
Preface

Symmetry, in the title of this book, should be understood as the geometry of Lie
(and algebraic) group actions. The basic algebraic and analytic tools in the study
of symmetry are representation and invariant theory. These three threads are pre-
cisely the topics of this book. The earlier chapters can be studied at several lev-
els. An advanced undergraduate or beginning graduate student can learn the theory
for the classical groups using only linear algebra, elementary abstract algebra, and
advanced calculus, with further exploration of the key examples and concepts in
the numerous exercises following each section. The more sophisticated reader can
progress through the first ten chapters with occasional forward references to Chap-
ter 11 for general results about algebraic groups. This allows great flexibility in the
use of this book as a course text. The authors have used various chapters in a variety
of courses; we suggest ways in which courses can be based on the book later in this
preface. Finally, we have taken care to make the main theorems and applications
meaningful for the reader who wishes to use the book as a reference to this vast
subject.

The authors are gratified that their earlier text, Representations and Invariants of
the Classical Groups [56], was well received. The present book has the same aim: an
entry into the powerful techniques of Lie and algebraic group theory. The parts of the
previous book that have withstood the authors’ many revisions as they lectured from
its material have been retained; these parts appear here after substantial rewriting
and reorganization. The first four chapters are, in large part, newly written and offer
a more direct and elementary approach to the subject. Several of the later parts of
the book are also new. While we continue to look upon the classical groups as both
fundamental in their own right and as important examples for the general theory, the
results are now stated and proved in their natural generality. These changes justify
the more accurate new title for the present book.

We have taken special care to make the book readable at many levels of detail.
A reader desiring only the statement of a pertinent result can find it through the
table of contents and index, and then read and study it through the examples of its
use that are generally given. A more serious reader wishing to delve into a proof of
the result can read in detail a more computational proof that uses special properties
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of the classical groups, or, perhaps in a second reading, the proof in the general
case (with occasional forward references to results from later chapters). Usually,
there is a third possibility of a proof using analytic methods. Some material in the
earlier book, although important in its own right, has been eliminated or replaced.
There are new proofs of some of the key results of the theory such as the theorem
of the highest weight, the theorem on complete reducibility, the duality theorem,
and the Weyl character formula. We hope that our new presentation will make these
fundamental tools more accessible.

The last two chapters of the book develop, via a basic introduction to complex
algebraic groups, what has come to be called geometric invariant theory. This in-
cludes the notion of quotient space and the representation-theoretic analysis of the
regular functions on a space with an algebraic group action. A full description of the
material covered in the book is given later in the preface.

When our earlier text appeared there were few other introductions to the area.
The most prominent included the fundamental text of Hermann Weyl, The Classical
Groups: Their Invariants and Representations [164] and Chevalley’s The Theory of
Lie groups I [33], together with the more recent text Lie Algebras by Humphreys
[76]. These remarkable volumes should be on the bookshelf of any serious student of
the subject. In the interim, several other texts have appeared that cover, for the most
part, the material in Chevalley’s classic with extensions of his analytic group theory
to Lie group theory and that also incorporate much of the material in Humphrey’s
text. Two books with a more substantial overlap but philosophically very different
from ours are those by Knapp [86] and Procesi [123]. There is much for a student
to learn from both of these books, which give an exposition of Weyl’s methods in
invariant theory that is different in emphasis from our book. We have developed
the combinatorial aspects of the subject as consequences of the representations and
invariants of the classical groups. In Hermann Weyl (and the book of Procesi) the
opposite route is followed: the representations and invariants of the classical groups
rest on a combinatorial determination of the representations of the symmetric group.
Knapp’s book is more oriented toward Lie group theory.

Organization
The logical organization of the book is illustrated in the chapter and section depen-
dency chart at the end of the preface. A chapter or section listed in the chart depends
on the chapters to which it is connected by a horizontal or rising line. This chart has
a central spine; to the right are the more geometric aspects of the subject and on the
left the more algebraic aspects. There are several intermediate terminal nodes in this
chart (such as Sections 5.6 and 5.7, Chapter 6, and Chapters 9–10) that can serve as
goals for courses or self study.

Chapter 1 gives an elementary approach to the classical groups, viewed either as
Lie groups or algebraic groups, without using any deep results from differentiable
manifold theory or algebraic geometry. Chapter 2 develops the basic structure of
the classical groups and their Lie algebras, taking advantage of the defining repre-
sentations. The complete reducibility of representations of sl(2,C) is established by
a variant of Cartan’s original proof. The key Lie algebra results (Cartan subalge-
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bras and root space decomposition) are then extended to arbitrary semisimple Lie
algebras.

Chapter 3 is devoted to Cartan’s highest-weight theory and the Weyl group. We
give a new algebraic proof of complete reducibility for semisimple Lie algebras
following an argument of V. Kac; the only tools needed are the complete reducibility
for sl(2,C) and the Casimir operator. The general treatment of associative algebras
and their representations occurs in Chapter 4, where the key result is the general
duality theorem for locally regular representations of a reductive algebraic group.
The unifying role of the duality theorem is even more prominent throughout the
book than it was in our previous book.

The machinery of Chapters 1–4 is then applied in Chapter 5 to obtain the prin-
cipal results in classical representations and invariant theory: the first fundamental
theorems for the classical groups and the application of invariant theory to represen-
tation theory via the duality theorem.

Chapters 6, on spinors, follows the corresponding chapter from our previous
book, with some corrections and additional exercises. For the main result in Chap-
ter 7—the Weyl character formula—we give a new algebraic group proof using the
radial component of the Casimir operator (replacing the proof via Lie algebra co-
homology in the previous book). This proof is a differential operator analogue of
Weyl’s original proof using compact real forms and the integration formula, which
we also present in detail. The treatment of branching laws in Chapter 8 follows the
same approach (due to Kostant) as in the previous book.

Chapters 9–10 apply all the machinery developed in previous chapters to analyze
the tensor representations of the classical groups. In Chapter 9 we have added a
discussion of the Littlewood–Richardson rule (including the role of the GL(n,C)
branching law to reduce the proof to a well-known combinatorial construction). We
have removed the partial harmonic decomposition of tensor space under orthogonal
and symplectic groups that was treated in Chapter 10 of the previous book, and
replaced it with a representation-theoretic treatment of the symmetry properties of
curvature tensors for pseudo-Riemannian manifolds.

The general study of algebraic groups over C and homogeneous spaces begins
in Chapter 11 (with the necessary background material from algebraic geometry in
Appendix A). In Lie theory the examples are, in many cases, more difficult than the
general theorems. As in our previous book, every new concept is detailed with its
meaning for each of the classical groups. For example, in Chapter 11 every classi-
cal symmetric pair is described and a model is given for the corresponding affine
variety, and in Chapter 12 the (complexified) Iwasawa decomposition is worked out
explicitly. Also in Chapter 12 a proof of the celebrated Kostant–Rallis theorem for
symmetric spaces is given and every implication for the invariant theory of classical
groups is explained.

This book can serve for several different courses. An introductory one-term
course in Lie groups, algebraic groups, and representation theory with emphasis
on the classical groups can be based on Chapters 1–3 (with reference to Appendix
D as needed). Chapters 1–3 and 11 (with reference to Appendix A as needed) can
be the core of a one-term introductory course on algebraic groups in characteris-
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tic zero. For students who have already had an introductory course in Lie algebras
and Lie groups, Chapters 3 and 4 together with Chapters 6–10 contain ample mate-
rial for a second course emphasizing representations, character formulas, and their
applications. An alternative (more advanced) second-term course emphasizing the
geometric side of the subject can be based on topics from Chapters 3, 4, 11, and 12.
A year-long course on representations and classical invariant theory along the lines
of Weyl’s book would follow Chapters 1–5, 7, 9, and 10. The exercises have been
revised and many new ones added (there are now more than 350, most with several
parts and detailed hints for solution). Although none of the exercises are used in
the proofs of the results in the book, we consider them an essential part of courses
based on this book. Working through a significant number of the exercises helps a
student learn the general concepts, fine structure, and applications of representation
and invariant theory.
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Chapter 2
Structure of Classical Groups

Abstract In this chapter we study the structure of a classical group G and its Lie
algebra. We choose a matrix realization of G such that the diagonal subgroup H ⊂G
is a maximal torus; by elementary linear algebra every conjugacy class of semisim-
ple elements intersects H. Using the unipotent elements in G, we show that the
groups GL(n,C), SL(n,C), SO(n,C), and Sp(n,C) are connected (as Lie groups
and as algebraic groups). We examine the group SL(2,C), find its irreducible rep-
resentations, and show that every regular representation decomposes as the direct
sum of irreducible representations. This group and its Lie algebra play a basic role
in the structure of the other classical groups and Lie algebras. We decompose the
Lie algebra of a classical group under the adjoint action of a maximal torus and
find the invariant subspaces (called root spaces) and the corresponding characters
(called roots). The commutation relations of the root spaces are encoded by the set
of roots; we use this information to prove that the classical (trace-zero) Lie algebras
are simple (or semisimple). In the final section of the chapter we develop some gen-
eral Lie algebra methods (solvable Lie algebras, Killing form) and show that every
semisimple Lie algebra has a root-space decomposition with the same properties as
those of the classical Lie algebras.

2.1 Semisimple Elements

A semisimple matrix can be diagonalized, relative to a suitable basis. In this sec-
tion we show that a maximal set of mutually commuting semisimple elements in a
classical group can be simultaneously diagonalized by an element of the group.
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70 2 Structure of Classical Groups

2.1.1 Toral Groups

Recall that an (algebraic) torus is an algebraic group T isomorphic to (C×)l ; the
integer l is called the rank of T . The rank is uniquely determined by the algebraic
group structure of T (this follows from Lemma 2.1.2 below or Exercises 1.4.5 #1).

Definition 2.1.1. A rational character of a linear algebraic group K is a regular
homomorphism χ : K / / C×.

The set X(K) of rational characters of K has the natural structure of an abelian
group with (χ1χ2)(k) = χ1(k)χ2(k) for k ∈ K. The identity element of X(K) is the
trivial character χ0(k) = 1 for all k ∈ K.

Lemma 2.1.2. Let T be an algebraic torus of rank l. The group X(T ) is isomorphic
to Zl . Furthermore, X(T ) is a basis for O[T ] as a vector space over C.

Proof. We may assume that T = (C×)l with coordinate functions x1, . . . ,xl . Thus
O[T ] = C[x1, . . . ,xl ,x−1

l , . . . ,x−1
l ]. For t = [x1(t), . . . ,xl(t)]∈T and λ = [p1, . . . , pl ]∈

Zl we set

tλ =
l

∏
k=1

xk(t)pk . (2.1)

Then t 7→ tλ is a rational character of T , which we will denote by χλ . Since tλ+µ =
tλ tµ for λ ,µ ∈ Zl , the map λ 7→ χλ is an injective group homomorphism from Zl

to X(T ). Clearly, the set of functions {χλ : λ ∈ Zl} is a basis for O[T ] as a vector
space over C.

Conversely, let χ be a rational character of T . Then for k = 1, . . . , l the function

z 7→ ϕk(z) = χ(1, . . . ,z, . . . ,1) (z in kth coordinate)

is a one-dimensional regular representation of C×. From Lemma 1.6.4 we have
ϕk(z) = zpk for some pk ∈ Z. Hence

χ(x1, . . . ,xl) =
l

∏
k=1

ϕk(xk) = χλ (x1, . . . ,xl) ,

where λ = [p1, . . . , pl ]. Thus every rational character of T is of the form χλ for some
λ ∈ Zl . ut

Proposition 2.1.3. Let T be an algebraic torus. Suppose (ρ,V ) is a regular repre-
sentation of T . Then there exists a finite subset Ψ ⊂ X(T ) such that

V =
⊕
χ∈Ψ

V (χ) , (2.2)

where V (χ) = {v ∈V : ρ(t)v = χ(t)v for all t ∈ T} is the χ weight space of T on
V . If g ∈ End(V ) commutes with ρ(t) for all t ∈ T , then gV (χ)⊂V (χ).
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Proof. Since (C×)l ∼= C×× (C×)l−1, the existence of the decomposition (2.2) fol-
lows from Lemma 1.6.4 by induction on l. The last statement is clear from the
definition of V (χ). ut

Lemma 2.1.4. Let T be an algebraic torus. Then there exists an element t ∈ T with
the following property: If f ∈ O[T ] and f (tn) = 0 for all n ∈ Z, then f = 0.

Proof. We may assume T = (C×)l . Choose t ∈ T such that its coordinates ti = xi(t)
satisfy

t p1
1 · · · t

pl
l 6= 1 for all (p1, . . . , pl) ∈ Zl \{0} . (2.3)

This is always possible; for example we can take t1, . . . , tl to be algebraically inde-
pendent over the rationals.

Let f ∈ O[T ] satisfy f (tn) = 0 for all n ∈ Z. Replacing f by (x1 · · ·xl)r f for a
suitably large r, we may assume that

f = ∑
|K|≤p

aKxK

for some positive integer p, where the exponents K are in Nl . Since f (tn) = 0 for all
n ∈ Z, the coefficients {aK} satisfy the equations

∑
K

aK (tK)n = 0 for all n ∈ Z . (2.4)

We claim that the numbers {tK : K ∈Nl} are all distinct. Indeed, if tK = tL for some
K,L ∈Nl with K 6= L, then tP = 1, where P = K−L 6= 0, which would violate (2.3).
Enumerate the coefficients aK of f as b1, . . . ,br and the corresponding character
values tK as y1, . . . ,yr. Then (2.4) implies that

r

∑
j=1

b j(y j)n = 0 for n = 0,1, . . . ,r−1 .

We view these equations as a homogeneous linear system for b1, . . . ,br. The coeffi-
cient matrix is the r× r Vandermonde matrix:

Vr(y) =


yr−1

1 yr−2
1 · · · y1 1

yr−1
2 yr−2

2 · · · y2 1
...

...
. . .

...
...

yr−1
r yr−2

r · · · yr 1

 .

The determinant of this matrix is the Vandermonde determinant ∏1≤i< j≤r(yi− y j)
(see Exercises 2.1.3). Since yi 6= y j for i 6= j, the determinant is nonzero, and hence
bK = 0 for all K. Thus f = 0. ut
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2.1.2 Maximal Torus in a Classical Group

If G is a linear algebraic group, then a torus H ⊂ G is maximal if it is not con-
tained in any larger torus in G. When G is one of the classical linear algebraic
groups GL(n,C), SL(n,C), Sp(Cn,Ω), SO(Cn,B) (where Ω is a nondegenerate
skew-symmetric bilinear form and B is a nondegenerate symmetric bilinear form)
we would like the subgroup H of diagonal matrices in G to be a maximal torus. For
this purpose we make the following choices of B and Ω :

We denote by sl the l× l matrix

sl =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 (2.5)

with 1 on the skew diagonal and 0 elsewhere. Let n = 2l be even, set

J+ =
[

0 sl
sl 0

]
, J− =

[
0 sl
−sl 0

]
,

and define the bilinear forms

B(x,y) = xtJ+y, Ω(x,y) = xtJ−y for x,y ∈ Cn . (2.6)

The form B is nondegenerate and symmetric, and the form Ω is nondegenerate and
skew-symmetric. From equation (1.8) we calculate that the Lie algebra so(C2l ,B) of
SO(C2l ,B) consists of all matrices

A =
[

a b
c −slatsl

]
,

{
a, b, c ∈Ml(C) ,
bt =−slbsl , ct =−slcsl

(2.7)

(thus b and c are skew-symmetric around the skew diagonal). Likewise, the Lie
algebra sp(C2l ,Ω) of Sp(C2l ,Ω) consists of all matrices

A =
[

a b
c −slatsl

]
,

{
a, b, c ∈Ml(C) ,
bt = slbsl , ct = slcsl

(2.8)

(b and c are symmetric around the skew diagonal).
Finally, we consider the orthogonal group on Cn when n = 2l +1 is odd. We take

the symmetric bilinear form

B(x,y) = ∑
i+ j=n+1

xiy j for x,y ∈ Cn . (2.9)

We can write this form as B(x,y) = xtSy, where the n×n symmetric matrix S = s2l+1
has block form
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S =

 0 0 sl
0 1 0
sl 0 0

 .

Writing the elements of Mn(C) in the same block form and making a matrix calcula-
tion from equation (1.8), we find that the Lie algebra so(C2l+1,B) of SO(C2l+1,B)
consists of all matrices

A =

 a w b
ut 0 −wtsl
c −slu −slatsl

 ,


a, b, c ∈Ml(C) ,
bt =−slbsl , ct =−slcsl ,
and u,w ∈ Cl .

(2.10)

Suppose now that G is GL(n,C), SL(n,C), Sp(Cn,Ω), or SO(Cn,B) with Ω

and B chosen as above. Let H be the subgroup of diagonal matrices in G; write
g = Lie(G) and h = Lie(H). By Example 1 of Section 1.4.3 and (1.39) we know
that h consists of all diagonal matrices that are in g. We have the following case-by-
case description of H and h:

1. When G = SL(l +1,C) (we say that G is of type A`), then

H = {diag[x1, . . . ,xl ,(x1 · · ·xl)−1] : xi ∈ C×} ,

Lie(H) = {diag[a1, . . . ,al+1] : ai ∈ C, ∑i ai = 0} .

2. When G = Sp(C2l ,Ω) (we say that G is of type C`) or G = SO(C2l ,B) (we say
that G is of type D`), then by ( 2.7) and (2.8),

H = {diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] : xi ∈ C×} ,

h = {diag[a1, . . . ,al ,−al , . . . ,−a1] : ai ∈ C} .

3. When G = SO(C2l+1,B) (we say that G is of type B`), then by (2.10),

H = {diag[x1, . . . ,xl ,1,x−1
l , . . . ,x−1

1 ] : xi ∈ C×} ,

h = {diag[a1, . . . ,al ,0,−al , . . . ,−a1] : ai ∈ C} .

In all cases H is isomorphic as an algebraic group to the product of l copies of
C×, so it is a torus of rank l. The Lie algebra h is isomorphic to the vector space
Cl with all Lie brackets zero. Define coordinate functions x1, . . . ,xl on H as above.
Then O[H] = C[x1, . . . ,xl ,x−1

1 , . . . ,x−1
l ].

Theorem 2.1.5. Let G be GL(n,C), SL(n,C), SO(Cn,B) or Sp(C2l ,Ω) in the form
given above, where H is the diagonal subgroup in G. Suppose g ∈ G and gh = hg
for all h ∈ H. Then g ∈ H.

Proof. We have G ⊂ GL(n,C). An element h ∈ H acts on the standard basis
{e1, . . . ,en} for Cn by hei = θi(h)ei. Here the characters θi are given as follows
in terms of the coordinate functions x1, . . . ,xl on H:

1. G = GL(l,C): θi = xi for i = 1, . . . , l .
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2. G = SL(l +1,C): θi = xi for i = 1, . . . , l and θl+1 = (x1 · · ·xl)−1 .
3. G = SO(C2l ,B) or Sp(C2l ,Ω): θi = xi and θ2l+1−i = x−1

i for i = 1, . . . , l .
4. G = SO(C2l+1,B): θi = xi, θ2l+2−i = x−1

i for i = 1, . . . , l, and θl+1 = 1 .

Since the characters θ1, . . . ,θn are all distinct, the weight space decomposition (2.2)
of Cn under H is given by the one-dimensional subspaces Cei. If gh = hg for all
h ∈ H, then g preserves the weight spaces and hence is a diagonal matrix. ut

Corollary 2.1.6. Let G and H be as in Theorem 2.1.5. Suppose T ⊂G is an abelian
subgroup (not assumed to be algebraic). If H ⊂ T then H = T . In particular, H is a
maximal torus in G.

The choice of the maximal torus H depended on choosing a particular matrix
form of G. We shall prove that if T is any maximal torus in G then there exists an
element γ ∈G such that T = γHγ−1. We begin by conjugating individual semisimple
elements into H.

Theorem 2.1.7. (Notation as in Theorem 2.1.5) If g ∈ G is semisimple then there
exists γ ∈ G such that γgγ−1 ∈ H.

