
Starlight by Numbers

They say that mathematicians drink a toast which goes: “Here’s to pure
mathematics – may it never be of any use to anyone.” Well by that score,
I’m definitely not a mathematician; at least not a pure mathematician.
Let’s face it, for many people (perhaps myself among them) mathematics
reaches the parts of the brain that hurt, so when we do seek to solve a
mathematical equation as we will from time to time, you can be sure that
there’s a real reason for doing this.

One obvious reason is that the number that results from solving an
equation may be of real importance to us; a less obvious reason, but one
that is just as important and perhaps even more important to the learner
is that a simple equation can be used to explore some part of astrophysics.
The basic idea is to use a pocket calculator to try out or to plug different
numbers into the equation; this enables you to get a “feel” for the kind
of numbers that are involved in the solution to the equation (are they
huge numbers or very small ones for example?). This process of “equation
exploration” will also show you how the all-important solution to the
equation actually depends on the different numbers that get plugged in.
For example, will doubling an input number simply double the value of
the answer or maybe multiply it by four. The result is that by doing this
kind of thing you are guaranteed to gain a much deeper understanding of
that particular bit of astrophysics.

You can if you wish ignore the equations we encounter without really
losing anything, but if you have a calculator, then do have a go at using
it to explore an equation; you’ll soon come to realize just how valuable
and even enjoyable this is. As for the kinds of equations that we will come
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across, have a look further down at Equation (10); if an equation like this
presents you with no problems, then feel free to go to the final section of
this chapter on “Star Distances by Numbers.” The main purpose of this
fairly short chapter is to show you how to solve equations such as this and
thus hopefully give you a solid foundation and a smooth read through the
rest of the book. For any other mathematical points that come up, we’ll
deal with them only when the need arises in order to prevent you from
getting “mathematical indigestion.” So here goes, starting with some very
basic stuff about numbers.
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Large Numbers and Small
Numbers

Start with the number 100; a “1” followed by two zeros, which of course
also equals 10 × 10, or two number 10s multiplied together. Similarly the
number 1,000 – a “1” followed by three zeros is the same as three num-
ber 10 s multiplied together. The way that mathematicians and scientists
write a number like, for example, 100,000 is 105. This is a shorthand way
of writing the number “1” followed by five (5) zeros or five number 10 s
multiplied together; so “100” becomes 102 and “1,000” becomes 103. This
clearly avoids the need to write long strings of zeros, but it does more, as
you might expect. One way of saying the number 103 (besides saying “one
thousand”) is of course “ten cubed,” but a more precise way is to say “ten
to the power three” or just “ten to the three,” and then, for example, 105

can be spoken of as “ten to the power five” or “ten to the five,” and so on.
The process of taking a quantity “x” of the same number and multiplying
them together is called raising the number to the power “x” and in partic-
ular, numbers such as 107, 108, etc., are often referred to as powers of 10.
The actual number “x” – for example, the “5” in 105 – is called the index
of the power, or just the index and the plural of index here is indices.
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The Rule of Indices
If we multiply 100 by 1,000, we get 100,000, or using our new
“powers of 10” notation,

102 × 103 = 105 (1)

So when we multiply two different powers of 10 together, we simply add
the indices together to get the resulting power of 10. This is a very impor-
tant and powerful rule in mathematics called the rule of indices, and it
can be applied to numbers other than 10. For example, a very important
number that is used a lot by both astronomers and physicists is the num-
ber 2.718 (to 3 places of decimals). Mathematicians give this number the
symbol “e” just like they give the number 3.142 the symbol “π .” So, for
example,

e7 × e5 = e12 = 2.7187 × 2.7185 = 2.71812 (2)

Provided the number whose powers are being taken (in this case “e” or
2.718) is the same throughout the equation, the rule works. The number
2.71812 is very large, by the way, and we’ll see shortly how to write such a
number, but first let’s extend this powerful rule of indices.

