Preface

Although concepts that we now consider as part of topology had been
expressed and used by mathematicians in the nineteenth century (in particular,
by Riemann, Klein, and Poincaré), algebraic topology as a part of rigorous
mathematics (i.e., with precise definitions and correct proofs) only began in
1900. At first, algebraic topology grew very slowly and did not attract many
mathematicians; until 1920 its applications to other parts of mathematics were
very scanty (and often shaky). This situation gradually changed with the
introduction of more powerful algebraic tools, and Poincaré’s vision of the
fundamental role topology should play in all mathematical theories began to
materialize. Since 1940, the growth of algebraic and differential topology and
of its applications has been exponential and shows no sign of slackening.

[ have tried in this book to describe the main events in that expansion prior
to 1960. The choice of that terminal date does not correspond to any particular
occurrence nor to an inflection in the development of the theory. However,
on one hand, I wanted to limit the size of this book, which is already a large
one; and, on the other hand, it is difficult to have a bird’s eye view of an
evolution that is still going on around us at an unabated pace. Twenty years
from now it will be much easier to describe what happened between 1960 and
1980, and it will probably fill a book as large as this one.

There is one part of the history of algebraic and differential topology that
I have not covered at all, namely, that which is called “low-dimensional
topology.” It was soon realized that some general tools could not give satis-
factory results in spaces of dimension 4 at most, and, conversely, methods that
were successful for those spaces did not extend to higher dimensions. I feel
that a description of the discovery of the properties of these spaces deserves
a book by itself, which I hope somebody will write soon.

The literature on algebraic and differential topology is very large, and to
analyze cach paper would have been unbearably boring. I have tried to focus
the history on the emergence of ideas and methods opening new fields of
research, and I have gone into some details on the work of the pioneers, even
when their methods were later superseded by simpler and more powerful ones.
As Hadamard once said, in mathematics simple ideas usually come last.



vi Preface

I assume that the reader is familiar with the elementary part of algebra and
“general topology.” Whenever I have had to mention striking applications of
algebraic topology to other parts of mathematics, I have summarized the
notions necessary to understand these applications.



CHAPTER 11

The Build-Up of
“Classical” Homology

§ 1. The Successors of Poincare

It took about 30 years to construct a theory of homology applicable to
curvilinear “polyhedra,” embodying all the ideas of Poincaré and entirely
rigorous. In a period in which the number of professional mathematicians was
definitely on the increase, it is surprising that this new field of research at first
attracted so few people. This is true even if one takes into account topological
questions such as the theory of dimension or the theory of fixed points (see
Part 2), which until 1920 were not directly linked to homology but attracted
much more attention, owing to the spectacular use of simplicial methods by
L.E.J. Brouwer (1881-1966). For many years Brouwer himself was completely
isolated in Holland; in France, after Poincaré’s death and until 1928 only
Hadamard and Lebesgue were interested in these questions, but they did not
use simplicial methods; Italian mathematicians do not seem to have been
attracted at all to topology, nor the English until 1926. The progress in the
build-up of homology is entirely due to (1) a handful of mathematicians in
Germany, Austria—Hungary, and Denmark: P. Heegaard, M. Dehn (1878-
1952), H. Tietze (1880-1964), E. Steinitz (1871-1928), and after 1920 H. Kneser
(1898-1973), H. Kiinneth (1892-1974), W. Mayer (1887-1948), L. Vietoris
(1891- ), and H. Hopf (1894—1971); and (2) the three members of what may
be called the “Princeton school”™ O. Veblen (1880-1960), J.W. Alexander
(1888-1971), and S. Lefschetz (1884-1972).

The first treatise on this “classical” algebraic topology was Veblen’s Analysis
Situs, published in 1922 (but a preliminary version was given as “Colloquium
lectures” in 1916); it was followed by the much more complete book Topology
by Lefschetz (1930), the very popular Lehrbuch der Topologie of H. Seifert and
W. Threllfall (1934), and the book by P. Alexandroff and H. Hopf entitled
Topologie T (1935).%

* This was the first example of a projected treatise in several volumes, which stops with
the first one; other conspicuous examples are the well-known books by Eilenberg—
Steenrod [189] and Godement [208].
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§ 2. The Evolution of Basic Concepts and Problems

The emphasis Poincaré put on C!-manifolds (or even analytic ones) was
immediately abandoned by his successors. For them the closures of the cells
of a triangulation are merely deduced by homeomorphisms from closures of
bounded convex euclidean (rectilinear) polyhedra, so that all notions relative
to triangulations are invariant under homeomorphisms. Furthermore, they
generalized the notion of (curvilinear) “polyhedron” defined by Poincaré, and
until 1925 they only considered the homology of what they called complexes.
Unfortunately that word is given different meanings by the mathematicians
who use it; for the sake of clarity we shall use a terminology that distinguishes
these meanings, even if it does not coincide with the one used in the papers
we describe. In §§ 25 of this chapter, a triangulation will only be defined for
a compact space X: as with Poincaré, it will mean a finite partition T of X in
cells of various dimensions, such that the frontier of a cell of T in X is the
union of cells of T of strictly lower dimension. Each cell is given an orientation;
but Poincaré’s additional requirement that, for the maximal dimension p of
the cells of T, each (p — 1)-cell should be contained in the frontier of exactly
two p-cells of T (see §4) is dropped.* The pair (X, T) (or, by abuse of language,
X itself) will be called a cell complex; after §5 of this chapter, we shall say
finite cell complex, since more general “cell complexes” will also be defined.
The barycentric subdivision of Poincaré (chap. 1, §3) naturally led to the
introduction of simplicial cell complexes, where the cells of the triangulation
T are (curvilinear) simplices and each face of a simplex of T belongs to T (and
is not merely a union of simplices of T). This condition still leaves open the
possibility that the intersection of the frontiers of two simplices of T of
dimension k contains more than one simplex of T of dimension k — 1. To get
the simplicial complexes obtained by barycentric subdivision that possibility
must be excluded; it is easy to see* that this is equivalent to the condition that
there exists a homeomorphism of X on a compact subset X' of some RN of

* In their first paper [21], Alexander and Veblen impose the condition that in a cell
complex where p is the maximal dimension of the cells, every cell of dimension g < p
is contained in the frontier of at least one cell of dimension g + 1; this was later
dropped.

 As an example, consider the usual description of the two-dimensional torus T? as
obtained by identification of opposite sides of a rectangle, and decompose the rectangie
into two triangles by the diagonal.

! This is proved in [421], p. 46. If X,, is the union of all simplices of T of dimension
<n (later called the n-skeleton of X), the homeomorphism X — X' is defined by
induction on the X,,. The set X, consists of the vertices of the simplices of T; each vertex
is mapped onto a unit vector of the natural basis of RY, where N is the number of
vertices. The extension of a homeomorphism of X, onto X/, to a homeomorphism of
X, onto X, is then reduced to the case in which X, and X, are the frontiers of two
simplices of dimension n + 1, in which case the extension is immediate by means of
barycentric coordinates.
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large dimension such that T is sent by that homeomorphism onto a triangula-
tion T of X' consisting of rectilinear simplices such that the faces of each
simplex of T’ belong to T'. This is the definition of a simplicial complex (X, T)
chosen by Lefschetz [304] and which we shall adopt (after § 5 of this chapter
we will say finite simplicial complex); the simplicial complexes such as (X', T")
will be called euclidean simplicial complexes, and in most questions we
may only consider euclidean simplicial complexes; this has the advantage of
avoiding all difficulties linked to the intersections of manifolds. Of course,
barycentric subdivisions of euclidean simplicial complexes are also taken
rectilinear.*

This enlarged concept of triangulation of course changes nothing in
Poincaré’s definition of the Betti numbers and torsion coefficients of the
triangulation, nor in the algorithm for their computation. In fact, that algo-
rithm is so obviously of an algebraic nature and uses so little of topology that,
in the very first paper on topology published after Poincaré’s Compléments,
the Enzyklopddie article of Dehn and Heegaard [138], there is already an
attempt to define “homology” in a purely algebraic context, where the “cells”
are elements of finite sets without any topological properties, with an ad hoc
system of axioms. This axiom system was slightly improved by Steinitz in 1908
{4567, but he did not go beyond a notion of “orientation” within this context,
and it was only Weyl in 1923 [484] who consistently pursued this idea and
built up an algebraic “homology” theory; his axioms, however, like those of
Steinitz, were so narrowly tailored to mimic the topological situation that they
did not seem applicable to very different topological problems or to algebraic
ones.