Proof. When G is GL(n,C) or SL(n,C), let {v1, . . . ,vn} be a basis of eigenvectors
for g and define γvi = ei, where {ei} is the standard basis for Cn. Multiplying v1 by
a suitable constant, we can arrange that detγ = 1. Then γ ∈ G and γgγ−1 ∈ H.

If g ∈ SL(n,C) is semisimple and preserves a nondegenerate bilinear form ω on
Cn, then there is an eigenspace decomposition

Cn =
⊕

Vλ , gv = λv for v ∈Vλ . (2.11)

Furthermore, ω(u,v) = ω(gu,gv) = λ µ ω(u,v) for u ∈Vλ and v ∈Vµ . Hence

ω(Vλ ,Vµ) = 0 if λ µ 6= 1 . (2.12)

Since ω is nondegenerate, it follows from (2.11) and (2.12) that

dimV1/µ = dimVµ . (2.13)

Let µ1, . . . ,µk be the (distinct) eigenvalues of g that are not ±1. From (2.13) we see
that k = 2r is even and that we can take µ

−1
i = µr+i for i = 1, . . . ,r.

Recall that a subspace W ⊂ Cn is ω isotropic if ω(u,v) = 0 for all u,v ∈W
(see Appendix B.2.1). By (2.12) the subspaces Vµi and V1/µi are ω isotropic and the
restriction of ω to Vµi×V1/µi is nondegenerate. Let Wi = Vµi⊕V1/µi for i = 1, . . . ,r.
Then

(a) the subspaces V1, V−1, and Wi are mutually orthogonal relative to the form ω ,
and the restriction of ω to each of these subspaces is nondegenerate;

(b) Cn = V1⊕V−1⊕W1⊕·· ·⊕Wr ;
(c) detg = (−1)k, where k = dimV−1 .
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Now suppose ω = Ω is the skew-symmetric form (2.6) and g ∈ Sp(C2l ,Ω).
From (a) we see that dimV1 and dimV−1 are even. By Lemma 1.1.5 we can find
canonical symplectic bases in each of the subspaces in decomposition (b); in the
case of Wi we may take a basis v1, . . . ,vs for Vµi and an Ω -dual basis v−1, . . . ,v−s
for V1/µi . Altogether, these bases give a canonical symplectic basis for C2l . We may
enumerate it as v1, . . . ,vl , v−1, . . . ,v−l , so that

gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γvi = ei and γv−i = e2l+1−i for i = 1, . . . , l is
in G due to the choice (2.6) of the matrix for Ω . Furthermore,

γgγ
−1 = diag[λ1, . . . ,λl ,λ

−1
l , . . . ,λ−1

1 ] ∈ H .

This proves the theorem in the symplectic case.
Now assume that G is the orthogonal group for the form B in (2.6) or (2.9).

Since detg = 1, we see from (c) that dimV−1 = 2q is even, and by (2.13) dimWi is
even. Hence n is odd if and only if dimV1 is odd. Just as in the symplectic case, we
construct canonical B-isotropic bases in each of the subspaces in decomposition (b)
(see Section B.2.1); the union of these bases gives an isotropic basis for Cn. When
n = 2l and dimV1 = 2r we can enumerate this basis so that

gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γvi = ei and γv−i = en+1−i is in O(Cn,B), and
we can interchange vl and v−l if necessary to get detγ = 1. Then

γgγ
−1 = diag[λ1, . . . ,λl ,λ

−1
l , . . . ,λ−1

1 ] ∈ H .

When n = 2l + 1 we know that λ = 1 occurs as an eigenvalue of g, so we can
enumerate this basis so that

gv0 = v0 , gvi = λivi , gv−i = λ
−1
i v−i for i = 1, . . . , l .

The linear transformation γ such that γv0 = el+1, γvi = ei, and γv−i = en+1−i is in
O(Cn,B). Replacing γ by −γ if necessary, we have γ ∈ SO(Cn,B) and

γgγ
−1 = diag[λ1, . . . ,λl ,1,λ−1

l , . . . ,λ−1
1 ] ∈ H .

This completes the proof of the theorem. ut

Corollary 2.1.8. If T is any torus in G, then there exists γ ∈G such that γT γ−1 ⊂H.
In particular, if T is a maximal torus in G, then γT γ−1 = H.

Proof. Choose t ∈ T satisfying the condition of Lemma 2.1.4. By Theorem 2.1.7
there exists γ ∈ G such that γtγ−1 ∈ H. We want to show that γxγ−1 ∈ H for all
x ∈ T . To prove this, take any function ϕ ∈ IH and define a regular function f on
T by f (x) = ϕ(γxγ−1). Then f (t p) = 0 for all p ∈ Z, since γt pγ−1 ∈ H. Hence
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Lemma 2.1.4 implies that f (x) = 0 for all x ∈ T . Since ϕ was any function in IH ,
we conclude that γxγ−1 ∈ H. If T is a maximal torus then so is γT γ−1. Hence
γT γ−1 = H in this case. ut

From Corollary 2.1.8, we see that the integer l = dimH does not depend on the
choice of a particular maximal torus in G. We call l the rank of G.

2.1.3 Exercises

1. Verify that the Lie algebras of the orthogonal and symplectic groups are given in
the matrix forms (2.7), (2.8), and (2.10).

2. Let Vr(y) be the Vandermonde matrix, as in Section 2.1.2. Prove that

detVr(y) = ∏
1≤i< j≤r

(yi− y j) .

(HINT: Fix y2, . . . ,yr and consider detVr(y) as a polynomial in y1. Show that
it has degree r− 1 with roots y2, . . . ,yr and that the coefficient of yr−1

1 is the
Vandermonde determinant for y2, . . . ,yr. Now use induction on r.)

3. Let H be a torus of rank n. Let X∗(H) be the set of all regular homomorphisms
from C× into H. Define a group structure on X∗(H) by pointwise multiplication:
(π1π2)(z) = π1(z)π2(z) for π1,π2 ∈ X∗(H).
(a) Prove that X∗(H) is isomorphic to Zn as an abstract group. (HINT: Use
Lemma 1.6.4.)
(b) Prove that if π ∈ X∗(H) and χ ∈ X(H) then there is an integer 〈π,χ〉 ∈ Z
such that

χ(π(z)) = z〈π,χ〉 for all z ∈ C× .

(c) Show that the pairing π,χ 7→ 〈π,χ〉 is additive in each variable (relative to the
abelian group structures on X(H) and X∗(H)) and is nondegenerate (this means
that if 〈π,χ〉= 0 for all χ then π = 1, and similarly for χ).

4. Let G ⊂ GL(n,C) be a classical group with Lie algebra g ⊂ gl(n,C) (for the
orthogonal and symplectic groups use the bilinear forms (2.6) and (2.9)). Define
θ(g) = (gt)−1 for g ∈ G.
(a) Show that θ is a regular automorphism of G and that dθ(X) =−X t for X ∈ g.
(b) Define K = {g ∈ G : θ(g) = g} and let k be the Lie algebra of K. Show that
k = {X ∈ g : dθ(X) = X}.
(c) Define p = {X ∈ g : dθ(X) =−X}. Show that Ad(K)p⊂ p, g = k⊕p, [k,p]⊂
p, and [p,p]⊂ k. (HINT: dθ is a derivation of g and has eigenvalues ±1.).
(d) Determine the explicit matrix form of k and p when G = Sp(C2l ,Ω), with Ω

given by (2.6). Show that k is isomorphic to gl(l,C) in this case. (HINT: Write
X ∈ g in block form

[
A B
C D

]
and show that the map X 7→ A + iBsl gives a Lie

algebra isomorphism from k to gl(l,C).)
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2.2 Unipotent Elements

Unipotent elements give an algebraic relation between a linear algebraic group and
its Lie algebra, since they are exponentials of nilpotent elements and the exponential
map is a polynomial function on nilpotent matrices. In this section we exploit this
property to prove the connectedness of the classical groups.

2.2.1 Low-Rank Examples

We shall show that the classical groups SL(n,C), SO(n,C), and Sp(n,C) are gen-
erated by their unipotent elements. We begin with the basic case G = SL(2,C). Let
N+ = {u(z) : z ∈ C} and N− = {v(z) : z ∈ C}, where

u(z) =
[

1 z
0 1

]
and v(z) =

[
1 0
z 1

]
.

The groups N+ and N− are isomorphic to the additive group of the field C.

Lemma 2.2.1. The group SL(2,C) is generated by N+∪N−.

Proof. Let g =
[

a b
c d

]
with ad− bc = 1. If a 6= 0 we can use elementary row and

column operations to factor

g =
[

1 0
a−1c 1

][
a 0
0 a−1

][
1 a−1b
0 1

]
.

If a = 0 then c 6= 0 and we can likewise factor

g =
[

0 −1
1 0

][
c 0
0 c−1

][
1 c−1d
0 1

]
.

Finally, we factor[
0 −1
1 0

]
=
[

1 −1
0 1

][
1 0
1 1

][
1 −1
0 1

]
,[

a 0
0 a−1

]
=
[

1 −a
0 1

][
1 0

(a−1−1) 1

][
1 1
0 1

][
1 0

(a−1) 1

]
,

to complete the proof. ut

The orthogonal and symplectic groups of low rank are closely related to GL(1,C)
and SL(2,C), as follows. Define a skew-symmetric bilinear form Ω on C2 by

Ω(v,w) = det[v, w] ,
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where [v, w] ∈ M2(C) has columns v,w. We have det[e1,e1] = det[e2,e2] = 0 and
det[e1,e2] = 1, showing that the form Ω is nondegenerate. Since the determinant
function is multiplicative, the form Ω satisfies

Ω(gv,gw) = (detg)Ω(v,w) for g ∈GL(2,C) .

Hence g preserves Ω if and only if detg = 1. This proves that Sp(C2,Ω) =
SL(2,C).

Next, consider the group SO(C2,B) with B the bilinear form with matrix s2 in
(2.5). We calculate that

gts2g =
[

2ac ad +bc
ad +bc 2bd

]
for g =

[
a b
c d

]
∈ SL(2,C) .

Since ad−bc = 1, it follows that ad + bc = 2ad−1. Hence gts2g = s2 if and only
if ad = 1 and b = c = 0. Thus SO(C2,B) consists of the matrices[

a 0
0 a−1

]
for a ∈ C×.

This furnishes an isomorphism SO(C2,B)∼= GL(1,C).

Now consider the group G = SO(C3,B), where B is the bilinear form on C3 with
matrix s3 as in (2.5). From Section 2.1.2 we know that the subgroup

H = {diag[x,1,x−1] : x ∈ C×}

of diagonal matrices in G is a maximal torus. Set G̃ = SL(2,C) and let

H̃ = {diag[x,x−1] : x ∈ C×}

be the subgroup of diagonal matrices in G̃.
We now define a homomorphism ρ : G̃ // G that maps H̃ onto H. Set

V = {X ∈M2(C) : tr(X) = 0}

and let G̃ act on V by ρ(g)X = gXg−1 (this is the adjoint representation of G̃ ). The
symmetric bilinear form

ω(X ,Y ) =
1
2

tr(XY )

is obviously invariant under ρ(G̃), since tr(XY ) = tr(Y X) for all X ,Y ∈Mn(C). The
basis

v0 =
[

1 0
0 −1

]
, v1 =

[
0
√

2
0 0

]
, v−1 =

[
0 0√
2 0

]
for V is ω isotropic. We identify V with C3 via the map v1 7→ e1,v0 7→ e2, and
v−1 7→ e3. Then ω becomes B. From Corollary 1.6.3 we know that any element of
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the subgroup N+ or N− in Lemma 2.2.1 is carried by the homomorphism ρ to a
unipotent matrix. Hence by Lemma 2.2.1 we conclude that det(ρ(g)) = 1 for all
g ∈ G̃. Hence ρ(G̃) ⊂ G by Lemma 2.2.1. If h = diag[x,x−1] ∈ H̃, then ρ(h) has
the matrix diag[x2,1,x−2], relative to the ordered basis {v1,v0,v−1} for V . Thus
ρ(H̃) = H.

Finally, we consider G = SO(C4,B), where B is the symmetric bilinear form on
C4 with matrix s4 as in (2.5). From Section 2.1.2 we know that the subgroup

H = {diag[x1,x2,x−1
2 ,x−1

1 ] : x1,x2 ∈ C×}

of diagonal matrices in G is a maximal torus. Set G̃ = SL(2,C)×SL(2,C) and let
H̃ be the product of the diagonal subgroups of the factors of G̃. We now define a
homomorphism π : G̃ // G that maps H̃ onto H, as follows. Set V = M2(C) and
let G̃ act on V by π(a,b)X = aXb−1. From the quadratic form Q(X) = 2detX on V
we obtain the symmetric bilinear form β (X ,Y ) = det(X +Y )−detX−detY . Set

v1 = e11 , v2 = e12 , v3 =−e21 , and v4 = e22 .

Clearly β (π(g)X ,π(g)Y ) = β (X ,Y ) for g ∈ G̃. The vectors v j are β -isotropic and
β (v1,v4) = β (v2,v3) = 1. If we identify V with C4 via the basis {v1,v2,v3,v4}, then
β becomes the form B.

Let g ∈ G̃ be of the form (I,b) or (b, I), where b is either in the subgroup N+ or
in the subgroup N− of Lemma 2.2.1. From Corollary 1.6.3 we know that π(g) is a
unipotent matrix, and so from Lemma 2.2.1 we conclude that det(π(g)) = 1 for all
g ∈ G̃. Hence π(G̃) ⊂ SO(C4,B). Given h = (diag[x1,x−1

1 ],diag[x2,x−1
2 ]) ∈ H̃, we

have
π(h) = diag[x1x−1

2 , x1x2, x−1
1 x−1

2 , x−1
1 x2] .

Since the map (x1, x2) 7→ (x1x−1
2 , x1x2) from (C×)2 to (C×)2 is surjective, we have

shown that π(H̃) = H.

2.2.2 Unipotent Generation of Classical Groups

The differential of a regular representation of an algebraic group G gives a repre-
sentation of Lie(G). On the nilpotent elements in Lie(G) the exponential map is
algebraic and maps them to unipotent elements in G. This gives an algebraic link
from Lie algebra representations to group representations, provided the unipotent
elements generate G. We now prove that this is the case for the following families
of classical groups.

Theorem 2.2.2. Suppse that G is SL(l+1,C), SO(2l+1,C), or Sp(l,C) with l≥ 1,
or that G is SO(2l,C) with l ≥ 2. Then G is generated by its unipotent elements.
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Proof. We have G ⊂ GL(n,C) (where n = l + 1,2l, or 2l + 1). Let G′ be the sub-
group generated by the unipotent elements of G. Since the conjugate of a unipotent
element is unipotent, we see that G′ is a normal subgroup of G. In the orthogonal
or symplectic case we take the matrix form of G as in Theorem 2.1.5 so that the
subgroup H of diagonal matrices is a maximal torus in G. To prove the theorem, it
suffices by Theorems 1.6.5 and 2.1.7 to show that H ⊂ G′.

Type A: When G = SL(2,C), we have G′= G by Lemma 2.2.1. For G = SL(n,C)
with n≥ 3 and h = diag[x1, . . . ,xn] ∈ H we factor h = h′h′′, where

h′ = diag[x1, x−1
1 , 1, . . . , 1] , h′′ = diag[1, x1x2, x3, . . . , xn] .

Let G1 ∼= SL(2,C) be the subgroup of matrices in block form diag[a, In−2 ] with
a ∈ SL(2,C), and let G2 ∼= SL(n−1,C) be the subgroup of matrices in block form
diag[1, b ] with b ∈ SL(n−1,C). Then h′ ∈G1 and h′′ ∈G2. By induction on n, we
may assume that h′ and h′′ are products of unipotent elements. Hence h is also, so
we conclude that G = G′.

Type C: Let Ω be the symplectic form (2.6). From Section 2.2.1 we know that
Sp(C2,Ω) = SL(2,C). Hence from Lemma 2.2.1 we conclude that Sp(C2,Ω)
is generated by its unipotent elements. For G = Sp(C2l ,Ω) with l > 1 and h =
diag[x1, . . . ,xl ,x−1

l , . . . ,x−1
1 ] ∈ H, we factor h = h′h′′, where

h′ = diag[x1,1, . . . ,1,x−1
1 ] , h′′ = diag[1,x2, . . . ,xl ,x−1

l , . . . ,x−1
2 ,1] .

We split C2l =V1⊕V2, where V1 = Span{e1,e2l} and V2 = Span{e2, . . . ,e2l−1}. The
restrictions of the symplectic form Ω to V1 and to V2 are nondegenerate. Define

G1 = {g ∈ G : gV1 = V1 and g = I on V2} ,

G2 = {g ∈ G : g = I on V1 and gV2 = V2} .

Then G1 ∼= Sp(1,C), while G2 ∼= Sp(l−1,C), and we have h′ ∈G1 and h′′ ∈G2. By
induction on l, we may assume that h′ and h′′ are products of unipotent elements.
Hence h is also, so we conclude that G = G′.

Types B and D: Let B be the symmetric form (2.9) on Cn. Suppose first that
G = SO(C3,B). Let G̃ = SL(2,C). In Section 2.2.1 we constructed a regular ho-
momorphism ρ : G̃ / / SO(C3,B) that maps the diagonal subgroup H̃ ⊂ G̃ onto
the diagonal subgroup H ⊂ G. Since every element of H̃ is a product of unipotent
elements, the same is true for H. Hence G = SO(3,C) is generated by its unipotent
elements.

Now let G = SO(C4,B) and set G̃ = SL(2,C)×SL(2,C). Let H be the diagonal
subgroup of G and let H̃ be the product of the diagonal subgroups of the factors of
G̃. In Section 2.2.1 we constructed a regular homomorphism π : G̃ // SO(C4,B)
that maps H̃ onto H. Hence the argument just given for SO(3,C) applies in this
case, and we conclude that SO(4,C) is generated by its unipotent elements.
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Finally, we consider the groups G = SO(Cn,B) with n ≥ 5. Embed SO(C2l ,B)
into SO(C2l+1,B) by the regular homomorphism

[
a b
c d

]
7→

a 0 b
0 1 0
c 0 d

 . (2.14)

The diagonal subgroup of SO(C2l ,B) is isomorphic to the diagonal subgroup of
SO(C2l+1,B) via this embedding, so it suffices to prove that every diagonal element
in SO(Cn,B) is a product of unipotent elements when n is even. We just proved this
to be the case when n = 4, so we may assume n = 2l ≥ 6. For

h = diag[x1, . . . ,xl ,x−1
l , . . . ,x−1

1 ] ∈ H

we factor h = h′h′′, where

h′ = diag[x1,x2,1, . . . ,1,x−1
2 ,x−1

1 ] ,

h′′ = diag[1,1,x3, . . . ,xl ,x−1
l , . . . ,x−1

3 ,1,1] .

We split Cn = V1⊕V2, where

V1 = Span{e1,e2,en−1,en} , V2 = Span{e3, . . . ,en−2} .

The restriction of the symmetric form B to Vi is nondegenerate. If we set

G1 = {g ∈ G : gV1 = V1 and g = I on V2} ,

then h ∈ G1 ∼= SO(4,C). Let W1 = Span{e1,en} and W2 = Span{e2, . . . ,en−1}. Set

G2 = {g ∈ G : g = I on W1 and gW2 = W2} .

We have G2 ∼= SO(2l− 2,C) and h′′ ∈ G2. Since 2l− 2 ≥ 4, we may assume by
induction that h′ and h′′ are products of unipotent elements. Hence h is also a product
of unipotent elements, proving that G = G′. ut

2.2.3 Connected Groups

Definition 2.2.3. A linear algebraic group G is connected (in the sense of algebraic
groups) if the ring O[G] has no zero divisors.

Examples

1. The rings C[t] and C[t, t−1] obviously have no zero divisors; hence the additive
group C and the multiplicative group C× are connected. Likewise, the torus Dn
of diagonal matrices and the group N+

n of upper-triangular unipotent matrices are
connected (see Examples 1 and 2 of Section 1.4.2).



