
Chapter 2
Observational Cosmology

This chapter will present in a more detail the observational foundations of the stan-
dard cosmology. We first quickly pass in review the astronomical objects found on
various scales. Section 2.1 is concerned with the compact objects that produce the
visible photons in the universe either through combustion of nuclear fuel (in stars)
or through gravitational collapse (in core collapse supernovae and quasars). The two
subsequent sections show how stars are grouped together in galaxies and in clusters
of galaxies. In Sect. 2.5 we will review present efforts to elucidate the nature of
the dark matter that dominates the mass of the universe. Finally, in Sect. 2.6, we
summarize the present measurements of the parameters of the standard model of
cosmology i.e., the expansion rate and the various universal densities. A discussion
of observations of the CMB photons will be delayed until Chap. 7.

2.1 Stars and Quasi-stars

Among the several thousands of astronomical objects in the sky visible to the naked
eye, nearly all are nearby stars (1 pc < R < 50 pc). The exceptions are the Sun
(R = 4.8457×10−6pc), the Moon, 5 planets, 4 galaxies, and occasional comets. The
galaxies are M31 (Andromeda), the Large and Small Magellanic Clouds, and our
own Milky Way. While observational cosmology is primarily concerned with super-
galactic scales, our understanding of the universe would be impossible without some
understanding of stars. In this short section we can only hope to give a superficial
account of the astrophysics necessary for cosmology.

Stars begin their lives as diffuse clouds composed primarily of hydrogen and
helium. The first generation had the primordial mixture (75% hydrogen and 25%
helium by mass) that was produced by nuclear reactions in the early universe. As
the clouds contract gravitationally, the negative gravitational binding energy is com-
pensated by increasing the thermal energy of the cloud and by radiating photons
(Exercise 2.9). The contraction stops (temporarily) when the core is sufficiently hot
to initiate nuclear reactions.1 At this point, the energy radiated is compensated by

1 Nuclear reactions occur only at high temperature, T ∼ 1 keV, because at low temperatures they
are exponentially inhibited by the Coulomb barrier between the positively charged nuclei.
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42 2 Observational Cosmology

the released nuclear energy and the star can exist in a steady state as long as its
nuclear fuel holds out.

The first series of nuclear reactions transforms hydrogen into helium. Stars
in this phase of nuclear burning are called “main sequence stars.” The luminos-
ity of a main sequence star is roughly proportional to the third power of its mass
(Exercise 2.9). Since the amount of nuclear fuel is roughly proportional to the mass,
the total duration of the hydrogen-burning phase is proportional to M−2. Table 2.1
gives some mass-dependant characteristics of main sequence stars.

After exhausting their hydrogen, helium can be burned to heavy elements in the
“giant” phase. The helium is burned to carbon, to oxygen, and, in the most massive
stars, to 56Fe, the third most highly bound nucleus.2

Some of the heavy elements produced in stars will eventually be dispersed into
interstellar space during supernova explosions, the final event in the lives of some
stars with masses greater than ∼ 2M�. The result of this heavy element dispersion

Table 2.1 Characteristics of some representative main sequence stars [36]. Stars are classified
according to their spectral type (O, B, A, F, G, K, M: “Oh Be A Fine Gnu, Kiss Me”) ranging from
hot to cold. Each class is subdivided into subclasses (0-9). The table shows five examples ranging
from O5 (heavy, bright, hot) to M5 (light, dim, cold). The first two lines show the correlation
between mass and luminosity (heavier-brighter). The lifetime τ on the main sequence corresponds
to the time necessary to burn the hydrogen in the stellar core (about 10% of the total hydrogen)
at the roughly constant luminosity with bright-heavy stars having a shortest lifetimes. The surface
effective temperature Ts and the radius R are related by Stephan’s law with bright-heavy stars being
hot and big. The next two lines show how the luminosity and surface temperature are reflected in
the absolute visual magnitude MV and color index B −V . The last line gives the number density of
stars per unit magnitude near our position in the Milky Way. It shows that most stars have relatively
small masses

Type O5 A0 G2 K5 M5

M/M� 60 2.9 1.0 0.67 0.21

LV /LV � 8 × 105 50 1.0 0.15 0.01

τ/1010 yr 10−4 0.05 1 4 200

Ts (Kelvin) 44500 9520 5860 4350 3240

R/R� 12. 2.4 1.0 0.72 0.27

MV −5.7 0.6 4.7 7.4 12.3

B − V −0.33 −0.02 0.65 1.15 1.64

n (pc−3mag−1) 10−8 10−4 3 × 10−3 3 × 10−3 10−2

2 The most highly bound nuclei are 58Fe and 62Ni but they cannot be produced in stars by two-body
reactions.
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is that later generations of stars will have small admixtures of elements heavier
than helium (“metals” according to the astronomical jargon). For example, the Sun
started its life 4.5 × 109 years ago with ∼ 28% helium (by mass) and ∼ 2% metals.
We see that even recently formed stars have a nuclear composition that is not too
far from primordial. The great variety of stars is thus due mostly to differences in
stellar masses which vary from ∼ 0.1M� to ∼ 50M� (Table 2.1).

The observable spectrum of photons radiated from stellar surfaces is only indi-
rectly related to stellar structure. Photons in stellar interiors random-walk through
the star until they happen to reach a radius where the density is sufficiently low
that they escape. The shell from which average photons escape is called the “pho-
tosphere.” If photons of all wavelengths interacted with the same cross-section, the
escape radius would be wavelength independent and stellar spectra would be nearly
perfect blackbody spectra reflecting the temperature of the photosphere. The pres-
ence near the photosphere of atoms and molecules that are not completely ionized
results in a wavelength-dependent photon cross-section. Photons with high cross-
sections escape at larger, and therefore colder, radii leading to lower fluxes at the
corresponding wavelengths. Two examples of spectra are shown in Fig. 2.1.

In the (rather poor) approximation that the photosphere of a star is a blackbody
of a unique temperature, the luminosity of the star is given by Stefan’s law, L =
σ T 4

s π D2 where D is the diameter of the photosphere. A measurement of the flux
f = L/4π R2 then gives an estimation of the angular size of the star:

Δθ = D

R
= 2

(
f

σ T 4
s

)1/2

, (2.1)

where R is the distance to the star.
Of the quantities listed in Table 2.1 only the surface temperature, Ts, and “color

index,” B − V , are directly measurable from the shape of the observed photon spec-
trum. The other quantities can be deduced only if the distance to a star is known.
We therefore now turn to the fundamental problem of determining stellar distances.

Apart from the distance to the Sun, which can be accurately determined by radar,
stellar distances are extremely difficult to measure. Distances to stars of known
diameter can be estimated through (2.1). Diameters can be directly determined for
stars in binary systems that happen to be oriented so that the two stars periodi-
cally eclipse each other (Exercise 2.8). The diameter of a star whose photosphere
is expanding, e.g. pulsing stars or supernovae, can be determined from the pho-
tosphere’s velocity as determined by the position and shape of its spectral lines
(Sect. 2.6.1).

Other than these and other relatively rare exceptions, distances can be directly
determined only for nearby stars via their “parallax,” i.e. their apparent annual
movement with respect to more distant stars that results from the Earth’s move-
ment around the Sun. The principle of this technique is illustrated in Fig. 2.2. The
excellent angular resolution of the telescope on the Hipparcos satellite [40] that
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Fig. 2.1 The spectrum (energy per unit wavelength) of an “A0” star (top) and a “G0” star (bottom)
[37]. For A0 stars (like Vega), the photosphere is sufficiently hot that much of the hydrogen is in
the n = 2 atomic state so the Balmer series of hydrogen lines (n = 2 → n′) is clearly present.
The strong absorption at wavelengths shorter than the “Balmer break” at ∼ 370 nm is due to the
large cross-section for photo-ionization of n = 2 hydrogen and to absorption by closely spaced
lines. For G stars (like the Sun), the photosphere is much cooler and there is little flux in the
ultraviolet. Superimposed on the A0 spectra are the transmissions of the standard UBVRI filters of
the Johnson–Cousins system [38] and on the G0 spectrum the ugriz transmissions (CCD response
included) of the SDSS filter system [39]
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Fig. 2.2 The measurement of the distance R of a nearby star by parallax. The angular separation
θ between the nearby star and a distant star undergoes an annual modulation resulting from the
Earth’s movement around the Sun. For the realistic case of small modulations, the amplitude is
θ2 −θ1 = D/R where D = 2AU = 3×1011m is the diameter of the Earth’s orbit. The modulation
is 1 arcsec for a star at a distance of 1 pc (which explains the origin of the unit)

observed from 1989 to 1993 allowed the measurement of the distances of ∼ 105

stars within ∼ 200 pc to a precision of order 10%.
For stars with distances R determined by parallax, the luminosity can be calcu-

lated from the measured photon flux f = L/4π R2, after corrections are made for
absorption by interstellar dust.3 The calculated luminosity as a function of observed
surface temperature is shown in the “color-magnitude” diagram for Hipparcos stars
in Fig. 2.3. The luminosity LV in the wavelength band “V ” (λ ∼ 550 nm) is given
on an inverse logarithmic scale of “absolute magnitude,” MV :

MV = −2.5 log LV + constant. (2.2)

(The magnitude system is explained in Appendix D.) The horizontal scale gives
the “color index” B − V which is the difference in magnitude in the “B” band
(λ ∼ 450 nm) and the V band. Stars with relatively low surface temperatures have
large B − V and stars with relatively large surface temperatures have small B − V .

Most of the stars in the color-magnitude diagram are on the diagonal strip that the
theory of stellar structure identifies as the main sequence. The heaviest and brightest
stars have the highest surface temperatures while the lightest and dimmest stars have
the lowest surface temperatures.

Certain post-main sequence stars are on the diagonal extension to the cold side
of the main sequence. Especially prominent are the helium-burning “clump” giants
near MV ∼ 0.75 and (B − V ) ∼ 1.0.

