the
characteristic sizes of the problem: the range of the exponential decrease in the field

of the fast particle λ (v/c)
[
1 − (v/c)2 ε (ω)

]−1/2
, wavelength λ, and the thickness

of the inhomogeneous layer ς (y, z). In the nonrelativistic case, the field of the
particle decreases rapidly with the penetration depth to the medium. As a result,
the thickness of the inhomogeneous layer can become much larger than the field
penetration depth; i.e., ς (y, z) � λ (v/c). In this case, diffraction radiation is deter-
mined only by surface sections closest to the particle trajectory and information on
the properties of the entire surface cannot be obtained from diffraction radiation.
This information can be acquired only under the condition
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λ (v/c) > ς (y, z) . (2.6)

The investigation of diffraction radiation began with the nonrelativistic case [1].
The results of investigations for this case were summarized in [2].

For nonrelativistic particles, γ � 1 and v/c can be so small that the penetra-
tion depth of the optical-frequency field is about or smaller than intermolecular
distances. In this case, optical-frequency diffraction radiation cannot be described
in the framework of macroscopic electrodynamics. However, macroscopic electro-
dynamics at the same particle velocity and medium surface can be applicable for
diffraction radiation with lower frequencies, e.g., for cm wavelength range.

Diffraction radiation generated by relativistic particles began to be investigated
slightly later, but in a wider range including optical frequencies and is actively stud-
ied by many authors [3–11].

Note that the intensity of diffraction radiation from surfaces of certain pro-
files was determined in many studies through approximate numerical calcula-
tions, because this problem is rather complicated. In particular, the calculations of
the energy losses of the electron moving near an inhomogeneous dielectric were
reported in [12]. The numerical calculations of the energy losses of the electron
beam moving near a dielectric sphere and radiation appearing in this case were pre-
sented in [13]. The characteristics of radiation appearing when the electron moves
near a dielectric surface on the shape of this surface were discussed in [14] with the
use of the results of the numerical calculations.

2.2 Formation Length of Diffraction Radiation

The estimate presented in Sect. 1.2 for the formation length of radiation from the fast
particle refers to the case, where the charged particle itself is a source of radiation.
Strictly speaking, polarization currents generated in the medium by the field of the
charge uniformly moving in vacuum are directly responsible for diffraction radia-
tion. For this reason, it is useful to estimate the formation length with the inclusion
of the features of diffraction radiation. Diffraction radiation is usually considered
with the use of the equations of macroscopic electrodynamics with the boundary
conditions at the interface between the media. If these inhomogeneities are small,
phenomenological theory can be inapplicable for describing such radiation. In this
case, microscopic theory should be used. Let us estimate the formation length of
diffraction radiation with the use of this theory.

From the microscopic point of view, diffraction radiation appears due to the scat-
tering of the field of the uniformly moving charge from the atoms of the medium.
Such a scattering from one atom with the formation of the radiation field was con-
sidered in Sect. 1.3.

Let us consider the scattering of one Fourier component of the self field of the
fast particle from two identical medium atoms at points R1 and R2 on the z axis.
Let the fast charged particle uniformly move in vacuum in parallel to the z axis
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according to the law r = b + vt in the x = b plane. Taking the x axis along b, we
can represent the field created in such a motion of the particle in the form

E0 (r, t) =
∫

d3q
∫

dωE0 (q, ω) exp (iqr − iqvt),

E0 (q, ω) = E0 (q) δ (ω − qzv),

E0 (q) = − ie

2π2

vωc2 − q
q2 − ω2/c2

exp (−iqx b) .

(2.7)

Let us consider the Fourier component of the field of the particle, E0 (q, ω) eiqr−iqvt ,
as the incident wave. Repeating the consideration leading to Eq. (1.47), we can
obtain the following expression for the Fourier transform of the current density
generated in the atoms located at points R1 and R2 by the Fourier component of
the field of the particle:

j (k, ω) = −iω

(2π)3
α (ω)E0 (q, ω)

[
exp {i (q − k)R1} + exp {i (q − k)R2}

]
. (2.8)

Spectral–angular distribution of radiation created by the Fourier component of the

field of the fast particle takes the form (where k = ω

c

r
r

)

d2W (n, ω)
dωd�

= ω2

c
|α (ω)|2 ∣∣[kE0 (q, ω)

]∣∣2 2
[
1 + cos {(q − k) (R1 − R2)}

]
.

(2.9)

For the case under consideration, vector R1 − R2 is directed along the z
axis; hence, (q − k) (R1 − R2) = (qz − kz) (Z1 − Z2)= L (ω/v − kz). The factor
2
[
1 + cos {L (ω/v − kz)}

]
takes values from zero to four in dependence on the

cosine argument (q − k) (R1 − R2) = L (ω/v − kz). For L (ω/v − kz) � 1, this
factor is equal to four. In this case, the energy emitted by two atoms is four times
higher than the energy emitted by one atom. This means that the waves emitted by
both atoms are coherent, i.e., arrive at a detector with the same phases and their
amplitudes are summed. As a result, the field near the detector is doubled and the
energy reaching the detector is quadrupled.

If L (ω/v − kz) � 1, cos {L (ω/v − kz)} is a rapidly oscillating function. The
detector is detected the radiation energy arriving in finite frequency and angular
ranges. The integral of the expression with the rapidly oscillating function over these
ranges is equal to zero. Therefore, if L (ω/v − kz) � 1, the radiation energy from
two atoms is twice as high as the radiation energy from one atom. In this case,
the waves arriving at the detector from different atoms are incoherent, i.e., have
significantly different phases; for this reason, the interference term in the energy is
negligibly small and intensities, rather than amplitudes, of the waves are summed.

Thus, the condition of the coherence of radiations from two atoms can be written
in the form
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L � lc, (2.10)

where the length

lc ∼ 2π

ω/v − kz
= λ

β−1 − nz
(2.11)

is called the coherence length or the length of the formation of diffraction radiation.
Note that length lc varies from βλ for nonrelativistic particles or emission in the
direction perpendicular to the particle velocity to γ 2λ for the case of emission along
the velocity of the ultrarelativistic particle.