82 2 Structure of Classical Groups

2. If G and H are connected linear algebraic groups, then the group G×H is con-
nected, since O[G×H]∼= O[G]⊗O[H].

3. If G is a connected linear algebraic group and there is a surjective regular homo-
morphism ρ : G // H, then H is connected, since ρ∗ : O[H] / / O[G] is injective.

Theorem 2.2.4. Let G be a linear algebraic group that is generated by unipotent
elements. Then G is connected as an algebraic group and as a Lie group.

Proof. Suppose f1, f2 ∈ O[G], f1 6= 0, and f1 f2 = 0. We must show that f2 = 0.
Translating f1 and f2 by an element of G if necessary, we may assume that f1(I) 6=
0. Let g ∈ G. Since g is a product of unipotent elements, Theorem 1.6.2 implies
that there exist nilpotent elements X1, . . . ,Xr in g such that g = exp(X1) · · ·exp(Xr).
Define ϕ(t) = exp(tX1) · · ·exp(tXr) for t ∈ C. The entries in the matrix ϕ(t) are
polynomials in t, and ϕ(1) = g. Since X j is nilpotent, we have det(ϕ(t)) = 1 for all
t. Hence the functions p1(t) = f1(ϕ(t)) and p2(t) = f2(ϕ(t)) are polynomials in t.
Since p1(0) 6= 0 while p1(t)p2(t) = 0 for all t, it follows that p2(t) = 0 for all t. In
particular, f2(g) = 0. This holds for all g∈G, so f2 = 0, proving that G is connected
as a linear algebraic group. This argument also shows that G is arcwise connected,
and hence connected, as a Lie group. ut

Theorem 2.2.5. The groups GL(n,C), SL(n,C), SO(n,C), and Sp(n,C) are con-
nected (as linear algebraic groups and Lie groups) for all n≥ 1.

Proof. The homomorphism λ ,g 7→ λg from C××SL(n,C) to GL(n,C) is surjec-
tive. Hence the connectedness of GL(n,C) will follow from the connectedness of
C× and SL(n,C), as in Examples 2 and 3 above. The groups SL(1,C) and SO(1,C)
are trivial, and we showed in Section 2.2.1 that SO(2,C) is isomorphic to C×, hence
connected. For the remaining cases use Theorems 2.2.2 and 2.2.4. ut

Remark 2.2.6. The regular homomorphisms ρ : SL(2,C) // SO(3,C) and π :
SL(2,C)×SL(2,C) / / SO(4,C) constructed in Section 2.2.1 have kernels ±I;
hence dρ and dπ are bijective by dimensional considerations. Since SO(n,C) is
connected, it follows that these homomorphisms are surjective. After we intro-
duce the spin groups in Chapter 6, we will see that SL(2,C) ∼= Spin(3,C) and
SL(2,C)×SL(2,C)∼= Spin(4,C).

We shall study regular representations of a linear algebraic group in terms of the
associated representations of its Lie algebra. The following theorem will be a basic
tool.

Theorem 2.2.7. Suppose G is a linear algebraic group with Lie algebra g. Let
(π,V ) be a regular representation of G and W ⊂V a subspace.

1. If π(g)W ⊂W for all g ∈ G then dπ(A)W ⊂W for all A ∈ g.
2. Assume that G is generated by unipotent elements. If dπ(X)W ⊂W for all X ∈ g

then π(g)W ⊂W for all g ∈ G. Hence V is irreducible under the action of G if
and only if it is irreducible under the action of g.
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Proof. This follows by the same argument as in Proposition 1.7.7, using the expo-
nentials of nilpotent elements of g to generate G in part (2). ut

Remark 2.2.8. In Chapter 11 we shall show that the algebraic notion of connected-
ness can be expressed in terms of the Zariski topology, and that a connected linear
algebraic group is also connected relative to its topology as a Lie group (Theorem
11.2.9). Since a connected Lie group is generated by {expX : X ∈ g}, this will imply
part (2) of Theorem 2.2.7 without assuming unipotent generation of G.

2.2.4 Exercises

1. (Cayley Parameters) Let G be SO(n,C) or Sp(n,C) and let g = Lie(G). Define
VG = {g ∈G : det(I +g) 6= 0} and Vg = {X ∈ g : det(I−X) 6= 0}. For X ∈ Vg

define the Cayley transform c(X) = (I + X)(I−X)−1. (Recall that c(X) ∈ G by
Exercises 1.4.5 #5.)
(a) Show that c is a bijection from Vg onto VG.
(b) Show that Vg is invariant under the adjoint action of G on g, and show that
gc(X)g−1 = c(gXg−1) for g ∈ G and X ∈ Vg.
(c) Suppose that f ∈ O[G] and f vanishes on VG. Prove that f = 0.
(HINT: Consider the function g 7→ f (g)det(I +g) and use Theorem 2.2.5.)

2. Let ρ : SL(2,C) // SO(C3,B) as in Section 2.2.1. Let H (resp. H̃) be the
diagonal subgroup in SO(C3,B) (resp. SL(2,C)). Let ρ∗ : X(H) / / X(H̃) be
the homomorphism of the character groups given by χ 7→ χ ◦ρ . Determine the
image of ρ∗. (HINT: X(H) and X(H̃) are isomorphic to the additive group Z, and
the image of ρ∗ can be identified with a subgroup of Z.)

3. Let π : SL(2,C)×SL(2,C) / / SO(C4,B) as in Section 2.2.1. Repeat the cal-
culations of the previous exercise in this case. (HINT: Now X(H) and X(H̃) are
isomorphic to the additive group Z2, and the image of π∗ can be identified with
a lattice in Z2.)

2.3 Regular Representations of SL(2,C)

The group G = SL(2,C) and its Lie algebra g = sl(2,C) play central roles in de-
termining the structure of the classical groups and their representations. To find
all the regular representations of G, we begin by finding all the irreducible finite-
dimensional representations of g. Then we show that every such representation is the
differential of an irreducible regular representation of G, thereby obtaining all irre-
ducible regular representations of G. Next we show that an every finite-dimensional
representation of g decomposes as a direct sum of irreducible representations (the
complete reducibility property), and conclude that every regular representation of G
is completely reducible.
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2.3.1 Irreducible Representations of sl(2,C)

Recall that a representation of a complex Lie algebra g on a complex vector space
V is a linear map π : g / / End(V ) such that

π([A,B]) = π(A)π(B)−π(B)π(A) for all A,B ∈ g .

Here the Lie bracket [A,B] on the left is calculated in g, whereas the product on the
right is composition of linear transformations. We shall call V a g-module and write
π(A)v simply as Av when v ∈V , provided that the representation π is understood
from the context. Thus, even if g is a Lie subalgebra of Mn(C), an expression such
as Akv, for a nonnegative integer k, means π(A)kv.

Let g = sl(2,C). The matrices x =
[

0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
are a basis for g

and satisfy the commutation relations

[h,x] = 2x , [h,y] =−2y , [x,y] = h . (2.15)

Any triple {x,y,h} of nonzero elements in a Lie algebra satisfying (2.15) will be
called a TDS (three-dimensional simple) triple.

Lemma 2.3.1. Let V be a g-module (possibly infinite-dimensional) and let v0 ∈ V
be such that xv0 = 0 and hv0 = λv0 for some λ ∈ C. Set v j = y jv0 for j ∈ N and
v j = 0 for j < 0. Then yv j = v j+1, hv j = (λ −2 j)v j, and

xv j = j(λ − j +1)v j−1 for j ∈ N . (2.16)

Proof. The equation for yv j follows by definition, and the equation for hv j follows
from the commutation relation (proved by induction on j)

hy jv = y jhv−2 jv for all v ∈V and j ∈ N . (2.17)

From (2.17) and the relation xyv = yxv+hv one proves by induction on j that

xy jv = jy j−1(h− j +1)v+ y jxv for all v ∈V and j ∈ N . (2.18)

Taking v = v0 and using xv0 = 0, we obtain equation (2.16). ut

Let V be a finite-dimensional g-module. We decompose V into generalized
eigenspaces for the action of h:

V =
⊕
λ∈C

V (λ ), where V (λ ) =
⋃

k≥1 Ker(h−λ )k .

If v ∈V (λ ) then (h−λ )kv = 0 for some k ≥ 1. As linear transformations on V ,

x(h−λ ) = (h−λ −2)x and y(h−λ ) = (h−λ +2)x .

Hence (h−λ −2)kxv = x(h−λ )kv = 0 and (h−λ +2)kyv = y(h−λ )kv = 0. Thus
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xV (λ )⊂V (λ +2) and yV (λ )⊂V (λ −2) for all λ ∈ C . (2.19)

If V (λ ) 6= 0 then λ is called a weight of V with weight space V (λ ).

Lemma 2.3.2. Suppose V is a finite-dimensional g-module and 0 6= v0 ∈V satisfies
hv0 = λv0 and xv0 = 0. Let k be the smallest nonnegative integer such that ykv0 6= 0
and yk+1v0 = 0. Then λ = k and the space W = Span{v0,yv0, . . . ,ykv0} is a (k+1)-
dimensional g-module.

Proof. Such an integer k exists by (2.19), since V is finite-dimensional and the
weight spaces are linearly independent. Lemma 2.3.1 implies that W is invariant
under x, y, and h. Furthermore, v0,yv0, . . . ,ykv0 are eigenvectors for h with respec-
tive eigenvalues λ ,λ − 2, . . . ,λ − 2k. Hence these vectors are a basis for W . By
(2.16),

0 = xyk+1v0 = (k +1)(λ − k)ykv0 .

Since ykv0 6= 0, it follows that λ = k. ut

We can describe the action of g on the subspace W in Lemma 2.3.2 in matrix
form as follows: For k ∈ N define the (k +1)× (k +1) matrices

Xk =



0 k 0 0 · · · 0
0 0 2(k−1) 0 · · · 0
0 0 0 3(k−2) · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k
0 0 0 0 · · · 0


, Yk =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

and Hk = diag[k, k−2, . . . ,2− k,−k]. A direct check yields

[Xk,Yk] = Hk , [Hk,Xk] = 2Xk , and [Hk,Yk] =−2Yk .

With all of this in place we can classify the irreducible finite-dimensional mod-
ules for g.

Proposition 2.3.3. Let k ≥ 0 be an integer. The representation (ρk,F(k)) of g on
Ck+1 defined by

ρk(x) = Xk , ρk(h) = Hk , and ρk(y) = Yk

is irreducible. Furthermore, if (σ ,W ) is an irreducible representation of g with
dimW = k+1 > 0, then (σ ,W ) is equivalent to (ρk,F(k)). In particular, W is equiv-
alent to W ∗ as a g-module.

Proof. Suppose that W ⊂ F(k) is a nonzero invariant subspace. Since xW (λ ) ⊂
W (λ + 2), there must be λ with W (λ ) 6= 0 and xW (λ ) = 0. But from the eche-
lon form of Xk we see that Ker(Xk) = Ce1. Hence λ = k and W (k) = Ce1. Since
Yke j = e j+1 for 1≤ j ≤ k, it follows that W = F(k).
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Let (σ ,W ) be any irreducible representation of g with dimW = k +1 > 0. There
exists an eigenvalue λ of h such that xW (λ ) = 0 and 0 6= w0 ∈W (λ ) such that
hw0 = λw0. By Lemma 2.3.2 we know that λ is a nonnegative integer, and the
space spanned by the set {w0,yw0,y2w0, . . .} is invariant under g and has dimen-
sion λ + 1. But this space is all of W , since σ is irreducible. Hence λ = k, and by
Lemma 2.3.1 the matrices of the actions of x,y,h with respect to the ordered basis
{w0,yw0, . . . ,ykw0} are Xk,Yk, and Hk, respectively. Since W ∗ is an irreducible g-
module of the same dimension as W , it must be equivalent to W . ut

Corollary 2.3.4. The weights of a finite-dimensional g-module V are integers.

Proof. There are g-invariant subspaces 0 = V0 ⊂ V1 ⊂ ·· · ⊂ Vk = V such that the
quotient modules Wj = Vj/Vj−1 are irreducible for j = 1, . . . ,k−1. The weights are
the eigenvalues of h on V , and this set is the union of the sets of eigenvalues of h on
the modules Wj. Hence all weights are integers by Proposition 2.3.3. ut

2.3.2 Irreducible Regular Representations of SL(2,C)

We now turn to the construction of irreducible regular representations of SL(2,C).
Let the subgroups N+ of upper-triangular unipotent matrices and N− of lower-
triangular unipotent matrices be as in Section 2.2.1. Set d(a) = diag[a,a−1] for
a ∈ C×.

Proposition 2.3.5. For every integer k ≥ 0 there is a unique (up to equivalence)
irreducible regular representation (π,V ) of SL(2,C) of dimension k + 1 whose
differential is the representation ρk in Proposition 2.3.3. It has the following prop-
erties:

1. The semisimple operator π(d(a)) has eigenvalues ak,ak−2, . . . ,a−k+2,a−k.
2. π(d(a)) acts on by the scalar ak on the one-dimensional space V N+

of N+-fixed
vectors.

3. π(d(a)) acts on by the scalar a−k on the one-dimensional space V N− of N−-fixed
vectors.

Proof. Let P(C2) be the polynomial functions on C2 and let V = Pk(C2) be the
space of polynomials that are homogeneous of degree k. Here it is convenient to
identify elements of C2 with row vectors x = [x1,x2] and have G = SL(2,C) act
by multiplication on the right. We then can define a representation of G on V by
π(g)ϕ(x) = ϕ(xg) for ϕ ∈V . Thus

π(g)ϕ(x1,x2) = ϕ(ax1 + cx2,bx1 +dx2) when g =
[

a b
c d

]
.

In particular, the one-parameter subgroups d(a), u(z), and v(z) act by
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π(d(a))ϕ(x1,x2) = ϕ(ax1, a−1x2) ,

π(u(z))ϕ(x1,x2) = ϕ(x1, x2 + zx1) ,

π(v(z))ϕ(x1,x2) = ϕ(x1 + zx2, x2) .

As a basis for V we take the monomials

v j(x1,x2) =
k!

(k− j)!
xk− j

1 x j
2 for j = 0,1, . . . ,k .

From the formulas above for the action of π(d(a)) we see that these functions are
eigenvectors for π(d(a)):

π(d(a))v j = ak−2 jv j .

Also, V N+
is the space of polynomials depending only on x1, so it consists of mul-

tiples of v0, whereas V N− is the space of polynomials depending only on x2, so it
consists of multiples of vk.

We now calculate the representation dπ of g. Since u(z) = exp(zx) and v(z) =
exp(zy), we have π(u(z)) = exp(zdπ(x)) and π(v(z)) = exp(zdπ(y)) by Theorem
1.6.2. Taking the z derivative, we obtain

dπ(x)ϕ(x1,x2) =
∂

∂ z
ϕ(x1,x2 + zx1)

∣∣∣∣
z=0

= x1
∂

∂x2
ϕ(x1,x2) ,

dπ(y)ϕ(x1,x2) =
∂

∂ z
ϕ(x1 + zx2,x2)

∣∣∣∣
z=0

= x2
∂

∂x1
ϕ(x1,x2) .

Since dπ(h) = dπ(x)dπ(y)−dπ(y)dπ(x), we also have

dπ(h)ϕ(x1,x2) =
(

x1
∂

∂x1
− x2

∂

∂x2

)
ϕ(x1,x2) .

On the basis vectors v j we thus have

dπ(h)v j =
k!

(k− j)!

(
x1

∂

∂x1
− x2

∂

∂x2

)
(xk− j

1 x j
2) = (k−2 j)v j ,

dπ(x)v j =
k!

(k− j)!

(
x1

∂

∂x2

)
(xk− j

1 x j
2) = j(k− j +1)v j−1 ,

dπ(x)v j =
k!

(k− j)!

(
x2

∂

∂x1

)
(xk− j

1 x j
2) = v j+1 .

It follows from Proposition 2.3.3 that dπ ∼= ρk is an irreducible representation of g,
and all irreducible representations of g are obtained this way. Theorem 2.2.7 now
implies that π is an irreducible representation of G. Furthermore, π is uniquely
determined by dπ , since π(u), for u unipotent, is uniquely determined by dπ(u)
(Theorem 1.6.2) and G is generated by unipotent elements (Lemma 2.2.1). ut
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2.3.3 Complete Reducibility of SL(2,C)

Now that we have determined the irreducible regular representations of SL(2,C),
we turn to the problem of finding all the regular representations. We first solve this
problem for finite-dimensional representations of g = sl(2,C).

Theorem 2.3.6. Let V be a finite-dimensional g-module with dimV > 0. Then
there exist integers k1, . . . ,kr (not necessarily distinct) such that V is equivalent to
F(k1)⊕F(k2)⊕ · · ·⊕F(kr).

The key step in the proof of Theorem 2.3.6 is the following result:

Lemma 2.3.7. Suppose W is a g-module with a submodule Z such that Z is equiva-
lent to F(k) and W/Z is equivalent to F(l). Then W is equivalent to F(k)⊕F(l).

Proof. Suppose first that k 6= l. The lemma is true for W if and only if it is true
for W ∗. The modules F(k) are self-dual, and replacing W by W ∗ interchanges the
submodule and quotient module. Hence we may assume that k < l. By putting h in
upper-triangular matrix form, we see that the set of eigenvalues of h on W (ignoring
multiplicities) is

{k, k−2, . . . ,−k +2,−k}∪{l, l−2, . . . ,−l +2,−l} .

Thus there exists 0 6= u0 ∈W such that hu0 = lu0 and xu0 = 0. Since k < l, the
vector u0 is not in Z, so the vectors u j = y ju0 are not in Z for j = 0,1, . . . , l (since
xu j = j(l− j + 1)u j−1). By Proposition 2.3.3 these vectors span an irreducible g-
module isomorphic to F(l) that has zero intersection with Z. Since dimW = k+ l+2,
this module is a complement to Z in W .

Now assume that k = l. Then dimW (l) = 2, while dimZ(l) = 1. Thus there exist
nonzero vectors z0 ∈ Z(l) and w0 ∈W (l) with w0 /∈ Z and

hw0 = lw0 +az0 for some a ∈ C .

Set z j = y jz0 and w j = y jw0. Using (2.17) we calculate that

hw j = hy jw0 = −2 jy jw0 + y jhw0

= −2 jw j + y j(lw0 +az0) = (l−2 j)w j +az j .

Since W (l +2) = 0, we have xz0 = 0 and xw0 = 0. Thus equation (2.18) gives xz j =
j(l− j +1)z j−1 and

xw j = jy j−1(h− j +1)w0 = j(l− j +1)y j−1w0 +a jy j−1z0

= j(l− j +1)w j−1 +a jz j−1 .

It follows by induction on j that {z j,w j} is linearly independent for j = 0,1, . . . , l.
Since the weight spaces W (l), . . . ,W (−l) are linearly independent, we conclude that
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{z0, z1, . . . , zl , w0, w1, . . . , wl}

is a basis for W . Let Xl , Yl , and Hl be the matrices in Section 2.3.1. Then relative to
this basis the matrices for h, y, and x are

H =
[

Hl aI
0 Hl

]
, Y =

[
Yl 0
0 Yl

]
, X =

[
Xl A
0 Xl

]
,

respectively, where A = diag[0, a, 2a, . . . , la ]. But

H = [X ,Y ] =
[

Hl [A,Yl ]
0 Hl

]
.

This implies that [A,Yl ] = aI. Hence 0 = tr(aI) = (l + 1)a, so we have a = 0. The
matrices H, Y , and X show that W is equivalent to the direct sum of two copies of
F(l). ut

Proof of Theorem 2.3.6. If dimV = 1 the result is true with r = 1 and k1 = 0.
Assume that the theorem is true for all g-modules of dimension less than m, and let
V be an m-dimensional g-module.

