
Preface

This is a book on holomorphic operator functions of a single variable and their ap-
plications, which is focussed on the relations between local and global theories. It is
based on methods and technics of Complex analysis of scalar and matrix functions
of several variables. The applications concern: interpolation, holomorphic families
of subspaces and frames, spectral theory of polynomials with operator coefficients,
holomorphic equivalence and diagonalization, and Plemelj-Muschelishvili factor-
ization. The book also contains a theory of Wiener-Hopf integral equations with
operator-valued kernels and a theory of infinite Töplitz matrices with operator
entries.

We started to work on these topics long ago when one of us was a Ph.D. stu-
dent of the other in Kishinev (now Cisinau) University. Then our main interests
were in problems of factorization of operator-valued functions and singular inte-
gral operators. Working in this area, we realized from the beginning that different
methods and tools from Complex analysis of several variables and their modifica-
tions are very useful in obtaining results on factorization for matrix and operator
functions. We have in mind different methods and results concerning connections
between local and global properties of holomorphic functions. The first period was
very fruitful and during it we obtained the basic results presented in this book.

Then World Politics started to interfere in our joint work in the new area. For
a long time the authors became separated. One emigrated to Israel, the other was
a citizen of East Germany, and the authorities of the second country prevented
further meetings and communications of the authors. During that time one of
us became more and more involved in Complex analysis of several variables and
finally started to work mainly in this area of mathematics. Our initial aims were
for a while frozen. Later the political situation in the world changed and after the
reunification of Germany the authors with pleasure continued the old projects.

During the time when our projects were frozen, the scientific situation
changed considerably. There appeared in the literature new methods, results and
applications. In order to cover the old and new material entirely in a modern form
and terminology we decided to write this book. As always happens in such cases,
during the writing new problems and gaps appear, and the material requires in-
clusion of additional material with new chapters containing new approaches, new
results and plenty of unification and polishing. This work was done by the authors.
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We hope the book will be of interest to a number of large groups of experts in
pure and applied mathematics as well as for electrical engineers and physicists.

During the work on the book we obtained support of different kinds for
our joint activities from the Tel-Aviv University and its School of Mathemati-
cal Sciences, the Family of Nathan and Lilly Silver Foundation, the Humboldt
Foundation, the Deutsche Forschungsgemeinschaft and the Humboldt University
in Berlin and its Institute of Mathematics. We would like to express our sincere
gratitude to all these institutions for support and understanding. We would also
like to thank the Faculty of Mathematics and Computer Sciences of the Kishinev
University and the Institute of Mathematics and Computer Center of the Academy
of Sciences of Moldova, where the work on this book was started.

Berlin, Tel-Aviv, November 2008 The authors



Introduction

The book. This book contains a theory and applications of operator-valued holo-
morphic functions of a single variable. (By operators we always mean bounded
linear operators between complex Banach spaces.) The applications concern some
important problems on factorization, interpolation, diagonalization and others.
The book also contains a theory of Wiener-Hopf integral equations with operator-
valued kernels and a theory of infinite Töplitz matrices with operator entries.

Our main attention is focussed on the connection between local and global
properties of holomorphic operator functions. For this aim, methods from Complex
analysis of several variables are used. The exposition of the material appears in
style and terms of the latter field.

Multiplicative cocycles. Grauert’s theory. The theory of multiplicative cocycles
plays a central role in this book. It is a special case of the very deep and powerful
theory of cocycles (fiber bundles) on Stein manifolds (any domain in C is a Stein
manifold), which was developed in the 1950s by H. Grauert for cocycles with values
in a (finite dimensional) complex Lie group. This theory then was generalized into
different interesting directions. In 1968, L. Bungart obtained it for cocycles with
values in a Banach Lie group, for example, the group of invertible operators in a
Banach space.

One of the main statements of Grauert’s theory is a principle which is now
called the Oka-Grauert principle. Non-rigorously, this principle can be stated as fol-
lows: If a holomorphic problem on a Stein manifold has no topological obstructions,
then it has a holomorphic solution. This important principle was first discovered
in 1939 by K. Oka in the case of scalar functions.

For domains in the complex plane C, Grauert’s theory is much easier but still
not simple. It is even not simple for the case of cocycles with values in the group
of invertible complex n× n-matrices when no topological obstructions appear.

For operators in infinite dimensional Banach spaces, we meet essential diffi-
culties, which are due to the fact that the group of invertible operators in a Banach
space need not be connected. This becomes a topological obstruction if the domain
in C is not simply connected. So, for operator functions, the Oka-Grauert principle
is meaningful also for domains in C.
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For the problem of Runge approximation, the Oka-Grauert principle claims
the following: Runge approximation of a holomorphic invertible operator function
by holomorphic invertible functions is possible if this is possible by continuous
invertible functions. From this it follows that such a Runge approximation always
holds when the domain is simply connected or the group of invertible operators is
connected. The latter is the case for the group of invertible operators in a Hilbert
space, and in particular, for the group of invertible complex n× n-matrices.