What about the number 10 itself? It’s simply the number 1 followed by
one zero, so we should be able to write it as 101. We can check that this is
okay by making sure it satisfies the rule of indices; so, for example, 10 ×
100, which equals 1,000, can also be written 101 × 102 = 103; and yes, the
indices do add together correctly. Also by virtue of our example using the
number 2.718, we can say that any number raised to the power “1” is just
the number itself; so “e1” just equals “e.” What about the number “1,” or 1
followed by no zeros? In the powers of 10 notation this would be written
100, and this too satisfies the rule of indices because, for example, 100 ×
102 = 102, which is the same as saying 1 × 100 equals 100. Once again the
rule extends to all numbers so that any number raised to the power zero is
equal to 1; so again, for example, e0 = 1.

With what we’ve learned so far we can make very large numbers by
raising a smaller number such as 10 or “e” to a very high power. But what
about very small numbers? Start with the number 100,000 or 105; If we
divide this by 100 or 102, we get 1,000 or 103. In other words,

105

102
= 103 (3)
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So when we divide one power of 10 by another we have to subtract the
index at the bottom; i.e., in the denominator from that at the top in the
numerator. Another way to write Equation (3) is like this:

105

102
= 105 × 1

102
= 103 (4)

So here we’ve turned the division of two powers of 10 into the
multiplication of one power of 10 with another number that involves
the reciprocal (the reciprocal of any number simply equals the number
1 divided by that number) of a power of 10. This has to satisfy the rule of
indices and the only way that it can do this is to make 1/102 equal to 10–2

because then we get

105 × 10−2 = 103 (5)

The indices check out because 5 + (–2) is the same as 5 – 2, which equals 3.
This has also told us that a small number such as 1/100,000, or 1/105, is
written as 10–5. Extending the idea again to our friend the number 2.718
or “e,” the reciprocal of 2.718 or 1/e would be written as e–1; it equals
0.368.
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The Rule of Indices for All Indices
Any number can in fact be raised to a power that does not have to be
either a positive or a negative whole number; an important example of

this kind of power would be the number x
1/2. We can easily see the mean-

ing of this number by multiplying it by itself and applying the rule of

indices because then we get; x
1/2 × x

1/2 = x1, which just equals x. So x
1/2 is

just the square root of x, and using the same procedure, x1/3 is the cube
root of x and so on.

A trickier problem is the meaning of something like x3/8. We can in
fact “kill two birds with one stone” here by thinking about a number
such as (105)3. Notice that this is not the same as 105 × 103, which would
of course equal 108. Instead, this is the number 105 multiplied by itself
3 times – in other words, it’s the number 105 raised to the power 3 (a
number raised to a power, which is then itself raised to some other
power). The number 105 multiplied by itself 3 times is the same as
105 × 105 × 105, which of course equals 1015. See how the number 15
is just equal to 5 × 3? So if we have a number that is raised to some
power and we raise it again to some other power, we multiply the two
powers together to get the final answer. So in general terms; (xy)z is equal
to xy×z or just xyz. This idea in fact extends to any number of indices,
so for example ((e2)3)4 is equal to e24. We see now that x3/8 is the same
as (x1/8)3; i.e., the eighth root of x multiplied by itself 3 times. We shall
use this important application of the rule of indices in chapter A Star
Story – 10 Billion Years in the Making, where we need to be okay with the

fact that (x3)
1/2 is the same as x3/2 or x1.5.

Finally we can have numbers like e–0.43; i.e., 2.718–0.43. This, however,
is not the kind of thing to try and visualize in any way, nor to try and work
out with pencil and paper. We shall find a need to be able to work out this
sort of thing in chapter Space – The Great Radiation Field, and the best
way is to find the key on your calculator labeled “xy” or maybe “yx.” (If
your calculator is not a scientific one then do give serious consideration
to purchasing one – it will become your great friend.)

Try, for example, tapping in the number 2.512, then press the “xy” key;
now tap in the number 2.4 and finally press the “=” key to get the answer
9.121. You’ve just calculated the ratio of brightness for two stars whose
magnitudes differ by 2.4.