3 The local absorption length of light depends strongly on the line of sight. In the galactic plane
it is typically of order 1 kpc for photons with λ ∼ 550 nm [41]. Since absorption by dust is a
decreasing function of wavelength, the absorption can be estimated by the “reddening” of a star’s
spectrum compared to spectra of nearby unreddened stars of the same type.
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Fig. 2.3 The “color-magnitude” diagram for stars with parallax distances determined with a pre-
cision of better than 10% by the Hipparcos satellite [40]. The ordinate is the absolute magnitude
in the V band (λ ∼ 550 nm): MV = −2.5 log(LV ) + constant where LV is the luminosity in the V
band. (The magnitude system is explained in appendix D.) The abscissa is the color index (B − V ),
i.e. the difference in magnitudes between the B (λ ∼ 450 nm) and V bands. The color index is an
indicator of a star’s surface temperature. Stars that are bright and hot are on the upper left while
stars that are dim and cold are on the lower right. The diagonal band corresponds to stars on the
main sequence (hydrogen burners). Post-main sequence stars are in the diagonal extension on the
cold side of the main sequence. Stars in the accumulation at MV ∼ 0.75 and (B − V ) ∼ 1.0
are helium burning “clump”giants. A small number of dead stars (white dwarfs) are present near
MV ∼ 12, (B − V ) ∼ 0. Courtesy of the European Space Agency

The correlations between luminosity and color (Fig. 2.3) generate correlations
between flux and color for stars grouped at a given distance. Figure 2.4 shows the
color-magnitude diagram for stars in the Large Magellanic Cloud (LMC). The flux
fV in the wavelength band V is given on an inverse logarithmic scale of “apparent
magnitude,” V :

V = −2.5 log fV + constant′. (2.3)
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Fig. 2.4 The color-(apparent) magnitude diagram for stars in the Large Magellanic Cloud mea-
sured with the Hubble Space Telescope [42]. The ordinate is the apparent magnitude in the F555W
band: F555W = −2.5 log( f555W) + constant where f555W is the flux in the 555W band. (The mean
wavelength of F555W, 525 nm, is near that of the standard V band of Fig. 2.3). The abscissa is
the color index (F555W−F814W), i.e. the difference in magnitudes in the F555W band and the
F814W band (λ ∼ 827 nm). The color index is an indicator of a star’s surface temperature. A
comparison of the apparent magnitudes of stars in the LMC with the absolute magnitude of the
corresponding stars in the Milky Way (Fig. 2.3) allows one to estimate the distance to the LMC

The abscissa is a color index that is an indicator of surface temperature. One is
struck by the similarity between this diagram and the Hipparcos color magnitude
diagram in Fig. 2.3. The main sequence and clump giants are correctly positioned
suggesting that the intrinsic luminosities of the stars in the LMC are nearly the
same as those near the solar system. Under this assumption, we can easily estimate
the distance to the LMC by using fV = LV /4π R2. In the magnitude system, this
is easy to do because the constants in the magnitude definitions were chosen so
that in the absence of absorption, the apparent magnitude is equal to the absolute
magnitude of a star at a distance of 10 pc:

V = MV + 5 log(R/10 pc) + A , (2.4)

where A takes into account absorption. Using the V band magnitudes of the clump
giants (MV ∼ 0.75 and V ∼ 19.25 in the LMC) and ignoring correction due to
absorption (small in this case), we find

RLMC ∼ 10 pc × 100.2(19.25−0.75) ∼ 50 kpc . (2.5)

This turns out to be correct to within 10%.
The traditional “distance ladder” techniques for measuring galactic distances are

variations of this calculation of the LMC distance. They all use different types of
objects of known luminosity called collectively “standard candles.” The technique is
accurate only if absorption is negligible or estimable and if the intrinsic difference in
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luminosities between the distant and nearby candles can be estimated. In the present
example, it is known that the chemical composition of stars in the LMC is slightly
different from that of stars in the solar neighborhood. This can make the luminosity
of, e.g., clump giants in the solar neighborhood slightly different from those in the
LMC and thereby modify distance estimates if not taken into account [43]. We note
that the use of different standard candles gives LMC distances that differ by of
order 5% [9].

The use of main sequence stars or clump giants as distance indicators is possible
only for distances < 1 Mpc beyond which these stars are too dim to be resolved.
For distances up to ∼ 50 Mpc it is possible to use Cepheid variable stars as dis-
tance indicators. Cepheids are a class of post-main sequence stars that have periodic
luminosities. Their absolute magnitudes are MV ∼ −4 or about 100 times brighter
than clump giants and thus identifiable at greater distances. Cepheid luminosities are
well-defined functions of their periods as can be seen in Fig. 2.5 for LMC Cepheids.
The absolute magnitudes of Cepheids can be determined from the small number that
have Hipparcos parallax measurements [44]:

MV = −1.43 − 2.81 log P , (2.6)

where P is the period in days. However, in view of the great number of LMC
Cepheids, most authors prefer to use LMC Cepheids to calibrate the period–
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Fig. 2.5 The apparent magnitude, V , (= V0) as a function of the period P in days for a sample
of Cepheids in the LMC from the OGLE collaboration [45]. The upper panel shows two types
of Cepheids, “fundamental” Cepheids that pulse in the fundamental frequency and “first overtone
Cepheids” that have periods one half that of fundamental Cepheids. The lower panel shows only
the fundamental Cepheids where the best fit is V = −2.765 log P +17.044. The Cepheid apparent
magnitudes can be used to determine the distance to the LMC by using the absolute magnitudes
of Hipparcos Cepheids. Alternatively, the apparent magnitudes can be used to find the Cepheid
absolute magnitudes by using the LMC distance determined by other methods
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Fig. 2.6 The discovery of a supernova at z = 0.43 by the Supernova Cosmology Project [46]. The
figure shows a 0.06 deg.2 portion of a CCD image of the sky taken with a ground-based telescope.
Most objects are distant galaxies. The panels labeled “3 weeks before” and “supernova discovery”
show zooms of the large image taken at three-week intervals. The “supernova discovery” panel
shows that one of the galaxies has an apparent increase in luminosity and a slight change in shape
due to a supernova explosion during the time between the two exposures. In the “difference” panel,
the numerically subtracted image shows only the supernova. The final panel shows the same region
of the sky taken with the Hubble Space Telescope. Because it does not suffer from the blurring
effects of the Earth’s atmosphere, the HST image shows the supernova explosion took place at the
edge of its host galaxy. Courtesy of Saul Perlmutter

luminosity relation. This strategy, of course, must use a LMC distance determined
using other objects, e.g. clump giants or eclipsing binaries (Exercise 2.8).

The brightest “stars” are supernova explosions (Fig. 2.6) that can occur in suffi-
ciently heavy stars at the end of their lives. It is believed that there are two funda-
mental types of supernovae. The first type consists of “core collapse” supernovae.
The progenitor of such supernovae are massive stars (M > 5M�) in which the core
has burned all the way to 56Fe. As soon as the core has grown to a mass of one
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Chandrasekhar mass4 (∼1.4M�), the core collapses to form a neutron star. It is
believed that this mechanism is responsible for supernovae classified spectroscopically
as types SNII, SNIb, and SNIc. The negative gravitational energy of the result-
ing neutron star 5 is compensated by the radiation of neutrinos of total energy
∼ 1056J. Neutrinos are radiated rather than photons because their long scattering
length makes it much easier for them to escape through the surrounding envelope
of stellar matter than for photons. Since the neutron star mass is always close to
the Chandrasekhar mass, these supernovae are “neutrino standard candles.” This
hypothesis was confirmed by the detection of neutrinos from SN1987a in the
LMC. The total energy radiated as photons is at most ∼ 1043J, much less than
the integrated neutrino luminosity. The photon luminosity is mostly powered by
the radioactive decay of 56Ni and other radioactive nuclei in the material outside
the collapsed core. This is seen in the photon luminosity as a function of time for
SN1987a, shown in Fig. 2.7.

The second and brighter type of supernova, SNIa, are the most useful for
cosmology. They are believed to be the thermonuclear explosion of carbon–oxygen
white dwarfs that are pushed beyond the Chandrasekhar mass by matter falling on
them from a binary partner. When the limit is reached, the star starts to implode
and the resulting temperature increase results in the explosive burning of the car-
bon/oxygen to nuclei near 56Ni. Most of the ∼ 1044J of nuclear energy released is
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Fig. 2.7 The light curve (total luminosity versus time) for the type II supernova SN1987a in the
Large Magellanic Cloud [47]. The curves show the energy released by the decay of the radioactive
nuclei believed to be responsible for the photon luminosity

4 The Chandrasekhar mass ∼ (�c/G)3/2/m2
p is the largest mass object that can be supported by

pressure of a degenerate electron gas against gravitational collapse.
5 The negative of the gravitational binding energy of the neutron star is ∼ G M2/r ∼ 1056J for a
Chandrasekhar mass neutron star of radius R ∼ 3 km.
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converted to the kinetic energy of the nuclei resulting in the complete disintegra-
tion of the star. As with core-collapse supernovae, the photon luminosity is mostly
powered by the radioactive decay of 56Ni to 56Co and then to 56Fe. Since the total
mass of 56Ni is generally between 40% and 70% of the Chandrasekhar mass, type
Ia supernovae are nearly “photon standard candles” making them very useful for
distance determinations. They are bright enough to be seen at redshifts near unity.
Their only problem is that they are rare, roughly one explosion per galaxy per cen-
tury remaining visible over a period of a month.

The “light curve” (flux versus time) of a typical SNIa is shown in Fig. 2.8. As
illustrated in Fig. 2.9, the luminosities at maximum light are correlated with the
color at maximum light and the event time duration. An empirical relation is

MB ∼ −19.2 − 1.52(s − 1) + 1.57c (2.7)

where c = (B − V ) + 0.057 at maximum light and the “stretch” s can be roughly
defined as the event time duration relative to the mean time duration of SNIa. This
relation is the “brighter-bluer” and “brighter-slower” relation. While not completely
understood it has plausible explanations. The brighter-bluer relation could reflect
absorption in the atmosphere of the supernova or in the interstellar medium of the
host galaxy. The brighter-slower relation could reflect the amount of 56Ni produced
since increased production implies both increased luminosity and increased opacity,
resulting in a longer time scale for photon escape.

Note that Fig. 2.9 includes 6 SNIa that occurred in galaxies or galaxy clusters
with Cepheid distances. These six supernovae calibrate the luminosity of type Ia
supernovae for their use a standard candles.
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Fig. 2.8 The light curve (apparent magnitude versus time) for a typical type Ia supernova
(sn2005cf [48]). The conventional (Vega-based) magnitudes in the Johnson–Cousin bands
(UBVRI, as marked) have been offset by (0.70,-0.15,-0.01,-0.18,-0.43) to correspond to AB mag-
nitudes reflecting the true flux. For clarity, the R-band curve has been shown only for t > 30 days
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Fig. 2.9 The B-band absolute magnitude, MB , vs. 1.52(s − 1) − 1.57c, where s is the “stretch”
and c = (B − V ) + 0.057 at maximum light. The open circles are a collection of nearby (0.01 <

z < 0.03) supernovae [2] for which the distance needed to convert apparent magnitudes to absolute
magnitudes was calculated from the redshift assuming h70 = 1. The filled circles are supernovae
in galaxies with Cepheid-determined distances [49]. The filled square is sn2005cf (Fig. 2.8. The
figure illustrates the “brighter-bluer” and “brighter-slower” relations for type Ia supernovae

The most luminous known objects are “quasars” or “QSOs” (quasi-stellar objects).
The luminosities can be up to 100 times that of a bright galaxy. They are believed
to consist of a massive black hole M > 106 M� surrounded by gas clouds. If this
is true, their source of energy would be the accretion of the surrounding gas by the
hole during which the increasing gravitational binding energy of the accreted matter
is accompanied by radiation of photons. The spectrum of a typical quasar is shown
in Fig. 6.8. The spectrum is non-thermal with a prominent peak due to “Lyman-α”
emission by atomic hydrogen (n = 2 → n = 1) in the surrounding gas. Being so
bright, quasars can be found at very high redshifts, the highest to date being z ∼ 6.

