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Abstract. We present new convergence results and new versions of Fatou lemma in
Mathematical Economics based on various tightness conditions and the existence of
scalarly integrable selections theorems for the (sequential)-weak-star upper limit of
a sequence of measurable multifunctions taking values in the dual E’ of a separable
Banach space E. Existence of conditional expectation of weakly-star closed random
sets in a non norm separable dual space is also provided.
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1. Introduction

Motivated by the study of Fatou lemma in Mathematical Economics, we
present several types of convergence for multifunctions taking on convex
weakly-star compact values in the topological dual E’ of a separable Ba-
nach space E with specific applications to Fatou lemma in several dimen-
sions. There has been a great deal of research on Fatou lemma when the
multifunctions take values in the primal space E. See, e.g., [1, 3, 4, 6-9,
14, 18, 19, 22, 23, 25, 28] for references. For the case of a dual space, we
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mention the recent contributions of Benabdellah and Castaing [6], Cornet
and Martins da Rocha [18], Balder and Sambucini [5], Castaing Raynaud
de Fitte and Valadier [13], Castaing, Hess and Saadoune [12], Castaing and
Saadoune [15, 16]. In the present paper we provide, under new tightness con-
ditions, several new convergence results for multifunctions with values in
E’ with sharp localizations of the limits and several new variants of Fatou
lemma in the dual space E’ via the integrability of the sequential-weak-star
upper limit of a sequence of measurable multifunctions taking values in this
space [12]. We also provide the existence of Conditional Expectations (CE)
for weakly-star closed random sets in E’. See, e.g., [10, 11,20, 21] for the
problems of convergence of CE in Banach spaces. Since L'-boundedness
assumption is relaxed here, we obtain several significant generalizations in
this study.

2. Notations and preliminaries

Throughout this paper the triple (€2, F, i) is a complete probability space,
E is a separable Banach space and D := (x,) ,¢N i a fixed dense sequence
in the closed unit ball B . We denote by E} (resp. E}) (resp. E/ .) the topo-
logical dual E’ endowed with the topology o (E’, E) of pointwise conver-
gence, alias w™* topology (resp. topology of the norm) (resp. the topology
m* = o(E’, H), where H is the linear space of E generated by D, that is the
Hausdorff locally convex topology defined by the sequence of semi-norms

pex) =max{| <x',x, >|:p <k}, x'€E, (k=1)).

Recall that the topology m™ is metrizable, for instance, by the metric

p=+00
dgy (. xp) = D oolpa)) = G )l xjoxh € B

p=1
We assume from now that d _ is held fixed. Further, we have m* C w* C s*.
When E is infinite dimensiorinal these inclusions are strict. On the other hand,
the restrictions of m* and w* to any bounded subset of E’ coincide and
B(E;) = B(E,,.) [12, Proposition 5.1], but the consideration of B(E)) is
irrelevant here. Noting that E’ is the countable union of closed balls, we de-
duce that the space E/ . is Suslin, as well as the metrizable topological space
E .. A 2E¢ valued multifunction X : Q = E; is measurable if its graph
belongs to F @ B(E}). Given a measurable multifunction X : Q@ = E; and a
Borel set G € B(E}), the set

X G={weQ: XNG # 0}
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is measurable, that is X~ G € F. In view of the completeness hypothesis on
the probability space, this is a consequence of the Projection Theorem (see,
e.g., Theorem II1.23 of [17]) and of the equality

X~ G = projo {Gr(X) N (2 x G)}.
In particular, if X is measurable, the domain of X, defined by
domX = {w € Q: X(w) # @}

is measurable, because dom X = X~ E. Furtherifu : Q — E ; is a scalarly
measurable mapping, that is, for every x € E, the scalar function o —
(x, u(w)) is F-measurable, then the function f : (w, x') = ||x’' — u(w)||E;
is F @ B(E!)-measurable, and for every fixed w € 2, f(w,.) is lower semi-
continuous on £ ;, shortly, f is a normal integrand, indeed, we have

Ix" — u(@)||g; = sup(xp, x" — u(w)).
peN

As each function (w, x’) = (x,, x" — u(w)) is F ® B(E})-measurable and
continuous on E; for each w € £, it follows that f is a normal integrand.
Consequently, the graph of u belongs to F ® B(E}). Besides these facts, let
us mention that the function distance d £ &,y = |Ix =y E| is lower
semicontinuous on E} x E, being the supremum of continuous functions. If
X is a measurable multifunction, the distance function o +— d E) x', X (w))
is measurable, by using the lower semicontinuity of the function d E) x',)
on E; and measurable projection theorem [17, Theorem III.23], and re-
calling that E; is a Suslin space. A mapping u : Q = E; is said to be
scalarly integrable, alias Gelfand integrable, if, for every x € E, the scalar
function @ +— (x,u(w)) is integrable. We denoted by GLIENRQ, F, n)
(GL,[E](w) for short) the space of all scalarly integrable (classes of) map-
pings u : Q = E;. The subspace of Gl ,[E1(1) of all mappings u such that
the function |u| : w — ||u(a))||El; is integrable is denoted by L! J[E](w). The
measurability of |u| follows easily from the above considerations and holds
even E is an arbitrary Banach space, we refer to [6] for details. For any 2E;
valued multifunction X : Q = E, we denote by G-S )1( (resp. S )1() the set of
all G }E,[E ](w)-selections (resp. LY, [E1(1)-selections) of X. The G-integral
(resp. integral) of X over a set A € F is defined by