The eigenvalues of h on V are integers by Corollary 2.3.4. Let k1 be the biggest
eigenvalue. Then k1 ≥ 0 and V (l) = 0 for l > k1, so we have an injective module
homomorphism of F(k1) into V by Lemma 2.3.1. Let Z be the image of F(k1). If
Z = V we are done. Otherwise, since dimV/Z < dimV , we can apply the inductive
hypothesis to conclude that V/Z is equivalent to F(k2)⊕ · · ·⊕F(kr). Let

T : V // F(k2)⊕ · · ·⊕F(kr)

be a surjective intertwining operator with kernel Z. For each i = 2, . . . ,r choose
vi ∈V (ki) such that

CT vi = 0
⊕ · · ·⊕F(ki)(ki)

⊕ · · ·⊕0 .

Let Wi = Z + Span{vi,yvi, . . . ,ykivi} and Ti = T |Wi . Then Wi is invariant under
g and Ti : Wi / / F(ki) is a surjective intertwining operator with kernel Z. Lemma
2.3.7 implies that Wi = Z

⊕
Ui and Ti defines an equivalence between Ui and F(ki).

Now set U = U2 + · · ·+Ur. Then

T (U) = T (U2)+ · · ·+T (Ur) = F(k2)⊕ · · ·⊕F(kr) .

Thus T |U is surjective. Since dimU ≤ dimU2 + · · ·+dimUr = dimT (U), it follows
that T |U is bijective. Hence V = Z

⊕
U , completing the induction. ut

Corollary 2.3.8. Let (ρ,V ) be a finite-dimensional representation of sl(2,C). There
exists a regular representation (π,W ) of SL(2,C) such that (dπ,W ) is equivalent
to (ρ,V ). Furthermore, every regular representation of SL(2,C) is a direct sum of
irreducible subrepresentations.
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Proof. By Theorem 2.3.6 we may assume that V = F(k1)⊕F(k2)⊕·· ·⊕F(kr). Each
of the summands is the differential of a representation of SL(2,C) by Proposition
2.3.5. ut

2.3.4 Exercises

1. Let ei j ∈ M3(C) be the usual elementary matrices. Set x = e13, y = e31, and
h = e11− e33.
(a) Verify that {x,y,h} is a TDS triple in sl(3,C).
(b) Let g = Cx+Cy+Ch∼= sl(2,C) and let U = M3(C). Define a representation
ρ of g on U by ρ(A)X = [A,X ] for A ∈ g and X ∈ M3(C). Show that ρ(h) is
diagonalizable, with eigenvalues ±2 (multiplicity 1), ±1 (multiplicity 2), and
0 (multiplicity 3). Find all u ∈ U such that ρ(h)u = λu and ρ(x)u = 0, where
λ = 0,1,2.
(c) Let F(k) be the irreducible (k+1)-dimensional representation of g. Show that

U ∼= F(2)⊕F(1)⊕F(1)⊕F(0)⊕F(0)

as a g-module. (HINT: Use the results of (b) and Theorem 2.3.6.)
2. Let k be a nonnegative integer and let Wk be the polynomials in C[x] of degree at

most k. If f ∈Wk set

σk(g) f (x) = (cx+a)k f
(

dx+b
cx+a

)
for g =

[
a b
c d

]
∈ SL(2,C) .

Show that σk(g)Wk = Wk and that (σk,Wk) defines a representation of SL(2,C)
equivalent to the irreducible (k +1)-dimensional representation. (HINT: Find an
intertwining operator between this representation and the representation used in
the proof of Proposition 2.3.5.)

3. Find the irreducible regular representations of SO(3,C). (HINT: Use the homo-
morphism ρ : SL(2,C) / / SO(3,C) from Section 2.2.1.)

4. Let V = C[x]. Define operators E and F on V by

Eϕ(x) =−1
2

d2ϕ(x)
dx2 , Fϕ(x) =

1
2

x2
ϕ(x) for ϕ ∈V .

Set H = [E,F ].
(a) Show that H =−x(d/dx)−1/2 and that {E,F,H} is a TDS triple.
(b) Find the space V E = {ϕ ∈V : Eϕ = 0}.
(c) Let Veven ⊂ V be the space of even polynomials and Vodd ⊂ V the space of
odd polynomials. Let g ⊂ End(V ) be the Lie algebra spanned by E,F,H. Show
that each of these spaces is invariant and irreducible under g. (HINT: Use (b) and
Lemma 2.3.1.)
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(d) Show that V =Veven⊕Vodd and that Veven is not equivalent to Vodd as a module
for g. (HINT: Show that the operator H is diagonalizable on Veven and Vodd and
find its eigenvalues.)

5. Let X ∈ Mn(C) be a nilpotent and nonzero. By Exercise 1.6.4 #3 there exist
H,Y ∈ Mn(C) such that {X ,Y,H} is a TDS triple. Let g = Span{H,X ,Y} ∼=
sl(2,C) and consider V = Cn as a representation π of g by left multiplication of
matrices on column vectors.
(a) Show that π is irreducible if and only if the Jordan canonical form of X
consists of a single block.
(b) In the decomposition of V into irreducible subspaces given by Theorem 2.3.6,
let m j be the number of times the representation F( j) occurs. Show that m j is the
number of Jordan blocks of size j +1 in the Jordan canonical form of X .
(c) Show that π is determined (up to isomorphism) by the eigenvalues (with
multiplicities) of H on Ker(X).

6. Let (ρ,W ) be a finite-dimensional representation of sl(2,C). For k∈Z set f (k) =
dim{w ∈W : ρ(h)w = kw}.
(a) Show that f (k) = f (−k).
(b) Let geven(k) = f (2k) and godd(k) = f (2k + 1). Show that geven and godd are
unimodal functions from Z to N. Here a function φ is called unimodal if there
exists k0 such that φ(a) ≤ φ(b) for all a < b ≤ k0 and φ(a) ≥ φ(b) for all k0 ≤
a < b. (HINT: Decompose W into a direct sum of irreducible subspaces and use
Proposition 2.3.3.)

2.4 The Adjoint Representation

We now use the maximal torus in a classical group to decompose the Lie algebra
of the group into eigenspaces, traditionally called root spaces, under the adjoint
representation.

2.4.1 Roots with Respect to a Maximal Torus

Throughout this section G will denote a connected classical group of rank l. Thus G
is GL(l,C), SL(l +1,C), Sp(C2l ,Ω), SO(C2l ,B), or SO(C2l+1,B), where we take
as Ω and B the bilinear forms (2.6) and (2.9). We set g = Lie(G). The subgroup H
of diagonal matrices in G is a maximal torus of rank l, and we denote its Lie algebra
by h. In this section we will study the regular representation π of H on the vector
space g given by π(h)X = hXh−1 for h ∈ H and X ∈ g.

Let x1, . . . ,xl be the coordinate functions on H used in the proof of Theorem
2.1.5. Using these coordinates we obtain an isomorphism between the group X(H)
of rational characters of H and the additive group Zl (see Lemma 2.1.2). Under this
isomorphism, λ = [λ1, . . . ,λl ] ∈ Zl corresponds to the character h 7→ hλ , where
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hλ =
l

∏
k=1

xk(h)λk , for h ∈ H . (2.20)

For λ ,µ ∈ Zl and h ∈ H we have hλ hµ = hλ+µ .
For making calculations it is convenient to fix the following bases for h∗:

(a) Let G = GL(l,C). Define 〈εi,A〉 = ai for A = diag[a1, . . . ,al ] ∈ h. Then
{ε1, . . . ,εl} is a basis for h∗.

(b) Let G = SL(l + 1,C). Then h consists of all diagonal matrices of trace zero.
With an abuse of notation we will continue to denote the restrictions to h of the
linear functionals in (a) by εi. The elements of h∗ can then be written uniquely
as ∑

l+1
i=1 λiεi with λi ∈ C and ∑

l+1
i=1 λi = 0. A basis for h∗ is furnished by the

functionals
εi−

1
l +1

(ε1 + · · ·+ εl+1) for i = 1, . . . , l .

(c) Let G be Sp(C2l ,Ω) or SO(C2l ,B). For i = 1, . . . , l define 〈εi,A〉= ai, where
A = diag[a1, . . . ,al ,−al , . . . ,−a1] ∈ h. Then {ε1, . . . ,εl} is a basis for h∗.

(d) Let G = SO(C2l+1,B). For A = diag[a1, . . . ,al ,0,−al , . . . ,−a1] ∈ h and i =
1, . . . , l define 〈εi,A〉= ai. Then {ε1, . . . ,εl} is a basis for h∗.

We define P(G) = {dθ : θ ∈ X(H)} ⊂ h∗. With the functionals εi defined as
above, we have

P(G) =
l⊕

k=1

Zεk . (2.21)

Indeed, given λ = λ1ε1 + · · ·+λlεl with λi ∈ Z, let eλ denote the rational character
of H determined by [λ1, . . . ,λl ] ∈ Zl as in (2.20). Every element of X(H) is of this
form, and we claim that deλ (A) = 〈λ ,A〉 for A∈ h. To prove this, recall from Section
1.4.3 that A ∈ h acts by the vector field

XA =
l

∑
i=1
〈εi,A〉xi

∂

∂xi

on C[x1,x−1
1 , . . . ,xl ,x−1

l ]. By definition of the differential of a representation we have

deλ (A) = XA(xλ1
1 · · ·x

λl
l )(1) =

l

∑
i=1

λi 〈εi,A〉= 〈λ ,A〉

as claimed. This proves (2.21). The map λ 7→ eλ is thus an isomorphism between the
additive group P(G) and the character group X(H), by Lemma 2.1.2. From (2.21)
we see that P(G) is a lattice (free abelian subgroup of rank l) in h∗, which is called
the weight lattice of G (the notation P(G) is justified, since all maximal tori are
conjugate in G).

We now study the adjoint action of H and h on g. For α ∈ P(G) let
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gα = {X ∈ g : hXh−1 = hα X for all h ∈ H}
= {X ∈ g : [A,X ] = 〈α,A〉X for all A ∈ h} .

(The equivalence of these two formulas for gα is clear from the discussion above.)
For α = 0 we have g0 = h, by the same argument as in the proof of Theorem 2.1.5.
If α 6= 0 and gα 6= 0 then α is called a root of H on g and gα is called a root space.
If α is a root then a nonzero element of gα is called a root vector for α . We call the
set Φ of roots the root system of g. Its definition requires fixing a choice of maximal
torus, so we write Φ = Φ(g,h) when we want to make this choice explicit. Applying
Proposition 2.1.3, we have the root space decomposition

g = h⊕
⊕
α∈Φ

gα . (2.22)

Theorem 2.4.1. Let G ⊂ GL(n,C) be a connected classical group, and let H ⊂ G
be a maximal torus with Lie algebra h. Let Φ ⊂ h∗ be the root system of g.

1. dimgα = 1 for all α ∈Φ .
2. If α ∈Φ and cα ∈Φ for some c ∈ C then c =±1 .
3. The symmetric bilinear form (X ,Y ) = trCn(XY ) on g is invariant:

([X ,Y ],Z) =−(Y, [X ,Z]) for X ,Y,Z ∈ g .

4. Let α,β ∈Φ and α 6=−β . Then (h,gα) = 0 and (gα ,gβ ) = 0 .
5. The form (X ,Y ) on g is nondegenerate.

Proof of (1): We shall calculate the roots and root vectors for each type of clas-
sical group. We take the Lie algebras in the matrix form of Section 2.1.2. In this
realization the algebras are invariant under the transpose. For A ∈ h and X ∈ g we
have [A,X ]t =−[A,X t ]. Hence if X is a root vector for the root α , then X t is a root
vector for −α .

Type A: Let G be GL(n,C) or SL(n,C). For A = diag[a1, . . . ,an] ∈ h we have

[A, ei j] = (ai−a j)ei j = 〈εi− ε j, A〉ei j .

Since the set {ei j : 1≤ i, j ≤ n, i 6= j} is a basis of g modulo h, the roots are

{±(εi− ε j) : 1≤ i < j ≤ n} ,

each with multiplicity 1. The root space gλ is Cei j for λ = εi− ε j.

Type C: Let G = Sp(C2l ,Ω). Label the basis for C2l as e±1, . . . ,e±l , where e−i =
e2l+1−i. Let ei, j be the matrix that takes the basis vector e j to ei and annihilates ek for
k 6= j (here i and j range over ±1, . . . ,±l). Set Xεi−ε j = ei, j− e− j,−i for 1≤ i, j ≤ l,
i 6= j. Then Xεi−ε j ∈ g and

[A, Xεi−ε j ] = 〈εi− ε j, A〉Xεi−ε j , (2.23)
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for A ∈ h. Hence εi− ε j is a root. These roots are associated with the embedding

gl(l,C) / / g given by Y 7→
[

Y 0
0 −slY t sl

]
for Y ∈ gl(l,C), where sl is defined in

(2.5). Set Xεi+ε j = ei,− j + e j,−i , X−εi−ε j = e− j,i + e−i, j for 1≤ i < j ≤ l, and set
X2εi = ei,−i for 1≤ i≤ l. These matrices are in g, and

[A, X±(εi+ε j)] =±〈εi + ε j, A〉X±(εi+ε j)

for A ∈ h. Hence ±(εi + ε j) are roots for 1≤ i≤ j ≤ l. From the block matrix form
(2.8) of g we see that

{X±(εi−ε j), X±(εi+ε j) : 1≤ i < j ≤ l}∪{X±2εi : 1≤ i≤ l}

is a basis for g modulo h. This shows that the roots have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l , ±2εk for 1≤ k ≤ l .

Type D: Let G = SO(C2l ,B). Label the basis for C2l and define Xεi−ε j as in the
case of Sp(C2l ,Ω). Then Xεi−ε j ∈ g and (2.23) holds for A ∈ h, so εi− ε j is a root.
These roots arise from the same embedding gl(l,C) / / g as in the symplectic
case. Set Xεi+ε j = ei,− j−e j,−i and X−εi−ε j = e− j,i−e−i, j for 1≤ i < j ≤ l. Then
X±(εi+ε j) ∈ g and

[A, X±(εi+ε j)] =±〈εi + ε j, A〉X±(εi+ε j)

for A ∈ h. Thus ±(εi + ε j) is a root. From the block matrix form (2.7) for g we see
that

{X±(εi−ε j) : 1≤ i < j ≤ l}∪{X±(εi+ε j) : 1≤ i < j ≤ l}
is a basis for g modulo h. This shows that the roots have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l .

Type B: Let G = SO(C2l+1,B). We embed SO(C2l ,B) into G by equation (2.14).
Since H ⊂ SO(C2l ,B) ⊂ G via this embedding, the roots ±εi ± ε j of ad(h) on
so(C2l ,B) also occur for the adjoint action of h on g. We label the basis for C2l+1

as {e−l , . . . ,e−1,e0,e1, . . . ,el}, where e0 = el+1 and e−i = e2l+2−i. Let ei, j be the
matrix that takes the basis vector e j to ei and annihilates ek for k 6= j (here i and j
range over 0,±1, . . . ,±l). Then the corresponding root vectors from type D are

Xεi−ε j = ei, j− e− j,−i , Xε j−εi = e j,i− e−i,− j ,

Xεi+ε j = ei,− j− e j,−i , X−εi−ε j = e− j,i− e−i, j ,

for 1≤ i < j ≤ l. Define

Xεi = ei,0− e0,−i , X−εi = e0,i− e−i,0 ,



2.4 The Adjoint Representation 95

for 1 ≤ i ≤ l. Then X±εi ∈ g and [A,X±εi ] = ±〈εi,A〉Xεi for A ∈ h. From the
block matrix form (2.10) for g we see that {X±εi : 1 ≤ i ≤ l} is a basis for g
modulo so(C2l ,B). Hence the results above for so(C2l ,B) imply that the roots of
so(C2l+1,B) have multiplicity one and are

±(εi− ε j) and ± (εi + ε j) for 1≤ i < j ≤ l , ±εk for 1≤ k ≤ l .

Proof of (2): This is clear from the calculations above.

Proof of (3): Let X ,Y,Z ∈ g. Since tr(AB) = tr(BA), we have

([X ,Y ], Z) = tr(XY Z−Y XZ) = tr(Y ZX−Y XZ)
= − tr(Y [X ,Z]) =−(Y, [X ,Z]) .

Proof of (4): Let X ∈ gα , Y ∈ gβ , and A ∈ h. Then

0 = ([A,X ], Y )+(X , [A,Y ]) = 〈α +β ,A〉(X ,Y ) .

Since α + β 6= 0 we can take A such that 〈α + β ,A〉 6= 0. Hence (X ,Y ) = 0 in this
case. The same argument, but with Y ∈ h, shows that (h,gα) = 0.

Proof of (5): By (4), we only need to show that the restrictions of the trace form
to h×h and to gα ×g−α are nondegenerate for all α ∈Φ . Suppose X ,Y ∈ h. Then

tr(XY ) =

{
∑

n
i=1 εi(X)εi(Y ) if G = GL(n,C) or G = SL(n,C) ,

2∑
l
i=1 εi(X)εi(Y ) otherwise.

(2.24)

From this it is clear that the restriction of the trace form to h×h is nondegenerate.
For α ∈Φ we define Xα ∈ gα for types A, B, C, and D in terms of the elementary

matrices ei, j as above. Then Xα X−α is given as follows (the case of GL(n,C) is the
same as type A):

Type A: Xεi−ε j Xε j−εi = ei,i for 1≤ i < j ≤ l +1.
Type B: Xεi−ε j Xε j−εi = ei,i +e− j,− j and Xεi+ε j X−ε j−εi = ei,i +e j, j for 1≤ i < j≤ l.

Also XεiX−εi = ei,i + e0,0 for 1≤ i≤ l.
Type C: Xεi−ε j Xε j−εi = ei,i +e− j,− j for 1≤ i < j≤ l and Xεi+ε j X−ε j−εi = ei,i +e j, j

for 1≤ i≤ j ≤ l.
Type D: Xεi−ε j Xε j−εi = ei,i +e− j,− j and Xεi+ε j X−ε j−εi = ei,i +e j, j for 1≤ i < j≤ l.

From these formulas it is evident that tr(Xα X−α) 6= 0 for all α ∈Φ . ut

2.4.2 Commutation Relations of Root Spaces

We continue the notation of the previous section (G ⊂ GL(n,C) a connected clas-
sical group). Now that we have decomposed the Lie algebra g of G into root spaces
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under the action of a maximal torus, the next step is to find the commutation rela-
tions among the root spaces.

We first observe that

[gα ,gβ ]⊂ gα+β for α,β ∈ h∗ . (2.25)

Indeed, let A ∈ h. Then

[A, [X ,Y ]] = [[A,X ],Y ]+ [X , [A,Y ]] = 〈α +β ,A〉[X ,Y ]

for X ∈ gα and Y ∈ gβ . Hence [X ,Y ] ∈ gα+β . In particular, if α + β is not a root,
then gα+β = 0, so X and Y commute in this case. We also see from (2.25) that

[gα , g−α ]⊂ g0 = h .

When α , β , and α +β are all roots, then it turns out that [gα , gβ ] 6= 0, and hence
the inclusion in (2.25) is an equality (recall that dimgα = 1 for all α ∈ Φ). One
way to prove this is to calculate all possible commutators for each type of classical
group. Instead of doing this, we shall follow a more conceptual approach using the
representation theory of sl(2,C) and the invariant bilinear form on g from Theorem
2.4.1.

We begin by showing that for each root α , the subalgebra of g generated by gα

and g−α is isomorphic to sl(2,C).

Lemma 2.4.2. (Notation as in Theorem 2.4.1) For each α ∈ Φ there exist eα ∈ gα

and fα ∈ g−α such that the element hα = [eα , fα ] ∈ h satisfies 〈α,hα〉= 2. Hence

[hα ,eα ] = 2eα , [hα , fα ] =−2 fα ,

so that {eα , fα ,hα} is a TDS triple.