Weyl had already considered, in addition to Poincaré’s incidence matrices,
the Z-modules C; having as bases the sets of oriented j-cells. In 1925 H. Hopf,
at the beginning of his career, spent a year at Gottingen; E. Noether, who then
was engaged in the process of liberating linear algebra from matrices and
determinants, observed that the boundaries of j-chains defined a homo-
morphism of Z-modules

b;: C; - C;, (1)
such that
b, ob, =0, @)

and that the consideration of Betti numbers and torsion coefficients amounted
to that of the Z-modules

H; = Kerb;/Imb,,; (3)
Hopf accordingly used these homology modules when writing his 1928 paper
* The orientation of a simplex may be defined by choosing an order among its vertices;

two orderings give the same orientation if they are deduced from one another by an
even permutation.
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on the Lefschetz trace formuia (Part 2, chap. I11, § 2). Independently, in 1926,
Vietoris also needed to get rid of matrices in order to define homology for
more general spaces than simplicial complexes (see below, chap. IV, §2), and
he used the definition (3) of homology groups for a simplicial complex, without
relating it to general notions of linear algebra [475].

This seemingly innocuous modification was to have important consequences,
both for the ulterior development of algebraic topology and later for algebra
itself (see chap. IV), since it was clear that the definition of homology modules
could at once be extended to arbitrary (finite or infinite) sequences C, =
(C));> o of modules over any ring, and to module homomorphisms b; (j = 1)
satisfying (2) (when by, is taken by convention to be the unique homomorphism
C, — {0}). We shall say that such a system (C;,b;) is a chain complex; Mayer,
in 1929 [336], was apparently the first to consider such systems, with the
additional restriction that the C; are free modules with finite bases; he calls
them “complexes.” *

In particular, he considered the following situation, suggested to him by
Vietoris: each C; has a basis, union of two subsets B}, B} such that, if C}, C},
and C; are the Z-modules having as bases B/, B?, and B} n B?, respectively,
the sequences (C}), (C7), and (C}) are again differential graded modules
for the restrictions of the homomorphisms b;. Mayer looked for a relation
between the homology modules H}, H?, H?, and H; of (C}), (C?), (C}'), and
(C)), respectively; he proved that H; = E; ® G;_,, where G; = H? consists of
the classes of cycles that are boundaries both in C} and C7, and E; consists of
the classes of the sums of a cycle of C} and a cycle of C?. In 1930 Vietoris
[476] completed Mayer’s result and showed that

E; ~ (H ® H})/(H}/G)). )

These results, later incorporated into what became known as the Mayer—
Vietoris exact sequence (chap. IV, §6,B), were to have many applications in
algebraic topology.

The first example of a chain complex different from the classical modules
of “chains” of a triangulation was linked to a more abstract conception
of those chains, which appeared simultaneously around 1926 in papers
by Alexander [ 14], Alexandroff [22], and M.H.A. Newman [356] and was
characterized by van der Waerden [477] as “pure combinatorial topology.”

* We shall also use the notation C, for the direct sum @120 C; (in modern terminology,
this is a differential graded module) when no confusion can arise. For rings of coefficients
which are principal ideal rings, it is equivalent to saying that each C; is free or that
their direct sum is free; we will also say in that case that the chain complex C, = (C;)
is free. More special “abstract” free chain complexes, mimicking the simplictal com-
plexes, were introduced by Tucker, and used by the American school around 1940, in
particular for the definition of cohomology.

T Mayer himself gave an application of his results to the usual torus T2 considered as
union of two cylinders, their intersection being also the union of two disjoint cylinders
([336], p. 41).
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The underlying idea is that rectilinear euclidean simplices and their orienta-
tion are entirely determined by the sequence of their vertices. Disregarding
anything else, we shall therefore define a combinatorial complex as a set V
equipped with a (finite or infinite} set & of finite subsets, the combinatorial
simplices, submitted only to the restriction that if Se € and S’ < S, then also
S’ € &; the dimension, faces, and orientation of these combinatorial simplices
are defined in an obvious way. The module C; of alternating j-chains of the
combinatorial complex is then the set of finite linear combinations with
integral coefficients

in(a?,a},...,a{), (5)

where x' € Z, and (a?,al,...,a{) is the sequence (in an arbitrary order) of the
distinct vertices of a j-dimensional simplex, with the identification

(@, af",... af) = sgn(m)(a?, 4, ..., af) (6)

for any permutation 7= of {0,1,...,j}. The boundary operator (1) is then
defined by*

by(a%aly...al) = 3 (= )K@S,....a%....a)) )

k=0

and makes (C;) into a chain complex, the homology of which is. by definition,
the homology of the combinatorial complex (X, €). Another equivalent defini-
tion of C; consists in choosing a total order on X, and considering only in (5)
the sequences such that a < a} < -+ < g/ for this order; this shows that C;
is a free Z-module.

To each euclidean simplicial complex (X, T) is thus associated a finite
combinatorial complex (V,S), where V is the finite set of all vertices of all
simplices of T, and & is the subset of B(V) consisting of the sets of vertices of
all simplices of T. It is clear that there is an isomorphism of the chain complex
of (X, T) onto the chain complex of (V,3), commuting with the boundary
operators, and therefore giving a natural isomorphism of the homology of
(X, T) onto the homology of (V,S). Conversely, it is easily shown ([308],
p. 97) that for each finite combinatorial complex, there exist euclidean sim-
plicial complexes to which it is associated; they are called the realizations of
the combinatorial complex, and it can be proved that any two realizations of
the same combinatorial complex are homeomorphic.

It 1s possible to define for a combinatorial complex K = (V, ) a notion that
reduces to the classical “barycentric subdivision” for simplicial complexes: the
first derived complex K’ of K is a combinatorial complex, where the set of
vertices is the set & of combinatorial simplices of K: a combinatorial p-simplex
of K'isasetS; «§,c - S, of p+ 1 distinct simplices of K, totally

* Eilenberg and Mac Lane introduced the convention that a “hat” above a letter means
that this letter should be omitted in the sequence in which it is inserted.
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ordered by inclusion, the dimensions of which form an arbitrary strictly in-
creasing sequence ([308], p. 164).

Another chain complex emerged with the consideration of “singular sim-
plices,” which we will introduce in §3. In a combinatorial complex K, and
with the same notations as above, the module C; of j-chains of this chain
complex consists again of the linear combinations (5), but in which this time
a?, al, ..., a/ are vertices of a combinatorial simplex S e & but are not
necessarily distinct; such sequences (a?,...,a/) with repetitions are called
degenerate simplices of K. The identification (6) is not applied to degenerate
simplices: if the boundary of a degenerate j-simplex is again defined by (7),
the right-hand side is a combination of degenerate (j — 1)-simplices.

It is clear that there is a natural injection h: C; - C;}, and a retraction
r: C; — C; obtained by replacing the coefficients of the degenerate simplices
by 0; both mappings commute with the boundary operators, and therefore
yield homomorphisms H; — H; and H; — H; for the homology modules, but
it is not immediately obvious that these homomorphisms are bijective. This
was taken for granted by both Alexander [9] and Lefschetz [304] and the
proof was only provided in 1938 by Tucker [471], who showed that if a chain
(5) consisting only of degenerate simplices is a cycle, it is also a boundary.
The use of the chain complex (C;) by these authors was never very explicit;
with the work of Eilenberg on singular homology (chap. IV, §2) it gave way
to a much less hybrid type, namely, the chain complex (Cj), where the j-
chains are simply the linear combinations of all sequences (a?,al,...,a})
consisting of vertices of the same simplex (distinct or not), but no identification
is made; the boundary operator is still given by (7). There is a natural surjection
C/ — C;, the kernel of which is generated by the degenerate simplices and the
differences

(a7 @, af™,...,af) ~ sgn(n) (@, a", ... aP).

The elements of C; are the ordered j-chains of the combinatorial complex; the
proof that the homology of (C]) is naturally isomorphic to that of (C;) was
initially made by using a homotopy operator, and is an easy consequence of
the method of acyclic models (chap. IV, § 5,G).

