Preface

Attention: Starting with the 12th printing, this book has been set in $E T_{E} \mathrm{X}$ so that the book will be more readable. In particular, there is less material on each page, so there are more pages. However, these are the only changes from previous printings except that I've updated the bibliography.

Preface to the First Edition

A study of this book, and especially the exercises, should give the reader a thorough understanding of a few basic concepts in analysis such as continuity, convergence of sequences and series of numbers, and convergence of sequences and series of functions. An ability to read and write proofs will be stressed. A precise knowledge of definitions is essential. The beginner should memorize them; such memorization will help lead to understanding.

Chapter 1 sets the scene and, except for the completeness axiom, should be more or less familiar. Accordingly, readers and instructors are urged to move quickly through this chapter and refer back to it when necessary. The most critical sections in the book are Sections 7 through 12 in Chapter 2. If these sections are thoroughly digested and understood, the remainder of the book should be smooth sailing.

Vi Preface

The first four chapters form a unit for a short course on analysis. I cover these four chapters (except for the optional sections and Section 20) in about 38 class periods; this includes time for quizzes and examinations. For such a short course, my philosophy is that the students are relatively comfortable with derivatives and integrals but do not really understand sequences and series, much less sequences and series of functions, so Chapters 1-4 focus on these topics. On two or three occasions I draw on the Fundamental Theorem of Calculus or the Mean Value Theorem, which appear later in the book, but of course these important theorems are at least discussed in a standard calculus class.

In the early sections, especially in Chapter 2 , the proofs are very detailed with careful references for even the most elementary facts. Most sophisticated readers find excessive details and references a hindrance (they break the flow of the proof and tend to obscure the main ideas) and would prefer to check the items mentally as they proceed. Accordingly, in later chapters the proofs will be somewhat less detailed, and references for the simplest facts will often be omitted. This should help prepare the reader for more advanced books which frequently give very brief arguments.

Mastery of the basic concepts in this book should make the analysis in such areas as complex variables, differential equations, numerical analysis, and statistics more meaningful. The book can also serve as a foundation for an in-depth study of real analysis given in books such as [2], [25], [26], [33], [36], and [38] listed in the bibliography.

Readers planning to teach calculus will also benefit from a careful study of analysis. Even after studying this book (or writing it) it will not be easy to handle questions such as "What is a number?", but at least this book should help give a clearer picture of the subtleties to which such questions lead.

The optional sections contain discussions of some topics that I think are important or interesting. Sometimes the topic is dealt with lightly, and suggestions for further reading are given. Though these sections are not particularly designed for classroom use, I hope that some readers will use them to broaden their horizons and see how this material fits in the general scheme of things.

I have benefitted from numerous helpful suggestions from my colleagues Robert Freeman, William Kantor, Richard Koch, and John Leahy, and from Timothy Hall, Gimli Khazad, and Jorge López. I have also had helpful conversations with my wife Lynn concerning grammar and taste. Of course, remaining errors in grammar and mathematics are the responsibility of the author.

Several users have supplied me with corrections and suggestions that I've incorporated in subsequent printings. I thank them all, including Robert Messer of Albion College who caught a subtle error in the proof of Theorem 12.1.

Kenneth A. Ross
Eugene, Oregon