G—/AXdM = {/Afdu:feG-S;](}
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/AXdM::{/AfszfeS}(}

respectively. Let (X,) be a sequence of measurable multifunctions taking
values in E}. The sequential weak™ upper limit w*-Is X, of (X,,) is defined by

and

w*-ls X, = {x’ € E :x'=0(E, E)-jli)n;ox,;j; x;lj € an} .
By cwk(E}) we denote the set of all nonempty o (E’, E)-compact convex
subsets of E;. A multifunction X : Q = Ej is scalarly measurable if, for
every x € E, the function ® — §*(x, X (w)) is measurable. Let us recall that
any scalarly measurable cwk (E?)-valued multifunction, X, is measurable. In-
deed, let (ex) e be a sequence in E which separates the points of E’, then we
have x € X (w) iff, (ex, x) < 8*(er, X (w)) for all k € N. Further, we denote
by Qlwk(Eé)(Q, F, 1) (shortly ggwk(E;)(,u)) the space of all scalarly inte-
grable cwk(E})-valued multifunctions X : © — cwk(E}), that is, for every
x € E, the function @ — §*(x, X (w)) is integrable. By ﬁiwk(Eg)(Q’ F, 1)

(shortly ﬁl wk(E!) (u)) we denote the subspace of ch, wk(E/) (w) of all integrably
bounded multifunctions X that is the function |[X| : @ — |X(w)]| is in-

tegrable, here |X (®)| 1= supycy (e Il y||E;7, by the above consideration, it
is easy to see that |X| is measurable. A sequence (X,) in ‘Clwk(Eg)(l’L) is
bounded (resp. uniformly integrable) if (|X,|) is bounded (resp. uniformly
integrable) in Eﬁ%(Q, F, ). In the sequel, we apply the usual convention
¥ = 0 and 1y = 0. Our main purpose is to introduce some new types
of tightness condition so-called Mazur tightness condition for sequences in
the spaces ﬁiwk( El )(/,L) and g clwk( E )(/L). These considerations led to several
new results of convergence in this space with application to Fatou lemma.
In §3 we show the relationships between these tightness conditions. In §4
we present our main result of convergence for a Mazur-tight sequence in the
space L}E,[E 1() of scalarly integrable and mean norm bounded E’-valued
mappings. In §5, some new convergence results are developed for the space
G}E,[E ](1) of scalarly integrable E’-valued mappings. These results allow to
obtain new types of convergence for the spaces [:Cl,w K(E]) (u) and gj,wk( E )(u,)
that we present in §6. We also provide here several variants of Fatou Lemma.
The existence of Conditional Expectations of o (E’, E) closed random sets
in the dual is also stated in §7. Here the L'-bounded condition is no longer
required by contrast of most results given in the literature.
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3. Mazur tightness condition

In this section new tightness properties of Mazur type are introduced and
examined for sequences in the space C?, wk(EL) (w) of all measurable cwk (E})-
valued multifunctions. Actually, they find their origin in [12,15, 16]. First, let
us recall the following tightness definition [15]:

Definition 3.1. A sequence (X,,) in ngk(E:_)(u) is cwk(E})-tight (resp. com-
pactly cwk(E})-tight) if there is a scalarly measurable (resp. scalarly mea-
surable and integrably bounded) cwk(E})-valued multifunction Ty : Q@ = E '
such that

itr}fu({w eEQ: X,(w) CTe(w)})>=1—c¢.

The measurability of {w € Q : X, (w) C I'g(w)} is immediate using the
considerations developed in the beginning of this section.

Definition 3.2. A sequence (X,) in E?wk( E;)(/,L) is said to be L°-1lim sup-

Mazur tight, (resp. L'-1im sup-Mazur tight) if, for every subsequence (Y;) of
(Xn), there exists a sequence (ry,) in LﬁR(Q, F, w) withrpecof{|Y;|(.) : i >n}
such that lim sup,, r, < oo (resp. limsup,, r,, € Lﬁ%(Q, F, ).

Similarly, we introduce a weaker notion of the above Mazur tightness,
namely, LO- lim inf-Mazur tightness and L'-lim inf-Mazur tightness:

Definition 3.3. A sequence (X,) in ﬁ?wk(E;)(/L) is said to be L°-liminf-

Mazur tight, (resp. L'-liminf-Mazur tight) if, for every subsequence (Yy)
of (Xn), there exists a sequence (ry) in Lﬁg(Q, F, ) with r, € cof{|Y;|(.) :
i > n} such that for every sequence (s,) in LIIR(,u) such that s, € co{r; :i >
n}, one has liminf's, < oo (resp. liminf, s, € L&{(Q, F, uw).