Proof. By Theorem 2.4.1 we can pick X ∈ gα and Y ∈ g−α such that (X ,Y ) 6= 0.
Set A = [X ,Y ] ∈ h. Then

[A,X ] = 〈α,A〉X , [A,Y ] =−〈α,A〉Y . (2.26)

We claim that A 6= 0. To prove this take any B ∈ h such that 〈α,B〉 6= 0. Then

(A,B) = ([X ,Y ],B) = (Y, [B,X ]) = 〈α,B〉(Y,X) 6= 0 . (2.27)

We now prove that 〈α,A〉 6= 0. Since A ∈ h, it is a semisimple matrix. For λ ∈ C let

Vλ = {v ∈ Cn : Av = λv}

be the λ eigenspace of A. Assume for the sake of contradiction that 〈α,A〉= 0. Then
from (2.26) we see that X and Y would commute with A, and hence Vλ would be
invariant under X and Y . But this would imply that

λ dimVλ = trVλ
(A) = trVλ

([X ,Y ]
∣∣
Vλ

) = 0 .



2.4 The Adjoint Representation 97

Hence Vλ = 0 for all λ 6= 0, making A = 0, which is a contradiction.
Now that we know 〈α,A〉 6= 0, we can rescale X , Y , and A, as follows: Set eα =

sX , fα = tY , and hα = stA, where s, t ∈ C×. Then

[hα ,eα ] = st〈α,A〉eα , [hα , fα ] =−st〈α,A〉 fα ,

[eα , fα ] = st[X ,Y ] = hα .

Thus any choice of s, t such that st〈α,A〉= 2 gives 〈α,hα〉= 2 and the desired TDS
triple. ut

For future calculations it will be useful to have explicit choices of eα and fα for
each pair of roots±α ∈Φ . If {eα , fα ,hα} is a TDS triple that satisfies the conditions
in Lemma 2.4.2 for a root α , then { fα ,eα ,−hα} satisfies the conditions for −α . So
we may take e−α = fα and f−α = eα once we have chosen eα and fα . We shall
follow the notation of Section 2.4.1.

Type A:
Let α = εi − ε j with 1 ≤ i < j ≤ l + 1. Set eα = ei j and fα = e ji. Then
hα = eii− e j j .

Type B:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j−e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .
(c) For α = εi with 1 ≤ i ≤ l set eα = ei,0− e0,−i and fα = 2e0,i− 2e−i,0 .
Then hα = 2ei,i−2e−i,−i .

Type C:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j +e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .
(c) For α = 2εi with 1≤ i≤ l set eα = ei,−i and fα = e−i,i .
Then hα = ei,i− e−i,−i .

Type D:
(a) For α = εi−ε j with 1≤ i < j≤ l set eα = ei, j−e− j,−i and fα = e j,i−e−i,− j .
Then hα = ei,i− e j, j + e− j,− j− e−i,−i .
(b) For α = εi +ε j with 1≤ i < j≤ l set eα = ei,− j−e j,−i and fα = e− j,i−e−i, j .
Then hα = ei,i + e j, j− e− j,− j− e−i,−i .

In all cases it is evident that 〈α,hα〉= 2, so eα , fα satisfy the conditions of Lemma
2.4.2.

We call hα the coroot to α . Since the space [gα ,g−α ] has dimension one, hα is
uniquely determined by the properties hα ∈ [gα , g−α ] and 〈α,hα〉= 2. For X ,Y ∈ g
let the bilinear form (X ,Y ) be defined as in Theorem 2.4.1. This form is nondegen-
erate on h×h; hence we may use it to identify h with h∗. Then (2.27) implies that
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hα is proportional to α . Furthermore, (hα ,hα) = 〈α,hα〉(eα , fα) 6= 0. Hence with h
identified with h∗ we have

α =
2

(hα ,hα)
hα . (2.28)

We will also use the notation α̌ for the coroot hα .

For α ∈Φ we denote by s(α) the algebra spanned by {eα , fα ,hα}. It is isomor-
phic to sl(2,C) under the map e 7→ eα , f 7→ fα , h 7→ hα . The algebra g becomes a
module for s(α) by restricting the adjoint representation of g to s(α). We can thus
apply the results on the representations of sl(2,C) that we obtained in Section 2.3.3
to study commutation relations in g.

Let α,β ∈Φ with α 6=±β . We observe that β + kα 6= 0, by Theorem 2.4.1 (2).
Hence for every k ∈ Z,

dimgβ+kα =
{

1 if β + kα ∈Φ ,
0 otherwise.

Let
R(α,β ) = {β + kα : k ∈ Z}∩Φ ,

which we call the α root string through β . The number of elements of a root string
is called the length of the string. Define

Vα,β = ∑
γ∈R(α,β )

gγ .

Lemma 2.4.3. For every α,β ∈ Φ with α 6= ±β , the space Vα,β is invariant and
irreducible under ad(s(α)).

Proof. From (2.25) we have [gα ,gβ+kα ]⊂ gβ+(k+1)α and [g−α ,gβ+kα ]⊂ gβ+(k−1)α ,
so we see that Vα,β is invariant under ad(s(α)). Denote by π the representation of
s(α) on Vα,β .

If γ = β +kα ∈Φ , then π(hα) acts on the one-dimensional space gγ by the scalar

〈γ,hα〉= 〈β ,hα〉+ k〈α,hα〉= 〈β ,hα〉+2k .

Thus by (2.29) we see that the eigenvalues of π(hα) are integers and are either all
even or all odd. Furthermore, each eigenvalue occurs with multiplicity one.

Suppose for the sake of contradiction that Vα,β is not irreducible under s(α).
Then by Theorem 2.3.6, Vα,β contains nonzero irreducible invariant subspaces U
and W with W ∩U = {0}. By Proposition 2.3.3 the eigenvalues of hα on W are n,
n− 2, . . . , −n + 2, −n and the eigenvalues of hα on U are m, m− 2 , . . . , −m + 2,
−m, where m and n are nonnegative integers. The eigenvalues of hα on W and on
U are subsets of the set of eigenvalues of π(hα), so it follows that m and n are
both even or both odd. But this implies that the eigenvalue min(m,n) of π(hα) has
multiplicity greater than one, which is a contradiction. ut

Corollary 2.4.4. If α,β ∈Φ and α +β ∈Φ , then [gα ,gβ ] = gα+β .
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Proof. Since α + β ∈ Φ , we have α 6= ±β . Thus Vα,β is irreducible under sα and
contains gα+β . Hence by (2.16) the operator E = π(eα) maps gβ onto gα+β . ut
Corollary 2.4.5. Let α,β ∈Φ with β 6=±α . Let p be the largest integer j≥ 0 such
that β + jα ∈Φ and let q be the largest integer k ≥ 0 such that β − kα ∈Φ . Then

〈β ,hα〉= q− p ∈ Z ,

and β +rα ∈Φ for all integers r with−q≤ r≤ p. In particular, β −〈β ,hα〉α ∈Φ .

Proof. The largest eigenvalue of π(hα) is the positive integer n = 〈β ,hα〉+ 2p.
Since π is irreducible, Proposition 2.3.3 implies that the eigenspaces of π(hα) are
gβ+rα for r = p, p− 1, . . . ,−q + 1,−q. Hence the α-string through β is β + rα

with r = p, p− 1, . . . ,−q + 1,−q. Furthermore, the smallest eigenvalue of π(h) is
−n = 〈β ,hα〉−2q. This gives the relation

−〈β ,hα〉−2p = 〈β ,hα〉−2q .

Hence 〈β ,hα〉 = q− p. Since p ≥ 0 and q ≥ 0, we see that −q ≤ −〈β ,hα〉 ≤ p.
Thus β −〈β ,hα〉α ∈Φ . ut
Remark 2.4.6. From the case-by-case calculations for types A–D made above we
see that

〈β ,hα〉 ∈ {0,±1,±2} for all α,β ∈Φ . (2.29)

2.4.3 Structure of Classical Root Systems

In the previous section we saw that the commutation relations in the Lie algebra of a
classical group are controlled by the root system. We now study the root systems in
more detail. Let Φ be the root system for a classical Lie algebra g of type Al ,Bl ,Cl ,
or Dl (with l ≥ 3 for Dl). Then Φ spans h∗ (this is clear from the descriptions in
Section 2.4.1). Thus we can choose (in many ways) a set of roots that is a basis for
h∗. An optimal choice of basis is the following:

Definition 2.4.7. A subset ∆ = {α1, . . . ,αl} ⊂ Φ is a set of simple roots if every
γ ∈Φ can be written uniquely as

γ = n1α1 + · · ·+nlαl , with n1, . . . ,nl integers all of the same sign. (2.30)

Notice that the requirement of uniqueness in expression (2.30), together with the
fact that Φ spans h∗, implies that ∆ is a basis for h∗. Furthermore, if ∆ is a set of
simple roots, then it partitions Φ into two disjoint subsets

Φ = Φ
+∪ (−Φ

+) ,

where Φ+ consists of all the roots for which the coefficients ni in (2.30) are non-
negative. We call γ ∈Φ+ a positive root, relative to ∆ .
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We shall show, with a case-by-case analysis, that Φ has a set of simple roots. We
first prove that if ∆ = {α1, . . . ,αl} is a set of simple roots and i 6= j, then

〈αi,hα j〉 ∈ {0,−1,−2} .

Indeed, we have already observed that 〈α,hβ 〉 ∈ {0,±1,±2} for all roots α,β . Let
Hi = hαi be the coroot to αi and define

Ci j = 〈α j,Hi〉 . (2.31)

Set γ = α j−Ci jαi. By Corollary 2.4.5 we have γ ∈ Φ . If Ci j > 0 this expansion of
γ would contradict (2.30). Hence Ci j ≤ 0 for all i 6= j.

Remark 2.4.8. The integers Ci j in (2.31) are called the Cartan integers, and the l× l
matrix C = [Ci j] is called the Cartan matrix for the set ∆ . Note that the diagonal
entries of C are 〈αi,Hi〉= 2.

If ∆ is a set of simple roots and β = n1α1 + · · ·+ nlαl is a root, then we define
the height of β (relative to ∆ ) as

ht(β ) = n1 + · · ·+nl .

The positive roots are then the roots β with ht(β ) > 0. A root β is called the highest
root of Φ , relative to a set ∆ of simple roots, if

ht(β ) > ht(γ) for all roots γ 6= β .

If such a root exists, it is clearly unique.
We now give a set of simple roots and the associated Cartan matrix and posi-

tive roots for each classical root system, and we show that there is a highest root,
denoted by α̃ (in type Dl we assume l ≥ 3). We write the coroots Hi in terms of
the elementary diagonal matrices Ei = ei,i, as in Section 2.4.1. The Cartan matrix is
very sparse, and it can be efficiently encoded in terms of a Dynkin diagram. This
is a graph with a node for each root αi ∈ ∆ . The nodes corresponding to αi and α j
are joined by Ci jC ji lines for i 6= j. Furthermore, if the two roots are of different
lengths (relative to the inner product for which {εi} is an orthonormal basis), then
an inequality sign is placed on the lines to indicate which root is longer. We give
the Dynkin diagrams and indicate the root corresponding to each node in each case.
Above the node for αi we put the coefficient of αi in the highest root.

Type A (G = SL(l +1,C)): Let αi = εi− εi+1 and ∆ = {α1, . . . ,αl}. Since

εi− ε j = αi + · · ·+α j−1 for 1≤ i < j ≤ l +1 ,

we see that ∆ is a set of simple roots. The associated set of positive roots is

Φ
+ = {εi− ε j : 1≤ i < j ≤ l +1} (2.32)
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and the highest root is α̃ = ε1− εl+1 = α1 + · · ·+ αl with ht( α̃ ) = l. Here Hi =
Ei−Ei+1. Thus the Cartan matrix has Ci j =−1 if |i− j|= 1 and Ci j = 0 if |i− j|> 1.
The Dynkin diagram is shown in Figure 2.1.

Fig. 2.1 Dynkin diagram of
type Al .

1

.............................................

ε1−ε2

.................................................................................................................................

1

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

1

.............................................

εl−εl+1

Type B (G = SO(2l +1,C)): Let αi = εi− εi+1 for 1≤ i≤ l−1 and αl = εl . Take
∆ = {α1, . . . ,αl}. For 1≤ i < j≤ l, we can write εi−ε j = αi + · · ·+α j−1 as in type
A, whereas

εi + ε j = (εi− εl)+(ε j− εl)+2εl

= αi + · · ·+αl−1 +α j + · · ·+αl−1 +2αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl .

For 1 ≤ i ≤ l we have εi = (εi− εl)+ εl = αi + · · ·+ αl . These formulas show that
∆ is a set of simple roots. The associated set of positive roots is

Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l}∪{εi : 1≤ i≤ l} . (2.33)

The highest root is α̃ = ε1 + ε2 = α1 + 2α2 + · · ·+ 2αl with ht( α̃ ) = 2l− 1. The
simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1 ,

and Hl = 2El − 2E−l , where we are using the same enumeration of the basis for
C2l+1 as in Section 2.4.1. Thus the Cartan matrix has Ci j = −1 if |i− j| = 1 and
i, j ≤ l−1, whereas Cl−1,l =−2 and Cl,l−1 =−1. All other nondiagonal entries are
zero. The Dynkin diagram is shown in Figure 2.2 for l ≥ 2.

Fig. 2.2 Dynkin diagram of
type Bl .

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.................................................................................................................................................................................................................................................. ......
...........

....
.....................

2

.............................................

εl

Type C (G = Sp(l,C)): Let αi = εi− εi+1 for 1 ≤ i ≤ l− 1 and αl = 2εl . Take
∆ = {α1, . . . ,αl}. For 1 ≤ i < j ≤ l we can write εi − ε j = αi + · · ·+ α j−1 and
εi + εl = αi + · · ·+αl , whereas for 1≤ i < j ≤ l−1 we have

εi + ε j = (εi− εl)+(ε j− εl)+2εl

= αi + · · ·+αl−1 +α j + · · ·+αl−1 +αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl−1 +αl .

For 1≤ i < l we have 2εi = 2(εi−εl)+2εl = 2αi + · · ·+2αl−1 +αl . These formulas
show that ∆ is a set of simple roots. The associated set of positive roots is
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Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l}∪{2εi : 1≤ i≤ l} . (2.34)

The highest root is α̃ = 2ε1 = 2α1 + · · ·+ 2αl−1 + αl with ht( α̃ ) = 2l− 1. The
simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1 ,

and Hl = El−E−l , where we are using the same enumeration of the basis for C2l+1

as in Section 2.4.1. The Cartan matrix has Ci j = −1 if |i− j| = 1 and i, j ≤ l− 1,
whereas now Cl−1,l = −1 and Cl,l−1 = −2. All other nondiagonal entries are zero.
Notice that this is the transpose of the Cartan matrix of type B. If l ≥ 2 the Dynkin
diagram is shown in Figure 2.3. It can be obtained from the Dynkin diagram of
type Bl by reversing the arrow on the double bond and reversing the coefficients
of the highest root. In particular, the diagrams B2 and C2 are identical. (This low-
rank coincidence was already noted in Exercises 1.1.5 #8; it is examined further in
Exercises 2.4.5 #6.)

Fig. 2.3 Dynkin diagram of
type Cl .

2

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−1−εl

.............................................................................................................................................................................................................................................................

..........
.....................

1

.............................................

2εl

Type D (G = SO(2l,C) with l ≥ 3): Let αi = εi − εi+1 for 1 ≤ i ≤ l − 1 and
αl = εl−1 +εl . For 1≤ i < j ≤ l we can write εi−ε j = αi + · · ·+α j−1 as in type A,
whereas for 1≤ i < l−1 we have

εi + εl−1 = αi + · · ·+αl , εi + εl = αi + · · ·+αl−2 +αl .

For 1≤ i < j ≤ l−2 we have

εi + ε j = (εi− εl−1)+(ε j− εl)+(εl−1 + εl)
= αi + · · ·+αl−2 +α j + · · ·+αl−1 +αl

= αi + · · ·+α j−1 +2α j + · · ·+2αl−2 +αl−1 +αl .

These formulas show that ∆ is a set of simple roots. The associated set of positive
roots is

Φ
+ = {εi− ε j, εi + ε j : 1≤ i < j ≤ l} . (2.35)

The highest root is α̃ = ε1 +ε2 = α1 +2α2 + · · ·+2αl−2 +αl−1 +αl with ht( α̃ ) =
2l−3. The simple coroots are

Hi = Ei−Ei+1 +E−i−1−E−i for 1≤ i≤ l−1,

and Hl = El−1 +El−E−l−E−l+1, with the same enumeration of the basis for C2l as
in type C. Thus the Cartan matrix has Ci j =−1 if |i− j|= 1 and i, j≤ l−1, whereas
Cl−2,l = Cl,l−2 = −1. All other nondiagonal entries are zero. The Dynkin diagram
is shown in Figure 2.4. Notice that when l = 2 the diagram is not connected (it is
the diagram for sl(2,C)⊕ sl(2,C); see Remark 2.2.6). When l = 3 the diagram is
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the same as the diagram for type A3. This low-rank coincidence was already noted
in Exercises 1.1.5 #7; it is examined further in Exercises 2.4.5 #5.

1

.............................................

ε1−ε2

.................................................................................................................................

2

.............................................

ε2−ε3

.................................................................................................... . . . ....................................................................................................

2

.............................................

εl−2−εl−1

..................
.................

..................
..................

.................
..................

.................
..................

....

.................................................................................................................................................

1

............................................. εl−1+εl

1

............................................. εl−1−εl

Fig. 2.4 Dynkin diagram of type Dl .

Remark 2.4.9. The Dynkin diagrams of the four types of classical groups are distinct
except in the cases A1 = B1 = C1, B2 = C2, and A3 = D3. In these cases there are
corresponding Lie algebra isomorphisms; see Section 2.2.1 for the rank-one sim-
ple algebras and see Exercises 2.4.5 for the isomorphisms so(C5) ∼= sp(C4) and
sl(C4) ∼= so(C6). We will show in Chapter 3 that all systems of simple roots are
conjugate by the Weyl group; hence the Dynkin diagram is uniquely defined by the
root system and does not depend on the choice of a simple set of roots. Thus the
Dynkin diagram completely determines the Lie algebra up to isomorphism.

For a root system of types A or D, in which all the roots have squared length
two (relative to the trace form inner product on h), the identification of h with h∗

takes roots to coroots. For root systems of type B or C, in which the roots have two
lengths, the roots of type Bl are identified with the coroots of type Cl and vice versa
(e.g., εi is identified with the coroot to 2εi and vice versa). This allows us to transfer
results known for roots to analogous results for coroots. For example, if α ∈ Φ+

then
Hα = m1H1 + · · ·+mlHl , (2.36)

where mi is a nonnegative integer for i = 1, . . . , l.

Lemma 2.4.10. Let Φ be the root system for a classical Lie algebra g of rank l and
type A,B,C, or D (in the case of type D assume that l ≥ 3). Let the system of simple
roots ∆ ⊂ Φ be chosen as above. Let Φ+ be the positive roots and let α̃ be the
highest root relative to ∆ . Then the following properties hold:

1. If α,β ∈Φ+ and α +β ∈Φ , then α +β ∈Φ+.
2. If β ∈ Φ+ and β is not a simple root, then there exist γ,δ ∈ Φ+ such that β =

γ +δ .
3. α̃ = n1α1 + · · ·+nlαl with ni ≥ 1 for i = 1, . . . , l.
4. For any β ∈Φ+ with β 6= α̃ there exists α ∈Φ+ such that α +β ∈Φ+.
5. If α ∈ Φ+ and α 6= α̃ , then there exist 1 ≤ i1, i2, . . . , ir ≤ l such that α =

α̃−αi1 −·· ·−αir and α̃−αi1 −·· ·−αi j ∈Φ for all 1≤ j ≤ r.

Proof. Property (1) is clear from the definition of a system of simple roots. Prop-
erties (2)–(5) follow on a case-by-case basis from the calculations made above. We
leave the details as an exercise. ut
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We can now state the second structure theorem for g.