For simply connected domains, the proof of the Runge approximation theo-
rem for invertible operator functions is not difficult and can be obtained without
the theory of cocycles. We show this at the end of Chapter 2. For general domains
however, this proof is much more difficult (even in the case of matrix-valued func-
tions) and will be given only in Chapter 5 in the framework of the theory of
multiplicative cocycles.

A special type of multiplicative cocycles is given by two open sets D1 and D2

in C and an invertible holomorphic operator function on D1 ∩D2. For this type,
the following is proved:

0.0.1 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, let D1, D2 ⊆ C be two open sets, and let A : D1 ∩D2 → GL(E) be
holomorphic. Assume that at least one of the following two conditions is satisfied:

(i) The union D1 ∪D2 is simply connected.

(ii) All values of A belong to the same connected component of GL(E).

Then there exist holomorphic operator functions Aj : Dj → GL(E), j = 1, 2, such
that

A = A1A
−1
2 on D1 ∩D2 . (0.0.1)

If both topological conditions (i) and (ii) in Theorem 0.0.1 are violated, then
the assertion of Theorem 0.0.1 is not true. A simple counterexample will be given
in Section 5.6.2 for the case when D1 ∪D2 is an annulus.

The following operator version of the Weierstrass product theorem (on the
existence of holomorphic functions with given zeros) is a straightforward conse-
quence of Theorem 0.0.1.

0.0.2 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, and let GLI(E) be the connected component in GL(E) which
contains the unit operator I. Let D ⊆ C be an open set and let Z be a discrete and
closed subset of D. Suppose, for each w ∈ Z, a neighborhood Uw ⊆ D of w with
Uw ∩ Z = {w} and a holomorphic operator function Aw : Uw \ {w} → GL(E) are
given. Further assume that at least one of the following two conditions is fulfilled:

(i) The set D is simply connected.

(ii) The values of each Aw, w ∈ Z, belong to GLI(E).
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Then there exist a holomorphic operator function B : D\Z → GL(E) and a family
of holomorphic operator functions Hw : Uw → GL(E) such that

HwAw = B on Uw \ {w}, , w ∈ Z .

The classical Weierstrass product theorem we get for E = C and Hw(z) =
(z − w)κw , κw ∈ N∗.

There are also a “right-sided” and a “two-sided” version of Theorem 0.0.2.

Contents. The book consists of an introduction and eleven chapters. Let us now
describe in more detail the content of each chapter separately.

The first chapter contains the generalization to functions with values in Ba-
nach spaces of the traditional material from Complex analysis of one variable
which is usually contained in the beginning of a basic course.

Chapter 2 starts with Pompeiju’s integral formula for solutions of the in-
homogeneous Cauchy-Riemann equation, the Runge approximation theorem, the
Mittag-Leffler theorem, and the Weierstrass product theorem. Then, in Sections
2.6 and 2.7, we present the (less well known) “Anschmiegungsatz” of Mittag-Leffler
and a strengthening of the Weierstrass product theorem. In the case of the Weier-
strass product theorem and its generalization, in this chapter, we still restrict
ourselves to scalar functions. It is one of the main goals of this book, to generalize
these results to the case of operator functions, using Grauert’s theory of cocycles.

Chapter 3 is dedicated to the splitting problem with respect to a contour for
functions with values in a Banach space, as well as to the factorization problem
for scalar functions with respect to a contour.

In Chapter 4 we generalize to finite meromorphic Fredholm operator func-
tions the classical Rouché theorem from Complex analysis and the Smith factor-
ization form. The proof is based on the local Smith form.

Chapter 5 is entirely dedicated to the theory of multiplicative cocycles, which
were discussed in large before.

Chapter 6 contains a theory of families of subspaces of a Banach space E.
First we introduce a complete metric on the set G(E) of closed subspaces of E, the
so-called gap metric. A continuous family of subspaces of E then will be defined as
a continuous function with values in G(E), and a holomorphic family of subspaces
of E will be defined as a continuous family of subspaces which is locally the image
of a holomorphic operator function. Vector functions with values in such a family
are called sections of the family. Note that we do not require that the members of
a holomorphic family be complemented in the ambient space. It may even happen
they are not pairwise isomorphic. An example is given in Section 6.5.

First we prove the following results: any additive cocycle of holomorphic
sections in a holomorphic family of subspaces splits; for any holomorphic operator
function A whose image is a holomorphic family of subspaces, and any holomorphic
section f of this family, there exists a global holomorphic vector function u that
solves the equation Au = f ; for any holomorphic family of subspaces there exists
a global holomorphic operator function with this family as image. Proving this,
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the main difficulty is the solution of certain local problems (in this generality,
published for the first time in this book). In terms of Complex analysis of several
variables, the solution of these local problems means that any holomorphic family
of subspaces is a so-called Banach coherent sheaf (a generalization of the notion
of coherent sheaves). After solving this we proceed by standard methods that are
well-known in Complex analysis of several variables.