However, according to Eq. (2.9), radiations from two atoms can also be coherent
under the condition

L (ω/v − kz) = 2πn, n = 1, 2, 3 . . . (2.12)

In terms of the variables β = v/c and kz = (ω/c) nz , this condition can be repre-
sented in the form

β−1 − nz = λn

L
, (2.13)

or, in view of Eq. (2.11),

L = lcn. (2.14)

Thus, two atoms of the medium emit coherently if distance L between them is equal
to an integer number of coherence lengths lc.

We now consider the coherence conditions for the case of the ordered arrange-
ment of atoms, e.g., in a single crystal. Let N atoms be located on a straight
line at the same distance |d| = d from each other so that Rg = gd, where
g = 0, 1, 2, . . . , N − 1. The Fourier transform of the current density generated in
these atoms by the Fourier component of the field of the particle is written similarly
to Eq. (2.8) as

j (k, ω) = −iω

(2π)3
α (ω)E0 (q, ω)

N−1∑
g=0

exp {i (q − k) gd} . (2.15)

When vector d is directed along the z axis,

(q − k) d = d
(ω
v

− ω

c
cos θ

)
= d

ω

c

(
β−1 − cos θ

)
, (2.16)

where θ is the angle between the photon emission direction and z axis. The ratio of
the intensity of radiation generated by N atoms to the intensity of radiation generated
by one atom is given by the expression
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d2WN (n, ω)
d2W1 (n, ω)

=
∣∣∣∣∣∣
N−1∑
g=0

exp
{

igd
ω

c

(
β−1 − cos θ

)}
∣∣∣∣∣∣

2

=

= sin2 ( d N
2

ω
c

(
β−1 − cos θ

))

sin2 ( d
2
ω
c

(
β−1 − cos θ

)) .

(2.17)

The function on the right-hand side of Eq. (2.17) has a number of sharp peaks deter-
mined by the condition

d
ω

c

(
β−1 − cos θ

)
= 2πn, n = 1, 2, 3, . . . (2.18)

The height and width of each peak corresponding to a given n value are proportional
to N 2 and N−1, respectively. Dispersion relation (2.18) describes Smith—Purcell
radiation, which will be considered in detail in Chap. 6.

Note that, although we discuss radiation generated by individual atoms, the con-
sideration is also applicable to radiation from individual inhomogeneities such as
strips of a diffraction grating or target surface irregularities.

Formula (2.18) can be represented in the form of the requirement that the period
of the structure is equal to an integer number of coherence lengths:

d = nlc. (2.19)

It is convenient to use radiation coherence condition (2.19) for periodic structures,
whereas condition (2.10) is more convenient for qualitative analysis of phenomena
caused by one irregularity or irregularities are located chaotically.

2.3 Radiation from Relativistic Particle Near a Screen

It is useful to consider the manifestations of the features of diffraction radiation
generated by ultrarelativistic particles for a simple case of radiation generated by a
particle moving near a flat screen. Let the screen of a homogeneous medium occupy
a spatial region specified by the inequalities −a < z < 0, x < 0 and the particle
with the charge e move in vacuum near the screen according to the law z = vt ,
y = 0, and x = b > 0. We consider diffraction radiation with optical and lower
frequencies, i.e., when the wavelength is much larger than intermolecular distances
and the medium of the screen can be treated as homogeneous. In this case, the
Fourier transform of the polarization current given by Eq. (2.5) is represented as

j (r, ω) = iω

4π
{1 − ε (r, ω)} E (r, ω) = σ (r, ω)E (r, ω),

σ (r, ω) = σ (ω) θ (z + a) θ (−z) θ (−x) ; θ (x) = x + |x |
2 |x | .

(2.20)
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As pointed out above, diffraction radiation is formed not on the entire screen,
but only in a small screen part that is the screen layer with a thickness of about of

the λ (v/c)
[
1 − (v/c)2 ε (ω)

]−1/2
closest to the particle trajectory. The total field

E (r, ω) in Eq. (2.20) is the sum of the self field of the fast particle, E0 (r, ω), and
radiation field, E1 (r, ω). Since the volume of the screen part in which the radia-
tion field is formed is small, we can assume that E1 � E0 and use the method
of successive approximations to solve the problem. In the first approximation, the
polarization current can be treated as being generated only by the self field of the
fast particle and the effect of the radiation field can be neglected. In this case, the
polarization current density is known and the problem reduces to the calculation of
radiation generated by the given current. In order to use expression (1.11) for the
spectral–angular distribution of the emitted energy, it is necessary to determine the
Fourier transform of the polarization current density given by Eq. (2.20) in space
and time. We take into account that the field of the charged particle whose motion
is specified by the law z = vt , y = 0, x = b has the form of Eq. (2.7). With the use
of Eqs. (2.20) and (2.7), it is easy to obtain the Fourier transform of the polarization
current in the coordinates and time in the form (where Q ≡ ω/v − qz)

j (q, ω) = σ (ω)

4π2v

∫ 0

−a
dz
∫ 0

−∞
dx
∫ ∞

−∞
dsx exp (isx x + iQz)E

(
qx + sx , qy, ω/v

)
.

(2.21)

First, we integrate with respect to sx with the use of the relation [15]

∫ ∞

−∞
ds

(1; s)

s2 + G2
exp (isp) = (1; iG)

π

G
exp (−pG) . (2.22)

Introducing the notation

G
(
qy
) =

[
q2

y + γ−2 (ω/c)2
]1/2

(2.23)

and disregarding the γ−2 corrections, we can reduce Eq. (2.21) for the ultrarelativis-
tic case to the form

j (q, ω) = σ (ω)

4π2v

{
iex + qyey

G
(
qy
)
}

×

×
∫ 0

−a
dz
∫ 0

−∞
dx exp

{
iQz − (b − x) G

(
qy
)− iqx x

}
,

(2.24)

where ex and ey are the orts of the x and y axes, respectively. Integration with respect
to x and z yields
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j (q, ω) = eσ (ω)

8π3v

[
1 − exp (iQa)

]
exp

{−bG
(
qy
)}

G
(
qy
)

Q
{
G
(
qy
)+ iqx

} {
exG

(
qy
)− ieyqy

}
. (2.25)

The energy emitted by polarization current (2.25) in vacuum for the total observation
time in frequency range dω in solid angle element d� in the direction of vector

k = ω

c

r
r

is given by the expression

d2W (n, ω) = 1

c
(2π)6

∣∣[kj (k, ω)
]∣∣2 dωd�. (2.26)

The substitution of Eq. (2.25) into Eq. (2.26) yields the spectral–angular distribution
of diffraction radiation generated by the ultrarelativistic particle

d2W (n, ω)
dωd�

= e2

v
|σ (ω)|2

[
key
]2

k2
y + [kex]2 G2

(
ky
)

G2
(
ky
) {

G2
(
ky
)+ k2

x

} ×

× 4 sin2 ( a
2 (ω/v − kz)

)

(ω/v − kz)
2

exp
{−2bG

(
ky
)}

.