Quasars are important for cosmology for two reasons. First, being among the
oldest identified objects, they provide important clues for theories of structure
formation. In particular, structure formation must proceed sufficiently rapidly to
have produced such objects by z ∼ 6. The large quasar masses also suggest that
they may have played an important role in the formation of the first galaxies, as
also suggested by the fact that many galaxies now have central black holes of
mass ∼ 106 − 107 M� [50].

Second, quasar spectra show absorption lines due to elements in intervening
clouds of gas so they serve as an important probe of the intergalactic medium. The
spectrum in Fig. 6.8 exhibits a “Lyman-α” forest of absorption lines on the blueward
side of the quasar’s own Lyman-α emission. As photons travel to us from the quasar,
their energies are degraded by the cosmological redshift. When passing through a
cloud of redshift zcloud, a photon will be resonant at Lyman-α if the photons original
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energy E1 satisfies (zquasar+1)/(zcloud+1) = E1/ELy−α, where ELy−α is the energy
of the Lyman-α transition. The forest of absorption lines thus corresponds to a series
of clouds between us and the quasar with each cloud absorbing just those photons
whose energies have been degraded by the correct amount. The observed number
density of such clouds places important constraints on structure formation theory
and permits one to determine the quantity and chemical state of the intervening
hydrogen. In particular, we will see in Chap. 5 that the fact that any of the photons
blueward of-Lyman-α reach us indicates that most of the hydrogen between us and
high-redshift quasars is ionized. This fact is confirmed by the polarization of the
CMB (Chap. 7).

2.2 Galaxies

Galaxies are clusters of stars, gas, and dark matter, the largest of which contain 1011

order of stars. They have a variety of morphologies, loosely classified as “ellipti-
cals,” “spirals,” and “irregulars.” 6 The Milky Way is a typical spiral galaxy and the
characteristics of the solar neighborhood (Table 2.2) give an indication of the envi-
ronment of a typical galactic disk 8 kpc from its galactic center. We note especially

Table 2.2 The sources of mass and luminosity in the solar neighborhood, 8 kpc from the galactic
center [51, 18]. The dark matter is thought to have two components. The first is confined to the
galactic disk and has a density that is estimated from the movement of stars perpendicular to the
galactic plane. The second, “halo,” component is believed to be roughly spherical in shape. Its total
mass is deduced from the galactic rotation curve

Component Mass density Luminosity density
(M� pc−3) (L� pc−3)

Visible stars 0.044 0.067

Dead stars 0.028 0

Gas 0.042 0

Dark matter < 0.07 0
(disk)

Dark matter 0.003–0.017 0
(halo) (0.1–0.7 GeV cm−3)

6 Elliptical and spiral galaxies are also referred to as “early-type” and “late-type” galaxies. This
historical classification is misleading because elliptical galaxies are believed to be in a later stage
of evolution, being the result of mergers of smaller (spiral) galaxies. A handy way or remembering
the correspondence is to note the “elliptical” and “early-type” both begin with the letter “e” while
“spiral” and the German word for “late” both begin with the letter “s.”
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the mass-to-light ratio, M/L ∼ 2.5M�/L�, which is, within a factor two or so,
typical for the visible parts of most galaxies.

As for a star, the only directly observable properties of a galaxy are its position
in the sky, its photon flux, and the shape of its spectrum (Fig. 2.10). The position
and widths of spectral lines in the spectrum and their variation over the surface
of a galaxy can be used to determine the galactic redshift as well as velocity dis-
persion of the stars. Luminosities can be determined only if the distance to the
galaxy is known, as is the case for a few galaxies nearer than ∼50 Mpc through
the observation of Cepheid variable stars in the galaxy. The resulting luminosities
have calibrated empirical relations between luminosities and velocity dispersions,
the Faber–Jackson or Fundamental Plane relation for elliptical galaxies and the
Tully–Fisher relation for spiral galaxies (Fig. 2.11). Once calibrated, these relations
can be used to measure distances out to R ∼ 200 Mpc.

Of course, the distance to any galaxy can be deduced from the redshift of its
spectrum if one assumes a value of H0. Over the last decade, the large redshift
surveys of galaxies, SDSS and 2dFRS, have produced ∼ 106 redshifts, giving a
rather complete picture of galaxies out to z ∼ 0.2. Figure 2.12 shows the luminosity
distribution of SDSS galaxies at z ∼ 0.1. The number of galaxies per unit volume
and per unit luminosity interval is well described by the “Schechter” distribution:

dngal

dV dL
= φ∗

L∗

(
L∗
L

)α

exp(−L/L∗) α ∼ 1 , (2.8)

where φ∗, L∗, and α are constants. The distribution is particularly well measured at
z ∼ 0.1 by SDSS (Fig. 2.12) who gives, for luminosities measured near λ ∼ 560 nm

φ∗ = (0.511 ± 0.016) × 10−2h3
70Mpc−3

L∗ = (2.45 ± 0.02)h−2
70 × 1010 L� . α = 1.05 ± 0.001 . (2.9)

The factors of h70 comes from the use of Hubble’s law to determine galactic dis-
tances, R = H−1

0 z. The logarithmic divergence in the luminosity distribution at
small L makes the total number density of galaxies ill-defined. However, the low-
luminosity galaxies produce little light so the total light output per unit volume is
(fortunately) finite. For SDSS galaxies, the integral of the Schechter distribution
gives:

J =
∫ ∞

0
dLφ∗ exp(−L/L∗) ∼ L∗φ∗ = 1.29 h70 × 108 L�Mpc−3 (2.10)

While the number of galaxies is not well defined, 95% of the light comes from
galaxies brighter than ∼ 109 L�. The integral then gives the number density of bright
galaxies:

ngal =
∫ ∞

109
dL

φ∗
L

exp(−L/L∗) = 0.015h3
70 Mpc−3 . (2.11)
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Fig. 2.10 Typical spectra (energy per unit wavelength) of elliptic (top), spiral (middle), and star-
forming (bottom) galaxies [52]. Being the sum of its stellar spectra, galactic spectra show the same
spectral lines as those in Fig. 2.1. Galactic emission lines (present in the lower spectrum) are due
to hot interstellar gas that is excited by ultraviolet photons from massive stars or QSOs within the
galaxy. Also shown are the bandpasses of the SDSS filters [39]



56 2 Observational Cosmology

Fig. 2.11 The I-band absolute magnitude of spiral galaxies with Cepheid distances [53]. The mag-
nitude is a linear function of log Δv where Δv is the velocity dispersion in km s−1
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Fig. 2.12 The number density (solid line, right scale) and luminosity density (dashed line, left
scale) of SDSS galaxies at redshift z ∼ 0.1 [54]. The lower scale gives the absolute magnitude at
λ ∼ 560 nm (M570� = 4.76) while the upper scale give the galactic luminosity in units of L�
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The total mass in stars for a given galaxy can be deduced from the galaxy’s
spectrum with the help of stellar evolution models. For SDSS galaxies [55], a galaxy
with L = L∗ has on average a total stellar mass of 6 × 1010 M� corresponding to
M/L = 6/2.45 = 2.45. Multiplying this by J from (2.10) and dividing by the
critical density gives the contribution of stars to the universal density

Ωstars = 0.0023 . (2.12)

This is a factor 6 greater than the contribution of atomic hydrogen gas (HI) contained
in galaxies deduced from galactic 21 cm emission [56]

ΩH I = 3.5 × 10−4 . (2.13)

There is a comparable amount of molecular hydrogen.
The visible parts of galaxies bathe in an extensive “halo” of dark matter. The

density profile of these halos (and of clusters of galaxies) is often described by a
“NFW” profile proposed by Navarro, Frenk and White [57] on the basis of n-body
simulations of galaxy formation:

ρ(r ) ∝ 1

r (1 + r/rs)2
, (2.14)

where rs parameterizes the size of the halo. The density has a singularity at r = 0
though this does not lead to a singularity in the potential or mass. The density falls
like r−3 for r � rs so the integrated mass of the halo rises logarithmically with r
and the total halo mass is undefined by the density profile. However, the halo mass
can be defined as the mass within a radius where objects are effectively bound.
Structure formation theory informs us that within this radius the mean density is
of ∼ 200 times the mean universal density (Eq. 7.17).

Because of its simplicity, a distribution of mass that is often used as a first approx-
imation for galaxy clusters and galaxy halos is that for an “isothermal sphere”:

Gρ(r ) = σ 2
v

2πr2
, (2.15)

where σv is the one-dimensional velocity dispersion of objects bound in the poten-
tial. The r -independent rotational velocity for circular orbits is

√
(2)σv . Having an

r dependence that is intermediate between the small and large r dependence of the
NFW profile, the isothermal profile gives results that over a large range of r resemble
those of more realistic profiles.

Galactic mass profiles can be derived from the velocities of stars or gas clouds
orbiting a galaxy (Exercise 2.7). From Newtonian dynamics, the circular velocity
v(r ) at a distance r from a galactic center is given by v(r )2 ∼ G M(r )/r where M(r )
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is the mass within r . Figure 2.13 shows the rotation curve, v(r ), of a spiral galaxy.
The velocity is that of clouds of atomic hydrogen determined by the Doppler shift
of the 21 cm hyperfine line of the hydrogen ground state. The rotation curve is flat
for distances beyond the visible radius of the galaxy, indicating M(r ) ∝ r . Since
the rotation curve stays flat out to the last measured point, r ∼ 30 h−1

70 kpc, one
can deduce only a lower limit on the galactic mass or mass-to-light ratio: M/L >

20 h70 M�/L�. The factor of h70 comes from the use of Hubble’s law to convert
observed angular sizes Δθ to physical sizes r = R/Δθ = H−1

0 z/Δθ .
The study of weak gravitational lensing of background galaxies (z > 0.5) by

foreground galaxies (z < 0.2) has overcome some of the limitations of rotation
curve measurements. As discussed in detail in Sect. 3.8, the trajectories of light from
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Fig. 2.13 The rotation curve of the galaxy NGC3198 [58]. The upper panel shows the luminosity
distribution indicating that most of the luminous matter is concentrated at distances less than 5 kpc
from the center. The lower panel shows the measured rotation curve. The curve remains flat far
beyond the luminous radius indicating the presence of dark matter far from the center. The curve
labeled “stars and gas” shows the rotation curve that would be expected if the mass distribution
followed the luminosity distribution with a mass-to-light ratio of 3.8M�/L�. The horizontal scale
supposes H0 = 75 km s−1Mpc−1
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background galaxies are bent in the gravitational field of a foreground galaxy. This
results is a small distortion of the shape of the background galaxies that can be used
to deduce the mass of the foreground galaxy (Eq. 3.113). For a given background
galaxy, the effect is not measurable because the unperturbed shape is not known.
However, if the shapes of many background galaxies are measured, one can find
systematic stretching of the galaxies in the direction tangent to circles centered on
the foreground galaxy. Since the effect of generally less than 1% for a given galaxy,
it can only be seen by averaging over many foreground galaxies. This has been
done with SDSS galaxies [55] yielding the density profiles shown in Fig. 2.14. The
total galactic mass can be found by integrating the profile out to a radius where the
mean density is a factor ∼ 200 greater than the mean universal density. The data in
Fig. 2.14 imply that a galaxy with L = L∗ is surrounded by a halo of mass 1.4 ×
1012 M� [55], corresponding to a mass-to-light ratio

M/L = 140/2.45 ∼ 60 . (2.16)

Multiplying this by J (2.10) and dividing by the critical density gives the contribu-
tion of galaxies to the universal density

Ωgal = 0.054 . (2.17)

Since ΩM ∼ 0.27, this means that ∼ 80% of the mass is in intergalactic space.