Another novelty in homology was introduced by Tietze [466]* and taken
up by Alexander and Veblen [21], the homology modulo 2, where the coeffi-
cients of the cells in a chain are integers mod 2. This dispenses altogether with
any consideration of orientation of the cells, and the “incidence matrices” now
have coefficients in the field F, of two elements, hence are equivalent to
matrices (p;) with p;; = 0if i # jand p; = 0 or 1 (or, equivalently, the homo-
logy modules are now vector spaces over F,). This does not give new topo-
logical invariants, since the dimension of that vector space for dimension p is

* This seems to be the first paper that questions the validity of Poincaré’s arguments,
and points to pathologies in the theory of differential manifolds ([466], pp. 32, 36, and
41)
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the sum of the p-dimensional Betti number and of the number of torsion
coefficients in dimensions p and p — 1 which are not divisible by 2; it is now
possible to generalize the duality theorem for nonorientable n-dimensional
compact connected triangulated manifolds, that expresses the isomorphism
of the p-dimensional and the (n — p)-dimensional homology vector spaces
over F,. Later Alexander considered more generally “homology modulo m”
for any integer m [14], and Lefschetz realized that the “homology with
division” of Poincaré was simply “rational homology” with coefficients in the
field Q ([302], p. 234), but this still did not yield any invariant not expressible
by the known ones.

These attempts testify to the persistence of the search for a system of
numerical or algebraic invariants of a topological space that would entirely
characterize it up to homeomorphism, on the model of what Jordan and von
Dyck had succeeded in doing (with insufficient proofs) for surfaces ([373],
p. 139); we saw in chapter I that the introduction by Poincaré of homology
and of the fundamental group was certainly motivated in part by this search.
But even for dimension 3, where the Poincaré conjecture remained undecided,
it was soon realized that the fundamental group was not sufficient to deter-
mine an orientable manifold up to homeomorphism. This followed from the
study of a remarkable family of three-dimensional, compact, connected orien-
table manifolds, first defined by Tietze in 1908, and now calied the lens spaces
([466], §20). For an odd prime p and an integer g such that 0 < g <p— 1,
the lens space L(p, g} is defined by Tietze as the quotient space D;/R, where
D, is the ball |x] < 1 in R3, and R is the equivalence relation whose classes
consist of the one-element sets {x} for |x| < 1, and of the orbits of the cyclic
group Z/pZ, acting on the sphere S,: {x| = 1 by the action

2k
(k,(<p,9))H<<p + pq”,(— 1)’*@) (8)

¢ and 0 being the usual longitude and latitude. Later another equivalent
definition of L(p, gq) was formulated as the space of orbits of the group Z/pZ
acting on the sphere S;: this sphere is considered to be the manifold |z,|* +
|z,12 = 1 in the space C?, and the action is

(k. (z1,22)) > (0¥2;, 0"92,) ©)

with @ = e*"/?, The fundamental group of L(p, q) is Z/pZ, and the homology
modules are H, = Z/pZ, H, = 0, so that the value of g is irrelevant; neverthe-
less, Tietze suspected (but could not prove) that, for instance, L(5, 1) and L(5, 2)
are not homeomorphic. This was proved in 1919 by Alexander [ 10], using a con-
struction of L(5, 1) and L(5, 2) different from that of Tietze, whose paper was
not mentioned;* another proof was provided by de Rham in 1931 (see Part 2,
chap. VI, § 3,A), using the notion of linking coefficient (Part 2, chap. I, § 3).

* See [421], p. 216.
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More urgent than this ultimate and more and more elusive goal* was the
immediate necessity to prove conclusively that the homology modules defined
by two different triangulations of the same compact, connected space X are
isomorphic (the invariance problem), which would show that these homology
modules only depend on the homeomorphism class of the triangulable space.
A “natural” method would have been to show that, for two triangulations T,
T’ of X, there existed two suitable subdivisions of T and of T’ that could be
deduced from one another by a homeomorphism of X; this was given the name
Hauptvermutung in algebraic topology by H. Kneser [274], but for a long time
it could only be proved for complexes of dimension 2, and remained undecided
for higher dimensions. It was finally shown much later [349] that the “Haupt-
vermutung” is true for dimension 3, but counterexamples exist for dimension
= 5. The invariance property must therefore be proved by independent means.

During that period the concepts of deformation, homotopy, and isotopy
finally acquired a precise meaning. The words homotopy and isotopy were
coined by Dehn and Heegaard in their Enzyklopddie article with a purely
combinatorial definition adapted to their “abstract” conception of homology
([138], pp. 205-207), and they were not retained by later workers, with the
exception of Steinitz." Brouwer seems to have been the first to give our present
definition of homotopy ([89], p. 462): two continuous mappings f: X - Y,
g: X — Y are homotopic if there exists a continuous mapping F: X x [0,1] —
Y such that F(x,0} = f(x)and F(x, 1) = g{x) in X.

The final touches to the homology theory of cell complexes were brought
about by the theory of intersections (§4), the introduction of product spaces
(§ 5), and, finally, the concept of relative homology (§ 6). Around 1930 aigebraic
topology was ready for further extensions and new concepts.

§ 3. The Invariance Problem

There are two proofs of the independence of homology from the triangulation
of a simplicial complex. Both are essentially due to Alexander ([9] and [14]);
they both use the new ideas of simplicial mapping and simplicial approximation,
and the first one is also based on a new concept, the singular chains.
Simplicial mappings are a natural extension to n dimensions of the classical

* It has finally been proved by A.A. Markov [332] that there cannot exist any algorithm
(in the sense of the theory of recursive functions) that would allow one to determine if
two euclidean simplicial complexes X, Y of dimension >4 are homeomorphic or not.
He considers the fundamental groups =,(X), 7;(Y); these groups may be any group
finitely generated and finitely presented, and the algorithm would enable one to decide
if two such groups are isomorphic or not. But it is known that no such algorithm exists.
t Steinitz only uses the Dehn—Heegaard notion of “homotopy” to introduce an ab-
stract notion of “orientation”; Dehn and Heegaard themselves do not seem to have
used it at all for questions of homology.

! For a third, indirect, proof by Alexander, see § 6.
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notion of piecewise linear function of a real variable. Let X be a euclidean
simplicial complex; a simplicial mapping f of X into a euclidean simplicial
complex Y is a continuous mapping such that for all p, and any p-simplex S
of X, f(S}is contained in a g-simplex of Y for a number ¢ < p and the restriction
of f to Sis affine. This restriction is therefore entirely determined by the values
of f at the vertices of S, which must be vertices of a g-simplex of Y for a number
q < p, not necessarily distinct, but otherwise entirely arbitrary.

For combinatorial complexes X, Y (§2) a simplicial mapping will be a map
f: X = Y such that for all p and any p-simplex S of X (which are finite subsets
of X here), f(S) is contained in a g-simplex of Y for some g < p. Thus there is
a one-to-one correspondence between the simplicial mappings of a euclidean
simplicial complex X into a euclidean simplicial complex Y, and the simplicial
mappings of the combinatorial complex associated to X into the combina-
torial complex associated to Y. By linearity, if (Cj(X)) and (Ci(Y)) are the chain
complexes of ordinary and degenerate simplices in X and Y, one deduces for
each j, from a simplicial mapping f: X —» Y, a homomorphism f;: CiX)—
Ci(Y), by the formula

filag,ay,....a;)) = (flag) fla,)- .., fla;) (10)

for each (ordinary or degenerate) j-simplex (ag,a,,...,q;). If g: Y - Z is a
second simplicial mappingand h = g o f: X > Z, his also a simplicial mapping
and i = §o f. Furthermore, it can easily be shown that for the boundary
operators

bjofi=fi-10b; (11)
hence f. = (f;) is a homomorphism of chain complexes, which yields a homo-
morphism f: (H}(X)) — (H(Y)) of graded homology modules. If it is com-
posed with the natural homomorphisms (H;(X)) - (Hi(X)) and (H{(Y)) -
(H;(Y)) (§2), this also gives a homomorphism (H;(X)) — (H;(Y)), which topol-
ogists identified with f, even before it had been proved that the natural
maps H; - H; are isomorphisms. The homomorphism f,: (H;(X)) - (H,(Y))
can also be defined directly, if the definition (10) is modified by taking
ﬁ((ao,al,...,aj)) = 0 when the simplex (f(a,), f(a,),..., f(a;)) is degenerate.
With the same notations as above, (g o f), = g, © f,.