Theorem 2.4.11. Let g be the Lie algebra of SL(l + 1,C), Sp(C2l ,Ω), or
SO(C2l+1,B) with l ≥ 1, or the Lie algebra of SO(C2l ,B) with l ≥ 3. Take the set
of simple roots ∆ and the positive roots Φ+ as in Lemma 2.4.10. The subspaces

n+ =
⊕

α∈Φ+

gα , n− =
⊕

α∈Φ+

g−α

are Lie subalgebras of g that are invariant under ad(h). The subspace n+ + n−

generates g as a Lie algebra. In particular, g = [g,g]. There is a vector space direct
sum decomposition

g = n−+h+n+ . (2.37)

Furthermore, the iterated Lie brackets of the root spaces gα1 , . . . ,gαl span n+, and
the iterated Lie brackets of the root spaces g−α1 , . . . ,g−αl span n−.

Proof. The fact that n+ and n− are subalgebras follows from property (1) in Lemma
2.4.10. Equation (2.37) is clear from Theorem 2.4.1 and the decomposition

Φ = Φ
+∪ (−Φ

+) .

For α ∈ Φ let hα ∈ h be the coroot. From the calculations above it is clear that
h = Span{hα : α ∈ Φ}. Since hα ∈ [gα ,g−α ] by Lemma 2.4.2, we conclude from
(2.37) that n+ +n− generates g as a Lie algebra.

To verify that n+ is generated by the simple root spaces, we use induction on
the height of β ∈ Φ+ (the simple roots being the roots of height 1). If β is not
simple, then β = γ +δ for some γ,δ ∈ Φ+ (Lemma 2.4.10 (2)). But we know that
[gγ , gδ ] = gβ from Corollary 2.4.4. Since the heights of γ and δ are less than the
height of β , the induction continues. The same argument applies to n−. ut

Remark 2.4.12. When g is taken in the matrix form of Section 2.4.1, then n+ consists
of all strictly upper-triangular matrices in g, and n− consists of all strictly lower-
triangular matrices in g. Furthermore, g is invariant under the map θ(X) = −X t

(negative transpose). This map is an automorphism of g with θ 2 = Identity. Since
θ(H) =−H for H ∈ h, it follows that θ(gα) = g−α . Indeed, if [H,X ] = α(H)X then

[H,θ(X)] = θ([−H,X ]) =−α(H)θ(X) .

In particular, θ(n+) = n−.

2.4.4 Irreducibility of the Adjoint Representation

Now that we have the root space decompositions of the Lie algebras of the classical
groups, we can prove the following fundamental result:
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Theorem 2.4.13. Let G be one of the groups SL(Cl+1), Sp(C2l), SO(C2l+1) with
l ≥ 1, or SO(C2l) with l ≥ 3. Then the adjoint representation of G is irreducible.

Proof. By Theorems 2.2.2 and 2.2.7 it will suffice to show that ad(g) acts irre-
ducibly on g = Lie(G). Let Φ , Φ+, ∆ , and α̃ be as in Lemma 2.4.10.

Suppose U is a nonzero ad(g)-invariant subspace of g. We shall prove that U = g.
Since [h,U ]⊂U and each root space gα has dimension one, we have a decomposi-
tion

U =
(
U ∩h

)
⊕
(⊕

α∈S gα

)
,

where S = {α ∈Φ : gα ⊂U}. We claim that

(1) S is nonempty.

Indeed, if U ⊂ h, then we would have [U,gα ] ⊂U ∩ gα = 0 for all α ∈ Φ . Hence
α(U) = 0 for all roots α , which would imply U = 0, since the roots span h∗, a
contradiction. This proves (1). Next we prove

(2) U ∩h 6= 0 .

To see this, take α ∈ S. Then by Lemma 2.4.2 we have hα =−[ fα ,eα ]∈U ∩h. Now
let α ∈Φ . Then we have the following:

(3) If α(U ∩h) 6= 0 then gα ⊂U .

Indeed, [U ∩h,gα ] = gα in this case.
From (3) we see that if α ∈ S then −α ∈ S. Set S+ = S∩Φ+. If α ∈ S+ and

α 6= α̃ , then by Lemma 2.4.10 (3) there exists γ ∈ Φ+ such that α + γ ∈ Φ . Since
[gα ,gγ ] = gα+γ by Corollary 2.4.4, we see that gα+γ ⊂U . Hence α + γ ∈ S+ and
has a height greater than that of α . Thus if β ∈ S+ has maximum height among the
elements of S+, then β = α̃ . This proves that α̃ ∈ S+. We can now prove

(4) S = Φ .

By (3) it suffices to show that S+ = Φ+. Given α ∈Φ+ choose i1, . . . , ir as in Lemma
2.4.10 (5) and set

β j = α̃−αi1 −·· ·−αi j for j = 1, . . . ,r .

Write Fi = fαi for the element in Lemma 2.4.2. Then by induction on j and Corollary
2.4.4 we have

gβ j = ad(Fi j) · · ·ad(Fi1)gα̃ ⊂U for j = 1, . . . ,r .

Taking j = r, we conclude that gα ⊂U , which proves (4). Hence U ∩h = h, since
h⊂ [n+,n−]. This shows that U = g. ut

Remark 2.4.14. For any Lie algebra g, the subspaces of g that are invariant under
ad(g) are the ideals of g. A Lie algebra is called simple if it is not abelian and
it has no proper ideals. (By this definition the one-dimensional Lie algebra is not
simple, even though it has no proper ideals.) The classical Lie algebras occurring
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in Theorem 2.4.13 are thus simple. Note that their Dynkin diagrams are connected
graphs.

Remark 2.4.15. A Lie algebra is called semisimple if it is a direct sum of simple
Lie algebras. The low-dimensional orthogonal Lie algebras excluded from Theorem
2.4.11 and Theorem 2.4.13 are so(4,C) ∼= sl(2,C)⊕ sl(2,C), which is semisimple
(with a disconnected Dynkin diagram), and so(2,C) ∼= gl(1,C), which is abelian
(and has no roots).

2.4.5 Exercises

1. For each type of classical group write out the coroots in terms of the εi (after the
identification of h with h∗ as in Section 2.4.1). Show that for types A and D the
roots and coroots are the same. Show that for type B the coroots are the same as
the roots for C and vice versa.

2. Let G be a classical group. Let Φ be the root system for G, α1, . . . ,αl the simple
roots, and Φ+ the positive roots as in Lemma 2.4.10. Verify that the calculations
in Section 2.4.3 can be expressed as follows:
(a) For G of type Al , Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l .

(b) For G of type Bl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l ,

αi + · · ·+α j−1 +2α j + · · ·+2αl for 1≤ i < j ≤ l .

(c) For G of type Cl with l ≥ 2, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j ≤ l ,

αi + · · ·+α j−1 +2α j + · · ·+2αl−1 +αl for 1≤ i < j < l ,

2αi + · · ·+2αl−1 +αl for 1≤ i < l .

(d) For G of type Dl with l ≥ 3, Φ+ \∆ consists of the roots

αi + · · ·+α j for 1≤ i < j < l ,

αi + · · ·+αl for 1≤ i < l−1 ,

αi + · · ·+αl−2 +αl for 1≤ i < l−1 ,

αi + · · ·+α j−1 +2α j + · · ·+2αl−2 +αl−1 +αl for 1≤ i < j < l−1 .

Now use (a)–(d) to prove assertions (2)–(5) in Lemma 2.4.10.
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3. (Assumptions and notation as in Lemma 2.4.10.) Let S ⊂ ∆ be any subset that
corresponds to a connected subgraph of the Dynkin diagram of ∆ . Use the previ-
ous exercise to verify that ∑α∈S α is a root.

4. (Assumptions and notation as in Lemma 2.4.2 and Lemma 2.4.10.) Let 1≤ i, j≤
l with i 6= j and let Ci j be the Cartan integers.
(a) Show that the α j root string through αi is αi, . . . ,αi−C jiα j. (HINT: Use the
fact that αi−α j is not a root and the proof of Corollary 2.4.5.)
(b) Show that [eα j ,e−αi ] = 0 and

ad(eα j)
k(eαi) 6= 0 for k = 0, . . . ,−C ji ,

ad(eα j)
k(eαi) = 0 for k =−C ji +1 .

(HINT: Use (a) and Corollary 2.4.4.)
5. Consider the representation ρ of SL(4,C) on

∧2 C4, where ρ(g)(v1 ∧ v2) =
gv1 ∧ gv2 for g ∈ SL(4,C) and v1,v2 ∈ C4. Let Ω = e1 ∧ e2 ∧ e3 ∧ e4 and let B
be the nondegenerate symmetric bilinear form such that a∧ b = B(a,b)Ω for
a,b ∈∧2 C4, as in Exercises 1.1.5 #6 and #7.
(a) Let g ∈ SL(4,C), X ∈ sl(4,C), and a,b ∈∧2 C4. Show that

B(ρ(g)a,ρ(g)b) = B(a,b) and B(dρ(X)a,b)+B(a, dρ(X)b) = 0 .

(b) Use dρ to obtain a Lie algebra isomorphism sl(4,C)∼= so(
∧2 C4,B). (HINT:

sl(4,C) is a simple Lie algebra.)
(c) Show that ρ : SL(4,C) // SO(

∧2 C4,B) is surjective, and Ker(ρ) = {±I}.
(HINT: For the surjectivity, use (b) and Theorem 2.2.2. To determine Ker(ρ), use
(b) to show that Ad(g) = I for all g ∈ Ker(ρ), and then use Theorem 2.1.5.)

6. Let B be the symmetric bilinear form on
∧2 C4 and ρ the representation of

SL(4,C) on
∧2 C as in the previous exercise. Let ω = e1 ∧ e4 + e2 ∧ e3. Iden-

tify C4 with (C4)∗ by the inner product (x,y) = xty, so that ω can also be viewed
as a skew-symmetric bilinear form on C4. Define

L = {a ∈∧2 C4 : B(a, ω) = 0} .

Then ρ(g)L⊂ L for all g ∈ Sp(C4,ω) and
∧2 C4 = Cω⊕L. Furthermore, if β

is the restriction of the bilinear form B to L×L, then β is nondegenerate (see
Exercises 1.1.5 #8).
(a) Let ϕ(g) be the restriction of ρ(g) to the subspace L, for g ∈ Sp(C4,ω).
Use dϕ to obtain a Lie algebra isomorphism sp(C4,ω) ∼= so(C5,β ). (HINT:
sp(C4,ω) is a simple Lie algebra.)
(b) Show that ϕ : Sp(C4,ω) / / SO(L,β ) is surjective and Ker(ϕ) = {±I}.
(HINT: For the surjectivity, use Theorem 2.2.2. To determine Ker(ϕ), use (a) to
show that Ad(g) = I for all g ∈ Ker(ϕ), and then use Theorem 2.1.5.)
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2.5 Semisimple Lie Algebras

We will show that the structural features of the Lie algebras of the classical groups
studied in Section 2.4 carry over to the class of semisimple Lie algebras. This re-
quires some preliminary general results on Lie algebras. These results will be used
again in Chapters 11 and 12, but the remainder of the current chapter may be omit-
ted by the reader interested only in the classical groups (in fact, it turns out that there
are only five exceptional simple Lie algebras, traditionally labeled E6, E7, E8, F4,
and G2, that are not Lie algebras of classical groups).

2.5.1 Solvable Lie Algebras

We begin with a Lie-algebraic condition for nilpotence of a linear transformation.

Lemma 2.5.1. Let V be a finite-dimensional complex vector space and let A ∈
End(V ). Suppose there exist Xi,Yi ∈ End(V ) such that A = ∑

k
i=1[Xi,Yi] and

[A,Xi] = 0 for all i. Then A is nilpotent.

Proof. Let Σ be the spectrum of A, and let {Pλ}λ∈Σ be the resolution of the identity
for A (see Lemma B.1.1). Then Pλ Xi = XiPλ = Pλ XiPλ for all i, so

Pλ [Xi,Yi]Pλ = Pλ XiPλYiPλ −PλYiPλ XiPλ = [Pλ XiPλ ,PλYiPλ ] .

Hence tr(Pλ [Xi,Yi]Pλ ) = 0 for all i, so we obtain tr(Pλ A) = 0 for all λ ∈ Σ . However,
tr(Pλ A) = λ dimVλ , where

Vλ = {v ∈V : (A−λ )kv = 0 for some k} .

It follows that Vλ = 0 for all λ 6= 0, so that A is nilpotent. ut

Definition 2.5.2. A finite-dimensional representation (π,V ) of a Lie algebra g is
completely reducible if every g-invariant subspace W ⊂V has a g-invariant comple-
mentary subspace U . Thus W ∩U = {0} and V = W ⊕U .

Theorem 2.5.3. Let V be a finite-dimensional complex vector space. Suppose g is a
Lie subalgebra of End(V ) such that V is completely reducible as a representation of
g. Let z = {X ∈ g : [X ,Y ] = 0 for all Y ∈ g} be the center of g. Then

1. every A ∈ z is a semisimple linear transformation;
2. [g,g]∩ z = 0 ;
3. g/z has no nonzero abelian ideal.

Proof. Complete reducibility implies that V =
⊕

i Vi , where each Vi is invariant and
irreducible under the action of g. If Z ∈ z then the restriction of Z to Vi commutes
with the action of g, hence is a scalar by Schur’s lemma (Lemma 4.1.4). This proves
(1). Then (2) follows from (1) and Lemma 2.5.1.
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To prove (3), let a⊂ g/z be an abelian ideal. Then a = h/z, where h is an ideal in
g such that [h,h]⊂ z. But by (2) this implies that [h,h] = 0, so h is an abelian ideal
in g. Let B be the associative subalgebra of End(V ) generated by [h,g]. By Lemma
2.5.1 we know that the elements of [h,g] are nilpotent endomorphisms of V . Since
[h,g]⊂ h is abelian, it follows that the elements of B are nilpotent endomorphisms.
If we can prove that B = 0, then h⊂ z and hence a = 0, establishing (3).

We now turn to the proof that B = 0. Let A be the associative subalgebra of
End(V ) generated by g. We claim that

AB⊂BA+B . (2.38)

Indeed, for X ,Y ∈ g and Z ∈ h we have [X , [Y,Z]] ∈ [g,h] by the Jacobi identity,
since h is an ideal. Hence

X [Y,Z] = [Y,Z]X +[X , [Y,Z]] ∈BA+B . (2.39)

Let b ∈B and suppose that Xb ∈BA+B. Then by (2.39) we have

X [Y,Z]b = [Y,Z]Xb+[X , [Y,Z]]b ∈ [Y,Z]BA+B⊂BA+B .

Now (2.38) follows from this last relation by induction on the degree (in terms of
the generators from g and [h,g]) of the elements in A and B.

We next show that
(AB)k ⊂BkA+Bk (2.40)

for every positive integer k. This is true for k = 1 by (2.38). Assuming that it holds
for k, we use (2.38) to get the inclusions

(AB)k+1 = (AB)k(AB) ⊂ (BkA+Bk)(AB)⊂BkAB

⊂ Bk(BA+B)⊂Bk+1A+Bk+1 .

Hence (2.40) holds for all k.
We now complete the proof as follows. Since Bk = 0 for k sufficiently large,

the same is true for (AB)k by (2.40). Suppose (AB)k+1 = 0 for some k ≥ 1. Set
C = (AB)k. Then C2 = 0. Set W = CV . Since AC ⊂ C, the subspace W is A-
invariant. Hence by complete reducibility of V relative to the action of g, there is an
A-invariant complementary subspace U such that V = W ⊕U . Now CW = C2V = 0
and CU ⊂ CV = W . But CU ⊂U also, so CU ⊂U ∩W = {0}. Hence CV = 0. Thus
C = 0. It follows (by downward induction on k) that AB = 0. Since I ∈A, we con-
clude that B = 0. ut

For a Lie algebra g we define the derived algebra D(g) = [g,g] and we set
Dk+1(g) = D(Dk(g)) for k = 1,2, . . . . One shows by induction on k that Dk(g) is
invariant under all derivations of g . In particular, Dk(g) is an ideal in g for each k,
and Dk(g)/cDk+1(g) is abelian.

Definition 2.5.4. g is solvable if there exists an integer k ≥ 1 such that Dkg = 0.
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It is clear from the definition that a Lie subalgebra of a solvable Lie algebra is
also solvable. Also, if π : g / / h is a surjective Lie algebra homomorphism, then

π(Dk(g)) = Dk(h) .

Hence the solvability of g implies the solvability of h. Furthermore, if g is a nonzero
solvable Lie algebra and we choose k such that Dk(g) 6= 0 and Dk+1(g) = 0, then
Dk(g) is an abelian ideal in g that is invariant under all derivations of g.

Remark 2.5.5. The archetypical example of a solvable Lie algebra is the n×n upper-
triangular matrices bn. Indeed, we have D(bn) = n+

n , the Lie algebra of n×n upper-
triangular matrices with zeros on the main diagonal. If n+

n,r is the Lie subalgebra of
n+

n consisting of matrices X = [xi j] such that xi j = 0 for j− i≤ r−1, then n+
n = n+

n,1

and [n+
n ,n+

n,r]⊂ n+
n,r+1 for r = 1,2, . . . . Hence Dk(bn)⊂ n+

n,k, and so Dk(bn) = 0 for
k > n.

Corollary 2.5.6. Suppose g⊂ End(V ) is a solvable Lie algebra and that V is com-
pletely reducible as a g-module. Then g is abelian. In particular, if V is an irre-
ducible g-module, then dimV = 1.

Proof. Let z be the center of g. If z 6= g, then g/z would be a nonzero solvable
Lie algebra and hence would contain a nonzero abelian ideal. But this would con-
tradict part (3) of Theorem 2.5.3, so we must have z = g. Given that g is abelian
and V is completely reducible, we can find a basis for V consisting of simultaneous
eigenvectors for all the transformations X ∈ g; thus V is the direct sum of invariant
one-dimensional subspaces. This implies the last statement of the corollary. ut

We can now obtain Cartan’s trace-form criterion for solvability of a Lie algebra.

Theorem 2.5.7. Let V be a finite-dimensional complex vector space. Let g⊂End(V )
be a Lie subalgebra such that tr(XY ) = 0 for all X ,Y ∈ g. Then g is solvable.

Proof. We use induction on dimg. A one-dimensional Lie algebra is solvable. Also,
if [g,g] is solvable, then so is g, since Dk+1(g) = Dk([g,g]). Thus by induction we
need to consider only the case g = [g,g].

Take any maximal proper Lie subalgebra h⊂ g. Then h is solvable, by induction.
Hence the natural representation of h on g/h has a one-dimensional invariant sub-
space, by Corollary 2.5.6. This means that there exist 0 6= Y ∈ g and µ ∈ h∗ such
that

[X ,Y ]≡ µ(X)Y (mod h)

for all X ∈ h. But this commutation relation implies that CY +h is a Lie subalgebra
of g. Since h was chosen as a maximal subalgebra, we must have CY + h = g.
Furthermore, µ 6= 0 because we are assuming g = [g,g].

Given the structure of g as above, we next determine the structure of an arbitrary
irreducible g-module (π,W ). By Corollary 2.5.6 again, there exist w0 ∈W and σ ∈
h∗ such that

π(X)w0 = σ(X)w0 for all X ∈ h .
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Set wk = π(Y )kw0 and Wk = Cwk + · · ·+Cw0. We claim that for X ∈ h,

π(X)wk ≡ (σ(X)+ kµ(X))wk (mod Wk−1) (2.41)

(where W−1 = {0}). Indeed, this is true for k = 0 by definition. If it holds for k then
π(h)Wk ⊂Wk and

π(X)wk+1 = π(X)π(Y )wk = π(Y )π(X)wk +π([X ,Y ])wk

≡ (σ(X)+(k +1)µ(X))wk+1 (mod Wk) .

Thus (2.41) holds for all k. Let m be the smallest integer such that Wm =Wm+1. Then
Wm is invariant under g, and hence Wm = W by irreducibility. Thus dimW = m + 1
and

tr(π(X)) =
m

∑
k=0

σ(X)+ kµ(X) = (m+1)
(

σ(X)+
m
2

µ(X)
)

for all X ∈ h. However, g = [g,g], so tr(π(X)) = 0. Thus

σ(X) =−m
2

µ(X) for all X ∈ h .