Fortunately, working just with powers of 10 is much simpler, but the
need to do so crops up all the time, so it pays to be comfortable when
using them. Following are a few examples to illustrate how things work.
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Working with Powers of Ten
So far we’ve learned how to multiply together two powers of 10; so for
example

108 × 105 = 1013 (6)

This kind of operation can be extended to any number of terms on the
left-hand side, so, for example

108 × 105 × 103 × 107 = 1023 (7)

A quantity such as 1011/104 can also be written 1011 × 10–4, which of
course equals 107, but note also that you may come across numbers such
as 10–11 × 104, which in this case equals 10–7 (–11 + 4 = –7). Finally, con-

sider an expression such as 1011

10−4 This is equivalent to 1011 × 1
10−4 . Go back

to old habits and think of the number 10–4 as one ten thousandth, and
ask “How many times does one ten thousandth go into 1?” The answer
is, of course, ten thousand times, or 104. So, a number such as 1/10–4

becomes 104. The general rule here is that an index in the bottom line or
denominator of an equation can be simply moved up to the numerator or
top line provided you change the sign of the index. So the above expression
becomes

1011

10−4
= 1011 × 104 = 1015 (8)

We can now put these ideas together; for example, 10−34

10−7 × 108 becomes

10–34 × 108 × 107, which equals 10–19. The key to all of this is making
sure that the signs (+ or –) of your indices are correct and that you add
all the indices algebraically – i.e., you take the sign of each index into
account.
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Scientific Notation
Of course, most numbers do not consist simply of multiples or powers
of 10; here, for example, is a fairly large number, 299792.0. This is, in
fact, the speed of light in kilometers per second, and note that we’ve
included the decimal point. If we divide this number by 10, the dec-
imal point moves one place to the left to give us 29979.2, and divid-
ing again by 10 we get 2997.92, giving us the speed of light divided
by 100.

To get our speed of light back we could simply reverse the process and
move the decimal point two places to the right, but another way to write
the restored number would be 2997.92 × 100, or 2997.92 × 102. Pursuing
this idea further, we can write the speed of light as 2.99792 × 105 km/s.
This is the standard way to write down the speed of light (or indeed any
large number) in what is called scientific notation. A very small number
such as 0.0000005 can be written as 5.0 × 10–7 in this notation by mul-
tiplying by 107, thereby moving the decimal point 7 places to the right
and then multiplying by 10–7 to give us back the original number. This
number is approximately equal to the wavelength of green light in meters
(more on this in chapter From Light to Starlight). The number 2.71812,
which we encountered earlier, can be evaluated using your calculator by
entering 2.718 followed by pressing the “xy” key followed by the number
12, and finally followed by the “=” key to give the number 162552.416.
In scientific notation this number is written as 1.62552416 × 105.

Far from being just an esoteric way to write down large and small num-
bers, scientific notation, as we’ll now see, makes it much easier to get a
useful number out of an equation if the numbers we plug in are in this
form. Here in normal number form is an equation that tells us how much
energy is carried by the green light we just mentioned:

E(energy) =0.0000000000000000000000000000000006626 × 299700000

0.0000005
(9)

This is not a pretty sight; but when the numbers are written in scientific
notation it looks like this:

E = 6.626 × 10−34

5.0 × 10−7
× 2.997 × 108 (10)

To get the actual value for the energy out of this equation is very straight-
forward; we divide the whole thing into two parts; one consisting of the
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ordinary numbers like the 6.626 and the other part consisting of the
powers of 10 terms. Now “E” becomes

E = 6.626 × 2.997

5.0
× 10−34

10−7
× 108 (11)

We can now deal with this one a bit at a time. First use your pocket cal-
culator to solve the “normal numbers” part and get the answer 3.972 to
three decimal places, then put this number “to one side” while we do the
powers of ten part. Using the rule of indices, we can put the 10–7 onto
the top row by changing the –7 to +7 and then we just have to carefully
add the indices together, taking into account their respective signs; this
gives us

10−34 × 108 × 107 = 10−19 (12)

All we have to do now is to multiply this by the first bit of the calculation
(the 3.972) to get the final answer – 3.972 × 10–19.

It can often happen when doing a calculation this way that you end
up with an answer that (just as an example) may look something like
this: 122.434 × 107. You can if you wish leave it like this, but if you’re
a fussy sort of person then you should rearrange it to look like this:
1.22434 × 109.