These new notions are denoted respectively: L°-limsup-MT and
L:-liminf-MT, ¢ = 0,1. A sequence (X,) in E?-wk(E;)(/") is said to
be scalarly L‘-limsup-MT (resp. L‘-liminf-MT), £ = 0, 1 if, for each
x € E, the sequence (8*(x, X,,)) is L*-1lim sup-MT (resp. L¢-lim inf-MT).
From Proposition 2.1 in [15] we derive directly a useful characterization
of L*-limsup-Mazur tightness condition which may be regarded as an

extension of the Biting lemma (see, e.g., [13,24]), since every Eiwk(E()(/JL)-

bounded sequence is obviously L'-limsup-MT. This result will be used
extensively in all this work.



28 C. Castaing and M. Saadoune

Proposition 3.4. Let (X)) be a sequence in K’ka( E,)(u) and let £ = 0, 1.
Then the following are equivalent: »

(1) (X,) is L*-1lim sup-MT.

(2) Given any subsequence (Y,) of (X,), there exist a subsequence (Z,)
of (), ¢o in L]%(Q, F, ) and an increasing sequence (Cy) in F with
limy o0 £ (Cx) = 1 such that for every k € N, 1¢, ¢o0 € L]k(Q, F, ) and

VAeF, Ilim |Z,,|d,u=/ Yoo d L.
=00 JAnCy ANCy

As a consequence of this proposition we deduce the following useful

property.

Proposition 3.5. Let (X,ll) and (X%) be two sequences in E?wk(E,) (m). If(X,ll)

and (X?) are L*-1limsup-MT, (£ = 0, 1), then the sequence (|X}| + |X2|) is

Lt-lim sup-MT. Consequently, (X ,11 + X ,%) is L*-lim sup-MT.

Proof. Let (¢,) be any subsequence of (|X,11| + |X,2l|). Each ¢, is of the
form ¢, = |YV,}| + |V?|, where (¥,!) and (Y?) are two subsequences of
(X,ll) and (Xﬁ) respectively. Applying Proposition 3.4 successively to the
sequences (X,%) and (X,%) we can find a subsequence (V) of (¢,) with
Un = |Z}| + |Z2|, where (Z)) and (Z2) are two subsequences of (¥,
and (Ynz) respectively, two functions (pcl,o, (pgo in L%(Q, F, i) and two in-
creasing sequences (C,l) and (C,%) in F with limg_, o /,L(C]:) = 1 and
limg— 00 ,u(C,f) = 1 such that for every k € N, the functions ICI: <p(]>o and

IC]% @2, are integrable and

lim 1Zyldp = f Do dit,
=% Janc} " AnC} =
lim 1Zyldp = / 9 di,
n=>00 Janc? ANC}

for all A € F. Then taking Cy := C,: N C,f and @ = gz)cl,o + <pc2>0 we get

tim [ wndu= [ ghdn [ elau=[ pedn,
=00 JANC, ANCy ANCy ANCy

forall A € F. Since 1¢, 90 € LﬁQ(Q, F, ), applying again Proposition 3.4
we deduce that (| X} | 4+ |X2|) is L*-lim sup-MT. o

In the following proposition, the L'-liminf-Mazur tightness and the
L°-lim sup-Mazur tightness conditions together are connected to the
L'-lim sup-Mazur tightness:
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Proposition 3.6. Let (X,,) be a sequence in [,ka( E,)(u). Then the following

two statement (a) and (b) are equivalent:

(a) (Xp) is L'-1im sup-MT.
(b) (X,) is L'-1im inf-MT and L°-lim sup-MT.

Proof. The implication (a) = (b) is trivial. To prove (b) = (a) let (¥},) be
any subsequence of (X,,) satisfying (b). Using the L°-lim sup-Mazur tight-
ness and Proposition 3.4, we find a measurable function @, : Q — RT,
a subsequence of (Y;) still denoted (Y;) and a sequence (Cy) in F with
limy ;(Cx) = 1 such that, forevery k € N, 1¢, 900 € LIIR(V“)’ and the follow-
ing holds:

VAeF, lim |Y,,|d,u=f Voo d L.
=00 J ANCy ANCy

Let (r,) be a sequence of measurable functions as in the definition of the

L' — lim inf-Mazur tightness. From the preceding equality it follows that

VAeF, lim rnd/L:/ Ooo d L.
=00 JANCy ANCy
Invoking Mazur’s Theorem and appealing to a diagonal procedure (see,
e.g., Lemma 3.1 in [14]), one can construct a sequence (s,) with s, €
co{r; : i>n} such that, for every k, (1¢,s,) converges a.e. t0 lc,¢oo.
Since u(Cr)—1, (s,) converges a.e. to ¢, Which, in view of condition (b),
shows that ¢ € LIIR(M)- Returning to Proposition 3.4, we deduce that (X,,)
satisfies (a). O

According to the two following results,the notion of L°-lim inf-Mazur
tightness (resp. L'-liminf-Mazur tightness) is in some sense stronger than
cwk(E;)-tightness (resp. compactly cwk(E})-tightness). The first one is a
variant of Proposition 3.2 in [16] dealing with primal space E.