The idea of simplicial approximation is due to Brouwer ([89], p. 459). He
considered two euclidean simplicial complexes X, Y (satisfying some addi-
tional conditions that we disregard) and a continuous map f: X — Y such that
for any simplex o of X f(0) is contained in a simplex of Y. Then for any ¢ > 0
there is a triangulation T’ of X obtained by repeated barycentric subdivisions
of the given one T, and a map ¢g: X — Y that coincides with f at the vertices
of the new triangulation, is such that | f(x) — g(x)| < ¢ for all x € X and is an
affine map in every simplex of T'. We shall return in Part 2, chaps. [, I, and
IIT to describe the way he used this result with great virtuosity to prove his
famous theorems without linking them to homology.

In his first proof Alexander realized that he could extend Brouwer’s method
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to all euclidean simplicial complexes X, Y and to an arbitrary continuous map
f: X — Y.* The stars of the triangulation of Y form an open covering of Y;
replacing the triangulation of X by one obtained by repeated barycentric
subdivisions, it can be assumed that for the new triangulation the image of
any star of X is contained in one of the stars of Y. Thus, if (g,); <, < are the
vertices of the new triangulation of X, and (b;), ¢;<»- are the vertices of the
triangulation of Y, let b, be one of the vertices of Y whose star contains the
image of the star of a,. If j + 1 vertices a, are the distinct vertices of a j-simplex
of X, the b, are (not necessarily distinct) vertices of a g-simplex of Y with
g < j. If a simplicial mapping ¢ is defined by g(a,) = b,y, for all k, g is a
simplicial approximation of f, with | f(x) — g(x)| < 39, where ¢ is the maxi-
mum diameter of the simplices of Y. Furthermore, for any x € X, f(x) and g(x)
are the extremities of a segment contained in Y, and therefore f and g are
homotopic.

The notion of singular chain also arose from the need to consider continuous
maps f: X — Y between euclidean simplicial complexes, both having arbitrary
dimensions. It was first mentioned by Dehn—Heegaard in their Enzyklopddie
article [ 138]; they of course realized that phenomena such as the Peano curve
implied that the image f(E) of a cell E may exhibit the weirdest pathology, so
they included in their conception not only the image f(E), but also the cell E
itself in rather vague terms;' they do not seem to have made any use of it to
prove anything.

In [9] Alexander had the idea* that the singular simplices might be used to
define new kinds of chains by linear combination, and be provided with
boundary operators with which one could define new homology modules that
ipso facto would be independent of any triangulation; the invariance problem
would then be solved if he could define isomorphisms of these modules on the
homology modules of an arbitrary triangulation. At least this is what we may
guess from the context of his paper, for his definition of singular cells is simply
translated from Dehn—Heegaard. He never said when two images of different
p-cells by two continuous mappings should be identified, nor what the bound-
ary of a singular cell should be. This vagueness was only partly improved in
the successive versions of Alexander’s proof given (this time for cell complexes)
by Veblen ([474], p. 102), van der Waerden [477], and Lefschetz ({304], chap.
II); it was only in a short note published in 1933 that Lefschetz, “to clear up
misconceptions,” defined a singular cell on a space X [305]: he considers pairs
(e,, f), where e, is a p-dimensional oriented convex polyhedron in some RY,
and f:e, — X is a continuous mapping; singular p-cells are classes of such

* Although Alexander did not mention any paper on algebraic topology with the
exceptions of Poincaré’s and his own joint paper with Veblen [21], it is quite certain
that he knew Brouwer’s work, for it is quoted in a 1913 paper by Veblen.

' “Wir nennen C,, aufgefasst als das Abbild eines bestimmten C,,, einen n-dimensionalen
Komplex mit Singularititen, ..., und geben ihm die Bezeichnung C,(C,)” (p. 164).

* Alexander only considered homology mod 2 on manifolds.
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pairs for the equivalence relation (e, f) = (e,, /'), where f' = fou and u is
an dffine bijection u: e, — e,.* If b, denotes the boundary map for euclidean
polyhedra, then the equivalence

(bye,. £1b,e,) = (bye}, 1'Ibye;)

holds when the equivalence relation is extended to “singular chains,” linear
combinations of singular cells;" this clearly defines a boundary operator for
these new “chains,” and from these data one deduces by the standard method,
applicable to all chain complexes, homology modules that this time obviously
only depend on the space X up to homeomorphism. To make things precise,
we shall attach the qualification “topological” or the index “top” to the
notions entering in the homology of singular chains. For any continuous
mapping g: X — Y the image by § of a singular cell on X is defined by

glep,f) =(epg° f) (12)

and therefore this can be extended by linearity to a homomorphism G,
CoP(X) = CyP(Y) of singular chains, permuting with boundary operators
and yielding a homomorphism g,: (H{*?(X)) — (H°"(Y)) of graded homology
modules with the relation (g, © g,), = g, © g, for two continuous mappings.

Granted this clarification, Alexander’s method may be stated as fol-
lows: For a triangulation T of a euclidean simplicial complex X, there is a
homomorphism

H; - H® (13)

from the homology defined by chains of T to the homology of singular chains,
defined in a natural way: each p-simplex E,, of the triangulation T is identified
to the singular p-simplex (E,, Id.), and its boundary with the (singular) bound-
ary of that singular simplex. What has to be shown is that (13) is bijective, or
equivalently that: (A)every topological p-cycle w, is topologically homologous
to a p-cycle of T; (B) every p-cycle z, of T that is a topological boundary is
also a boundary of T.

Some preliminary results are needed. First is the fact that the homology of
T is naturally identified with the homology of any triangulation T’ deduced
from T by barycentric subdivision. We have seen in chap. I that Poincaré had
already given a substantially correct proof of that result, and others were
proposed by Tietze ([466], p. 42), Alexander himself ([9], p. 153), Veblen
([474], p. 90), and Lefschetz ([304], p. 68). This invariance by subdivision is
immediately extended to the homology of singular chains,® and has as a
consequence the fact that in the proof of A (resp. B) the singular chain w, [resp.

* This allows one to take all the e, equal to the same simplex, which will be done later
(chap. IV, §2).

T In addition, Lefschetz imposed the relation (—e,, f) = —(e,, /), where —e, is the
simplex e, with opposite orientation.

tA subdivision of a singular cell (e, f) consists of the singular simplices (e;,fle;),
where (e}) is the family of p-simplices of a subdivision of e,.
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the singular (p + l)-chain of which z, is the topological boundary] may
consist of singular simplices whose images in X are arbitrarily small.

The second result that emerges from Veblen’s invariance proof ([474],
p. 102) and more clearly from Lefschetz’s, is, at last, a correct statement and
proof of the invariance of homology under homotopy (the irrelevance of
“deformation,” so long taken for granted, as we have seen in chap. I). Writing
S,(RY) the Z-module of the simplicial p-chains in R¥, linear combinations with
integral coefficients of the oriented euclidean simplices in RN, start with an
elementary simplicial subdivision* of a product A, x I 'in RN*! (a “prism”),
where A, is a p-dimensional euclidean simplex in RN and I = ]0, 1[. With
suitable orientations, we obtain the relation between p-chains in RN*!

b, (A, x )= A, x {1} — A, x {0} + (b,(A,) x T) (14)
and by linearity this gives in the Z-module S,(RN*') the relation
b, (P,(z,) =z, x {1} —z, x {0} + P,_(b,z,), (15)

where, for each integer g, z, — P,(z,) is the linear map of S,(RY)into S, , (RN"")
that coincides with the map A+ A, x I on each g-simplex A,. From (15), by
applying to both sides the homomorphism deduced from a continuous map
F: X x I - X as shown above, where X is a euclidean simplicial complex, this
immediately gives the first example of a homotopy formula for singular p-
chains z, in X (cf. chap. IV, §5,F):

fz,) — §(z,) = b, (F(z, x 1)) — F((b,z, x ), (16)

where f(x) = F(x, 1), g(x) = F(x,0), from which it follows at once that if z, is
a singular p-cycle, f(z,) and §(z,) are topologically homologous.