If you’re unfamiliar with doing calculations in scientific notation then
using the above method exactly as described is good for practice; it gets
you familiar with handling powers of 10 and with the way in which sci-
entific notation works. However you can, if you wish, enter a number
in scientific notation directly into your calculator. To do this with, for
example, the number 6.672 × 10–11, first enter 6.672 in the normal way.
Then press the key marked “Exp” on your calculator; you’ll now have two
small zeros at the top right corner of your calculator display. Now enter
the number 11; this will appear instead of the two zeros. Finally, press the
key marked “+/–;” this will turn the “11” into a “–11.” If you now want
to multiply or divide this number by another scientific notation number
simply press the “×” or the “÷” and enter the new number, remember-
ing, of course, that if this number involves a positive power of 10 then
there’s no need to use the “+/–” key. Happy calculating!

So now we’ve calculated the amount of energy carried by light having a
wavelength of 5.0 × 10–7 m, which is equal to 3.972 × 10–19. But 3.972 ×
10–19 what? The quantity of energy that we have calculated here is mea-
sured in units called joules, and judging by the fact that the answer we
got is a very tiny number, maybe we should ask ourselves if the joule is
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perhaps too large a unit of energy for the kind of situation we are deal-
ing with. On the other hand it may be that green light simply doesn’t
carry much energy and leave it at that. We’ll say more about this kind of
thing as the need arises; the important thing here is that you can handle
a calculation like Equation (10) and be confident of getting the correct
answer.
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Star Distances by Numbers
One of the most important things that can be known about any star is
its distance. This precious number enables astronomers to determine the
true brightness of a star and thus its total power output, or luminosity. It
can even enable an estimate to be made of the star’s temperature. We’ll see
in due course how these things are done, but for the moment and really
for the sake of completeness, we’ll say a word or two about the meaning
of the numbers, which are used when discussing the distances to the stars.

As amateur astronomers we fairly quickly get to know that, when talk-
ing about distances out beyond the Solar System we use the light year –
the distance that a beam of light travels in 1 year. Light travels at a speed
of 2.998 × 108 m/s, and the length of a “year” is 365.242 days (to three
decimal places), or 3.15569088 × 107 s, and so it is a fairly straightfor-
ward calculation to work out that a light year is the mighty distance of
about 9.461 × 1015 m. Even so, the distances to the visible stars are of the
order of around 10 to around 1,000 light years, with many stars in our
galaxy being at much greater distances than this, of course. Professional
astronomers, though, tend to use an alternative star distance measure –
the parsec, or “pc” for short, which stands for “parallax second.”

The parsec comes straight out of the only direct way to measure the
distance to a star, which involves determining with the utmost care the
apparent change in position of the star against a background of more
distant stars (a background of distant galaxies is even better) over a period
of six months – i.e., as Earth swings between opposite sides of its orbit
around the Sun, as shown in Fig. 1. Again as amateur astronomers we
learn very soon that the only way to measure the “distance,” or separation
between any two points in the sky, is in terms of the angle between two
lines drawn from these points, which intersect at our eyes as shown in
Fig. 2.

Using this method, the angular separation between the two pointer
stars of the Big Dipper (the Plough in the U.K.) is about 5◦; the angular
sizes of the Sun and Moon are both about half a degree, or 30 arc minutes.
The apparent diameters of the planets are of the order of a few tens of arc
seconds (or “arcsec,” for short), where 1 arcsec is 1/3,600th of a degree.
By the time we get to the separations of close double stars, we’re talking
of the order of maybe a few arc seconds, and it’s well known to amateur
observers that one of the most demanding tests for a telescope is its ability
to separate or resolve close double stars.

The half yearly shift of even relatively nearby stars amounts to less
than 1 arcsec, and so determining these shifts puts even large Earth-based
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telescopes at the very limits of their performance. The result is that until
the Hipparcos satellite considerably improved things, it was very much
the norm for star distances to be accurate only to about 10–20% and the
limiting distance was about 300 light years, or about 100 pc.