Proposition 3.7. Suppose that E is a separable Banach space and (X,) is a
sequence in ‘C(c)wk(E’)('““) satisfying the condition L0 1lim sup-MT. Then (X,)
admits a cwk(E})-tight subsequence.

Proof. By Proposition 3.4, there exist a subsequence (Y;) of (X,) and a
F-measurable partition (Ci) of €2 such that for every k € N the sequence
(1Ynlic,) is bounded in the space Lﬁ{(Ck, Ce N F, pic,)- Hence ([Yylic,) is
cwk(E;)-tight with respect to the measure space (Cg, Cx N F, 14|c,), making
use of the Markov inequality. Therefore, for every € > 0, there is a scalarly
measurable cwk (E})-valued multifunction I't ¢ such that
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sup u(Cx \ {w € Ck : Yn|c,) (@) C Te(@)}) = eu(Cp). *)
n
Now define the multifunction I'c on Q2 by
Fe=1lc e+ Z Loy The
k>2
Then, since
{w € Q: Y, () CTe@)}=|Jlwe Cr: Yu, (@) CTie(@)
k
(*) entails

n{w € Q: Yy () CTe@) = n(|Jiw € Cr: Yaie, (@) C Tie(@)})
k

= ZM({(,() e Cy: Yn|Ck(w) C Fk,e(w)})
k

>3 uCyl—e)=1-e
k

Thus the sequence (Y,,) is cwk(E;)-tight. O

It is worthy to mention that the L'-limsup-Mazur tightness condition
does not imply that (] X,|) is bounded in EﬁQ(Q, F, ). Indeed, it suffices
to consider the space Eﬁ&(Q, F, ) where Q@ = [0, 1] endowed with the
Lebesgue measure and f;, is given by f, (w) := n21[0,1 /nj(@), o € Q. Then,
(f») is not bounded in Lﬁ{(Q, F, ) but satisfies (*), because it converges
a.e. to 0. However, we have the following result

Proposition 3.8. Suppose that E is a separable Banach space and (X)) is a
sequence in E?wk(E’) (w) satisfying the condition L'-lim sup-MT. Then (X,)
admits a cwk(E é)-éompactly tight subsequence.

Proof. Applying Proposition 3.4, to the sequence (|X,(.)|) provides a sub-
sequence (Y,) of (X,) a function ¢ € Lﬁw () and an increasing sequence
(Cy) in F with limg u(Cy) = 1 such that for every k € N,

lim / Yaldu = f wdu,
n—>o0 Jc, C

for all A € F. Let ¢ > 0 and choose p. > 1 such that ifﬁ pdu < e.
Applying the Lemma 3.9 below we get
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1
limsup u(fw € Q: [Yy|(®) > pe}) < —/ pdp < e.
n Q

€

Hence, there exists N, € N, such that

sup u({w € Q: |Yy|(w) > pe}) < e.

n>N¢

Since the functions |Y1], ..., [Yn,| are integrable, one can find p. > pe such
that
sup p(fw € Q: |Vy|(@) > pe}) < €.

n=Ne

Whence we get

sup u({w € Q: [Yy[(@) > pe}) < €.
neN

This SIE)WS that (¥,,) is compactly cwk(E?)-tight, indeed, it suffices to take
e = BE};(O, Oc). O

Lemma 3.9. Let (¢,,) be sequence in LIIRJr which biting converges to an inte-
grable function ¢. Then

1
Vp =1, limsupu(lo € Q: gu(@) > ph) < —/ wdp.
n P JQ

Proof. There exists an increasing sequence (Cy) in F with limg u(Cy) = 1
such that for every k € N,

lim sondu=/ pdu,
=00 JCrnA CiNA

for all A € F. Using the Markov inequality we get

. 1 . 1
limsup ({w € Cy : gu(@) > p}) < — lim / ondp = 1 / od
n pn Cr V4

Ci
whence
. 1
limsup u({w € Q2 : py(w) > p}) < ;/ pdu
n

Ci
+limsup u({w € Q\ Ck : gu(w) > p})
n

1
< —f pdp+ pn(2\ Cp).
P Jcy
Letting k — oo we get

) 1
limsup u({w € Q : g, () > p}) < —/ pd .
n P JQ
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We are ready to present general convergence results in £L1, wk( E;)(“) with
localization of the limit which can be applied to various places in the study of
Fatou lemma in Mathematical Economics. A key ingredient in our proofs re-
lies to integrability of the weak™ sequential limit of a sequence of measurable
multifunctions taking values in E’ [12] and the Mazur-tightness conditions
introduced above. Further these results constitute a sharp continuation of a
similar study initiated in [14] dealing convergences and Fatou lemma in the
space ﬁéwk( £) (1) of scalarly integrable and integrably bounded multifunc-
tions with convex weakly compact values in the primal space E. For this pur-

pose, we introduce the following convergences in gjwk( E()(u). A sequence

(X,) in gclwk(E,)(/L) weakly Komlos converges to X o, if

1 n
VxeE, =) 8. Y() > 5 (x. X)), ae. weQ,
n

i=1

(Xp) dg ,~Wijsman Komlds converges to X oo, if

] n
V' e £, limdy YY) =dp (¥ Xx) ae.