To prove A, after subdividing the singular simplices of w, in order to be
able to apply the Alexander construction of simplicial approximations de-
scribed above, one shows that there exists a homotopy of w, on another
singular chain w,, whose singular simplices (e, g) are such that g is an affine
map of ¢, into a p-simplex of T sending vertices of e, into vertices of that
p-simplex. This would clinch the matter, except that the affine map g is not
necessarily bijective.

This difficulty was ignored by Alexander and van der Waerden; Veblen’s
proof is very obscure and he does not seem to have distinguished, for cycles
of T, between the concepts of “topologically homologous to 0” (i.e., being
boundary of a singular chain) and “homologous to 0in T” (i.e., being boundary
of a chain of T). Lefschetz realized that w, is not identified with a p-chain of

*1f AyA,---A, is the sequence of vertices of A, identified with A, x {0}, and
B, B, ---B, is the sequence of the vertices (A;, 1) of A, x {1}, the subdivision consists
of the (p + 1)-simplices

(= l)kAOAl o ABB,, B

for 0 < k < p; this generalizes the decomposition of a prism into tetrahedra, which
goes back to Euclid.

4
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T but with a p-chain in the module C,, of chains of ordinary and degenerate
simplices of T; but we have seen that he identified the homology of (C}) and
of (C,), a result that was only proved in 1938.

The proof of proposition B is very similar. The singular (p + 1)-chain of
which z, is the topological boundary is subdivided in such a way that a
homotopy of that (p + 1)-chain can be defined as above, with the added
proviso that the vertices of z, remain invariant under the homotopy; z, is then
identified to the boundary of a (p + 1)-chain w,,, of C,., which may contain
degenerate simplices; but as z, does not contain degenerate simplices, it is also
the boundary of the (p + 1)-chain obtained by deleting from w,,, the de-
generate simplices, and that is a chain of T.

Alexander’s second proof [ 14] did not use singular simplices any more, and
relies exclusively on simplicial approximation. It was enough to show that if
two euclidean simplicial complexes X, X’ are homeomorphic, and T (resp. T')
is a triangulation of X (resp. X'), then the homology modules H (T) and
H.(T) are isomorphic. Let f: X —» X' be a homeomorphism, with inverse
g = f': X' - X. Let (T, [resp. (T;)] be the sequence of successive barycentric
subdivisions of T (resp. T’); the maximum diameter of the simplices of T; (resp.
T/) tends to 0; hence, for cach index i, there is an index j and a simplicial
approximation g; of g, from T; to T;; similarly, there is an index k > i and a
simplicial approximation f;, of f, from T, to T;. The composite h; = g;; o f
is then a simplicial map of T, into T;; suppose i and k large enough; then, owing
to the relation g o f = 1y, for every p, every p-simplex ¢ of T,, and every
p-simplex 7 < @ of T, [which is a p-simplex of the (k — i)-th barycentric
subdivision of 6], h; sends every vertex of T to a vertex of a.

Let f]k C,(T,) = C,(T) and §;;: C,(T;) — C,(T;) be the homomorphisms of
modules of ordinary and degenerate p-chains corresponding to the simplicial
maps f; and ¢;, and hy = gijo fk C,(T,) » C,(T;) their composite. On the
other hand, let sd,_; be the homomorphism of C,(T) into C,(T,) that as-
sociates to every p-simplex of T, the sum of the p- simplices of Tk contained in
it, with the same orientation; then h,(sd,_/(0)) = 6 + 6, where 6, is a de-
generate p-chain. This lemma is proved by induction on p, being obvious by
definition for p = 0. The assumption on h;, implies that for any p-simplex z
of T, contained in o, either /i, (1) = + 0o or hy(t) is a degenerate p-simplex;
hence hy(sd, {0)) = c.o + 0, where c is a constant and 0, is a degenerate
chain. But as /1, o sd,_; is a simplicial map,

hy(sdy_i(b,0)) = c.b,a + b0,
and b, 6, is degenerate. On the other hand, the induction hypothesis implies
ik(Sdkfi(pr-)) =b,0 + 0,

where 6;, is degenerate; the comparison of the two formulas gives ¢ = 1.*

* This lemma is a special case of the Sperner lemma, proved two years later by the
same method ([30], p. 376).
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Assuming, as Alexander does, that the homology H (T;} can be identified to
the homology H/(T;) of ordinary and degenerate chains, (h;,), = (g;)s © (fi)
is the identity in H (T;); similarly a “right inverse” is obtained for ( f};),., which
proves that (f,), is an isomorphism; the theorem then results from the fact
that H_(T) (resp. H,(T")) is isomorphic to H (T,) (resp. H,(T})).

§4. Duality and Intersection Theory on Manifolds

A. The Notion of “Manifold”

After the invariance problem had been solved, two main items remained in
the implementation of the program outlined by Poincaré: a rigorous proof of
the duality theorem and a complete theory of intersections, barely begun by
Poincaré (chap. I, § 2). Obvious examples show that in neither question can
one work with a general cell complex; some restrictions have to be introduced
in order to make available the arguments Poincaré used for his “manifolds.”

We have seen (chap. I, § 2} that the concept of a C'-manifold for r > 1 was
clear to Poincaré. In what follows we will systematically use the name n-
dimensional C%-manifold to designate what is also called a locally euclidean
space, namely, a Hausdorff space in which any point has a compact neighbor-
hood homeomorphic to a closed ball in R".* The triangulability of C"-manifolds
for r = 1 was only proved in 1930 (chap. II1, §2); but (except for n < 3) the
triangulability of C°-manifolds remained undecided until about 1960, when
counterexamples were found for dimensions > 5. In the meantime, in order
to use simplicial methods, topologists had to settle for more tractable defini-
tions of “manifolds.”

In fact, several definitions were proposed ([3087, pp. 342-343); the first one
was described by Veblen ([474], pp. 91-95) and it is a definition that is based
on a given triangulation T into “cells” [in the sense of Poincaré (chap. I, §2)]
of the compact space X, but Veblen did not investigate its invariance under
homeomorphism. The definition generalizes Poincaré’s condition that for the
maximal dimension n of the cells of T, each (n — 1)-cell should be in the
frontier of exactly two n-cells: for any k-cell C (k < n — 1), let Z"*~1(C) be the
union of the j-cells (j < n — k — 1) that are in the frontiers of the n-cells having
C in their frontier but the closures of which do not meet the closure of C. Then
(X, T) is a manifold (without boundary) in Veblen’s sense if, forall k < n — 1
and all k-cells C, Z"*71(C) is homeomorphic to the sphere S,_,_,.

However, since (as Poincaré had shown in his fifth Complément) the homo-
logy of a sphere is not enough to characterize it up to homeomorphism, it was
not possible to verify Veblen’s condition by purely combinatorial means, and,
in particular, it was not at all obvious that it would be satisfied by a triangu-

* Of course, to be sure that this definition is meaningful, one has to invoke Brouwer’s
theorem on the invariance of dimension (Part 2, chap. I, § 1).
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lated C"-manifold, so that the proof of Poincaré’s duality theorem for these
manifolds, given by Veblen, could not be considered as conclusive. This
observation was first made in print by Vietoris in 1928; he therefore proposed
to consider only what he called h-manifolds, defined by induction on the
dimension in the following way: such a manifold is a compact n-dimensional
simplicial complex (X, T) for which the frontier of the star of each vertex of T
is an (n — 1)-dimensional h-manifold with the homology of S,_,. A similar
(unpublished) observation was made by Alexander, who proposed to weaken
Veblen’s condition by requiring only that the Z* *1(C) be cell compiexes with
the same homology as S,_,_;. This definition was adopted by Lefschetz in
1929 and by most of the later writers under the name of combinatorial mani-
folds; it is easily shown that they are the same as Vietoris’ h-manifolds.

B. Computation of Homology by Blocks

We have seen in §3 that after Poincaré it was essentially known that the
homology of a cell complex is naturally isomorphic to the homology of a
simplicial subdivision of the complex. But if one starts with a simplicial
complex (X, T) and regroups simplices into “blocks” [as in Poincaré’s con-
struction of “dual celis” (chap. 1, § 3)], it is useful to know conditions that allow
the computation of the homology of the complex to be performed by using
only these “blocks” of simplices.