Fig. 2.14 Galactic mass surface densities (density integrated along the line of sight) as a function
of distance from the galactic center as deduced from the weak lensing by SDSS galaxies of back-
ground galaxies [55]. The lenses are SDSS galaxies with 4 < Mstars/1010 M� < 8. The surface
densities are deduced from the tangential shear given by Eq. (3.113). Figure courtesy of Rachel
Mandelbaum
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Finally, we note that one would expect that the ratio of total galactic baryonic
mass to total galactic mass would be roughly the universal value, Ωb/ΩM ∼ 0.17.
For an L∗ of mass 1.4 × 1012 M� this would imply a baryonic mass of 2 × 1011 M�
to be compared with the estimated stellar mass 6 × 1010 M�. This means that within
galaxies, about 25% of baryonic material has been transformed into stars.

2.3 Galaxy Clusters

Galaxies are often gravitationally bound in groups. Our own galaxy is a member of
the “Local Group” containing ∼ 30 small galaxies plus three large spirals, the Milky
Way, M31 (Andromeda), and M101. The largest known bound structures are “rich
clusters” of galaxies that can contain thousands of galaxies and up to 1015 h−1

70 M�
in volumes of a few Mpc3. This mass corresponds to the mean mass contained in
a sphere of radius ∼ 10 h−1

70 Mpc so regions within 1 Mpc of the centers of rich
clusters have over-densities of order 1000. The nearest rich cluster is the Virgo
Cluster at a distance of ∼ 20 Mpc. The number density of clusters as a function
of their mass is shown in Fig. 2.15. There are ∼ 10−5 clusters per (h−1Mpc)3 with

Fig. 2.15 The number density of clusters with masses greater than M500 as a function of M500

[100] as determined by Chandra X-ray observations. (M500 is the mass contained within the radius
where the mean cluster density is a factor 500 greater than the universal density.) The data is shown
for two redshift ranges. There are a factor ∼ 3 more clusters at low redshift than at high redshift
meaning that clusters are still in the construction process. The evolution of the number of clusters
with redshift is consistent with that expected for a ΛCDM universe with ΩM ∼ 0.0.34 ± 0.08.
(The ratio between the high- and low-redshift densities would be ∼ 20 in a ΩM = 1 universe.)
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a mean mass ∼ 1014h−1 M� which allows us to estimate the total mass contained in
such large clusters:

Ωcluster ∼ 109h2 M�Mpc−3

3H 2
0 /8πG

∼ 0.003 (2.18)

Comparing with Ωgal (2.17), we see that ∼ 5% of galaxies are in large clusters.
Clusters like that in Fig. 2.16 are rather ill-defined when viewed as simple col-

lections of galaxies. They become much more distinct when observed through their
X-ray emission. The X-rays are produced through bremsstrahlung by electrons in
the ionized intergalactic gas. It is believed that this gas constitutes the majority of
the baryonic mass of clusters.

Cluster masses can be most easily estimated by measuring the velocity disper-
sion of the member galaxies and then applying the virial theorem (Exercise 2.6).
More modern techniques use the X-ray temperature (Exercise 2.10) or the shapes
of background galaxies that are deformed by the gravitational lensing action of the
cluster (Sect. 3.8). The most massive clusters have mass-to-light ratios of order 200

Fig. 2.16 The galaxy cluster RXJ1347.5-1145 [59]. The contours show the level of emission of
X-rays by the ionized intergalactic gas in the cluster. The cluster is a “gravitational lens” for galax-
ies behind it. The images of distant lensed galaxies are in the arc-shaped objects marked with the
letters A, B, C, D, and E. Courtesy of S. Schindler
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M

L
∼ 200 h70 M�/L� . (2.19)

The mass of the gas in a cluster can be estimated from the observed X-ray flux
(Exercise 2.10). It is an order of magnitude less than the total mass [99]:

Mgas

Mtotal
∼ 0.12 h−3/2

70 ⇒ Mbaryons

Mtotal
∼ 0.16 h−3/2

70 . (2.20)

where the second form includes the mass of stars and gas in individual cluster
galaxies. This factor of 6 between total mass and baryonic mass is perhaps the best
evidence for non-baryonic dark matter.

An important prediction of CDM models is that the dark matter is made up of
particles that have very weak non-gravitational interactions. This was confirmed by
observations of the “Bullet cluster” [60] shown in Fig. 2.17. Superimposed on the
optical and X-ray images are mass contours as derived from gravitational lensing
of background galaxies. One sees that the Bullet cluster actually consists of two
clusters that recently passed through each other. The CDM and the galaxies have
only gravitational interactions so these two components more or less retain their
form after passing through the gravitational potential of the other cluster. On the
of other hand, the ionized gas consists of particles that scatter on each other. This
causes “frictional” forces on the gas that slows it down with respect to the CDM.
The result is a displacement of the gas and dark matter, as clearly demonstrated in
the figure. This constitutes “visual proof” of the existence of non-collisional dark
matter.

2.4 Large-Scale Structure

At scales above that of galaxy clusters, large redshift surveys have shown that galax-
ies appear to be grouped along filamentary “walls” sometimes surrounding great
“voids” containing few visible galaxies. Figure 2.18 shows a “slice” of the sky as
seen in by SDSS [61]. The largest walls or voids have sizes of order 100 h−1

70 Mpc.
These structures are not bound and, at the present epoch, are still participating
in the universal expansion though at a reduced rate because of their self-gravity.
As discussed in Sect. 1.2.6, these density fluctuation are unlikely to form bound
structures in the future because of the acceleration of the expansion caused by dark
energy.

At scales >100 Mpc the density is relatively uniform (Fig. 7.4). The character-
ization of the small fluctuations above these scales gives important clues about the
matter content of the universe. This will be discussed in Chap. 7.
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Fig. 2.17 Optical (top) and X-ray (bottom) images of the “Bullet Cluster” [60]. Mass contours as
derived from a lensing analysis are shown. The cluster actually consists of two mass concentrations
(shown by the lensing mass contours) with two concentrations of gas (shown by the X-ray image)
displaced from the centers of mass. The interpretation is that the two clusters recently passed
through each other causing the collisional gas to be displaced with respect to the non-collisional
dark matter and galaxies. This provides “visual proof” of the existence of weakly interacting dark
matter
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Fig. 2.18 Slices through the SDSS three-dimensional map of the distribution of galaxies. Each
slice covers about 7 hours (105 deg.)in right ascension and 2.5 deg. in declination. Our galaxy is
positioned at the intersection of the northern and southern slices. The radial coordinate is given as
the redshift, z. “Walls” and “voids” are seen up to sizes of Δz ∼ 0.02 ⇒ ΔR ∼∼ 86 h−1

70 Mpc.
Courtesy of the Sloan Digital Sky Survey

2.5 Dark Matter

It is clear that there will always be doubts about the ΛCDM cosmological model as
long the dark matter has not been identified. Here, we review efforts to detect the
two favored non-baryonic candidates, WIMPs and axions. We also review limits on
the numbers of dark astrophysical objects (MACHOs) in the galactic halo, which
appear to have eliminated most such objects as candidates for galactic dark matter.
Finally, we discuss the possibility that dark matter consists of cold gas.

2.5.1 WIMPs

Since the 1980s, WIMPs (weakly interacting massive particles) have been the stan-
dard cold dark matter (CDM) candidate. Supersymmetric extensions of the standard
model of particle physics (invented to solve problems unrelated to dark matter) pre-
dict the existence of such particles. The fact that they have not yet been seen at accel-
erators suggests that they must have a mass mχ > 30 GeV [62]. The particles would
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have been thermally produced in the early universe (Chap. 6) yielding a cosmologi-
cal abundance inversely proportional to their annihilation cross-section. Supersym-
metric models contain many free parameters yielding relic densities within a few
orders of magnitude on either side of the critical density.

Today, WIMPs would be expected to inhabit the halos of spiral galaxies like our
own. From the galactic rotation velocity, one can estimate the local density to be
about 0.3 GeV cm−3 [17]. The orbital velocities of objects trapped in the Galaxy are
of order 250 km s−1 so the local WIMP flux is of order 107×(1 GeV/mχ) cm−2 s−1.

Goodman and Witten [63] suggested that these WIMPs could be detected via
the observation of nuclei recoiling from WIMP-nucleus elastic scatters. Galactic
WIMPs with masses in the GeV range have kinetic energies in the keV range so
we can also expect nuclear recoils in the keV range. The rate is proportional to the
elastic WIMP-nucleus scattering cross-section which depends on the parameters of
the particle physics model. Typical values of the supersymmetric WIMP-nucleon
cross-section are of order 10−44 cm2, corresponding to a very weak interaction.

WIMP scatters can be observed with “calorimetric” techniques (Fig. 2.19).
Unfortunately, it is difficult to distinguish WIMP events from events due to beta or
gamma radioactivity (also shown in the figure). Statistically, a signal from WIMPs
can be isolated through the expected ∼ 5% seasonal modulation of the event rate
[17, 64]. This modulation is due to the fact that while the Solar System moves
through the (isotropic) WIMP gas, the Earth’s motion around the Sun alternately
adds or subtracts from the WIMP-detector velocity. Alternatively, certain detectors
can distinguish nuclear recoils from the Compton-electron background, e.g. hybrid
cryogenic detectors that detect two types of excitations, phonons and ionization or

β
γ

γ

χ

χ

nuclear
recoil 

Compton
electron

radioactive
impurity

shielding

sensor

Fig. 2.19 A generic “calorimetric” WIMP detector surrounded by its shielding. The galactic
WIMP χ enters the detector, scatters off a nucleus, and leaves the detector. The recoiling nucleus
creates secondary excitations (e.g., scintillation light, ionization, phonons) that can be detected by
the sensor. Also shown is a background event due to the ambient radioactivity yielding a Compton
electron in the detector
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phonons and scintillation. The ratio of the two signals is different for nuclear recoils
and Compton electrons, allowing background rejection.

The present generation of experiments using hybrid cryogenic calorimeters [65]
and xenon ionization–scintillator calorimeters [66] have backgrounds that make
them sensitive to the supersymmetric WIMP candidates with the highest scat-
tering cross-sections. The present limits are shown in Fig. 2.20. Particles with
mχ ∼ 100GeV must have cross-sections on nucleons less than ∼10−43cm2 to
have escaped detection. The cross-section limits are very weak for particles with
m <1GeV because such light particles create nuclear recoils with energies too small
to be detected.