i=1

for every subsequence (Y,) of (X,), here the negligible set depends only on
the subsequence under consideration. (X,) weakly biting converges to X o,
if there exist a sequence (Cy) in F with limg w(Cy) = 1 such that

Vk>1, Yve LP(Q,F,pn), lim/ 8*(v, Xn)d,u:/ 8* (v, Xoo)d L.
n—>o0 Jo, C

This study will be achieved from its single-valued specialization, namely we
will deal first with the spaces L ,[E](pn) and G! JET(w).

4. Convergences in L}E,[E 1(w)

The main result in this section is concerned with the following with applica-
tion to Fatou lemma.

Theorem 4.1. Let E is a separable Banach space. Let (f,) be a sequence
in L}E,[E](u) satisfying the L'-lim sup-MT condition. Then there exist a
function foo € LL[E)(), a subsequence (g,) of (f,) and an increasing
sequence (Cy) in F with limg u(Cy) = 1 such that the following holds:

(1) (1, llgn ”Ez';) is uniformly integrable in Lﬁg(ﬂ) for each k.
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(2) (gn) weakly biting converges to fxo.
(3) (gn) weakly Komlos converges to foo.
(4) foo(w) € w*-clco[w*-Is g, (w)] a.e.
(5) If i is nonatomic then

VA e F, /fooduew*—d(/ w*-lsg,,du).
A A

The proof of Theorem 4.1 involves the three following lemmas. The first one,
Lemma 4.2, is an adaptation of Lemma 4.1 in [16] in the framework of a dual
space. Its proof follows the same lines but needs a careful look and involves a
sequential o (L }E, [E], L%o)-compactness result. The second one, Lemma 4.3,
is derived from Proposition 3.5 in [15]. The third one, Lemma 4.4 transforms
Theorem 5.6 (jjj) [16] into a general result on integration of multifunctions,
in particular, it yields an extension of Ljapunov’s theorem for the sequential
weak™ upper limit of a sequence of measurable multifunctions with values
in E’.

Lemma 4.2. Let A : Q = E' be a nonempty valued measurable and inte-
grably bounded multifunction. Then

S'ue—aa) C sequ.o (LLIE], LE)-cI(SK). ()

Consequently,

/ w*-cl(A)dp C sequw™-cl </ Adu) = w*-cl (/ Ad,u) . 1)
A A A

Proof. Since the multifunction A has a F ® B(E;)-measurable graph and
E ; is a Suslin space, invoking Theorem I11.22, [17], one can find a sequence
(on)n>1 of scalarly measurable selectors of A such that for every w € €,
w* — cl(A(w)) = w* — cl({on(@)}n>1)- Since A is integrably bounded, the
functions o, are necessary LLJE ]-integrable and one has

dgr . — cl(A@)) = g | — cl({on(@)}n=1). @2.1)

because the restriction of the w*-topology to the closed ball |A(w)|B g of E’
is metrizable by the metric d .- Now take o in Slw*_cl(A). Foreachq > 1,
let us define the sets

Al = {a) €Q: dp (0(w),0n(0) < l} (n=>1)),
m q

Ql:=Al, Qf:=Al\Ui,A? forn > 1
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and the function
+00
Sq = Z 193 Op.
n=1

Since the functions o — dp (0 (w), 0x(w)) are F-measurable, Al e F

for all n. Further, from (4.2.1) it follows that U,A? = Q a.e. Then (QI),
constitutes a sequence of pairwise disjoint members of F which satisfies
U, Q8 = Q ae. So G4 is a scalarly measurable selector of A. As A is in-
tegrably bounded, we conclude that ¢, € Si. Furthermore, we have

1
dp (0(w), g4(@) < —, Yo e Q.
m q
By integrating we get
1
dp (0, 6)dpu < —.
Q " q
Letting ¢ — 00, this inequality entails

Vp e N*, VA e F, (xp,/ odup) = lim (xp,/ Sqdu). “4.2.2)
A qg— A

On the other hand, since the sequence (g;) is mean norm bounded in the
space L}E,[E](,u), there exists, by Theorem 6.5.9 [13], a subsequence of (g;)

still denoted in the same way and a function o’ € L}s/ [E](w) such that

Vv e L¥(Q, F.p),  lim /(v, gq)duzf(v,a’)du. (4.2.3)
q—> Jo Q

From (4.2.2) and (4.2.3) it follows that 0’ = o a.e. Hence
o € sequ.a (LL[E], L)-cl(S}),

which proves (). To prove (if) let a be an arbitrary element of
[ w*-cl(A)dp. Then there exists f € LL,[E](n) such thata = [, f dp.
Since, by (T), f € seqo(L}E,[E], LOOE)-CI(SA), there is a sequence (f;)
in 81A which O’(L}E,[E], L%O) converges to f so that, for every A € F,
w*-lim, [, fudw = [, fdup, whence [, fdu € seqw*-cl(f, Adu). O