This question was analyzed by Seifert and Threlfall in their book [421].
They defined a system of blocks by giving, for each p > 0, a basis of the
Z-submodule K, of the (free) Z-module C,, of p-chains of T, satisfying for each
p = 0 the two following conditions (where as usual Z, and B, are the sub-
modules of cycles and boundaries in C,):

LbK,=K,_ , nB,_;
272,=K,nZ,)+b,, K,

This implies that Z, = B;, + (K, N Z,), hence, for the homology groups
H,=Z,/B,~(K,nZ,)/(K,nB,)=(K,nZ,)/b,;K,.;. (17

In other words, (K,) is a chain complex for the same boundary operator as
(C,), and the homology of (K ) is isomorphic to the homology of (X, T). This
is useful not only for proving Poincaré duality (see below), but also for
practical computation of homology modules for explicitly given complexes.

C. Poincaré Duality for Combinatorial Manifolds

The simplest proof of Poincaré duality for an oriented combinatorial manifold
X with a simplicial triangulation T is the one described by Pontrjagin ([374],
p. 186). He considered the barycentric subdivision T’ of T, and “regrouped,”
as did Poincare, the simplices of T’ into “dual cells,” forming the dual tri-
angulation T* of T. Any such “dual cell” E of dimension k has a frontier F
such that the pair (E,F) has the same relative homology (§6) as the pair
(Dy, S,_,) consisting of the unit ball D, in R* and its frontier S,_, . This follows
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from the definition of combinatorial manifolds, and implies that the “dual
cells” of T* form a system of blocks with which one may compute the homo-
logy of X: only condition 2 of B needs a proof, which can be done most simply
by descending induction on the dimension k ([421], p. 235). It is still necessary
to check the relation between the incidence matrices of T and of T*, but this
follows easily from the definitions.

The proofs of Vietoris and Lefschetz ([304], pp. 135-140) are similar: start
from a combinatorial manifold X, whose triangulation T into “cells” is related
to a simplicial triangulation T’ by the fact that each “cell” is the star of a vertex
of T’ (the center of the star), and T’ is the barycentric subdivision of T. Then
assume that the frontier of a k-star i1s a union of stars of dimension <k — 1,
that each k-star, for k < n — 1, is in the frontier of a (k + 1)-star, and finally
that the homology of the frontier of a k-star is isomorphic to the homology
of S,_,. This implies, as in the particular case of a simplicial complex, that the
“dual” cells obtained by the Poincaré construction have the same properties,
and the Poincaré duality follows as before.

In their 1934 book Seifert and Threlfall showed that it is possible to replace
in this proof the definition of combinatorial manifold by a definition indepen-
dent of the triangulation: it is enough to suppose that the compact space X is
triangulable and that it is an n-dimensional generalized manifold in the sense
defined in 1933 by Lefschetz [306] and Cech [122] (Part 2, chap. 1V, §3);
here this simply means that for any x € X, the relative homology (§6)
H, (X, X — {x}H;Z) is 0 for g # n and isomorphic to Z for g = n ([421],
pp. 236-241).*

The duality theorems proved by Lefschetz and Cech in these papers of 1933
applied to generalized manifolds that were not necessarily triangulable, and
therefore had to be proved by other methods (see Part 2, chap. IV, §3).

D. Intersection Theory for Combinatorial Manifolds

When Poincaré’s construction of “dual cells” is possible, it is easy to extend
in a “cell complex™ X his definition of the “Kronecker index” N(V,,V,) (chap.
I, §2) to a “Kronecker index” N(a,, b¥_ ), where a,, is a p-cell of the complex
and b}, its dual cell, both oriented: one transcribes the definition of Poincaré
using the oriented vector spaces that are the directions of one of the simplices
constituting a, (resp. b ) with vertex at the intersection of a, and b¥_, ([369],
p. 242). This was done in 1923 by Veblen and Weyl [484]. Assuming that the
homology of X could be computed by using both the given “cell complex”
and its dual, they defined in that way a bilinear form on the product H, x H,_,
of the homology modules, and this form determines a duality between H, and
H,_,. Actually there was very little to add to Poincaré’s arguments to reach
that conclusion, and it is a bit surprising that he did not do it himself, even
taking into account the clumsy character of the linear algebra he had at his
disposal.

* These conditions are satisfied by C" manifolds for r = 1.
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The papers by Alexander and Lefschetz on intersections, which date from
about the same time as those of Veblen and Weyl, are much more ambitious.
Both authors started their mathematical careers in algebraic geometry, which
Alexander abandoned almost immediately in favor of topology. Lefschetz, on
the contrary, kept a continued and vigorous interest in the topic for more than
30 years, and we shall see later (Part 2, chap. VII, § 1,B) how, by expanding
the ideas of Picard and Poincaré, he “planted the harpoon of algebraic
topology into the body of the whale of algebraic geometry,” to use his own
words ([296], p. 13). But it should be emphasized here that if in the hands of
Lefschetz algebraic geometry was transformed by this injection of algebraic
topology, the latter, as we shall see presently and later, received from him
impulses inspired by algebraic geometry just as valuable as the ones it gave
in return (see [435]).

In the type of algebraic geometry begun around 1870 by Clebsch, Brill, and
M. Noether and followed by Halphen, Picard, Humbert, Zeuthen and the
Italian school, algebraic subvarieties of a complex projective space and alge-
braic families of such varieties were a fundamental tool. Under ill-defined
conditions, for two subvarieties V, W of a third variety X, the combinations
V+ W, VW, kV (for an integer k) were considered as subvarieties (or
“virtual” subvarieties) when V and W have the same dimension, as well as the
“product” V. W when dimV + dimW > dimX; in the best cases V + W
would be the set-theoretic union and V. W the set-theoretic intersection, but
the complexity of the general definitions ruled out any possibility of dealing
with varieties (or classes of “equivalent” varieties in some sense) as elements
of a group or a ring. We may wonder if Poincaré was not inspired by these
would be algebraic operations when he introduced his “chains” of varieties in
algebraic topology. At any rate this analogy was central in Lefschetz’s early
work, and Poincaré’s algebraic manipulations probably appealed to him more
than the complicated geometric constructions of the Italians; following ideas
of Picard he combined algebraic and topological arguments in an original
way and obtained remarkable new results (see Part 2, chap. VII, § 1,B);, but
since he was as reckless as Poincaré (and the Italians) in his use of “intuition,”
none of these results could be supported at that time by a convincing proof,
which he and others could only supply 10 years later.

When Alexander and Lefschetz shifted their investigations to cell complexes
and combinatorial manifolds, they naturally were led to generalize the concept
of intersection to arbitrary cycles. But Alexander did not make any effort to
clarify nor even to define that concept, which apparently he considered “intui-
tive” enough; his short notes on the subject [13] were only bent on showing
by examples that the formulas giving intersections of cycles on two manifolds
X, Y could be essentially different* even if the homology modules of X and Y
are isomorphic.

* In today’s terminology, the intersection rings (or cohomology rings) of X and Y are
not isomorphic. Other examples were given by de Rham ([388], p. 104).
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Lefschetz took the matter much more seriously. Although at first he did not
express it in this form, what he needed was, for an n-dimensional compact,
connected, and oriented combinatorial manifold X, and for any two integers
p, q such that 0 < p, g < n, a bilinear mapping

(zp 202, 2,

of H, x H,into H,,_, (replaced by 0 if p + g < n), such that

2.2, = (—1)""P"Dz 7, (18)
and
(zp-2).2, = 2,.(z4.2,) (19)
for any three integers p, g, r in [0, n]. Of course, when z, and z, are homology
classes of cycles that are submanifolds and whose intersectionisa(p + ¢ — n)-
dimensional submanifold, the homology class of that submanifold should be
z,.z, up to sign; furthermore, when g = n — p, z,. z,_, is a scalar multiple iz,
of the homology class z, of any point of X, and the scalar 4 should be the
“Kronecker index” defined by Poincar¢, which Lefschetz wrote (z,. z,, ).

We shall see later (chapter 1V, §4) that once cohomology was introduced,
it was easy to define the products z, . z, for manifolds using the “cup-product”
of Whitney; here therefore, we shall only give a sketchy description of the
direct methods which Lefschetz initially used in [300] and [301] to define the
products z,,. z,.