We note that the limits shown in Fig. 2.20 are in nominal conflict with an exper-
iment using NaI detectors [67]. This experiment reported an annual modulation of
the event rate similar to what one would expect for WIMPs. The source of the
disagreement is not understood.

Besides direct detection, it is possible to detect WIMPs “indirectly” through
the detection of particles produced in present-day WIMP-antiWIMP annihilation.
While WIMP annihilation ceased in the early universe because of the univer-
sal expansion, it started up again once the WIMPs became gravitationally bound
in galactic halos. These annihilations are a source of cosmic-ray photons, elec-
tron/positrons and proton/antiprotons and the observed fluxes are sometimes
interpreted as being due to WIMP annihilation [68] but it has so far proved impos-
sible to rule out astrophysical sources for the particles.
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Fig. 2.20 Current limits on WIMP mass and WIMP-nucleon scattering cross-section from direct-
detection experiments using xenon [66] (dashed line) and germanium [65] (solid line). The region
above and to the right of the curves are excluded. The shaded regions show the region of mass-
cross-section space favored by supersymmetric models
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Fig. 2.21 The capture of a WIMP χ in the Earth. If the WIMP loses sufficient energy in a collision
with a nucleus, the WIMP’s velocity will drop below the escape velocity placing it in an orbit
intersecting the Earth. The subsequent collisions will eventually thermalize the WIMP in the center
of the Earth. An annihilation with a thermalized anti-WIMP may lead to the production of neutrinos
that can be detected at the surface. As shown, the background for such events comes from neutrinos
produced by decays of pions and kaons produced by cosmic rays in the Earth’s atmosphere

The annihilation rate is further enhanced inside material objects like the Sun or
Earth. This is because it is possible for WIMPs to be trapped in such objects if,
while traversing the object, the WIMP suffers an elastic collision with a nucleus
(Fig. 2.21). If the scatter results in a WIMP velocity below the object’s escape
velocity, the WIMP will find itself in an orbit that passes through the object. After
repeated collisions the WIMP will be thermalized in the core. In the case of super-
symmetric dark matter, the trapping rate in the Sun is sufficiently high that the con-
centration of WIMPs reaches a steady state where trapping is balanced by either
annihilation (for high-mass WIMPs) or by evaporation (for low-mass WIMPs).
For the Sun, the dividing line between low mass and high mass is ∼ 3 GeV so
accellerator limits (m > 30 GeV) suggest that WIMPS should be annihilating inside
the Sun.

The only annihilation products that can be seen emerging from the Sun or Earth
are, of course, neutrinos. The flux of such neutrinos can be calculated for a given
WIMP candidate and the flux compared with that observed in underground detec-
tors. The observed flux is entirely understood as being due to the decay of cosmic-
ray pions and kaons in the Earth’s atmosphere (Fig. 2.21). Certain supersymmetric
WIMPs would give a higher flux and are thus excluded [69, 70].

Because the observed flux of neutrinos is due to an unavoidable background, the
only improvements in the limits from these techniques would come from the obser-
vation of a small excess of neutrinos coming from the direction of the Sun or center
of the Earth. The most reasonable possibility is to search for upward-going muons
coming from νμ interactions in the rock below a detector. Calculations [71] indicate
that a 1 km2 detector with a muon energy threshold of ∼ 10 GeV would be needed
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to observe a statistically significant solar signal for typical supersymmetric dark
matter. Efforts in this direction are underway by instrumenting the Mediterranean
[72] or the Antarctic Continental Glacier [73] to observe Cerenkov light produced by
muons.

2.5.2 Axions

Axions [74] are hypothetical light scalar particles invented to prevent CP violation
in the strong interactions.7 They would have been produced in the early universe
via both thermal and non-thermal mechanisms and might produce near-critical relic
densities if they have masses in the range ma ∼10−5 eV to ∼10−3 eV. It was also
recently emphasized [29] that axions with smaller masses, ma ∼ 10−8 eV, could
give a near critical density in some models that require the application of anthropic
selection.

Axions act as cold dark matter and should be present in the galactic halo. The
most popular detection scheme for galactic axions is based on the expectation [75]
that axions can “convert” to a photon of frequency ν = mac2/h in the presence of a
magnetic field. If a microwave cavity is tuned to this frequency, the axions will cause
an excess power to be absorbed (compared to neighboring frequencies). If the halo
is dominated by axions, the predicted power is small, about 10−21 W for a cavity
of volume 3 m3 and a magnetic field of 10 T. Since the axion mass is not known,
it is necessary to scan over the range of interesting frequencies. Pilot experiments
[76, 77] have produced limits on the local axion density about a factor 30 above the
expected density. Experiments are now in progress to search for axions of masses in
the range ma ∼10−5 eV to ∼10−3 eV at the required level of sensitivity [78].

2.5.3 MACHOs

Unless the current estimates of the baryon density, Ωb = 0.0456 ± 0.0015 are
incorrect, baryons cannot account for all of the dark matter. Nevertheless, baryons
could account for galactic dark matter if they are in a form that neither absorbs nor
emits light in significant quantities. The various possibilities have been reviewed
in [79]. The simplest way to hide baryons is to place them in compact objects that
either do not burn (e.g., brown dwarfs) or have ceased to burn (e.g., white dwarfs,
neutron stars, black holes). Such dark objects in a galactic halo are called MACHOs
for MAssive Compact Halo Objects.

Brown dwarfs have masses < 0.07M� making them too cool to burn hydro-
gen. They were originally the favored MACHO candidates because they com-
pletely avoid constraints based on the production of background light or pollution

7 Such a violation would produce a permanent nucleon electric dipole moment in violation of
experimental limits [18].
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Fig. 2.22 A schematic of the lensing of a star in the Large Magellanic Cloud (LMC) by an unseen
object in the galactic halo. While the two images cannot be easily resolved, the combined light
from the two images gives a transient amplification of the light from the star as the unseen object
passes near the line-of-sight. The light curve for a point source is shown in Fig. 2.23

of the interstellar medium with heavy elements through supernova explosions [80].
MACHOs in the form of black holes could also avoid the Ωb constraint if they are
“primordial” black holes that were produced before the epoch of nucleosynthesis.

Paczyński [81] suggested that MACHOs could be detected through their gravi-
tational lensing of visible background stars in the Large Magellanic Cloud (LMC)
(Fig. 2.22). This small galaxy is at a distance of 50 kpc from Earth.

The theory of gravitational lensing will be presented in Sect. 3.8. As the MACHO
approaches the line-of-sight to the background star, two images are formed. It turns
out that in the case of lensing by stellar objects in the galactic halo, the angle sepa-
rating the two images is small ( <1 milliarcsec). This type of gravitational lensing is
therefore referred to as “microlensing.” Earth-bound telescopes cannot resolve the
two images because atmospheric turbulence smears images so that stellar objects
have angular sizes of order 1 arcsec. The only observable effect is therefore a tran-
sient increase of the total observed light as the MACHO moves toward and then
away from the line-of-sight. The amplification is

A = u2 + 2

u
√

u2 + 4
, (2.21)

where u is the distance of closest approach of the (undeflected) line-of-sight to the
deflector in units of the “Einstein radius” RE =

√
4G M Lx(1 − x)/c2 where L is

the observer–source distance, Lx is the observer–deflector distance, and M is the
MACHO mass.
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The amplification is greater than 1.34 when the distance to the line-of-sight is
less than RE. This amplification corresponds to a reasonable observational threshold
since photometry can “easily” be done to better than 10% accuracy. At a given
moment, the probability, P , of a given star being amplified by more than a factor
1.34 is just the probability that its undeflected light passes within one Einstein radius
of a MACHO:

P ∼ nMACHO L π R2
E , (2.22)

where nMACHO is the mean number density of MACHOs between us and the LMC
and L is the distance to the LMC. If the entire halo is comprised of MACHOs, the
density of MACHOs is roughly nMACHO ∼ Mhalo/(M L3) where Mhalo is the total
halo mass out to the position of the LMC. Using the expression for the Einstein
radius, we find that P is independent of M and determined only by the velocity of
the LMC:

P ∼ G Mhalo

Lc2
∼ v2

LMC

c2
. (2.23)

The LMC is believed to orbit the galaxy with vLMC ∼ 200 km s−1 (corresponding to
a flat rotation curve out to the position of the LMC). In this case, P is of order 10−6.
More detailed calculations give P = 0.5 × 10−6 [82].

Since the observer, star, and deflector are in relative motion, a sizable amplifi-
cation lasts only as long as the undeflected light beam remains within the Einstein
radius. The light curve for a star near the center of the Milky Way lensed by a star
in the Milky Way disk is shown in Fig. 2.23. The time scale of the amplification is
the time tE for the deflecting object to cross one Einstein radius with respect to the
observer and source. For the lensing of stars in the LMC by objects in our halo, the
relative speeds are of order 200 km s−1 and the position of the deflector is roughly
midway between the observer and the source (x ∼ 0.5). The mean tE is then

tE ∼ RE

200 km s−1
∼ 75 days

√
M

M�
. (2.24)

The observed tE distribution can therefore be used to estimate the mass of the
MACHOs if one assumes that they are in the galactic halo.

Three groups, the MACHO, EROS and OGLE collaborations have published
results of searches for events in the directions of the LMC and the SMC (the neigh-
boring Small Magellanic Cloud). The limits are shown in Fig. 2.24. The lack of
events with tE < 15 days allowed the two groups to exclude as the dominant halo
component objects with masses in the range 10−7 M� < M <10−1 M� [84]. These
limits exclude as a major halo component brown dwarfs of masses ∼ 0.07M�.
Furthermore, the EROS collaboration observed no events with tE < 400days and
this excludes MACHOs with masses less than ∼30M�. The MACHO collaboration
has, however, observed 13 events of mean duration ∼50 days [85]. If interpreted
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Fig. 2.23 A microlensing event observed by the EROS collaboration [83]. The lensed star is near
the center of the Milky Way and the lens is a faint star in the disk of the Milky Way

as being due to dark lenses in the galactic halo, the rate corresponds to a fraction
f =0.16 of the total halo mass being comprised of MACHOs. The range of observed
tE correspond to halo objects of mass ∼0.4M�. However, the results of the EROS
group appears to rule out this possibility, suggesting that the events observed by the
MACHO collaboration are due to lensing by stars in the LMC itself. (The MACHO
group monitored mostly very dense regions of the LMC where such so-called “self-
lensing” may have a high rate.)

Microlensing searches for dark objects are also being performed for the nearby
spiral galaxy M31 [92]. Events have been observed but there is no consensus on the
amount of MACHO dark matter that they represent.

The microlensing limits toward the Magellanic clouds appear to rule out
MACHOs as the dominant dark matter for MACHO masses less than ∼ 30 M�.
MACHOs with higher masses are mostly ruled out as dark matter candidates
because they would disrupt bound systems as they pass through the disk of the
Milky Way. The various limits are shown in Fig. 2.24.