Lemma 4.3. Assume that | is nonatomic, and ' : @ = E' isa o(E', E)
compact valued measurable multifunction satisfying I'(w) C ®(w), Yo € Q
where ® : Q = E’ is a scalarly integrable cwk(E})-valued multifunction.
Then

VA e F, G-/

w*-clcoldp = w*-cl (G-/ qu) .
A A
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Proof. 1t is obvious that G-Sll - G'Sz})*—cl cor C G-S(;. By [17, Theorem
V-13], G-SIL*_CZ cor 18 convex and G(GL-/[E], L*° ® E) compact. Arguing as
in the L}E(M) case [26, Lemma 2 and Theorem 3], it is not difficult to see that
G-Sll is dense in S;)*_d cor With respect to the o (GL,[E], L°®E) topology.
Since f fQ fdu from G}E,[E](M) into E’ is continuous with respect to

the o (LL,[E], L™ ® E), the conclusion follows. O

Lemma 4.4. Assume in addition that p is nonatomic and let (Ay)4>1 be a
sequence of measurable multifunctions from Q to o (E’, E)- compact subsets
of E'. Suppose that A, is integrably bounded, for all q, and SLqu>1 A, # 0.
Then for all A € F, the following equalities hold: -

(a) w*-cl [, Ugw*-clcoAgdp = w*-cl [, UsAydjs.

(b) w*-cl(f,coUy Agdp) =w*-cl(f, UsAgdp).

Proof. Let o be a fixed element of Stqu>1 a, and set

Ny = Ui’ii](ldamA,- Ai + 1avdoma,;0)-

Then (Ay) is increasing, dom A, = €, for all g, and U, Ay, = Uy A, Next,
for each ¢ € N and each F € F, define the following multifunction:

AFg = 1pw*-clcoAy + lo\Fo.
We claim that

seqo (L [E1, LF)-Cl[S'Uyqwr-cicon,] = seqa (L [E] LE)-el (| | Sp,, 1
qgeN FeF
Here seqo(LL,[E], L3)-cl(A) denotes the sequential o(LL[E], LE)-
closure of a set A ¢ L! J[E]1(). Since, for each ¢ € N and each F € F,
AFq CUgenw*-cl coly, it suffices to prove the inclusion

Sh,ywrectcon, Cseqo (LplELLP-el | [ (U 8h,, |- @4D
qgeN FeF

To show this, take s € SLIJ ~cl coh, and for each ¢ € N, define a set

g=1w*

F; € 7 and an L}g/[E](M) selector, s, of AF, g as follows:

Fyi={weQ: s(w) e w-clcoAy(w)} and s;:=1pgs + lo\F,o0.

[s=sans [ s [ olaw.
Q Q\F, Q\F,

q q

Then we have
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Since limg oo (2 \ Fy) = 0, the preceding estimation implies that
s eseqo(Lp[EL L)l | [ [ Sh,,
qeN FeF

Thus the desired inclusion follows.
Using (4.4.1) it is immediate that

VA € f,Aqulw*—clcoAqdu = {/:4 fdu: f e SLquzlw*—clcoAq}

c I/A fdu: f € sequ.o (L;:,[E], L%") l (U U S}\M)} (4.4.2)

geNFeF

C w¥el ({/Afdp,:fe U U S}\Fyq;)zw*—cl (LJNFU}'//;AFyqu)‘

qeNFeF

On the other hand, since A, is measurable, w* compact valued and integrably
bounded for every ¢ € N and every F' € F, it follows from Lemma 4.3 that

Vg €N, VA e F, / w*-cl coAgdp = w*-cl (/ Aqdu> .
A A
Consequently Vg € N,VF € F,VA € F,

/.Apyqdﬂ,z\/ lpw*-clcoAqd,u—l—/ IovFodp
A A A

= w*-cl (/ lpAqd/,L> +/ IQ\FO'dpL
A A

= w*-cl (/ 1pAg + lg\padu> .
A

This yields VA € F,

w*-cl U U /AF’qd/,L = w*-cl U U /1FAq+lQ\FGd/L
A A

qeN FeF geN FeF
(4.4.3)

Since 1p Ay + la\ro C UyenAQy, forallg € Nand all F € F, from (4.4.2)
and (4.4.3) we deduce

VAeF, w*cl (/ Ug=1w*-cl coA, du) C w*-cl </ quNAqdu>
A A
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and the equality (a) follows. Whereas (b) is a consequence of the preceding
inclusion and the fact that

co Ugen Ay C Ugs1w*-cl coA,.
O

Before going further let us give a useful application of the preceding
lemma to the sequential weak™ upper limit of a sequence of measurable
multifunctions.

Proposition 4.5. Assume that w is nonatomic and (X,) is a sequence of mea-
surable multifunctions with values in E’. IfS]i*_ls X, * @, then the following
equalities hold

w*-clf Ugw*-clcow*-Is (X, N B0, q)) dp = w*-cl/ w*-Is X, du.
Q Q

VAeF, w*cl (/ cow™-Is X,, du) = w*-cl (/ w*-Is X, d,u)
A A

Moreover, the set w*-cl(fA w*-Is X, du) is w*-closed and convex.