Then we consider holomorphic families of subspaces, which we call injective
and which have the additional property that, locally, the family can be represented
as the image of a holomorphic operator function with zero kernel. We study the
problem of a corresponding global representation. Here we need the theory of
multiplicative cocycles from Chapter 5. It turns out that this is not always possible,
but we have again an Oka-Grauert principle.

Then we study holomorphic families of complemented subspaces (which are
injective), where we can prove more precise results than for arbitrary injective
families. Again there is an Oka-Grauert principle.

At the end we consider the special case of families of subspaces which are finite
dimensional or of finite codimension. Here there are no topological restrictions.

Chapters 7 and 8 are dedicated to factorization of operator functions with
respect to a contour and the connection with Wiener-Hopf and Töplitz operators.
This type of factorization was in fact considered for the first time in the pioneer-
ing works of Plemelj and of Muschelishvili. Because of that we call it Plemelj-
Muschelishvili factorization. We start with the local principle, which quickly fol-
lows from the theory of multiplicative cocycles and which allows us to prove theo-
rems on factorization for different classes of operator functions. The local principle
reduces the problem to functions which are already holomorphic in a neighborhood
of the contour.

For further applications we need a generalization of the theory of multiplica-
tive cocycles. This is the topic of Chapter 9, where we introduce cocycles with
restrictions. Let us offer an example (which is basic for all cocycles with restric-
tions). Suppose that in Theorem 0.0.1 an additional set Z ⊆ D1∪D2, discrete and
closed in D, and positive integers mw, w ∈ Z, are given. Assume that the function
A−I has a zero of order mw at each w ∈ D1∩D2∩Z. Then the theory of cocycles
with restrictions gives the additional information that the functions A1 and A2 in
Theorem 0.0.1 can be chosen so that, for all w ∈ Dj ∩ Z, j = 1, 2, the function
Aj − I has a zero of order mw at w.

In Chapter 10, by means of the theory of cocycles with restrictions, we es-
sentially improve the Weierstrass product Theorem 0.0.2: The functions Hw in
this theorem now can be chosen so that, additionally, for each w ∈ Z, the func-
tion Hw − I has a zero of an arbitrarily given order mw at w. This has different
consequences that are discussed in this short chapter.

Chapter 11 is dedicated to holomorphic equivalence and its applications to
linearization and diagonalization. Let E be a Banach space, let L(E) be the space
of bounded linear operators in E, let GL(E) be the group of invertible operators
from L(E), let D ⊆ C be an open set, and let Z be a discrete and closed subset
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of D. Then two holomorphic operator functions A,B : D \ Z → L(E) are called
(globally) holomorphically equivalent over D if there exist holomorphic operator
functions S, T : D → GL(E) such that A = SBT on D.

In the first section, results are presented that explain the importance of
the notion of holomorphic equivalence in spectral theory of linear operators and
holomorphic operator functions. It contains the following two results: 1) For each
relatively compact open subset Ω of D, each holomorphic operator function A :
D → L(E), after an appropriate extension, becomes holomorphically equivalent
to a function of the form zI − T , z ∈ Ω, where T is a constant operator and I is
the identical operator (Theorem 11.2.1). 2) Two operators T, S ∈ L(E) with the
spectra σ(A) and σ(B) are similar if and only if some extensions of the functions
zI − T and zI − S are holomorphically equivalent over some neighborhood of
σ(A) ∪ σ(B) (Corollary 11.2.3).

The remainder of this section is devoted to the relation between global and lo-
cal holomorphic equivalence where two holomorphic operator functions are called
locally holomorphically equivalent if, for each point, they are holomorphically
equivalent over some neighborhood of this point. We prove that two meromorphic
operator functions with meromorphic inverse are locally holomorphically equiva-
lent if and only if they are globally holomorphically equivalent (Theorem 11.4.2),
and we prove that any finite meromorphic Fredholm operator function is globally
holomorphically equivalent to a diagonal function (Theorem 11.7.6). The local fact
behind this is the Smith representation of matrices of germs of scalar holomorphic
functions.
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M.A. Shubin visited Kishinev and gave two talks about applications of Grauert’s
theory and the theory of coherent analytic sheaves to different results for linear
operators. One of the talks was on the local principle for Plemelj-Muschelishvili
factorization of matrix functions and the second was about the analysis of holo-
morphic families of subspaces. These talks had on us an important influence. Very
soon after this we came up with a series of papers on operator-valued cocycles
in the case of one variable with new direct proofs and also with new results and
applications to operator functions. At the end this development led to this book.
It is our pleasure to thank M.A. Shubin providing us with the initial input.