(2.27)

Radiation in the ultrarelativistic case is concentrated in the region of small angles
θ with respect to the particle velocity: kz ≈ k

(
1 − θ2/2

)
, ky ≈ kθ sinϕ, and kx ≈

kθ cosϕ. Therefore, (ω/v) − kz ≈ (ω/2)
(
θ2 + γ−2

)
. The function G (k) is on the

order of k at θ ∼ 1 and sin2 ϕ ∼ 1, so that exp (−2bG) ∼ exp (−2bk), whereas
G (k) ∼ k/y for small θ and sin2 ϕ values, so that exp (−2bG) ∼ exp (−2bk/y).
Thus, the contribution to radiation from the angular range θ ∼ 1 and sin2 ϕ ∼ 1 is
exponentially small and the main contribution to radiation comes from the region of
small angles θ ≤ γ−1 and angles ϕ close to zero or π . This dependence on angle ϕ

means that the radiation emission directions are primarily concentrated near the xz
plane, i.e., near the symmetry plane of the problem.

The radiation intensity depends strongly on the ratio of screen thickness a to
coherence length λγ 2. If the screen thickness is much smaller than the coherence
length, i.e., a

[
(ω/v) − kz

]
/2 � 1, the radiation distribution given by Eq. (2.27)

takes the form

d2W (n, ω)
dωd�

= e2

v
4a2 |σ (ω)|2

[
key
]2

k2
y + [kex]2 G2

(
ky
)

G2
(
ky
) {

G2
(
ky
)+ k2

x

} exp
{−2b G

(
ky
)}

.

(2.28)

For optical frequencies and γ ∼ 103, the coherence length can be equal to several
centimeters, so that the condition a � λγ 2 is easily satisfied. If a

[
(ω/v) − kz

]
/2 =

π/2, Eq. (2.27) is modified to the form
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d2W (n, ω)
dωd�

= e2

v
4 |σ (ω)|2

[
key
]2

k2
y + [kex]2 G2

(
ky
)

G2
(
ky
) {

G2
(
ky
)+ k2

x

}
(ω/v − kz)

2
exp

{−2b G
(
ky
)}

.

(2.29)

However, if the frequency and direction of radiation satisfy the condition
a (ω/v − kz) = 2Kπ , where K is an integer number, the radiation intensity is equal
to zero. This means that angles corresponding to the maxima and minima of the
intensity exist at a given radiation frequency. The appearance of these maxima and
minima is attributed to the coherence of radiation formed in various sections of the
screen. We emphasize that the coherence length for diffraction radiation generated
by the nonrelativistic particle is on the order of λ (v/c) and the problem of creating
the screen with the thickness comparable with the coherence length for optical and
higher frequencies is impracticable.

Disregarding the γ−2 corrections, we can represent Eq. (2.28) for angles θ ≤
γ−1 in the form

d2W (ω, θ, ϕ)

θdθdϕdω
= e2

v
|σ (ω)|2 4a2

k2

2θ2 sin2 ϕ + γ−2

(
θ2 sin2 ϕ + γ−2

) (
θ2 + γ−2

)×

× exp

{
−2bk

√
θ2 sin2 ϕ + γ−2

}
.

(2.30)

According to this expression, the radiation intensity is low if the distance between
the trajectory of the ultrarelativistic particle and the dielectric screen, b (impact
parameter), is much larger than γ λ.

This result is obtained under the assumption that the radiation field is much lower
than the self field of the particle. Although this assumption is always valid for the
frequencies exceeding optical frequencies, it will be shown in Chap. 4 that a more
accurate approach similar to that developed in Sect. 1.4 for calculating the charac-
teristics of transition radiation at the frequencies exceeding optical frequencies is
required in ultraviolet and soft X-ray frequency ranges.

The imaginary part of the relative permittivity should be taken into account for
optical and lower frequencies. This is most substantial for conducting media when
ε (ω) = ε′ (ω) + iε′′ (ω) and ε′ (ω) � ε′′ (ω). In this case, the field of the particle

varies strongly in the medium at the skin-layer thickness δ ∼ c

ω

√
ε′′ (ω); therefore,

the method of successive approximations is inapplicable. Hence, Eqs. (2.27), (2.28),
(2.29), (2.30) are applicable in a frequency region, where ε′′ (ω) � ε′ (ω) < 1.

2.4 Diffraction Radiation from Ultrarelativistic Particles

As known, radiation in the ultrarelativistic case is concentrated in the region of small
θ angles near the particle velocity direction. In this case, the thickness of the surface
layer with polarization currents for the ultrarelativistic particle can be on the order
of or much smaller than the wavelength, whereas the formation length of diffraction
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radiation, lc ∼ λ
(
β−1 − cos θ

)−1
, for the characteristic emission angles about

θ � 1 is much larger than the field wavelength λ. The diffraction radiation inten-
sity is low when the linear sizes of inhomogeneities either much smaller or much
larger than the radiation formation length. This means that diffraction radiation is
most intense when the sizes of the surface inhomogeneities are on the order of the
radiation formation length. Therefore, diffraction radiation generated by the ultrarel-
ativistic particle moving near the medium whose surface irregularities have a linear

size of b is most intense for the frequencies on the order of 4π (c/b)
(
γ−2 + θ2

)−1
.

This is much different from diffraction radiation generated by the nonrelativistic
particle, where the intensity maximum is in a frequency range of about 4π (v/b).

Let us consider diffraction radiation in the X-ray frequency range when the radia-
tion frequency is much higher than atomic frequencies and the wavelength is smaller
than or about the atomic size. Note that the consideration of X-ray diffraction radi-
ation is meaningful only for the ultrarelativistic particles, because such a radiation
for the nonrelativistic particles is negligibly small due to the fast decrease in the self
field in the direction perpendicular to the velocity.