His idea was to consider singular cycles C,, C, having, respectively, z,, z,
as homology classes, and deduce from them a (p + q — n)-singular cycle
having z,.z, as homology class. As could be expected, all he could actually
do was to define a whole family of singular cycles, all homologous to each
other, by a fairly complicated approximation process, of which he published
two variants.

Both variants start with the definition of the oriented intersection “product”
P.Q of two oriented convex polyhedra of respective dimensions p, ¢ contained
in a third one R of dimension n with p + g > n; P, Q, R are open in the
respective linear affine varieties Vp, Vg, and Vg they generate. If PN Q = (5,
take P.Q = 0; otherwise, P. Q is only defined when V, n V,, has dimension
s =p + q — n; P~ Qis then a convex pciyhedron open in V; NV, and there
is a way of assigning to Vp n V,, an orientation canonically dependent on those

of Vp, Vg and Vg;* P.Q is then the convex polyhedron P~ Q with that
orientation, and

Q.P = (—1)*Pe-ap Q. (20)

When P and Q satisfy all these conditions, they are said to be “in general
position.”

* Orienting an n-dimensional vector space means choosing a decomposable n-vector
spanning that space. Let u, v, w be decomposable multivectors orienting the directions
of Vp, Vg, Vg; then w defines a “regressive” product u v v, and that s-vector orients the
direction of V, n V.



54 {. Simplicial Techniques and Homology

Now let X be an n-dimensional euclidean simplicial complex, which is a
compact, connected, oriented combinatorial manifold with triangulation T. If
C,is a p-chain and Cj is a g-chain of T, the “intersection product” C,. C;, can
be defined by linearity provided that when a p-simplex of C, and a g-simplex
of C, have a nonempty intersection, they are contained in the closure of the
same n-simplex of T and are in general position; C,.Cyis thena (p + g — n)-
chain.

Now suppose C is a singular p-chain and C' is a singular g-chain on X. Their
geometric intersection is by definition the intersection of their images in X;
assume that p + g > n, and that the geometric intersections of C with b,C’
and of b,C with C’ are empty. The general idea is, after suitable subdivisions
of T, C, and C/, to apply to C and C’ a refined (and somewhat complicated)
version of the Alexander approximation process (§3), in order to obtain a
p-chain C, of T and a g-chain Cj, of T which satisfy the above condition and
aresuch thatb,C, n C, = C, nb,C, = F. In his first version [300] Lefschetz
had to introduce an additional condition on chains C, and Cj in “general
position” in order to ensure that the relation

by(Co.Cj) = b,Co.Cp + (—1y9Cq.b,C, 1)

holds; when the above condition on the boundaries of C and C’ is added the
approximation process yields an s-cycle C,.Cy. He could then easily show
that the homology class of that cycle did not depend on the approximation
used as long as that approximation deformed the singular chains by an
amount smaller than a fixed quantity depending only on T, C, and C'.

In the second variant [301] he had the idea of using the “intersection
product” P. Q of oriented convex polyhedra only when P is a p-cell of a (not
necessarily simplicial) triangulation T of X, and Q is a g-cell of the dual
triangulation T*. There is then no need to suppose “general position” for P
and Q: automatically, either PN Q = For P~ Qisa(p + g — n)-dimensional
convex polyhedron, and the application of the approximation process is
greatly simplified.

However, in both variants, it is still necessary to prove that the homology
class z,. z, obtained is also independent of the triangulation chosen on X, and
in both cases this necessitates a long and complicated argument.

Today the properties of the intersection products z,.z, are expressed by
saying that they define, by linearity, a structure of (associative and anti-
commutative) ring, on the direct sum

H= @ H, (22)

0sp<n
of the homology modules, and that this ring is an invariant of the complex X
under homeomorphism. It is a curious reflection on the clumsiness of algebra
before van der Waerden that this formulation, which seems so obvious to us,
was only given by Hopf in 1930 [242] (perhaps again under the influence
of E. Noether). Alexander and Lefschetz, in the case of homology over the
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rationals, picked up bases (z}) in each H,, wrote out the expressions of the
intersection products

zhozi =3 ofzk, . . (23)
%

and then limited themselves to saying that the systems (¢f) of rational numbers
are “tensors” invariant under homeomorphisms!

§ 5. Homology of Products of Cell Complexes

Even the cartesian product of two arbitrary sets (excepting of course subsets
of the R") was not a notion in common use at the end of the nineteenth century
(although it had been explicitly defined by Cantor). Only among algebraic
geometers did it occasionally occur, for instance when Cayley considered the
product of two algebraic curves or C. Segre the product of two complex
projective spaces of arbitrary dimension; then these products were immedi-
ately given a structure of algebraic variety. The first mathematician who
introduced the concept of a topological space, product of two given topologi-
cal spaces, was apparently Steinitz in 1908 [456], but the investigation of the
relations between the topology of the two factor spaces and the topology of
their product was only begun independently by Kiinneth ([289], [290]) and
Lefschetz [301] in 1923.

Both limited themselves to euclidean (rectilinear) compact connected cell
complexes; actually, once the invariance problem had been solved (§ 3), com-
putation of the homology of X x Y for two such cell complexes X, Y was an
exercise in elementary linear algebra; for simplicity we shall describe it in the
algebraic language of today. From the given triangulations T(X), T(Y) of X
and Y into convex polyhedra (not necessarily simplices) a similar triangulation
T(X x Y) is derived by taking all products A x B for A € T(X) and B € T(Y),
and the Z-module S,(X x Y) of p-chains of T(X x Y} is just the direct sum

S, XxY)= B SuX)®S,-(Y)). 24
o<k<p
Now the “reduction” of Poincaré’s incidence matrices amounts to a decom-
position

S,(X) = Z,(X) @ F,(X) (25)

into a direct sum of two submodules such that the boundary map b, is 0 in
Z,(X) and is an injection F(X) —» Z,_, (X) in F,(X); by the theory of invariant
factors there are bases (¢]_,) of Z,_,(X) and (f})) of F,(X) such that for those
bases the matrix of b, considered as an injection of F,(X) into Z,_, (X) is the
matrix (p;;) defined in chap. L, § 3, after removal of the zero columns. Now for
the boundary map in T(X x Y), if A is a k-cell of T(X) and B is a (p — k)-cell
of T(Y),

b,(A x B) = b,A x B+ (—1)A x b,_,B. (26)
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As S (X x Y) splits into a direct sum of the Z-modules
FX)®F,_(Y), FRX®Z, (YY) Z(X®F,_(Y)
Z,(X)® Z,(Y)

for 0 < k < p, the matrix of b,: S,(X x Y) > S,_,(X x Y) splits accordingly
into blocks, all of which are trivially written down immediately, with the
exception of the matrix of

b, F(X) ® F,_i(Y) = (Zi- i X)) @ F, i) @ (F(X) ® Z, . (Y)), (27)

but the “reduction” of that matrix is at once brought down to the “reduction”
of 2 x 2 matrices. One thus obtains a regular algorithm for computing the
homology modules of X x Y when one knows those of X and Y; in particular,
one has for the Betti numbers the “Kiinneth formula”

bXxY)= Y b(X)b,_(Y) (28)

O0<k<p

from which one deduces at once for the Euler—Poincaré characteristics
x(X x Y) = x(X)x(Y). (29)

It is just as easy to compute the intersection ring of X x Y when X and Y
are oriented combinatorial manifolds; from formula (26) it follows that the
cartesian product of two cycles is a cycle; if we denote by z, x z, the homology
class of the cartesian product of a cycle of class z,, in X and of a cycle of class
z,in'Y, then

(2 X zp—i) (uy X ugp) = (24 uy) X (2p - Ug—p)- (30)

§ 6. Alexander Duality and Relative Homology

Until 1920 homology had only been defined for finite cell complexes (con-
nected or not). In a remarkable paper [11] published in 1922 (the first draft
of which goes back to 1916) Alexander broke new ground by considering the
homology of open subsets of an R”; at the same time he showed how the
Brouwer theorems, proved by him without reference to homology (Part 2,
chaps. I and II), could be inserted into the theory of homology and extended
in that way.