From (2.41) again we get

tr(π(X)2) =
m

∑
k=0

(
k− m

2

)2
µ(X)2 for all X ∈ h . (2.42)

We finally apply these results to the given representation of g on V . Take a com-
position series {0} = V0 ⊂ V1 ⊂ ·· · ⊂ Vr = V , where each subspace Vj is invariant
under g and Wi = Vi/Vi−1 is an irreducible g-module. Write dimWi = mi + 1. Then
(2.42) implies that

trV (X2) = µ(X)2
r

∑
i=1

mi

∑
k=0

(
k− 1

2
mi

)2

for all X ∈ h. But by assumption, trV (X2) = 0 and there exists X ∈ h with µ(X) 6= 0.
This forces mi = 0 for i = 1, . . . ,r. Hence dimWi = 1 for each i. Since g = [g,g], this
implies that gVi ⊂Vi−1. If we take a basis for V consisting of a nonzero vector from
each Wi, then the matrices for g relative to this basis are strictly upper triangular.
Hence g is solvable, by Remark 2.5.5. ut

Recall that a finite-dimensional Lie algebra is simple if it is not abelian and has
no proper ideals.

Corollary 2.5.8. Let g be a Lie subalgebra of End(V ) that has no nonzero abelian
ideals. Then the bilinear form tr(XY ) on g is nondegenerate, and g = g1⊕·· ·⊕gr
(Lie algebra direct sum), where each gi is a simple Lie algebra.

Proof. Let r = {X ∈ g : tr(XY ) = 0 for all Y ∈ g} be the radical of the trace form.
Then r is an ideal in g, and by Cartan’s criterion r is a solvable Lie algebra. Suppose
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r 6= 0. Then r contains a nonzero abelian ideal a that is invariant under all derivations
of r. Hence a is an abelian ideal in g, which is a contradiction. Thus the trace form
is nondegenerate.

To prove the second assertion, let g1⊂ g be an irreducible subspace for the adjoint
representation of g and define

g⊥1 = {X ∈ g : tr(XY ) = 0 for all Y ∈ g1} .

Then g⊥1 is an ideal in g, and g1 ∩ g⊥1 is solvable by Cartan’s criterion. Hence
g1 ∩ g⊥1 = 0 by the same argument as before. Thus [g1,g

⊥
1 ] = 0, so we have the

decomposition
g = g1⊕g⊥1 (direct sum of Lie algebras) .

In particular, g1 is irreducible as an adg1-module. It cannot be abelian, so it is a
simple Lie algebra. Now use induction on dimg. ut

Corollary 2.5.9. Let V be a finite-dimensional complex vector space. Suppose g is
a Lie subalgebra of End(V ) such that V is completely reducible as a representation
of g. Let z = {X ∈ g : [X ,Y ] = 0 for all Y ∈ g} be the center of g. Then the derived
Lie algebra [g,g] is semisimple, and g = [g,g]⊕ z.

Proof. Theorem 2.5.3 implies that g/z has no nonzero abelian ideals; hence g/z
is semisimple (Corollary 2.5.8). Since g/z is a direct sum of simple algebras, it
satisfies [g/z,g/z] = g/z. Let p : g // g/z be the natural surjection. If u,v ∈ g then
p([u,v]) = [p(u), p(v)]. Since p is surjective, it follows that g/z is spanned by the
elements p([u,v]) for u,v ∈ g. Thus p([g,g]) = g/z. Now Theorem 2.5.3 (2) implies
that the restriction of p to [g,g] gives a Lie algebra isomorphism with g/z and that
dim([g,g])+dimz = dimg. Hence g = [g,g]⊕ z. ut

Let g be a finite-dimensional complex Lie algebra.

Definition 2.5.10. The Killing form of g is the bilinear form B(X ,Y ) = tr(adX adY )
for X ,Y ∈ g.

Recall that g is semisimple if it is the direct sum of simple Lie algebras. We now
obtain Cartan’s criterion for semisimplicity.

Theorem 2.5.11. The Lie algebra g is semisimple if and only if its Killing form is
nondegenerate.

Proof. Assume that g is semisimple. Since the adjoint representation of a simple Lie
algebra is faithful, the same is true for a semisimple Lie algebra. Hence a semisimple
Lie algebra g is isomorphic to a Lie subalgebra of End(g). Let

g = g1⊕·· ·⊕gr

(Lie algebra direct sum), where each gi is a simple Lie algebra. If m is an abelian
ideal in g, then m∩ gi is an abelian ideal in gi, for each i, and hence is zero. Thus
m = 0. Hence B is nondegenerate by Corollary 2.5.8.
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Conversely, suppose the Killing form is nondegenerate. Then the adjoint repre-
sentation is faithful. To show that g is semisimple, it suffices by Corollary 2.5.8 to
show that g has no nonzero abelian ideals.

Suppose a is an ideal in g, X ∈ a, and Y ∈ g. Then adX adY maps g into a and
leaves a invariant. Hence

B(X ,Y ) = tr(adX |a adY |a) . (2.43)

If a is an abelian ideal, then adX |a = 0. Since B is nondegenerate, (2.43) implies
that X = 0. Thus a = 0. ut

Corollary 2.5.12. Suppose g is a semisimple Lie algebra and D ∈ Der(g). Then
there exists X ∈ g such that D = adX.

Proof. The derivation property D([Y,Z]) = [D(Y ),Z] + [Y,D(Z)] can be expressed
as the commutation relation

[D,adY ] = adD(Y ) for all Y ∈ g . (2.44)

Consider the linear functional Y 7→ tr(DadY ) on g. Since the Killing form is non-
degenerate, there exists X ∈ g such that tr(DadY ) = B(X ,Y ) for all Y ∈ g. Take
Y,Z ∈ g and use the invariance of B to obtain

B(adX(Y ),Z) = B(X , [Y,Z]) = tr(Dad [Y,Z]) = tr(D[adY,adZ])
= tr(DadY adZ)− tr(DadZ adY ) = tr([D,adY ]adZ) .

Hence (2.44) and the nondegeneracy of B give adX = D. ut

For the next result we need the following formula, valid for any elements Y,Z in
a Lie algebra g, any D ∈ Der(g), and any scalars λ ,µ:

(
D− (λ + µ)

)k[Y,Z] = ∑
r

(
k
r

)
[(D−λ )rY, (D−µ)k−rZ] . (2.45)

(The proof is by induction on k using the derivation property and the inclusion–
exclusion identity for binomial coefficients.)

Corollary 2.5.13. Let g be a semisimple Lie algebra. If X ∈ g and adX = S + N is
the additive Jordan decomposition in End(g) (with S semisimple, N nilpotent, and
[S,N] = 0), then there exist Xs,Xn ∈ g such that adXs = S and adXn = N.

Proof. Let λ ∈ C and set

gλ (X) =
⋃
k≥1

Ker(adX−λ )k

(the generalized λ eigenspace of adX). The Jordan decomposition of adX then gives
a direct-sum decomposition
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g =
⊕

λ

gλ (X) ,

and S acts by λ on gλ (X). Taking D = adX , Y ∈ gλ (X), Z ∈ gµ(X), and k sufficiently
large in (2.45), we see that

[gλ (X), gµ(X)]⊂ gλ+µ(X) . (2.46)

Hence S is a derivation of g. By Corollary 2.5.12 there exists Xs ∈ g such that adXs =
S. Set Xn = X−Xs. ut

2.5.2 Root Space Decomposition

In this section we shall show that every semisimple Lie algebra has a root space
decomposition with the properties that we established in Section 2.4 for the Lie
algebras of the classical groups. We begin with the following Lie algebra general-
ization of a familiar property of nilpotent linear transformations:

Theorem 2.5.14 (Engel). Let V be a nonzero finite-dimensional vector space and
let g ⊂ End(V ) be a Lie algebra. Assume that every X ∈ g is a nilpotent linear
transformation. Then there exists a nonzero vector v0 ∈V such that Xv0 = 0 for all
X ∈ g.

Proof. For X ∈ End(V ) write LX and RX for the linear transformations of End(V )
given by left and right multiplication by X , respectively. Then adX = LX −RX and
LX commutes with RX . Hence

(adX)k = ∑
j

(
k
j

)
(−1)k− j(LX

) j(RX
)k− j

by the binomial expansion. If X is nilpotent on V then Xn = 0, where n = dimV .
Thus

(
LX
) j(RX

)2n− j = 0 if 0≤ j ≤ 2n. Hence (adX)2n = 0, so adX is nilpotent on
End(V ).

We prove the theorem by induction on dimg (when dimg = 1 the theorem is
clearly true). Take a proper subalgebra h⊂ g of maximal dimension. Then h acts on
g/h by the adjoint representation. This action is by nilpotent linear transformations,
so the induction hypothesis implies that there exists Y /∈ h such that

[X ,Y ]≡ 0 mod h for all X ∈ h .

Thus CY +h is a Lie subalgebra of g, since [Y,h] ⊂ h. But h was chosen maximal,
so we must have g = CY +h. Set

W = {v ∈V : Xv = 0 for all X ∈ h} .

By the induction hypothesis we know that W 6= 0. If v ∈W then
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XY v = Y Xv+[X ,Y ]v = 0

for all X ∈ h, since [X ,Y ]∈ h. Thus W is invariant under Y , so there exists a nonzero
vector v0 ∈W such that Y v0 = 0. It follows that gv0 = 0. ut

Corollary 2.5.15. There exists a basis for V in which the elements of g are repre-
sented by strictly upper-triangular matrices.

Proof. This follows by repeated application of Theorem 2.5.14, replacing V by
V/Cv0 at each step. ut

Corollary 2.5.16. Suppose g is a semisimple Lie algebra. Then there exists a
nonzero element X ∈ g such that adX is semisimple.

Proof. We argue by contradiction. If g contained no nonzero elements X with adX
semisimple, then Corollary 2.5.13 would imply that adX is nilpotent for all X ∈ g.
Hence Corollary 2.5.15 would furnish a basis for g such that adX is strictly upper
triangular. But then adX adY would also be strictly upper triangular for all X ,Y ∈ g,
and hence the Killing form would be zero, contradicting Theorem 2.5.11. ut

For the rest of this section we let g be a semisimple Lie algebra. We call a subal-
gebra h⊂ g a toral subalgebra if adX is semisimple for all X ∈ h. Corollary 2.5.16
implies the existence of nonzero toral subalgebras.

Lemma 2.5.17. Let h be a toral subalgebra. Then [h,h] = 0.

Proof. Let X ∈ h. Then h is an invariant subspace for the semisimple transformation
adX . If [X ,h] 6= 0 then there would exist an eigenvalue λ 6= 0 and an eigenvector
Y ∈ h such that [X ,Y ] = λY . But then

(adY )(X) =−λY 6= 0 , (adY )2(X) = 0 ,

which would imply that adY is not a semisimple transformation. Hence we must
have [X ,h] = 0 for all X ∈ h. ut

We shall call a toral subalgebra h⊂ g a Cartan subalgebra if it has maximal di-
mension among all toral subalgebras of g. From Corollary 2.5.16 and Lemma 2.5.17
we see that g contains nonzero Cartan subalgebras and that Cartan subalgebras are
abelian. We fix a choice of a Cartan subalgebra h. For λ ∈ h∗ let

gλ = {Y ∈ g : [X ,Y ] = 〈λ ,X〉Y for all X ∈ h} .

In particular, g0 = {Y ∈ g : [X ,Y ] = 0 for all X ∈ h} is the centralizer of h in g.
Let Φ ⊂ g∗ \ {0} be the set of λ such that gλ 6= 0. We call Φ the set of roots of h
on g. Since the mutually commuting linear transformations adX are semisimple (for
X ∈ h), there is a root space decomposition

g = g0⊕
⊕
λ∈Φ

gλ .
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Let B denote the Killing form of g. By the same arguments used for the classical
groups in Sections 2.4.1 and 2.4.2 (but now using B instead of the trace form on the
defining representation of a classical group), it follows that

1. [gλ ,gµ ]⊂ gλ+µ ;
2. B(gλ ,gµ) = 0 if λ + µ 6= 0 ;
3. the restriction of B to g0×g0 is nondegenerate;
4. if λ ∈Φ then −λ ∈Φ and the restriction of B to gλ ×g−λ is nondegenerate.

New arguments are needed to prove the following key result:

Proposition 2.5.18. A Cartan algebra is its own centralizer in g; thus h = g0.

Proof. Since h is abelian, we have h ⊂ g0. Let X ∈ g0 and let X = Xs + Xn be the
Jordan decomposition of X given by Corollary 2.5.13.

(i) Xs and Xn are in g0 .

Indeed, since [X ,h] = 0 and the adjoint representation of g is faithful, we have
[Xs,h] = 0. Hence Xs ∈ h by the maximality of h, which implies that Xn = X−Xs is
also in h.

(ii) The restriction of B to h×h is nondegenerate.

To prove this, let 0 6= h ∈ h. Then by property (3) there exists X ∈ g0 such that
B(h,X) 6= 0. Since Xn ∈ g0 by (i), we have [h,Xn] = 0 and hence adhadXn is nilpotent
on g. Thus B(h,Xn) = 0 and so B(h,Xs) 6= 0. Since Xs ∈ h, this proves (ii).

(iii) [g0,g0] = 0 .

For the proof of (iii), we observe that if X ∈ g0, then adXs acts by zero on g0, since
Xs ∈ h. Hence adX |g0 = adXn|g0 is nilpotent. Suppose for the sake of contradiction
that [g0,g0] 6= 0 and consider the adjoint action of g0 on the invariant subspace
[g0,g0]. By Theorem 2.5.14 there would exist 0 6= Z ∈ [g0,g0] such that [g0,Z] = 0.
Then [g0,Zn] = 0 and hence adY adZn is nilpotent for all Y ∈ g0. This implies that
B(Y,Zn) = 0 for all Y ∈ g0, so we conclude from (3) that Zn = 0. Thus Z = Zs must
be in h. Now

B(h, [X ,Y ]) = B([h,X ],Y ) = 0 for all h ∈ h and X ,Y ∈ g0 .

Hence h∩ [g0,g0] = 0 by (ii), and so Z = 0, giving a contradiction.
It is now easy to complete the proof of the proposition. If X ,Y ∈ g0 then adXn adY

is nilpotent, since g0 is abelian by (iii). Hence B(Xn,Y ) = 0, and so Xn = 0 by (3).
Thus X = Xs ∈ h. ut
Corollary 2.5.19. Let g be a semisimple Lie algebra and h a Cartan subalgebra.
Then

g = h⊕
⊕
λ∈Φ

gλ . (2.47)

Hence if Y ∈ g and [Y,h] ⊂ h, then Y ∈ h. In particular, h is a maximal abelian
subalgebra of g.
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Since the form B is nondegenerate on h×h, it defines a bilinear form on h∗ that
we denote by (α,β ).

Theorem 2.5.20. The roots and root spaces satisfy the following properties:

1. Φ spans h∗ .
2. If α ∈ Φ then dim [gα ,g−α ] = 1 and there is a unique element hα ∈ [gα ,g−α ]

such that 〈α,hα〉= 2 (call hα the coroot to α).
3. If α ∈Φ and c ∈ C then cα ∈Φ if and only if c =±1. Also dimgα = 1.
4. Let α,β ∈ Φ with β 6= ±α . Let p be the largest integer j ≥ 0 with β + jα ∈ Φ

and let q be the largest integer k ≥ 0 with β − kα ∈Φ . Then

〈β ,hα〉= q− p ∈ Z (2.48)

and β + rα ∈Φ for all integers r with −q≤ r ≤ p. Hence β −〈β ,hα〉α ∈Φ .
5. If α,β ∈Φ and α +β ∈Φ , then [gα ,gβ ] = gα+β .

Proof. (1): If h∈ h and 〈α,h〉= 0 for all α ∈Φ , then [h,gα ] = 0 and hence [h,g] = 0.
The center of g is trivial, since g has no abelian ideals, so h = 0. Thus Φ spans h∗.

(2): Let X ∈ gα and Y ∈ g−α . Then [X ,Y ] ∈ g0 = h and for h ∈ h we have

B(h, [X ,Y ]) = B([h,X ],Y ) = 〈α,h〉B(X ,Y ) .

Thus [X ,Y ] corresponds to B(X ,Y )α under the isomorphism h ∼= h∗ given by the
form B. Since B is nondegenerate on gα ×g−α , it follows that dim [gα ,g−α ] = 1.

Suppose B(X ,Y ) 6= 0 and set H = [X ,Y ]. Then 0 6= H ∈ h. If 〈α,H〉= 0 then H
would commute with X and Y , and hence adH would be nilpotent by Lemma 2.5.1,
which is a contradiction. Hence 〈α,H〉 6= 0 and we can rescale X and Y to obtain
elements eα ∈ gα and fα ∈ g−α such that 〈α,hα〉= 2, where hα = [eα , fα ].

(3): Let s(α) = Span{eα , fα ,hα} ∼= sl(2,C) and set

Mα = Chα + ∑
c6=0

gcα .

Since [eα ,gcα ] ⊂ g(c+1)α , [ fα ,gcα ] ⊂ g(c−1)α , and [eα ,g−α ] = [ fα ,gα ] = Chα , we
see that Mα is invariant under the adjoint action of s(α).

The eigenvalues of adhα on Mα are 2c with multiplicity dimgcα and 0 with mul-
tiplicity one. By the complete reducibility of representations of sl(2,C) (Theorem
2.3.6) and the classification of irreducible representations (Proposition 2.3.3) these
eigenvalues must be integers. Hence cα ∈Φ implies that 2c is an integer. The eigen-
values in any irreducible representation are all even or all odd. Hence cα is not a
root for any integer c with |c| > 1, since s(α) contains the zero eigenspace in Mα .
This also proves that the only irreducible component of Mα with even eigenvalues
is s(α), and it occurs with multiplicity one.

Suppose (p + 1/2)α ∈ Φ for some positive integer p. Then adhα would have
eigenvalues 2p + 1,2p−1, . . . ,3,1 on Mα , and hence (1/2)α would be a root. But



118 2 Structure of Classical Groups

then α could not be a root, by the argument just given, which is a contradiction.
Thus we conclude that Mα = Chα +Ceα +C fα . Hence dimgα = 1.

(4): The notion of α root string through β from Section 2.4.2 carries over verba-
tim, as does Lemma 2.4.3. Hence the argument in Corollary 2.4.5 applies.

(5): This follows from the same argument as Corollary 2.4.4. ut

2.5.3 Geometry of Root Systems

Let g be a semisimple Lie algebra. Fix a Cartan subalgebra h and let Φ be the set
of roots of h on g. For α ∈ Φ there is a TDS triple {eα , fα ,hα} with 〈α,hα〉 = 2.
Define

α̌ = nα α , where nα = B(eα , fα) ∈ Z\{0} . (2.49)

Then hα ←→ α̌ under the isomorphism h∼= h∗ given by the Killing form B (see the
proof of Theorem 2.5.20 (2)), and we shall call α̌ the coroot to α .

By complete reducibility of representations of sl(2,C) we know that g decom-
poses into the direct sum of irreducible representations under the adjoint action of
s(α) = Span{eα , fα ,hα}. From Proposition 2.3.3 and Theorem 2.3.6 we see that eα

and fα act by integer matrices relative to a suitable basis for any finite-dimensional
representation of sl(2,C). Hence the trace of ad(eα)ad( fα) is an integer.

Since SpanΦ = h∗ we can choose a basis {α1, . . . ,αl} for h∗ consisting of roots.
Setting Hi = hαi , we see from (2.49) that {H1, . . . ,Hl} is a basis for h. Let

hQ = SpanQ{H1, . . . ,Hl} , h∗Q = SpanQ{α1, . . . ,αl} ,

where Q denotes the field of rational numbers.

Lemma 2.5.21. Each root α ∈Φ is in h∗Q, and the element hα is in hQ. Let a,b∈ hQ.
Then B(a,b) ∈Q and B(a,a) > 0 if a 6= 0.