In the x-ray frequency range, macroscopic electrodynamics is inapplicable, aver-
aging over the volume is not performed, but the electron number density is averaged
over the quantum-mechanical states and thermal motion of the atoms. The polariza-
tion current density depending on the atomic coordinates is involved in microscopic
Maxwell’s equations in order to include the reverse effect of the polarization current
on the field. This effect in the x-ray frequency range is small and can be considered
as small perturbation. Since atomic frequencies are much lower than the field fre-
quency, the coupling forces of the atomic electrons interacting with the field can be
disregarded and the electrons can be considered as free particles when calculating
the polarization current. In this approximation, microscopic Maxwell’s equations
can be represented in a form similar to the equations of the macroscopic electrody-
namics of an inhomogeneous medium by introducing the following analogue of the
relative permittivity:

ε (r, ω) = 1 − χ (r, ω) ≡ 1 − 4πe2

mω2

∑
a

f (r − Ra) , (2.31)

where the summation is performed over all the molecules of the medium, Ra is
the radius vector of the center-of-mass of the molecule, and f (r) is the electron
number density in the molecule averaged over the quantum-mechanical electronic
states and thermal motion. The microscopic electron number density in the medium
can be represented in the form

ne =
∑

a

f (r − Ra) . (2.32)

The electric displacement can be formally introduced by the expression

D (r, ω) = ε (r, ω)E (r, ω) . (2.33)



40 2 General Properties of Diffraction Radiation

However, this quantity is a microscopic quantity and depends on the coordinates of
the atoms of the medium. The formal coincidence of Eq. (2.33) with the relation
between the displacement and field of the inhomogeneous medium in macroscopic
electrodynamics is natural, because the medium cannot be treated as homogeneous
for a field with the wavelength of about atomic sizes. When the charged particle
moves in parallel to the plane surface of the inhomogeneous medium, the field
can transfer momentum to the irregularities of the medium and thereby generate
diffraction radiation. This phenomenon is the simplest example of X-ray diffraction
radiation.

In this region, the relative permittivity is close to one and, hence, perturbation
theory in the small quantity χ (r, ω) = 1 − ε (r, ω) can be used. In the first approx-
imation, only the expansion terms linear in χ (r, ω) can be retained. In the zeroth
approximation, the quantity χ (r, ω), i.e., polarization currents in the medium, can
be neglected. For the problem concerning diffraction radiation, this means that the
zeroth approximation field is the field of the charged particle uniformly moving in
infinite vacuum. The field of the charged particle whose motion is described by the
law x = b, y = 0, z = vt has the form of Eq. (2.7).

A source of diffraction radiation is the polarization current that is induced by the
self field E in the medium and whose time Fourier transform can be represented in
the form

j (r, ω) = iω

4π
χ (r, ω)E0 (r, ω) = ie2

mω
E0 (r, ω)

∑
a

f (r − Ra) . (2.34)

Passing to the space Fourier transforms in Eq. (2.34) with the use of Eq. (2.7)
and the relation

f (r) =
∫

d3q f (q) exp (iqr) , (2.35)

we easily obtain

j (k, ω) = ie2

mω

∫
d3 pE0 (k − p) δ (ω − kzv + pzv) f (p)

∑
a

exp
(−ipRa

)
.

(2.36)

For a crystal, Ra = exaxl + eyaym + ezazs, where l = 1, 2, . . . L , m = 1, 2, . . . M ,
s = 1, 2, . . . S, so that

∑
a

exp
(−ipRa

) = exp (−i px ax L) − 1

exp (−i px ax ) − 1
× exp

(−i pyay M
)− 1

exp
(−i pyay

)− 1

×exp (−i pzaz S) − 1

exp (−i pzaz) − 1
.

(2.37)
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Each factor in Eq. (2.37) is a rapidly oscillating function of vector p and almost does
not contribute to the integral except for the p magnitudes for which the arguments
of the exponentials are small, px ax L � 1, pyay M � 1, and pzaz S � 1. Thus, the
right-hand side of Eq. (2.37) is equal to the product L · M · S, i.e., to the number
of molecules, N , in the entire crystal volume. If L � 1, M � 1, and S � 1, the
p vector magnitudes for which sum (2.37) is not small coincide with the reciprocal
lattice vectors

g
(

2π

ax
n1,

2π

ay
n2,

2π

az
n3

)
, (2.38)

where n1, n2, n3 are arbitrary integers. Thus,

∑
a

exp
(−ipRa

) = Nδ (p − g) . (2.39)

The substitution of Eq. (2.39) into Eq. (2.36) yields

j (k, ω) = ie2

mω
N
∑

g

E0 (k − g) δ (ω − kzv + gzv) f (g) . (2.40)

Here, the Dirac delta function means that the Fourier transform of the polarization
current is nonzero only at certain values of angle θ between vector k and particle
velocity v:

cos θ = c

v

(
1 + vgz

ω

)
. (2.41)

The energy emitted by a certain current in vacuum for the total observation time
in the frequency range dω to the solid angle element d� in the direction of vector k
is given by the expression

d2W (n, ω) = (2π)6

c

∣∣[kj (k, ω)
]∣∣2 dωd�. (2.42)

The substitution of Eq. (2.40) into Eq. (2.42) gives rise to the appearance of the
Dirac delta function squared

δ2 (ω − kzv + gzv) = T

2π
δ (ω − kzv + gzv) , (2.43)

where T is the total observation time. This means that the angular distribution of
diffraction radiation from the crystal consists of a set of narrow peaks near the angles
satisfying inequality (2.41) for various gz values. For this reason, each peak can be
analyzed independently. X-ray diffraction radiation generated by the ultrarelativistic
particle moving near a single crystal is discussed in detail in Sect. 4.5.
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The properties of the electromagnetic waves with the frequencies between optical
frequencies and x-ray frequencies differ from the properties of the optical and X-ray
waves. This frequency range is the range of ultraviolet and soft x-ray radiations. In
this range, the field wavelength is larger than atomic sizes:

λ � h̄2

me2
, i.e. h̄ω � αmc2 (2.44)

(where α = e2/h̄c � 1/137 is the fine structure constant) and the frequencies are
higher than atomic frequencies:

h̄ω � α2mc2. (2.45)