2.5.4 Cold Gas

A second way to hide baryons in galactic halos is to place them in small clouds
of cold gas comprised of primordial helium and molecular hydrogen [12]. The
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Fig. 2.24 Upper limits on the contribution of MACHOs to the halo of the Milky way as a function
of MACHO mass. The curves labeled EROS [86], EROS-MACHO [84], and MACHO [87] are
limits deduced from the lack of microlensing events toward the LMC. The curves labeled “wide-
binary abundance” (controversial) [88], “globular cluster abundance” [89], and “disk stability” [90]
are deduced from the lack of disruption of bound structures by passing MACHOs. The cross at a
halo fraction of ∼ 0.16 for a MACHO mass of ∼ 0.4M� corresponds to the microlensing events
seen by the MACHO collaboration [85] as corrected for variable star contamination [91]. The strict
EROS limit at this mass suggests that the MACHO collaboration events are not due to lensing by
MACHOs in the Milky way halo but, rather, by faint stars in the LMC itself

hydrogen must be molecular in order to escape detection via 21 cm emission by
atomic hydrogen. The gas must be in clouds because a spatially uniform gas would
lead to unobserved absorption of extragalactic sources at molecular transitions [93].
Clouds of a sufficiently high density would be sufficiently rare that most lines-of-
sight would have no such absorption.

While this proposal is very efficient in hiding the gas, the plausibility of produc-
ing such quantities of molecules is controversial. In galactic disks, molecules are
believed to be produced primarily on the surfaces of dust grains and this would not
be possible in a primordial mixture of gas.

Limits of the quantity of cold molecular gas clouds near the Milky Way disk
have been obtained from limits on the flux of high-energy photons that would be
produced by cosmic-ray interactions in the clouds [94]. Limits on the amount in the
halo are more difficult to obtain. Under certain conditions, molecular clouds should
be observable in microlensing surveys, either in our Galaxy by using the Magellanic
Clouds [95] or in galaxy clusters by using background quasars [96].
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2.6 The Cosmological Parameters

2.6.1 H0

The current universal expansion rate, H0, plays several roles in cosmology. Its
inverse, the Hubble time tH , is the time scale of the expansion giving the order of
magnitude of the time elapsed since the beginning of the present epoch of classical
expansion after the end of the inflationary epoch:

t0 = H−1
0 f (ΩM,ΩΛ) , (2.25)

where the function f (ΩM,ΩΛ) takes into account acceleration or deceleration and
will be calculated in Chap. 5. The Hubble distance, dH = c H−1

0 , gives the scale of
the present classical horizon and the relation between the distances and the redshifts
of nearby galaxies

R = c H−1
0 z z 	 1 . (2.26)

H0 determines the critical density

ρc = 3H 2
0

8πG
. (2.27)

In a universe with ΩΛ = 0, the critical density determines the dividing line between
universes that will continue to expand eternally and universes that will eventually
contract.

Finally, as we will see in the next section, H0 enters into measurements of uni-
versal densities in various ways, and will therefore be needed to compare densities.
For example, the density of photons is directly measured giving ργ ∝ Ωγ H 2

0 . The
theory of primordial nucleosynthesis allows us to determine the baryon-to-photon
ratio, η ≡ nb/nγ, yielding an estimate of ρb ∼ mpηργ ∝ Ωb H 2

0 . On the other hand,
observations of BAO and high-redshift supernovae give directly an estimate of ΩM

and ΩΛ. Conclusions about the relative quantities of photons, baryons, dark matter,
and dark energy therefore depend on H0. This fact makes the expected anisotropies
of the CMB depend on the value of H0. The precise value given in Table 1.1,
H0 = 70.5 ± 1.3 km s−1Mpc−1 is based on CMB studies discussed in Chap. 7

While less precise than the estimates based on CMB anisotropies, the value of
H0 measured locally from Hubble’s law remains an essential consistency test of
cosmology. Hubble’s law is

v = H0 R , (2.28)
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where v is the recession velocity of a galaxy (easily determined from the redshift of
the galaxy’s spectral lines) and R is the distance of the galaxy. The law applies in
the velocity range 10−2c < v < 10−1c, the lower limit necessary to neglect random
peculiar velocities and the upper limit to neglect relativistic corrections that depend
on q0. Galaxies in this redshift range are called “Hubble flow” galaxies.

The Hubble Key project [9] on the Hubble Space Telescope (HST) provided a
breakthrough in the measurement of H0 giving a value with a precision of ∼ 10%:

H0 = (72 ± 8) km sec−1 Mpc−1 . (2.29)

Reported values of H0 over the previous decade had spanned a range over nearly a
factor 2 from H0 ∼ 50 km s−1Mpc−1 to H0 ∼ 90 km s−1Mpc−1. The Hubble Key
project “Hubble diagram” on log-log scale is shown in Fig. 2.25

The primary difficulty in determining H0 comes from the difficulty in determin-
ing the distances to galaxies. Very loosely speaking the various methods can be
separated into “astrophysical methods” that are calibrated with the “distance ladder”
and “physical methods” giving directly galactic distances.

Most of the points in Fig. 2.25 use the Hubble Key Project distance ladder sum-
marized in Table 2.3. There are four steps on this ladder: the Milky Way, the large
Magellanic Cloud, other nearby galaxies (100 kpc < R < 30 Mpc), and Hubble
flow galaxies (60Mpc < R < 400 Mpc). Only objects on the last step can be
used to measure H0. Generally speaking, the distance, R, to an object on a given
step is deduced from its observed light flux, f = L/4π R2, where L is the known

SBF
FP
TF
SNIa

log10 z

lo
g 1

0 
(R

 / 
1M

pc
)

−2 −1.5 −1

3

2

−2.5
1

Fig. 2.25 The Hubble diagram of the Hubble Key Project [9]. The plot shows distances to galaxies
vs. their redshift with distances determined by the techniques as marked
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Table 2.3 The distance ladder used by the Hubble Key Project [9]. The four steps are (1) nearby
Milky Way stars measured by parallax; (2) the Large Magellanic Cloud measured mostly by
standard-candle stars calibrated locally by parallax (Fig. 2.3); (3) nearby galaxies measured by
Cepheids variable stars calibrated in the Large Magellanic Cloud (Fig. 2.5); and (4) “secondary”
distance indicators calibrated in nearby galaxies

Objects Method

Milky Way stars (R < 200 pc) Parallax (Hipparcos)

Large Magellanic Cloud Cepheid variables......μ = 18.57 ± 0.14
(∼ 1000 Cepheids) Eclipsing variables...........18.33 ± 0.05

SN1987a rings..................18.47 ± 0.08
Red Giants......................18.64 ± 0.05
Red Clump......................18.27 ± 0.11
RR Lyrae variables.........18.30 ± 0.13
Mira variables.................18.54 ± 0.04
average.....................μ = 18.5 ± 0.1
RLMC = 10pc 10μ/5 = (50.1 ± 2.5) kpc

31 galaxies (0.1Mpc < R < 30 Mpc) Cepheid variables
(6 SNIa hosts)

Galaxies (60Mpc < R < 400 Mpc)
36 galaxies SNIa............................H0 = 71 ± 2 ± 6
21 galaxy clusters Tully-Fisher................H0 = 71 ± 3 ± 7
11 galaxy clusters Fundamental Plane.....H0 = 82 ± 6 ± 9
6 galaxy clusters Surface Fluctuations...H0 = 70 ± 5 ± 6
4 galaxies SNII............................H0 = 72 ± 9 ± 7

Average.......................H0 = 72 ± 8

luminosity of the object. The luminosity is derived from similar objects at a lower
step of known distance. The Hubble Key Project ladder proceeds as follows:

1: Distances to Milky Way objects are derived from parallax measurements of the
Hipparcos satellite (Fig. 2.3) allowing one to deduce the luminosities of various
classes of stars.

2: Observation of these classes of stars in the Large Magellanic Cloud (LMC)
allows one to deduce the distance to the LMC. This LMC contains many bright
Cepheid periodic variable stars that have a well-defined luminosity as a func-
tion of their period (Fig. 2.5) and the known distance to the LMC allows one to
measure this period-luminosity relation.

3: Because of its excellent angular resolution, allowing it to resolve individual
stars in nearby galaxies, the HST can detect Cepheid variable stars in galax-
ies within ∼ 50 Mpc, thus determining their distance. The galaxies on the
third step are then used to calibrate various “secondary” distance indicators,
the most important being the luminosity of type Ia supernovae (Fig. 2.9) and
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the luminosity of spiral galaxies as a function of their velocity dispersion
(Tully-Fisher relation, Fig 2.11).

4: The known luminosities of supernovae or galaxies are then used to determine the
distances to galaxies more distant than 50 Mpc, thus determining H0.

The uncertainty in the quoted value (2.29) includes the cumulative uncertainties
in each step of the ladder, e.g., the 5% uncertainty in the distance to the Large
Magellanic Cloud.

Three “physical” methods permit one, in principle, to bypass the distance lad-
der. The first is the “expanding photosphere method” (EPM) applied to type II
supernovae (Sect. 2.1). After the initial explosion, the surface (photosphere) of the
remnant expands at a velocity v ∼ 10−2c, as illustrated in Fig. 2.26. The velocity
can be determined empirically from the Doppler shifts of the lines in the supernova
spectrum. Knowledge of the moment of the explosion texp then allows one to cal-
culate the physical diameter of the photosphere D = 2v(t − texp). If the angular
size Δθ were known, the distance to the supernova could be determined directly via
R = 2v(t−texp)/Δθ . For extragalactic supernovae, the angular size is too small to be
directly measured but it can be estimated from the measured luminous flux by using
Stefan’s law (2.1), appropriately modified for the non-blackness of the photosphere.
This technique has given a value of H0 = 73 ± 15 km s−1Mpc−1 [97]. The Hubble
Key project calibrated this method in their distance ladder (Table 2.3) and deduced
a value of H0 = 72 ± 9 ± 7.

The second physical method uses the time delay between two images of quasars
that are gravitationally lensed by foreground galaxy clusters. Several examples of
gravitationally lensed quasars have been found where intrinsic variability of the
quasar permits the measurement of the time delay. The light-curve (flux vs. time)
for one is shown in Fig. 3.23. Since the optical paths are proportional to the distance
scale and therefore to c/H0 it is not surprising that the time delay between the two
images is proportional to c/H0. The constant of proportionality will be calculated
in Sect. 3.8. It depends on the angular separation of the two images and on the mass
distribution of the lens. The mass distribution can be estimated from the distribution
of gravitational arcs due to lensed background galaxies. Knowledge of the distribu-

R

θ

v

D = 2vt

Fig. 2.26 The photosphere of a supernova expanding at a velocity v. The velocity can be deduced
from the position and shape of the spectral lines. Knowledge of the time of explosion texp allows
one to deduce the diameter D = 2v(t − texp). The angle θ can be estimated using Stefan’s law,
allowing one to estimate the distance R
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Fig. 2.27 A cluster of galaxies of diameter D. CMB photons can scatter on the free electrons
in the hot ionized cluster gas increasing the mean energy of the CMB photons coming from the
direction of the cluster (SZ effect). The ionized gas also emits X-rays via thermal bremsstrahlung
of electrons scattering on protons and nuclei

tion limits the precision of this method. The Hubble Key Project [9] suggests that
the measurements appear to be “converging” to about H0 ∼ 65 km s−1Mpc−1.