Proof. Set ai j = 〈α j,Hi〉 and let A = [ai j] be the corresponding l× l matrix. The
entries of A are integers by Theorem 2.5.20 (4), and the columns of A are linearly
independent. Hence A is invertible. For α ∈Φ we can write α = ∑i ciαi for unique
coefficients ci ∈ C. These coefficients satisfy the system of equations

∑
j

ai j cj = 〈α,Hi〉 for i = 1, . . . , l .

Since the right side of this system consists of integers, it follows that c j ∈ Q and
hence α ∈ h∗Q. From (2.49) we then see that hα ∈ hQ also.

Given a,b ∈ hQ, we can write a = ∑i ciHi and b = ∑ j dj Hj with ci,dj ∈Q. Thus

B(a,b) = tr(ad(a)ad(b)) = ∑
i, j

ci dj tr(ad(Hi)ad(Hj)) .
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By Theorem 2.5.20 (3) we have

tr(ad(Hi)ad(Hj)) = ∑
α∈Φ

〈α,Hi〉〈α,Hj〉 .

This is an integer by (2.48), so B(a,b) ∈Q. Likewise,

B(a,a) = tr(ad(a)2) = ∑
α∈Φ

〈α,a〉2 ,

and we have just proved that 〈α,a〉 ∈Q. If a 6= 0 then there exists α ∈ Φ such that
〈α,a〉 6= 0, because the center of g is trivial. Hence B(a,a) > 0. ut
Corollary 2.5.22. Let hR be the real span of {hα : α ∈ Φ} and let h∗R be the real
span of the roots. Then the Killing form is real-valued and positive definite on hR.
Furthermore, hR ∼= h∗R under the Killing-form duality.

Proof. This follows immediately from (2.49) and Lemma 2.5.21. ut
Let E = h∗R with the bilinear form (· , ·) defined by the dual of the Killing form.

By Corollary 2.5.22, E is an l-dimensional real Euclidean vector space. We have
Φ ⊂ E, and the coroots are related to the roots by

α̌ =
2

(α,α)
α for α ∈Φ

by (2.49). Let Φ̌ = {α̌ : α ∈ Φ} be the set of coroots. Then (β , α̌) ∈ Z for all
α,β ∈Φ by (2.48).

An element h ∈ E is called regular if (α,h) 6= 0 for all α ∈Φ . Since the set⋃
α∈Φ

{h ∈ E : (α,h) = 0}

is a finite union of hyperplanes, regular elements exist. Fix a regular element h0 and
define

Φ
+ = {α ∈Φ : (α,h0) > 0} .

Then Φ = Φ+∪ (−Φ+). We call the elements of Φ+ the positive roots. A positive
root α is called indecomposable if there do not exist β ,γ ∈Φ+ such that α = β + γ

(these definitions depend on the choice of h0, of course).

Proposition 2.5.23. Let ∆ be the set of indecomposable positive roots.

1. ∆ is a basis for the vector space E.
2. Every positive root is a linear combination of the elements of ∆ with nonnegative

integer coefficients.
3. If β ∈Φ+ \∆ then there exists α ∈ ∆ such that β −α ∈Φ+.
4. If α,β ∈ ∆ then the α root string through β is

β ,β +α, . . . ,β + pα, where p =−(β , α̌)≥ 0 . (2.50)
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Proof. The key to the proof is the following property of root systems:

(?) If α,β ∈Φ and (α,β ) > 0 then β −α ∈Φ .

This property holds by Theorem 2.5.20 (4): β − (β , α̌)α ∈Φ and (β , α̌)≥ 1, since
(α,β ) > 0; hence β −α ∈Φ . It follows from (?) that

(α,β )≤ 0 for all α,β ∈ ∆ with α 6= β . (2.51)

Indeed, if (α,β ) > 0 then (?) would imply that β −α ∈ Φ . If β −α ∈ Φ+ then
α = β +(β −α), contradicting the indecomposability of α . Likewise, α−β ∈Φ+

would contradict the indecomposability of β . We now use these results to prove the
assertions of the proposition.

(1): Any real linear relation among the elements of ∆ can be written as

∑
α∈∆1

cα α = ∑
β∈∆2

dβ β , (2.52)

where ∆1 and ∆2 are disjoint subsets of ∆ and the coefficients cα and dβ are non-
negative. Denote the sum in (2.52) by γ . Then by (2.51) we have

0≤ (γ,γ) = ∑
α∈∆1

∑
β∈∆2

cα dβ (α,β )≤ 0 .

Hence γ = 0, and so we have

0 = (γ,h0) = ∑
α∈∆1

cα(α,h0) = ∑
β∈∆2

dβ (β ,h0) .

Since (α,h0) > 0 and (β ,h0) > 0, it follows that cα = dβ = 0 for all α,β .

(2): The set M = {(α,h0) : α ∈Φ+} of positive real numbers is finite and totally
ordered. If m0 is the smallest number in M, then any α ∈ Φ+ with (α,h0) = m0
is indecomposable; hence α ∈ ∆ . Given β ∈ Φ+ \∆ , then m = (β ,h0) > m0 and
β = γ +δ for some γ,δ ∈ Φ+. Since (γ,h0) < m and (δ ,h0) < m, we may assume
by induction on m that γ and δ are nonnegative integral combinations of elements
of ∆ , and hence so is β .

(3): Let β ∈Φ+\∆ . There must exist α ∈∆ such that (α,β ) > 0, since otherwise
the set ∆ ∪{β} would be linearly independent by the argument at the beginning of
the proof. This is impossible, since ∆ is a basis for E by (1) and (2). Thus γ =
β −α ∈ Φ by (?). Since β 6= α , there is some δ ∈ ∆ that occurs with positive
coefficient in γ . Hence γ ∈Φ+.

(4): Since β −α cannot be a root, the α-string through β begins at β . Now apply
Theorem 2.5.20 (4). ut

We call the elements of ∆ the simple roots (relative to the choice of Φ+). Fix
an enumeration α1, . . . ,αl of ∆ and write Ei = eαi , Fi = fαi , and Hi = hαi

for the elements of the TDS triple associated with αi. Define the Cartan integers
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Ci j = 〈α j,Hi〉 and the l× l Cartan matrix C = [Ci j] as in Section 2.4.3. Note that
Cii = 2 and Ci j ≤ 0 for i 6= j.

Theorem 2.5.24. The simple root vectors {E1, . . . ,El ,F1, . . . ,Fl} generate g. They
satisfy the relations [Ei,Fj] = 0 for i 6= j and [Hi,H j] = 0, where Hi = [Ei,Fi]. They
also satisfy the following relations determined by the Cartan matrix:

[Hi,E j] = Ci jE j , [Hi,Fj] =−Ci jFj ; (2.53)

ad(Ei)−Ci j+1E j = 0 for i 6= j ; (2.54)

ad(Fi)−Ci j+1Fj = 0 for i 6= j . (2.55)

Proof. Let g′ be the Lie subalgebra generated by the Ei and Fj. Since {H1, . . . ,Hl}
is a basis for h, we have h ⊂ g′. We show that gβ ∈ g′ for all β ∈ Φ+ by induction
on the height of β , exactly as in the proof of Theorem 2.4.11. The same argument
with β replaced by −β shows that g−β ⊂ g′. Hence g′ = g.

The commutation relations in the theorem follow from the definition of the Car-
tan integers and Proposition 2.5.23 (4). ut

The proof of Theorem 2.5.24 also gives the following generalization of Theorem
2.4.11:

Corollary 2.5.25. Define n+ = ∑α∈Φ+ gα and n− = ∑α∈Φ+ g−α . Then n+ and n−

are Lie subalgebras of g that are invariant under adh, and g = n−+ h + n+.
Furthermore, n+ is generated by {E1, . . . ,El} and n− is generated by {F1, . . . ,Fl}.

Remark 2.5.26. We define the height of a root (relative to the system of positive
roots) just as for the Lie algebras of the classical groups: ht

(
∑i ci αi

)
= ∑i ci (the

coefficients ci are integers all of the same sign). Then

n− = ∑
ht(α)<0

gα and n+ = ∑
ht(α)>0

gα .

Let b = h+n+. Then b is a maximal solvable subalgebra of g that we call a Borel
subalgebra.

We call the set ∆ of simple roots decomposable if it can be partitioned into
nonempty disjoint subsets ∆1 ∪∆2, with ∆1 ⊥ ∆2 relative to the inner product on
E. Otherwise, we call ∆ indecomposable.

Theorem 2.5.27. The semisimple Lie algebra g is simple if and only if ∆ is inde-
composable.

Proof. Assume that ∆ = ∆1 ∪∆2 is decomposable. Let α ∈ ∆1 and β ∈ ∆2. Then
p = 0 in (2.50), since (α,β ) = 0. Hence β + α is not a root, and we already know
that β −α is not a root. Thus

[g±α , g±β ] = 0 for all α ∈ ∆1 and β ∈ ∆2 . (2.56)
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Let m be the Lie subalgebra of g generated by the root spaces g±α with α ranging
over ∆1. It is clear from (2.56) and Theorem 2.5.24 that m is a proper ideal in g.
Hence g is not simple.

Conversely, suppose g is not simple. Then g = g1⊕·· ·⊕ gr, where each gi is a
simple Lie algebra. The Cartan subalgebra h must decompose as h = h1⊕·· ·⊕hr,
and by maximality of h we see that hi is a Cartan subalgebra in gi. It is clear from
the definition of the Killing form that the roots of gi are orthogonal to the roots of
g j for i 6= j. Since ∆ is a basis for h∗, it must contain a basis for each h∗i . Hence ∆

is decomposable. ut

2.5.4 Conjugacy of Cartan Subalgebras

Our results about the semisimple Lie algebra g have been based on the choice of
a particular Cartan subalgebra h ⊂ g. We now show that this choice is irrelevant,
generalizing Corollary 2.1.8.

If X ∈ g is nilpotent, then adX is a nilpotent derivation of g, and exp(adX) is a
Lie algebra automorphism of g, called an elementary automorphism. It satisfies

ad
(

exp(adX)Y
)

= exp(adX)adY exp(−adX) for Y ∈ g (2.57)

by Proposition 1.3.14. Let Int(g) be the subgroup of Aut(g) generated by the ele-
mentary automorphisms.

Theorem 2.5.28. Let g be a semisimple Lie algebra over C and let h1 and h2 be
Cartan subalgebras of g. Then there exists an automorphism ϕ ∈ Int(g) such that
ϕ(h1) = h2.

To prove this theorem, we need some preliminary results. Let g = n−+h+n+ be
the triangular decomposition of g from Corollary 2.5.25 and let b = h+n+ be the
corresponding Borel subalgebra. We shall call an element H ∈ h regular if α(H) 6= 0
for all roots α . From the root space decomposition of g under adh, we see that this
condition is the same as dimKer(adH) = dimh.

Lemma 2.5.29. Suppose Z ∈ b is semisimple. Write Z = H +Y , where H ∈ h and
Y ∈ n+. Then dimKer(adZ) = dimKer(adH) ≥ dimh, with equality if and only if
H is regular.

Proof. Enumerate the positive roots in order of nondecreasing height as {β1, . . . ,βn}
and take an ordered basis for g as

{X−βn , . . . ,X−β1 ,H1, . . . ,Hl ,Xβ1 , . . . ,Xβn} .

Here Xα ∈ gα and {H1, . . . ,Hl} is any basis for h. Then the matrix for adZ relative
to this basis is upper triangular and has the same diagonal as adH, namely
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[−βn(H), . . . ,−β1(H), 0, . . . , 0︸ ︷︷ ︸
l

,β1(H), . . . , βn(H)] .

Since adZ is semisimple, these diagonal entries are its eigenvalues, repeated accord-
ing to multiplicity. Hence

dimKer(adZ) = dimh+2Card{α ∈Φ
+ : α(H) = 0} .

This implies the statement of the lemma. ut
Lemma 2.5.30. Let H ∈ h be regular. Define f (X) = exp(adX)H−H for X ∈ n+.
Then f is a polynomial map of n+ onto n+.

Proof. Write the elements of n+ as X = ∑α∈Φ+ Xα with Xα ∈ gα . Then

f (X) = ∑
k≥1

1
k!

(adX)kH =− ∑
α∈Φ+

α(H)Xα + ∑
k≥2

pk(X) ,

where pk(X) is a homogeneous polynomial map of degree k on h. Note that pk(X) =
0 for all sufficiently large k by the nilpotence of adX . From this formula it is clear
that f maps a neighborhood of zero in n+ bijectively onto some neighborhood U of
zero in n+.

To show that f is globally surjective, we introduce a one-parameter group of
grading automorphisms of g as follows: Set

g0 = h , gn = ∑
ht(β )=n

gβ for n 6= 0 .

This makes g a graded Lie algebra: [gk, gn] ⊂ gk+n and g =
⊕

n∈Z gn. For t ∈ C×
and Xn ∈ gn define

δt

(
∑
n

Xn

)
= ∑

n
tnXn .

The graded commutation relations imply that δt ∈ Aut(g). Thus t 7→ δt is a regular
homomorphism from C× to Aut(g) (clearly δsδt = δst ). Since δtH = H for H ∈ h,
we have δt f (X) = f (δtX). Now let Y ∈ n+. Since limt→0 δtY = 0, we can choose t
sufficiently small that δtY ∈U . Then there exists X ∈ n+ such that δtY = f (X), and
hence Y = δt−1 f (X) = f (δt−1X). ut
Corollary 2.5.31. Suppose Z ∈ b is semisimple and dimKer(adZ) = dimh. Then
there exist X ∈ n+ and a regular element H ∈ h such that exp(adX)H = Z.

Proof. Write Z = H +Y with H ∈ h and Y ∈ n+. By Lemma 2.5.29, H is regular,
so by Lemma 2.5.30 there exists X ∈ n+ with exp(adX)H = H +Y = Z. ut

We now come to the key result relating two Borel subalgebras.

Lemma 2.5.32. Suppose bi = hi +ni are Borel subalgebras of g, for i = 1,2. Then

b1 = b1∩b2 +n1 . (2.58)
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Proof. The right side of (2.58) is contained in the left side, so it suffices to show that
both sides have the same dimension. For any subspace V ⊂ g let V⊥ be the orthog-
onal of V relative to the Killing form on g. Then dimV⊥ = dimg−dimV , since the
Killing form is nondegenerate. It is easy to see from the root space decomposition
that ni ⊂ (bi)⊥. Since dimni = dimg− dimbi, it follows that (bi)⊥ = ni. Thus we
have

(b1 +b2)⊥ = (b1)⊥∩ (b2)⊥ = n1∩n2 . (2.59)

But n2 contains all the nilpotent elements of b2, so n1 ∩n2 = n1 ∩ b2. Thus (2.59)
implies that

dim(b1 +b2) = dimg−dim(n1∩b2) . (2.60)

Set d = dim(b1∩b2 +n1). Then by (2.60) we have

d = dim(b1∩b2)+dimn1−dim(n1∩b2)
= dim(b1∩b2)+dim(b1 +b2)+dimn1−dimg

= dimb1 +dimb2 +dimn1−dimg .

Since dimb1 +dimn1 = dimg, we have shown that d = dimb2. Clearly d ≤ dimb1,
so this proves that dimb2 ≤ dimb1. Reversing the roles of b1 and b2, we conclude
that dimb1 = dimb2 = d, and hence (2.58) holds. ut

Proof of Theorem 2.5.28. We may assume that dimh1 ≤ dimh2. Choose systems
of positive roots relative to h1 and h2 and let bi = hi +ni be the corresponding Borel
subalgebras, for i = 1,2. Let H1 be a regular element in h1. By Lemma 2.5.32 there
exist Z ∈ b1 ∩ b2 and Y1 ∈ n1 such that H1 = Z +Y1. Then by Lemma 2.5.30 there
exists X1 ∈ n1 with exp(adX1)H1 = Z. In particular, Z is a semisimple element of g
and by Lemma 2.5.29 we have

dimKer(adZ) = dimKer(adH1) = dimh1 .

But Z ∈ b2, so Lemma 2.5.29 gives dimKer(adZ) ≥ dimh2. This proves that
dimh1 = dimh2. Now apply Corollary 2.5.31: there exists X2 ∈ n2 such that

exp(adX2)Z = H2 ∈ h2 .

Since dimKer(adH2) = dimKer(adZ) = dimh2, we see that H2 is regular. Hence
h2 = Ker(adH2). Thus the automorphism ϕ = exp(adX2)exp(adX1) ∈ Intg maps
h1 onto h2. ut

Remark 2.5.33. Let Z ∈ g be a semisimple element. We say that Z is regular if
dimKer(adZ) has the smallest possible value among all elements of g. From The-
orem 2.5.28 we see that this minimal dimension is the rank of g. Furthermore, if Z
is regular then Ker(adZ) is a Cartan subalgebra of g and all Cartan subalgebras are
obtained this way.
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2.5.5 Exercises

1. Let g be a finite-dimensional Lie algebra and let B be the Killing form of g. Show
that B([X ,Y ],Z) = B(X , [Y,Z]) for all X ,Y,Z ∈ g.

2. Let g = CX +CY be the two-dimensional Lie algebra with commutation relations
[X ,Y ] = Y . Calculate the Killing form of g.

3. Suppose g is a simple Lie algebra and ω(X ,Y ) is an invariant symmetric bilinear
form on g. Show that ω is a multiple of the Killing form B of g. (HINT: Use the
nondegeneracy of B to write ω(X ,Y ) = B(T X ,Y ) for some T ∈ End(g). Then
show that the eigenspaces of T are invariant under adg.)

4. Let g = sl(n,C). Show that the Killing form B of g is 2n trCn(XY ). (HINT: Cal-
culate B(H,H) for H = diag[1,−1,0, . . . ,0] and then use the previous exercise.)

5. Let g be a finite-dimensional Lie algebra and let h⊂ g be an ideal. Prove that the
Killing form of h is the restriction to h of the Killing form of g.

6. Prove formula (2.45).
7. Let D be a derivation of a finite-dimensional Lie algebra g. Prove that exp(tD)

is an automorphism of g for all scalars t. (HINT: Let X ,Y ∈ g and consider the
curves ϕ(t) = exp(tD)[X ,Y ] and ψ(t) = [exp(tD)X ,exp(tD)Y ] in g. Show that
ϕ(t) and ψ(t) satisfy the same differential equation and ϕ(0) = ψ(0).)

2.6 Notes

Section 2.1.2. The proof of the conjugacy of maximal tori for the classical groups
given here takes advantage of a special property of the defining representation of a
classical group, namely that it is multiplicity-free for the maximal torus. In Chapter
11 we will prove the conjugacy of maximal tori in any connected linear algebraic
group using the general structural results developed there.

Section 2.2.2. A linear algebraic group G⊂GL(n,C) is connected if and only if the
defining ideal for G in C[G] is prime. Weyl [164, Chapter X, Supplement B] gives a
direct argument for this in the case of the symplectic and orthogonal groups.

Sections 2.4.1 and 2.5.2. The roots of a semisimple Lie algebra were introduced
by Killing as the roots of the characteristic polynomial det(ad(x)− λ I), for x ∈ g
(by the Jordan decomposition, one may assume that x is semisimple and hence that
x ∈ h). See the Note Historique in Bourbaki [12] and Hawkins [63] for details.

Section 2.3.3. See Borel [17, Chapter II] for the history of the proof of complete
reducibility for representations of SL(2,C). The proof given here is based on argu-
ments first used by Cartan [26].

Sections 2.4.3 and 2.5.3. Using the set of roots to study the structure of g is a
fundamental technique going back to Killing and Cartan. The most thorough ax-
iomatic treatment of root systems is in Bourbaki [12]; for recent developments see
Humphreys [78] and Kane [83]. The notion of a set of simple roots and the associ-
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ated Dynkin diagram was introduced in Dynkin [44], which gives a self-contained
development of the structure of semisimple Lie algebras.

Section 2.5.1. In this section we follow the exposition in Hochschild [68]. The proof
of Theorem 2.5.3 is from Hochschild [68, Theorem XI.1.2], and the proof of Theo-
rem 2.5.7 is from Hochschild [68, Theorem XI.1.6].