In the frequency range, where both conditions (2.44) and (2.45) are satisfied,

αmc2 � h̄ω � α2mc2, (2.46)

macroscopic electrodynamics is applicable; i.e., the properties of the medium are
described by the usual relative permittivity. Since the wavelength is much larger
than atomic sizes, the homogeneous medium approximation is applicable. Owing to
inequality (2.45), the binding forces of the electrons in the atom can be disregarded.
Hence, the relative permittivity of the medium in the frequency range specified by
inequalities (2.46) can be represented as

ε (ω) = 1 − ω2
p/ω

2, ωp =
√

4πN Ze2/m, (2.47)

where N is the number of atoms per unit medium value and Z is the nuclear
charge number. The thickness of the medium layer, where the polarization currents
induced by an ultrarelativistic particle with the energy E = γ Mc2 in the frequency
range specified by inequalities (2.46) are located, is given by the expression (where
β = v/c)

a ∼ λβ√(
ωp/ω

)2 + γ−2
. (2.48)

The thickness of this layer is much larger than the radiation wavelength.
Let an ultrarelativistic charged particle move near the nonplanar surface of a

homogeneous medium occupying the spatial region specified by the inequality
ς (y, z) > x and changes in the surface profile occur in the region x > 0. In this
case, the coordinate dependence of the relative permittivity is determined only by
the medium surface profile and, hence,

1 − ε (r, ω) = (ωp/ω
)2

θ
[
ς (y, z) − x

]
, θ (u) = u + |u|

2 |u| . (2.49)
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As shown in Sect. 2.1, diffraction radiation in this case is generated by polariza-
tion currents in the layer between the x = 0 plane and x = ς (y, z) surface. The
Fourier transform of the polarization current density can be represented as

j (r, ω) = iω2
p

4πω
E (r, ω) θ (x) θ

[
ς (y, z) − x

]
, (2.50)

where E (r, ω) is the Fourier transform of the field generated by the moving particle
in the medium. In order to determine this field by usual methods of macroscopic
electrodynamics, it is necessary to find the general solution of Maxwell’s equations
in the medium and in vacuum and to match these solutions on the surface of the
homogeneous medium, x = ς (y, z). The exact solution can be obtained for the
surfaces of the simplest profile, whereas approximate methods should be used for
other cases. When ω2

p/ω
2 � 1, this ratio can be used as a small parameter in the

method of successive approximations. This problem is analyzed in detail in Chap. 4.

2.5 Effect of the Excitation of the Medium
on Diffraction Radiation

Diffraction radiation appearing when the charged particle moves near the surface
of the stationary medium is considered above. The properties of such a medium
are time independent and its energy is conserved. If the relative permittivity of
the medium is ε (ω) < (c/v)2, Cherenkov radiation is impossible, the energy and
momentum conservation laws in the emission process are satisfied due to the trans-
fer of momentum to the medium, but the transfer of momentum is possible only
in the inhomogeneous medium. If the properties of the medium vary in time, the
energy of the medium is not conserved. The properties of the nonstationary medium
in macroscopic electrodynamics were considered in [16, 17]. In such a medium, the
energy exchange between the medium and field is possible; in particular, the energy
and momentum conservation laws for radiation can be satisfied without the transfer
of momentum to the medium due only to the energy transfer from the medium to
the field. This means that diffraction radiation appears when the charged particle
uniformly moves in parallel to the planar surface of the homogeneous nonstation-
ary medium [18]. If the medium is nonstationary and inhomogeneous, momentum
transfer �p to the medium and energy transfer �E from the medium can exist in
the process of emission. In this case, the energy conservation law for the emission of
the transverse wave with frequency ω and wave vector k has the form of Eq. (1.54):

h̄ω = h̄kv + v�p + �E . (2.51)

If v�p � �E , the transfer of the energy from the medium to the field obvi-
ously plays the leading role in the emission process and the momentum transfer
can be disregarded in the first approximation. In this approximation, the problem
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reduces to the calculation of diffraction radiation from the homogeneous nonsta-
tionary medium.

As an example, we consider the medium excited by a certain interaction. Our
consideration is limited to the case, where the ionization of the medium in the pro-
cess of excitation can be disregarded; i.e., excitation energy per atom is lower than
the ionization potential. This means that excitation is weak. After the termination
of such an interaction, the electronic excitation energy migrates in the medium in
the form of long-lived elementary excitations of the medium, i.e., electromagnetic
longitudinal plane waves.

As known, the relation between frequency ω and wave vector q of the longitu-
dinal plane electromagnetic wave is determined by the condition of vanishing the
relative permittivity as a function of the frequency and wave vector: ε (q, ω) = 0.
For small q magnitudes, the solution of this equation has the form

ω (q) = ωp + (α/2) q2, (2.52)

where α is a constant and ωp is the frequency at which the relative permittivity is
equal to zero at q = 0 [19] : ε

(
ωp, q = 0

) = 0. Hence, the electron field of the
longitudinal plane wave for small q values has the form

E (r, t) = E exp
{

iqr − iωpt − i (α/2) q2t
}
. (2.53)

The propagation velocity of such a wave is u = αq.
Let us consider diffraction radiation appearing when the ultrarelativistic charged

particle moves in parallel to the planar surface of the homogeneous medium whose
excitation is described by longitudinal wave (2.53). In such a geometry of the prob-
lem, diffraction radiation is impossible in the absence of the longitudinal wave.
In the presence of the longitudinal wave, the medium becomes nonstationary and
inhomogeneous. The energy conservation law in such a medium has the form of
Eq. (2.51). The typical momentum transferred to the medium is on the order of h̄q
and the typical energy acquired from the medium is on the order of h̄ω (q). The
inequality v�p � �E takes the form qv � ωp + (α/2) q2 and, under this inequal-
ity, radiation in the first approximation can be considered as diffraction radiation
from the homogeneous nonstationary medium by changing the field of the longi-
tudinal waves to Ep exp

(−iωpt
)
. However, since the momentum transfer from the

field to the medium is disregarded, q = k and the equality kv � ωp + αk2/2
should be satisfied. This equality is always satisfied for the nonrelativistic particles
and is satisfied for the ultrarelativistic particles only at the frequencies ω � ωp.
This condition determines the region of applicability of the approximate solution
method.