The last physical method uses the Sunyaev–Zel’dovich (SZ) effect by which the
CMB is heated as it Compton scatters on the hot ionized gas of a galaxy cluster
(Fig. 2.27). The CMB spectrum is thus deformed in the direction of the cluster in
proportion to the probability to scatter in the cluster:

P ∼ 〈ne〉σT D = 〈ne〉σT RΔθ , (2.30)

where 〈ne〉 is the mean electron density in the cluster, σT is the Thomson cross-
section, and D = RΔθ is the diameter of the cluster at a distance R and subtending
an angle Δθ . For a cluster, Δθ can be directly observed so if P is measured from
the SZ effect, we need only an estimation of 〈ne〉 to determine R.

The electron density can be estimated from the cluster X-ray luminosity which
is (Exercise 2.10)

L X ∼ c2〈n2
e〉ασT

√
meT D3 , (2.31)

where α is the fine structure constant. It follows that

〈n2
e〉 ∼ 4π fx

cασTΔθ3 R3
. (2.32)

Combining (2.30) and (2.32), we find the distance to the cluster:
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R ∼ P2 cαΔθ
√

meT

4π fxσT

〈n2
e〉

〈ne〉2
. (2.33)

Everything on the right can be measured except for 〈n2
e〉/〈ne〉2. This last factor is

of order unity if the gas is relatively uniform. Any non-uniformity would result
in an overestimation of R and, therefore, an underestimation of H0. It is also
necessary to suppose that the cluster is spherical, though this hypothesis can be
eliminated by averaging measurements of several clusters. The compilation of the
Hubble Key Project [9] lists measured values in the range 40 km s−1Mpc−1 <

H0 < 80 km s−1Mpc−1. An increase in the number of studied clusters will enable
astronomers to better estimate and control the uncertainties associated with this
promising method.

2.6.2 ρs and Ωs

The densities listed in Table 1.1 were derived from WMAP measurements of CMB
anisotropies combined with measurements of type Ia supernovae and of baryon
acoustic oscillations (BAO). In this section, we give a summary of these methods
and a few others that have somewhat lower precision but serve as important consis-
tency checks. The major methods are listed in Table 2.4.

The only directly measured cosmological density is the photon density with the
COBE measurement [5] of the CMB temperature giving:

ργ = (2.61 ± 0.01) × 105 eV m−3 ⇒ Ωγ = 5.16 h−2
70 × 10−5 . (2.34)

Theoretical arguments based on the thermodynamics of the early universe allow one
to deduce the densities of neutrinos and baryons:

• Neutrinos. The thermodynamic calculations of Chap. 6 will give nν = (3/11)nγ

for each species. The present neutrino density then depends on the neutrino
masses with (1.36) for effectively massless neutrinos (mν 	 Tγ (t0) = 2.349 ×
10−4 eV) and (1.37) for massive neutrinos. We note that the same type of calcu-
lation will give the number density of any species of weakly interacting massive
particle if there is no particle–antiparticle asymmetry.

• Baryons. The theory of primordial nucleosynthesis predicts the abundances of the
light elements as a function of the baryon–photon ratio, η = nb/nγ . The observed
abundances [10] imply η = (5±1)×10−10 which gives Ωb = (0.04±0.01) h−2

70 .

Knowing Ωb one can deduce ΩM by measuring the total mass to baryonic mass in
objects that are believed to have a representative mix of baryons and CDM. This
is expected to be nearly true for large clusters of galaxies. The baryons in these
galaxies is mostly in the form of hot ionized gas and the mass in this form can be
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Table 2.4 Some methods of determining the cosmological density parameters. Only ργ is directly
measured. Knowledge of H0 allows one to deduce Ωγ followed by Ων, Ωb, and ΩM. So-called
“geometrical” methods using standard candles or rulers allow one to directly deduce ΩM (BAO),
ΩM −ΩΛ (SNIa) and ΩT (peak positions in CMB power spectrum). The details of the CMB power
spectrum allows one to deduce ΩΛ, ΩM, and Ωb if one knows H0. Finally, measurements of the
abundance of galaxy clusters and weak gravitational lensing can be used to determine the product
of ΩM and σ8, the relative mass fluctuations of the scale of 8h−1Mpc

Quantity Method Reference

ργ ∝ Ωγ H 2
0 CMB density

Ωγ CMB density +H0

Ων/Ωγ primordial thermal equilibrium + mν Sect. 6.4

Ωb/Ωγ primordial nucleosynthesis Sect. 6.5

Ωb/ΩM galaxy cluster baryon fraction Exercise 2.6

ΩM H0 Large Scale Structure power spectrum Sect. 7.2

ΩM Baryon Acoustic Oscillations (BAO) Sect. 5.3
cluster number evolution Sect. 2.3

ΩM − ΩΛ SNIa Hubble diagram Sect. 5.2

ΩT CMB anisotropies + BAO Sect. 7.4.2

ΩΛ,ΩM,Ωb CMB anisotropies + H0 Sect. 7.4.2

ΩMσ8 galaxy cluster abundance
large-scale weak lensing Sect. 7.2

deduced from the X-ray luminosity. The fraction of the total mass of the largest
galaxy clusters that is comprised of hot gas is measured to be fgas ∼ 0.12 h−3/2

70
[98, 99]. This gives ΩM ∼ Ωb/0.12 ∼ 0.37. Corrections taking into account the
amount of baryons in stars bring ΩM down to ΩM ∼ 0.28 ± 0.06 [99].

The cluster number density measurements (Fig. 2.15) can give ΩM if the density
can be measured as a function of time or equivalently of redshift. The evolution of
the number of clusters depends on ΩM because structure formation slows at â =
ΩM/(1 − ΩM) for ΩΛ = 0 and at â = (ΩM/(1 − ΩM))1/3 for ΩT = 1. The small
amount of evolution shown in Fig. 2.15 indicates [100] ΩM = 0.34 ± 0.08.

At super-cluster scales, ΩM is one of the parameters that determine the shape of
the “power spectrum” of density fluctuations (Fig. 7.4). The large-scale structure of
the universe can be characterized by Fourier decomposing the density contrast into
modes of comoving wavelength λ = 2π â(t)/k where k is the fixed wavenumber. In
structure formation theories with cold dark matter and primordial adiabatic density
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fluctuations, short-wavelength modes have amplitudes that are suppressed because
these modes oscillated as acoustic waves during the radiation epoch whereas the
amplitude of long-wavelength modes grew during both radiation and matter epochs.
The separation between short and long wavelengths corresponds to the Hubble dis-
tance at the moment of matter-radiation equality, a(teq) = a01.68Ωγ /ΩM and to a
present wavelength of λeq ∼ 600 h−1

70 Mpc × 0.27/(ΩMh70).
The most important methods for measuring ΩM and ΩΛ are “geometrical” meth-

ods that use type Ia supernovae as standard candles and the sound horizon at recom-
bination as a standard ruler seen in the matter and CMB fluctuation spectra. These
techniques are described in Chap. 5.

Finally, we note that ΩM can be deduced from the abundance of galaxy clus-
ters and from the gravitational lensing galaxies by large-scale structure if one uses
information of the mass fluctuation spectrum (Chap. 7).

Exercises

2.1 The luminosity of a typical galaxy is ∼ 2h−2
70 × 1010 L� and the mean energy

of stellar photons is ∼ 2 eV. What is the photon flux (in m−2 s−1) of a galaxy of
redshift z (z 	 1 ⇒ R ∼ zdH )?

Compare the photon flux from the nearest large galaxies (R ∼ 1 Mpc) with the
photon flux from the nearest stars (R ∼ 1 pc). (This calculation should explain why
most objects visible to the naked eye are stars.)

2.2 The luminosity density of the universe is ∼ 1.2 h70108 L� Mpc−3. Supposing
that stellar light output has been relatively constant since the formation of the first
stars about one Hubble time ago, estimate the number of photons (E ∼ 2 eV)
that have been produced by stars. Compare the number of stellar photons with
the number of CMB photons. (This problem will be treated more rigorously in
Exercise 5.12.)

Stellar energy is mostly produced by the fusion of hydrogen to helium 4p →4

He + 2e+ + 2νe. This transformation occurs through a series of reactions in stellar
cores that liberate a total of ∼ 25 MeV. After thermalization, the energy emerges
from stellar surfaces in the form of starlight. Estimate the number of protons
(per Mpc3) that have been transformed into helium over the last Hubble time. Com-
pare this number with the number of protons available nb ∼ Ωbρc/m p.

2.3 Estimate the contribution to the universal photon mean free path of the follow-
ing processes:

• Thomson scattering of photons on free electrons of number density ne ∼ nb.
• Absorption by stars of number density nstars ∼ Ωstarsρc/M�, Ωstars ∼ 0.0023

and cross-section ∼ π R2
�.
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• Absorption by dust in galaxies with ngal ∼ 0.005 Mpc−3 and cross-section
∼ επ R2

gal where Rgal ∼ 10 kpc and the fraction of visible light absorbed when
passing through a galaxy is ε ∼ 0.1.

Compare these distances with dH (∼ the distance of the most distant visible
objects). Is the universe “transparent”? (Section 5.7 will treat this problem more
rigorously.)

2.4 Supposing that we can only measure redshifts, angles, and photon fluxes,
explain the factors of h70 in (2.9), (2.10), and (2.11) as well as the absence of such
factors in (2.12).

2.5 By comparing the apparent magnitudes of LMC Cepheids (Fig. 2.5) to the
apparent magnitudes of Cepheids in the galaxy NGC 1365 (Fig. 2.28), estimate the
ratio of the NGC 1365 distance to the LMC distance. If the LMC distance is taken
to be 50 ± 5 kpc, what is the distance to NGC 1365.

NGC 1365 is a member of the Fornax galaxy cluster. The recession velocity of
this cluster is 1441 km s−1. Estimate H0.

Fig. 2.28 The apparent magnitudes in the I and V bands of Cepheids in the galaxy NGC 1365
[53]. The magnitude is a linear function of log P where P is the Cepheid period in days
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2.6 Abell-496 is a galaxy cluster whose properties were studied in [101].

(a) The recession velocity of A496 is 9885 km s−1. What is its distance as a func-
tion of h70?

(b) Figure 2.29 shows the angular distribution of the brightest galaxies in A496.
Estimate the radius of the cluster.