He considered a subspace of a sphere S, (n > 2), which is a compact (con-
nected or not) curvilinear cell complex X of dimension m < n (for instance, a
closed Jordan curve, for n = 2 and m = 1). He first had to define the homo-
logy of the open set S,, — X. Alexander did not do this formally, but considered
a simplicial subdivision T of S, and the sequence of triangulations T; obtained
by successive barycentric subdivisions of T; p-chains of S, — X are then
p-chains of any T, that are linear combinations of p-simplices contained in
S, — X. In order to add a p-chain C of T, and a p-chain C' of T, for k > j(both
combinations of p-simplices contained in S, — X), he replaced each simplex
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in C by the sum of the simplices of T, into which it is decomposed. (Actually
Alexander worked in homology mod. 2, in which he did not have to bother
with signs.) Boundary operators and homology are then defined as usual, but
a priori the homology modules might not be finitely generated.

Another equivalent method is to define the homology of an arbitrary open
subset U of R" by an extension of the concept of triangulation for such a set:
this time it means a locally finite partition T of U into cells of various
dimensions, with the condition that the frontier of any cell of T is a finite
union of cells of T of strictly lower dimension;* more generally, from now on
we shall call a space equipped with such a triangulation a cell complex. The
p-chains are then defined as linear combinations of a finite number of cells of
T, and boundaries and homology are defined as for finite cell complexes [30].
Alexander’s remarkable result was that if X < S, is a finite curvilinear cell
complex, all Betti numbers (mod 2) of S, — X are finite and satisfy Alexander
duality

dim H,(X; F,) = dimH,_, (S, — X;F;) forl<p<n—2, (31)
dimH,(S, — X;F,) = dimH,_,(X;F,) + 1,
dimH,_,(S, — X;F,) = dimHy(X; F,) — 1 (32)

[with H,(X;F,) = 0 by convention when p is larger than the dimensions of
the simplices of X].

The very ingenious and rather intricate proof relies on splitting X into a
union of two (curvilinear) cell complexes Y, Z, and , from the knowledge of
the cases in which X is replaced by Y, Z or Y n Z, to deduce the result for X:
a typical “Mayer—Vietoris” procedure (although, as we have seen in § 2, the
papers of Mayer and Vietoris were only published 7 years later). This is applied
in three steps, each one using the results of the preceding one.

The first step concerns the case in which X is homeomorphic to a closed
cube of any dimension m < n; then it is shown that H,(S, — X) = 0, except
for k = 0 [a generalization of Brouwer’s “no separation” theorem (Part 2,
chap. I1, §4)]. The procedure consists in an induction on m, splitting X into
two half cubes and using contradiction, by an infinite iteration of the splitting
into cubes with diameters tending to 0. The second step is devoted to the case
in which X is homeomorphic to a sphere S,,; induction on m, splitting X into
two closed hemispheres with an intersection homeomorphic to S,,_,, to each

* To prove the existence of such a trtangulation for an arbitrary open subset U of R",
one may consider the closed n-dimensional cubes of R” having as vertices the points
of 27%Z" and 27 as lengths of their edges; let C, be the set of those cubes contained
in U, and C; the subset of C, consisting of cubes having no common interior point
with the cubes of C,_;; the triangulation T is obtained by decomposing each cube
belonging to the union of the C, for all integers k > 1 into disjoint open cubes of all
dimensions <n. This method was already used by Runge in R? ([30], p. 143); it was
considered as well known by Brouwer ([89], p. 316).
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of which the first case can be applied. This already contains as a particular
case the Jordan—Brouwer theorem (Part 2, chap. I1, §3) form =n — 1.

The general case (for which X may be taken as a curvilinear simplicial
complex) is treated in the third step, by a double induction on m = dim X and
on the number of simplices of maximum dimension m in X. Write b,(X) =
dim H,(X; F,) for simplicity. First split X into the union of the closure Y of
one m-simplex and the closed complement Z of that simplex and prove that

b, (X)="b,(Z) and b, ,_;(S,—X)=b,_,_,(S,—Z) forp<sm—2. (33)
By induction, assume that
bu(Z) = bpy(Z) = b,y 1S, — Z) = b, (S, — Z) (34)
and show that
bp(X) = by (X) = by (X) = by n(X) (35)

[add ! on the right-hand sides of (34) and (35) when m = n — 1]. Finally, after
having split off all simplices of dimension m, one gets a cell complex Z,
of dimension <m — 1; the induction hypothesis shows that 0 = b, (Z,) =
by 1S, —Zy) and b,,_,(Zy) = b,_,.(S, — Z,). The final step consists in
proving that b,,(X) = b,_,,_,(S, — X) (with 1 added on the left-hand side if
m = n — 1) by looking at the (m — 1)-simplices of Z, and at the m-simplices
of X of which these (m — 1)-simplices are faces; finally b,, ;(X) = b,_,.(S, — X)
by (35).

At the end of the paper Alexander observed that relations (31) and (32) yield
a third proof of the independence of homology from the triangulation used
to compute it, since the triangulations of X and of S, are independent of each
other.

Alexander’s paper was, on one hand, the starting point of investigations by
several mathematicians (Vietoris, Alexandroff, Lefschetz, Pontrjagin, Cech)
aiming at generalizing homology modules to spaces other than compact
complexes or open subsets of R”; we shall describe these developments in chap.
1v,§2.

On the other hand, it led Lefschetz to introduce the new and important
concept of relative homology. In his first publication on that subject [302] he
introduced this notion for homology with rational coefficients and for very
general spaces, thus linking with the generalizations we just mentioned. In his
book [304] Lefschetz separated the homology of finite cell complexes from
its generalizations and allowed coefficients in Z, Z/mZ, or Q. If K is a finite
euclidean simplicial complex, L is a union of simplices of K, the boundary
b, C of a chain C of K relative to L (or mod L) is the sum of the simplices of
K in the expression of bC that are not contained in L, so that a p-chain C of
K is a cycle mod L (resp. is homologous to 0 mod L) if its (usual) boundary is
a combination of simplices of L [resp. if there is a (p + 1)-chain of K whose
(usual) boundary is the sum of C and of simplices of L7; hence, the definition
of the homology modules of K mod L, which Lefschetz wrote H (K, L). More
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generally, he also gave the corresponding definitions when K is an “open
complex,” an open subset of a compact euclidean simplicial complex K’ that
is a union of simplices of K'.

With these definitions Lefschetz first considered the case in which K is an
n-dimensional euclidean simplicial complex, and L is a subcomplex of K
(which is automatically closed in K since the faces of a simplex of L have to
be in L). He then proved that the homology of K mod L only depends on the
topology of K — L (first appearance of what later will be called “excision”);
for that purpose he adapted the homotopy process used by Alexander in his
first proof of invariance (§3) in such a way that a singular chain having its
frontier in L is deformed into another chain whose frontier remains in L
([3041, p. 86). Lefschetz also investigated the relations between the homology
of K, the homology of L, and the homology of K mod L ([304], pp. 149-150),
which later took their final form in the exact sequence of relative homology
(chap. 1V, §6,B).

Supposing that K — L is also an orientable combinatorial manifold,
Lefschetz first generalized to the homology of K mod L the Poincaré duality.
He denoted by K* the union of the duals of the simplices of K that are not
simplices of L; then he showed that K* is a compact simplicial complex, and
that its incidence matrix of (n — p)-chains and (n — p — 1)-chains is, up to sign,
the transpose of the incidence matrix of the (p + 1)-chains and p-chains of
K — L.

From this he was able to deduce, by an entirely different method, Alexander’s
duality theorem, at least in the special case in which L is a subcomplex of S,
[for a suitable (curvilinear) triangulation of S,] by showing that in this case
the relative homology module H (S, L) is isomorphic to the “absolute” homo-
logy module H,_,(L) for 1 < p < n, by an argument that again is essentially
part of the exact sequence of relative homology ([304], pp. 143-144).

Finally, Lefschetz took up the more general situation in which L, < L are
two subcomplexes of K, and by a more refined argument, he can show that if
L, = L — L,, then for the Betti numbers

b,(K —L,,L,)=b,_,(K—L,,L,) (36)

and a corresponding relation holds for the torsion coefficients ([ 3041, pp. 141-
142).