In order to avoid insignificant complications, we assume that the distance from
the particle trajectory to the medium surface is not small and the self field in the
medium is low, so that the layer in which the polarization current exists is suffi-
ciently thin. In this case, the effect of the polarization current can be treated by
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the method of successive approximations in the powers of the polarization current.
In the zeroth approximation, the polarization currents can be disregarded in micro-
scopic Maxwell’s equations, so that the field in this approximation coincides with
the field of the charged particle uniformly moving in vacuum. In the first approx-
imation, the terms linear in the polarization current are taken into account. In this
approximation, it can be assumed that the polarization current in the equations for
the first approximation field is induced by the zeroth approximation field, i.e., by the
field E0 (r, t) of the charged particle uniformly moving in vacuum. Thus, the calcu-
lation of the first approximation field reduces to the problem of the field generated
by a given current in vacuum.

Let us find the polarization current density in the medium for the case of the suf-
ficiently thin layer with the polarization current. Assuming that the fields acting on a
bound atomic electron are much lower than atomic fields, the electron can be treated
as quasielastically bound. The equations of motion of the electron quasielastically
bound in an atom under the action of the field of the fast particle,

E0 (r, t) =
∫

d3q
∫

dωE0 (q, ω) exp (iqr − iωt) , (2.54)

and field Ep exp
(−iωpt

)
have the form

d2r (t)
dt2

+ ω2
μr (t) = e

m

{
Ep exp

(−iωpt
)+

∫
d3q

∫
dωE0 (q, ω) eiqr(t)

}
,

(2.55)

where e is the elementary charge and m, and ωμ are the mass, and oscillation fre-
quency of the bound atomic electron, respectively. Taking into account that the field
wavelength is much larger than the oscillation amplitude, we can solve this equation
by the method of successive approximations in the field powers:

r(t) = r0 (t) + r1 (t) + r2 (t) + . . . , (2.56)

where r0 (t) is field independent, r1 (t) is linear in the field, r2 (t) is square in the
field, etc. In the zeroth approximation in the field, this equation is the equation of
the free oscillations of the electron. In the first approximation, only terms linear in
field hold in Eq. (2.55). In this case, since the field wavelength is much larger than
atomic sizes, r0 (t) can be replaced by the radius vector of the atomic nucleus, Ra :

d2r1 (t)

dt2
+ ω2

μ r1 (t) = e

m

{
Ep exp

(−iωpt
)+

∫
d3q

∫
dωE0 (q, ω) eiqRa−iω t

}
.

(2.57)

The solution of this equation makes it possible to determine the polarization cur-
rent density J (r, t) appearing in the case of the homogeneous stationary medium.
However, as shown above, diffraction radiation does not appear in the problem
geometry under consideration for the case of the homogeneous stationary medium.
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In this approximation, when the solution linear in the polarization current is sought,
current J (r, t) can be disregarded and the additional polarization current j (r, t)
appearing due to the excitation of the medium can be calculated. To this end, it is
necessary to solve the second-approximation equation for motion of the electron
quasielastically bound in the atom in the presence of the field of the fast particle,
E0 (r, t), in the excited medium. This equation contains the field-squared terms:

d2r2 (t)

dt2
+ ω2

μ r2 (t) = ie

m

∫
d3 p

(
pr1 (t)

) ∫
dω E0 (p, ω) exp

(
ipRa − iω t

)
.

(2.58)

The transition to the time Fourier transforms of the coordinates in Eq. (2.57)
provides

(
ω2
μ − ω

)
r1 (ω) = e

m

{
Epδ

(
ω − ωp

)+
∫

d3 p E0 (p, ω) exp
(
ipRa

)}
, (2.59)

so that

r1 (t) = r1p (t) + r10 (t) ; r1p (t) = e

m
Ep

exp
(−iωpt

)

ω2
μ − ω2

p
, (2.60)

r10 (t) = e

m

∫
d3 p

∫
dω

E0 (p, ω)
ω2
μ − ω2

exp
(
ipRa − iωt

)
. (2.61)

The substitution of the expression for r1 (t) into Eq. (2.58) results in the appearance
of two terms on the right-hand side of Eq. (2.58). The first term is squared in E0
and the second term is proportional to both self field E0 and longitudinal wave
field Ep. Correspondingly, the solution of Eq. (2.58) consists of two terms, r2 (t) =
r2p (t) + r20 (t). Radiation of interest is associated with the solution r2p (t) of the
equation following from Eq. (2.58):

d2r2p (t)

dt2
+ ω2

μr2p (t) = ie

m

∫
d3 p

(
pr1p (t)

) ∫
dωE0 (p, ω) eipRa−iωt . (2.62)

The substitution of Eq. (2.60) into Eq. (2.62) provides the expression

r2p (t) = i
( e

m

)2 (
ω2
μ − ω2

p

) ∫
d3q

(
pEp

) ∫
dω

E0
(
p, ω − ωp

)

ω2
μ − ω2

eipRa−iωt .

(2.63)

From this expression, the current density in the atom for such a motion of the elec-
trons is easily obtained in the dipole approximation (summation is performed over
all the atomic electrons):
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ja (r, t) = e
∑
μ

dr2p (t)

dt
δ (r − Ra) . (2.64)

Summing this expression over all the atoms of the medium, we can arrive at the
following expression for the polarization current density, which is responsible for
diffraction radiation:

j (r, t) =
∑

a
δ (r − Ra)

∫
d3 pE0 (p)

(
pEp

) ∫
dωU (ω) δ

(
ω − ωp − pzv

)
eipRa−iωt ,

(2.65)
where

U (ω) =
∑
μ

e3ω

m2
(
ω2
μ − ω2

p

) (
ω2
μ − ω2

) (2.66)

and it is taken into account that the field of the charged particle whose motion is
described by the law y = 0, x = b, and z = vt is given by Eq. (2.7). Assuming
that the field wavelength is much larger than interatomic distances, we can aver-
age the current density over the coordinates of the medium atoms and arrive at the
expression

j (r, t) = n0

∫
d3 R θ (−X)