(c) Figure 2.30 shows the distribution of recession velocities in the direction of
A496. The accumulation near 9885 km s−1 corresponds to the cluster mem-
bers. The width of this accumulation suggests that the line-of-sight veloc-
ity dispersion of A496 is Δv ∼ 715 km s−1. Use the virial theorem to esti-
mate the cluster mass: (G M/Δr ∼ Δv2). A detailed study in [101] gives
Mvir = (5.1 ± 0.8)h−1

70 1014 M�.
(d) The flux of visible light from A496 indicates a total luminosity of L = 2.0 h−2

70 ×
1012 L�. By assuming that Mvir/L is equal to the universal value ρM/J0 with
the universal luminosity density given by (2.10), estimate ρM and ΩM.

(e) The X-ray spectrum indicates that the temperature of the intergalactic gas in
A496 is 4 ± 1 keV. The X-ray flux allows one (Exercise 2.10) to estimate the
total mass and the total mass of intergalactic gas. For A496, the total mass within
0.7 h−1

70 Mpc of the cluster center is (1.7 ± 0.4)h−1
70 × 1014 M� and the total gas

mass within the same radius is (1.4 ± 0.5)h−5/2
70 × 1013 M�. Assuming that the

ratio between baryonic mass and total mass of A496 is equal to the universal
value, estimate Ωb/ΩM.

Fig. 2.29 The angular distribution of bright galaxies in A496 [101]



Exercises 83

Fig. 2.30 The distribution of recession velocities in the direction of the A496 [101]. The accumu-
lation of 274 galaxies around 9885 km s−1 corresponds to the cluster members

2.7 Figure 2.31 shows the iso-recession velocity curves of the galaxy NGC 5033
deduced from the Doppler shift of the 21 cm line of atomic hydrogen. The curves
are superimposed on an optical image of the galaxy.

(a) What is the redshift of NGC 5033. By neglecting its peculiar velocity, estimate
its distance as a function of h70.

(b) The visible angular radius of NGC 5033 is about 3 arcmin. What is the visible
radius as a function of h70?

(c) What is the rotation velocity far from the galactic center? Take into account the
galaxy inclination by supposing that the galaxy would appear to be circular if
viewed face-on.

(d) Estimate the mass of NGC 5033 that is within 6 arcmin of the galactic center
(in units of M� and as a function of h70).

(e) NGC 5033 has an apparent magnitude in the V band of 10.1. What is its absolute
magnitude and its luminosity (in units of L�V ) as a function of h70? What is its
mass-to-light ratio?

2.8 The most reliable distance indicators out to ∼ 50 Mpc are Cepheid variable
stars. The most reliable method of calibrating the luminosity-period relation of
Cepheids is to use the large number of Cepheids observed in the Large Magellanic
Cloud (LMC). This method of calibration obviously requires a knowledge of the
LMC distance.

One of the most direct measurements of the LMC distance uses “eclipsing bina-
ries.” Such systems consist of two orbiting stars whose orbital plane is oriented such
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Fig. 2.31 The iso-recession-velocity curves of the galaxy NGC 5033 deduced from the Doppler
shift of the 21 cm line of atomic hydrogen [102]. The curves are superimposed on an optical image
of the galaxy. The angular scale of the greater dimension is in arcmin. Courtesy of A. Bosma

that, viewed from Earth, the two stars periodically eclipse each other. For eclipsing
binaries at the distance of the LMC, the two stars generally have an angular sepa-
ration that is so small that the two stars cannot be optically resolved. Rather, they
appear as a single star with a periodic luminosity due to the periodic eclipses.

Figure 2.32 shows the “light curve” (apparent magnitude versus time) of the
binary system HV2274 in the LMC [103]. Two eclipses are present with a period
of 5.726 days. The magnitude change of 0.75 during the eclipses corresponds to a
factor of two in flux indicating a total eclipse of two stars of equal luminosities and
radii.

The spectral lines of the two stars do not coincide because of the Doppler shift
due to their orbital motion. It is therefore possible to determine independently the
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Fig. 2.32 The binary system HV2274 in the LMC [103]. The upper panel shows the recession
velocity of the two stellar components as a function of the orbital phase (period = 5.726 days). The
lower panel shows the light curve (apparent magnitude versus time)

recession velocities of the two stars. The two velocities as a function of time are also
shown in Fig. 2.32.

(a) Estimate the orbital velocity of the two stars and the radius of the (circular)
orbit.

(b) Supposing that the two stars have equal masses, estimate their mass (in units of
M�).

(c) Use the durations of the eclipses to estimate the common radius of the two stars
(in units of R�).

(d) The surface temperature of the two stars is ∼ 23 000 K. The measured flux
indicates, via (2.1), an angular size of D/R = 9.48 × 10−12. Estimate the dis-
tance R to HV2274. After a small correction for the relative distance between
HV2274 and the center of the LMC, the authors of [103] give an LMC distance
of 45.77 ± 1.6 kpc.

(e) Figure 2.5 shows the apparent magnitudes of LMC Cepheids as a function of
their periods. Using the distance to the LMC, transform the apparent magnitudes
into absolute magnitudes. Compare these magnitudes with those of Cepheids
with distances determined by parallax [44], MV = −2.81 log P − 1.43 ± 0.16
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(period P in days). Compare the value of H0 that would be estimated using
Hipparcos Cepheids with that using LMC Cepheids.

2.9 It is perhaps surprising that the luminosity of a star can be estimated theoretically
without knowing the nuclear reactions that power the star. To see how this can be
done, we consider a sphere of radius R containing Np protons and Np electrons in
the form of an ideal ionized gas.

(a) if the sphere has a uniform density and is in hydrostatic equilibrium with a mean
pressure P and volume V , show that

3PV = −Eg ∼ (3/5)
Gm2

p N 2
p

R
, (2.35)

where Eg is the total gravitational energy of the sphere and m p is the proton
mass.
The numerical factor (3/5) in (2.35) applies only to a sphere of uniform den-
sity. This is not the case for a star but a nonuniform distribution would simply
give a different numerical factor. For the rest of this exercise we will ignore all
numerical factors.
Applying the ideal gas law to (2.35), we can estimate the mean temperature T
in the star:

T ∼ Gm2
p Np

R
. (2.36)

(b) Supposing that the sphere contains photons in thermal equilibrium at the tem-
perature T , show that the total number of photons inside the star is

Nγ ∼ N 3
p

(
m p

mpl

)6

, (2.37)

where mpl = √
�c/G = 1.2 × 1019GeV is the Planck mass. Compare Nγ with

Np for the sun (Np ∼ 1057).
The photons diffuse in the star before escaping at the surface. The number of
collisions in this random walk is of order

Ncol ∼
(

R

λ

)2

, (2.38)

where λ is the mean free path of a photon in the star.
(c) Show that the mean escape time for a photon is

τ ∼ Npσ

Rc
, (2.39)
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where σ is the mean photon-particle cross-section in the star. From this, argue
that the stellar luminosity is

L ∼ N 3
p

(
mp

mpl

)8
�c2

σ
. (2.40)

For a star like the Sun, the atoms are nearly all ionized except near the surface.
It follows that σ ∼ σT (the Thomson cross-section). For N = 1057, compare the
luminosity from (2.40) with L�.

A more careful management of the numerical factors multiplies the above result
by π4/(5 × 38) ∼ 3 × 10−3 [104]. This gives an agreement with the observed
solar luminosity that is reasonable considering the approximations involved in the
calculation.

We note that (2.40) predicts that a stellar luminosity is proportional to the third
power of its mass, in good agreement with observations.

If the luminosity of a star depends only on its mass, one can ask what is the role
of the nuclear reactions that power the star. The answer is that they allow the star to
burn longer at a stable radius. A star begins its life as a diffuse cloud that is too cold
to initiate nuclear reactions. It nevertheless radiates photons as required by (2.40). In
so doing, it radiates energy and total energy conservation requires the star’s radius to
diminish. As the star becomes smaller, its temperature rises until nuclear reactions
are ignited. At this point, a stable regime is reached where the energy radiated is
replaced by the energy liberated by the nuclear reactions.

2.10 Roughly 10% of the mass of large galactic clusters is contained in ion-
ized intergalactic gas in hydrostatic equilibrium. This gas produces photons via
bremsstrahlung:

e− p → e− p γ . (2.41)

Theoretical and observed spectra are shown in Figs. 2.33 and 2.34.
Unlike the photons produced in stars, these photons escape directly from the

cluster:

(a) The largest clusters contain ∼ 1014 M� of ionized hydrogen in a radius of
∼ 1 Mpc. Verify that the mean free path of photons due to Thomson scattering
in the cluster is greater than the cluster radius.

(b) The large angle Rutherford scattering cross-section is ∼ σT/(v/c)4. Verify that
the effective mean free path of electrons (scattering on protons) in the cluster is
less than the cluster radius. This justifies the assumption that the electrons and
protons form a thermal gas in hydrostatic equilibrium.
For non-relativistic electrons, the differential cross-section for bremsstrahlung
production of photons of energy Eγ is approximately [106]
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Fig. 2.33 The theoretical X-ray spectrum from a galactic cluster of temperature 7 keV. The spec-
trum follow the 1/E bremsstrahlung cross-section at low energy and then is exponentially cutoff at
energies above the temperature. Recombination lines for iron are seen around 6 keV. The second
curve that has a suppressed flux at low energy shows the effect of absorption in the Milky Way.
Courtesy of Monique Arnaud

Fig. 2.34 The observed X-ray spectrum from the Coma galaxy cluster as observed by the XMM
satellite [105]. The structures in the spectrum around 2 keV and 0.5 keV are due to the varying
efficiency of the detection system. The fitted cluster temperature is kT = 8.25 keV. Courtesy of
Monique Arnaud
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dσ

dEγ
∼ α

c2

v2

σT

Eγ
Eγ 	 (1/2)mev

2 , (2.42)

where α ∼ 1/137 is the fine-structure constant, v 	 c is the electron–proton
relative velocity, and σT is the Thomson cross-section.

Using a line of reasoning that will be justified in Chap. 6, we know that the
production rate per unit volume of photons is proportional to the differential
cross-section (2.42), to the electron density ne, to the proton density np ∼ ne,
and to the mean electron–proton velocity:

dNγ
dtdV

∼ n2
p v

dσ

dEγ
∼ c

v
n2

pαc
σT

Eγ
. (2.43)

(c) Integrate this expression up to a photon energy cutoff given by the temperature
of the cluster T to find the total X-ray luminosity (energy/time):

Lx ∼ n2
pαcσT

√
mec2T D3 , (2.44)

where D is the diameter of the cluster.
(d) Show that the total number of baryons, Nb, in the cluster can be estimated from

the observed X-ray flux, fx:

N 2
b ∼ fx R5θ3

αcσT

√
mec2T

, (2.45)

where θ is the observed angular diameter of the cluster and R is the distance
to the cluster. This formula shows that if a cluster redshift is used to estimate
the cluster’s distance, the measured total baryonic mass in the cluster scales as
h−5/2

70 .
(e) Modify (2.35) so that the thermal pressure supports only the baryonic mass of

the cluster and thereby show that the total cluster mass in terms of the X-ray
temperature is

Mtot ∼ 6kT R

Gmp
(2.46)
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