Figure 1. The apparent position of a nearby star shifts against
a background of more distant stars or galaxies over a period six
months as Earth swings between opposite points in its orbit. By
measuring this (tiny) shift and knowing the Earth–Sun distance, sim-
ple trigonometry enables the distance to the star to be determined.
In reality, the process is rather more involved than this simple dia-
gram would suggest.

The actual parallax of a star is defined to be the angle between two lines
running from the center of the Sun and a point in Earth’s orbit whose
distance from the Sun is 1 astronomical unit (A.U.) (1 A.U. is the average
Earth–Sun distance, which is equal to 1.496 × 1011 m) and which inter-
sect at the star itself (as shown in Fig. 3). Thus the parallax is equal to
half of and not the whole apparent angular shift of a star over a period of
six months. So the parallax is the angle at the apex of an extremely thin
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Figure 2. The apparent “separation” of two objects on the sky
(this could also be the apparent shift of one star over a period of
six months) is measured by the angle they subtend at the eye (or
telescope). This angle is measured in degrees, minutes (or arcmin-
utes), and seconds (or arcseconds).

right-angled triangle. The length of the base of this triangle is just 1 A.U.,
and if the parallax of a star were in fact equal to 1 arcsec (1/3,600th or
2.778 × 10–4 degrees), then its distance, using high school trigonometry,
would be equal to 1 A.U. divided by the tangent of 1 arcsec. If you try
this on your calculator you should get the answer 3.086 × 1016 m. This
distance is defined to be equal to 1 parsec, and if we divide it by the number
of meters in 1 light year, then we can see that 1 parsec is equal to 3.262
light years.

The advantage of using parsecs is that if you know the parallax of a
star, then its distance in parsecs is just equal to the reciprocal of the par-
allax. So, as we’ve seen, a parallax of 1 arcsec corresponds to a distance
of 1 parsec; a parallax of 0.5 arcsec results in a distance of 2 parsecs and
so on. So, for example, the parallax of Proxima Centauri the nearest star
is about 0.75 arcsec; the reciprocal of this is 1.333, which is the distance
to Proxima in parsecs that, when multiplied by 3.262, gives us 4.35, or its
distance in light years. The reason that this simple relationship works is
because the baseline of these “parallax right-angled triangles” all have the
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Figure 3. The angle “p” defines the “parallax” of a star; it is
equal to half (not the whole) of the annual apparent shift of the
star’s position. This tiny angle thus forms the apex of a very narrow
right-angled triangle whose base has a length of 1 Astronomical
Unit.

Figure 4. The use of right-angled triangles makes parallax
trigonometry very simple. If the distance to a star is doubled, its
parallax is halved; triple the distance, and its parallax becomes
one third, and so on.
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same base length, i.e., 1 A.U. (they are, in fact, what mathematicians call
similar triangles), and so if the distance doubles, the parallax halves, etc.,
as shown in Fig. 4.

So there we have it; this is pretty well all the mathematics you’ll need
for now (oh! and do remember that number “e” or 2.718, which we’ll
meet again later) to hopefully get that extra bit out of this book. Read on!
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Key Points
� When the same number is multiplied by itself “x” times, the number

is said to be raised to the power “x.”

� The number “x” is called the index of the power, or simply the index
(plural “indices”).

� If a number that is raised to the power “x” is multiplied by the same
number raised to the power “y,” then the result is the same number
raised to the power “x + y;” the indices simply add together, and this is
called the rule of indices.

� For any number “z, “z1” equals “z” and “z0” equals 1.

� For any number “z” and index “x,” the number “z–x” is equal to the
reciprocal of zx; i.e., 1/zx.

� Any number such as (xy)z is equal to xyz, i.e., when a number is succes-
sively raised to several different powers, the final result is equal to the
number raised to the product of all the powers.

� Very large and very small numbers are usually written in scientific
notation. For example, 5,000 is written as 5.0 × 103 and 0.005 is writ-
ten as 5.0 × 10–3.

� The number “e,” which equals 2.718, is very important and should be
remembered.

� A star at a distance of 1 parsec, or 1 pc, would have a parallax equal to
1 arcsec; no star is as close as this.

� The distance in parsecs to any star whose parallax is known is simply
the reciprocal of the parallax.
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