∫
d3 p

(
pEp

) ∫
dωU (ω) δ

(
ω − ωp − pzv

)
E0 (p) eipR−iωt ,

(2.67)

where n0 is the average number of atoms per unit volume and θ (x) is the Heaviside
step function (see, Eq. (2.49)). The Fourier transform of polarization current (2.67)
in space and time is easily obtained in the form

j (k, ω) = U (ω) δ
(
ω − ωp − kzv

) ∫ ∞

0
d X
∫ ∞

−∞
dpx

{
kEp + (px − kx ) exEp

}×
× E0

(
px , ky, kz

)
exp {i (kx − px ) X} ,

(2.68)

where ex is the ort of the x axis. The substitution of Eq. (2.7) into Eq. (2.68) yields
(where γ = 1/

√
1 − v2/c2)

j (k, ω) = β (ω) δ
(
ω − ωp − kzv

) ∫ ∞

0
d X exp (ikx X)

∫ ∞

−∞
dpx exp {−i px (X + b)}×

× {kEp + (px − kx ) exEp
} ie

2π2c2

ex (px − kx ) + eyky + ez
(
ω − ωp

)
/vγ 2

p2
x + k2

y + [(ω − ωp
)
/vγ

]2 .

(2.69)
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Introducing the notation

G
(
ky
) =

√
k2

y +
(
ω − ωp

vγ

)2

(2.70)

and integrating with respect to px with the use of the known relation [15]

∫ ∞

−∞
du
(

1; u; u2
) exp (iua)

u2 + G2
=
(

1; iGsign(a); −G2
) π

G
exp (− |a| G) , (2.71)

we reduce Eq. (2.69) to the form

j (k, ω) = U (ω) δ
(
ω − ωp − kzv

) ∫ ∞

0
d X exp {ikx X − (X + b)G} ×

× {kEp + (iG − kx ) eEp
} ie

2πG

{
ex (iG − kx ) + eyky + ez

ω − ωp

vγ 2

}
.

(2.72)

The integration with respect to X yields

j (k, ω) = U (ω) δ
(
ω − ωp − kzv

) exp (−bG)

ikx − G
×

× {kEp + (iG − kx ) eEp
} ie

2πG

{
ex (iG − kx ) + eyky + ez

ω − ωp

vγ 2

}
.

(2.73)

The spectral–angular distribution of the energy emitted by this current at long
distances has the form

d2W

dω d�
= (2π)6 1

c

∣∣[kj (k, ω)
]∣∣2 . (2.74)

The substitution of Eq. (2.73) into Eq. (2.74) provides the distribution of the diffrac-
tion radiation energy from the homogeneous medium excited by one longitudinal
wave (where T is the total observation time):

d2W

dω d�
= (2π)3 T e2 |U (ω)|2 exp (−2bG) δ

(
ω − ωp − kzv

)×

×
{(

(k − kx ex)Ep
)2 + (GeEp

)2} {[kex]2 G2 + [k (eyky − exkx + ez
(
ω − ωp

)
/vγ 2

)]2}

G2
(

k2
y + G2

) .

(2.75)

The excitation of the medium is often distributed homogeneously and isotropi-
cally. This corresponds to the isotropic distribution of the longitudinal waves in
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the medium. In this case, the distribution of the energy of diffraction radiation can
be obtained from Eq. (2.75) by integrating over the directions of the field of the
longitudinal wave Ep and the result has the form

d2W

dω d�
= (2π)3 Te2 |U (ω)|2 exp (−2bG) δ

(
ω − ωp − kzv

)×

× 1

2
E2

p

{
G2 + k2

y + k2
z

}
{

[ke]2 G2 + [k (eyky − exkx + ez
(
ω − ωp

)
/vγ 2

)]2}

G2
(
k2

x + G2
) .

(2.76)

The medium can be excited by an acoustic wave. In this case, the homogeneous sta-
tionary initial medium becomes both inhomogeneous and nonstationary. If a surface
acoustic wave is generated in the medium, the surface profile of the medium also
changes. Radiation generated by the charged particle moving near the medium sur-
face along which the surface acoustic wave propagates was investigated in [21, 22].
Considering the effect of the acoustic wave as small perturbation, the authors of
those works obtained the spectral–angular distribution of the diffraction-radiation
energy and showed that such a radiation can be observed in the range of millimeter
and submillimeter waves.

2.6 Diffraction Radiation from a Charged Particle Reflected
from a Single Crystal

The fast charged particle incident on the surface of a single crystal at small grazing
angle ς (angle between the particle velocity and surface) undergoes mirror reflection
from the surface if ς < θL = (U/E)1/2 [23] (here, θL is the Lindhard angle, U is
the potential barrier of the surface, and E is the particle energy).

Change in the velocity in the process of reflection leads to bremsstrahlung. At
the same time, the polarization of the surface by the charged particle results in
the appearance of polarization currents also leading to radiation. Therefore, such
a radiation appears due to the join action of the mechanisms of bremsstrahlung and
diffraction radiation [24].

Estimation of the intensity of such a radiation is of interest, because the effective
surface of the single crystal from which electrons are reflected can differ from the
effective surface from which the electromagnetic field is reflected. Indeed, the elec-
trons are reflected from the surface atomic layer, whereas the electromagnetic field
is reflected from the electrons of the medium. Meanwhile, the conduction electron
density near the surface in metals undergoes small Fridel oscillations and vanishes
outside the surface ion layer at distance z ∼ h̄/pF , where h̄ is Planck’s constant,
pF is the Fermi momentum, and the z = 0 plane coincides with the surface ion
layer. The effective crystal surfaces determined from the reflection of particles and
light are generally spaced by a certain distance b from each other. The intensity
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of the radiation under consideration is a function of this distance and can provide
information on it.

It should be taken into account that radiation is formed in a finite time of about
τ = 1/ (ω − kv) (where ω and k are the frequency and wave vector of radiation,
respectively, and v is the particle velocity). The distance from the particle to the
surface changes by τςv in time τ .

When b � τςv, the distance between the effective reflection surface for particles
and light does not affect the radiation intensity. We emphasize that the case, where
ς > θL and the charged particle penetrates into the crystal rather than is reflected
from it, is not considered below.

Let us consider radiation appearing when the particle with charge e is reflected
from the planar surface of the semi-infinite (z < 0) cubic crystal with relative per-
mittivity ε1. The particle moves in the homogeneous isotropic medium with relative
permittivity ε2. The Fourier transform of the current density of the charge undergo-
ing mirror reflection from the z = 0 surface can be represented in the form

j
(
qx , qy, z, ω

) = (2π)−3
∫∫∫

dxdydtj (r, t) exp
(−iqy y + iωt

) =
= e

4π3u

{
v cos

[
(ω − qv) zu

]+ iu sin
[
(ω − qv) z/u

]}
.