In particular;, if X, = T, for all n, where T : Q@ = E’ is a measurable
multifunction such that S} # ), then

VAeF, w*cl (/ coF):w*-cl ([qu).
A A

Consequently the set w*-cl ( / Ad M) is w*-closed and convex

Proof. Take Ay := w*-Is(X, N gBEg). Then A, is integrably bounded and,
since ¢ B is compact metrizable with respect to the weak™ topology, it
is not difficult to see that A, is w*-compact valued and measurable (see,
e.g., Theorem 5.4 in [12]). Furthermore, since a w*-convergent sequence is
bounded in E’, we have for all € Q2

w*-Is X, = U Ay.
qeN

Then, in view of the condition 811)*-1& X, # @, the multifunction | J geN Ay

admits at least one L }E, [E](w)-selection. Consequently, it is possible to apply
Lemma 4.4 to the sequence (A, ), which entails the desired equalities. O

The next corollary shows that for a measurable multifunction having at
least one L}E, [E](n)-integrable selector the integral is dense in the G-integral
with respect to the w*-topology.
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Corollary 4.6. Assume that u is nonatomic, and T : Q@ = E' is a measurable
multifunction. If Sll # (), then the following equality holds

VA € F, w¥l (/ qu) = w*-cl (G-/ qu) .
A A

Proof. Tt suffices to prove the inclusion

G-/ Cdu C w¥el (/ qu) .
A A

Let a be an arbitrary element of G- [ 4 I'du. Then there exists a function
fe G—Sll such thata = [ 4 f du. Foreach p € N, define the measurable set

M), :={weQ:|f(o) —o(lg < pl

where o is a fixed L}E, [E]T(w)-integrable selector of I". Then, since0 € ' —o
a.e., one has

Vx e E, /1M1,(F—a)dMC/F—adu.
A A

Therefore

oo [ g =odiw = [ s —ovdi= tim [ e, - o
A A p—=00 JA

= tim (5, [ L, (F =) dp)
A

p—>00

IA

lim 8*(x,/A1Mp(F—odu))

p—>00

IA

5 (x, w*ocl </ I — o du),
A

for every x € E and for every A € F. Moreover, by Proposition 4.5, the set
w*-cl (fA I" d) is convex w*-closed and so is w*-cl (fA '—o du). Conse-

quently,
f f—oduew*-cl </ F—adu),
A A

which is equivalent to
a € w'-cl (/ qu) .
A

This finishes the proof. O
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Proof of Theorem 4.1. By Theorem 2.3 in [15] and its proof, there exist an
increasing sequence (Cy) in F with limg 1 (Cy) = 1, a subsequence (g,) of
(fp) and foo € L}s/[E](Q, F, ) satisfying (1), (2) and (3). Now let us prove
the localization properties (4) and (5). We shall proceed in two steps.

Step 1. In view of Proposition 3.7, we may suppose, for simplicity, that (g,,) is
compactly cwk(E})-tight. Consequently, we can construct a non decreasing
sequence, (I'y) 4, of cwk(E;)-valued scalarly measurable integrably bounded
multifunctions (in the special case we consider here, we may take for I'; the
closed ball B/ (0, pq) of center 0 and with radius p,) such that

1
an M(Q\An,q) = -, (4.1.1)

=

where
Apg ={weQ: gy(w) € I'y(w)}.

Now, from the condition L!-1lim sup-MT and Theorem 5.7 in [16] it follows
that the multifunction w*-Is g, admits a L}E,[E 1(p) selector o. Let (e,) be
a fixed dense sequence in B for the Mackey topology and define

Sng =14,,(8n —Co —e,), (gmeN), (=0,10.

It is obvious that the sequence (g’ ¢)n satisfies the condition L'-lim sup-MT
so that we may apply again Theorem 2.3 in [15]. Thus, using a standard
diagonal procedure, it is possible to find a subsequence (not relabeled) of
(g, and f2 € LL,[EN(S, F, p) such that

Vee E, lim 12":( hi(@)) — (e, 7 (w)) €Q, (4.12)
e o Jim e, hi(w €, fooq(@), ae. o , (4.1.