(2.77)

Here, v and u are the velocity components tangential and normal to the surface,
respectively.

The partial solution of Maxwell’s equations for the self field of the particle has
the form

E0z (q, z, ω) = e

π2ε2c2

ωε2u2 − c2 (ω − qv)

u2k2
2 − (ω − qv)2

sin
[
(ω − qv) z/u

]
, (2.78)

H0z (q, z, ω) = ieu

π2c
×

[
qv
]

u2k2
2 − (ω − qv)2

cos
[
(ω − qv) z/u

]
, (2.79)

k1(2) =
√
(ω/c)2 ε1(2) − q2. (2.80)

The total field outside the crystal consists of the self field of the particle and the field
E2 of the transverse waves leaving the surface. The field inside the crystal consists
only of the field E1 of the transverse waves leaving the surface:

E1(2) (q, z, ω) = E1(2) (q, ω) exp
{−(+) ik1(2)z

}
. (2.81)

From the condition that fields E1 and E2 are transverse and the boundary conditions
on the crystal surface z = 0, it is easy to derive the relations determining the normal
components of the radiation fields:
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(ε1k2 + ε2k1) E1(2)z (q, ω) = +(−)ε2(1)k2(1)E0z (q, 0, ω) + ε2(1) (qE0 (q, 0, ω)) ,
(2.82)

(k2 + k1) H1(2)z (q, ω) = +(−)k2(1)H0z (q, 0, ω) + (qH0 (q, 0, ω)
)
. (2.83)

The other components are expressed in terms of the normal components with the use
of Maxwell’s equations. The spectral–angular distribution in the medium, where the
particle moves, can be obtained in the form

d2W (n, ω)
d� dω

= 4π2ω4ε
3/2
2

q2c3

(
ε2 |E2z|2 + |H2z |2

)
cos2 θ. (2.84)

The substitution of the explicit expressions of the field provides the distribution of
the emitted energy in the form

d2W

dω d�
= 4e2ε

3/2
2 u2 cos2 ϑ

π2c3

∣∣∣∣
(

1 − (v/c) ε1/2
2 sinϑ cosϕ

)2 − (u/c)2 ε2 cos2 ϑ

∣∣∣∣
2
×

×

⎧⎪⎨
⎪⎩

∣∣ε1 − ε2 sin2 ϑ
∣∣ (v/c)2 sin2 ϕ∣∣∣ε1/2

2 cosϑ + [ε1 − ε2 sin2 ϑ
]1/2
∣∣∣
2

+ |ε1|2
∣∣sinϑ − (v/c) ε2 cos2 ϕ

∣∣2
∣∣∣ε1ε

1/2
2 cosϑ + ε2

[
ε1 − ε2 sin2 ϑ

]1/2
∣∣∣
2

⎫⎪⎬
⎪⎭

.

(2.85)

The radiation distribution in the crystal from which the particle is reflected differs
noticeably from that given by Eq. (2.85). The calculations are similar and at Imε1 =
0 yield the expression

d2W

dω d�
= 4e2ε

3/2
2 u2 cos2 ϑ

π2c3

∣∣∣∣
(

1 − (v/c) ε1/2
2 sinϑ cosϕ

)2 − (u/c)2 (ε2 − ε1 sin2 ϑ
)∣∣∣∣

2
×

×

⎧
⎪⎨
⎪⎩

∣∣ε2 − ε1 sin2 ϑ
∣∣ (v/c)2 sin2 ϕ∣∣∣ε1/2

1 cosϑ + [ε2 − ε1 sin2 ϑ
]1/2
∣∣∣
2

+
∣∣∣ε1 sinϑ − (v/c) ε1/2

1 ε2 cos2 ϕ

∣∣∣
2

∣∣∣ε2ε
1/2
1 cosϑ + ε1

[
ε2 − ε1 sin2 ϑ

]1/2
∣∣∣
2

⎫⎪⎬
⎪⎭

.

(2.86)
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The problem of the generation of the surface waves in the process of the mir-
ror reflection of the fast charged particle from the surface of the single crystal is
considered similarly [25].

The dependence of the radiation intensity on the difference between the surfaces
of the effective reflection of particles and field can be illustrated by an example
of reflection from a metal when it is convenient to use the image method. Let the
electromagnetic field be reflected from the z = 0 plane. If the reflection planes of
particles and field coincide, the spectral—angular distribution of the emitted energy
has the form

d2W

dω d�
= 4

π2

e2

c

u2

c2
× (v/c)2 cos2 ϑ sin2 ϕ + [sinϑ − (v/c) cosϕ

]2
([

1 − (v/c)2 sinϑ cosϕ
]2 − [(u/c) cosϑ

]2)2
. (2.87)

If the particle is reflected not reaching the effective field reflection planes at the
distance b from it, the laws of motion of the actual charge and charge image have

the form

(
θ (t) = t + |t |

2 |t |
)

r+ (t) = b + (v + u) tθ (t) + (v − u) tθ (−t) ;
r− (t) = −b + (v − u) tθ (t) + (v + u) tθ (−t) .

(2.88)

The ratio of the spectral–angular distributions of the emitted energy at a finite posi-
tive b value and b = 0 can be obtained in the form

d2W (b)

d2W (b = 0)
= cos2

(
b
ω

c
cosϑ

)
. (2.89)

When the particle is reflected from “inner” layers of the medium, i.e., at negative
b values, the laws of the motion of the charge and charge image have the form

r+ (t) = (v + u) tθ (t − |b| /u) + (v − u) tθ (−t − |b| /u) ;
r− (t) = (v − u) tθ (t − |b| /u) + (v + u) tθ (−t − |b| /u) .

(2.90)

The ratio of the distributions of the emitted energy is written as

d2W (− |b|)
d2W (b = 0)

= cos2 {(ω − kv) |b| /u} . (2.91)

Thus, the measurement of the angular distribution of the radiation under consid-
eration provides the possibility of measuring the magnitude and sign of the displace-
ment of the effective reflection planes of light and particles from the surface.
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