i=1

for every subsequence (k) of (g,’{f q) with

[3.q(@) € w'-clco m wh-cl{g" () :i=p}], ae weQ.
p=1
As
sup gy (@)l g, < ITql(@) + Lllo(@)llg + 1 < 00
n

and the restriction of the w*-topology to the closed ball (|I'y|(w) +
Lo (w)]| E, + 1)B g is metrisable, it follows that

w*-ls gy () = [ w*-cl({g]', (@) :i = p)),
p=1
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forall ¢ € N, for all m € N and for all w € Q2. Hence
fo'g’q (w) € w* —clco[w*-Is g;,'fq(a))], ae. weQ (4.1.3)
for all ¢ € N and for all m € N. Next, putting

i=q
L, := U 1p,w*-Is (¢.NT))+1q\p,0, where D; :=domw*-Is (g,NI;),
i=1

b = timint - > i@l
and .
Fy o (@):=Bp (foo(@)—L0 (@), $(@)+Llo (@)l g +ley, 7)), (€=0,1),
we claim that
foo(@) = Lo (@) €w*—cl(Ugs1w*=clcol (Ly (@) — Lo () U{e, NN F,, (@)
(4.1.4)

a.e., for all m € N. Indeed, it follows from (3) and (4.1.2) that

1(foo (@) = Lo (@) = €},) = [ g (@)l

= sup [(e, foo(®) — Lo (@) —ey,) — (e, f5 ,(@)]

eeBE

1 n
= sup lim ~|} (e, gi(@) — Lo (@) —e),) = (e, &y (@))]

e€BE i=1

= sup lim —|Z e Lag (8i(@) — Lo (@) — )]

eeBg
. . 1 /
< liminf — 2}: lo\a;, 18i (@) — Lo (@) — €|l g, = ¢ (@) (4.1.5)
1=
a.e. Using Fatou lemma and (4.1.1) we get

11m / qu(w)du < 11m liminf — / lgi (@) — Lo (w) — e |l o dp
Z CrN(2\A; ' miE

n—>0o n ig)

< lim su / llgn (@) — to(w) — el |l diw =0,
=% Jon@ang "
for every k € N. Hence the sequence ((]5;” (w))4 converges to 0 in the Banach

space L]{Q(Ck) when g — o00. By extracting subsequences, we may assume
that (¢g1)q converges to 0 a.e. on each Cy. From (4.1.3) and (4.1.5) we have
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2 (@) € Tolw*Isgll ()] N B (fool@) — Lo (@) — €y, B (@))
C co[(Ly(w) — Lo (w) — e;n) U {0}IN (F,fm (w) — e,/n) a.e,
because

colw™-Lsgy' ; (@)] C Colw*-Is((gn (@) — Lo (@) — €),) N (Tg(@) — Lo (@) — €p,)) U {0}]

C col(Ly(w) — to(w) — e,,) U{0}],
and
¢ (@) < ¢(@) + Lo (@)l + lleyll g)-
We deduce that

dE}/) (foo (@) — Lo (®) — €, w* — clco[(Lg(w) — Lo (w) — e),) U{0}IN (F,fl,a(w) —el)
< [l foo(@) — b0 (@) — €}, — f2 (@) < B ().
As (¢>Z’)q converges to 0 a.e. on each Cy and (Cy) — 1, it follows that
foo(w) — Lo (w) — e,
cw* — cl( Ug>1 w* — cleo[(Ly(w) — Lo (w) — e;n) u{0}1n (F,fl’a(a)) — e;n))

a.e., which is equivalent to (4.1.4). Now, to prove (4) we repeat an argument
in the proof of Theorem 8 in [2]. We assert that, for every subset C in E’,

w*clcoC = ﬂ w*cl co[C U {e), }]. (€3]

Indeed, assume that C is nonempty. If x" ¢ w*cl co C, there is ¢ € E and
r € R such that

8%, C) <r < (e, x).

Taking e}, in {y € E’ : §*(e, C) < (e, y) < r} we get
w*-clco[CU{e, )] C{y e E :(e,y) <r}.

Hence x ¢ w*-cl co[C U {e],}].
Applying (f) in our case we get
w* — cl(Ug=1w* — clco Ly(w))

= m w*cl co[(Ug=1w*cl co Ly(w)) U {e;,}]

m>1

= ﬂ w* — cl(qulw* —clco[Ly(w) U {e;n}]), (4.1.6)
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for all w € 2, where the last equality follows from the fact that the sequence
(Lg) is increasing. Consequently, (4) follows from (4.1.4) for £ = 0, and
(4.1.6). It remains to prove (5).
Step 2. Writing

Fp o (@) = fool@) — () + (¢(@) + llo (@)l g, + lley, Il 1) B (0, 1),

we deduce easily that Fr}z,a € Ecl,w k(£ (1) On the other hand, it is not dif-

ficult to see that L, is measurable (see, e.g., Theorem 5.4 in [12]) and so is
the multifunction w*-clco[L, — o U {e},}]. From these facts and (4.1.4) for
¢ = 1, it follows that the multifunction Uy>jw*-cl co[Ly — o U{e), }1N F,}w
satisfies the conditions of Lemma 4.2. Then

/A w* — cl[Ug=1w*-clco[Ly — o U{e, 1N F, ldu
C w*-cl <//; Ug=1w*-clco[Ly — o U {e),}1N F,}LU du)
C w*-cl (/;\ Ug=1w*-clco[Ly; —o U {e%}]du) , (4.1.7)
for every m. Now an appeal to Lemma 4.4 shows that
w*-cl (/A Ug=1w*-clco[Ly; — o U {e;n}]> m
=w*-cl (]; Ug=1Lg —o U {e%}du) . (4.1.8)
Thus using (4.1.4) for £ = 1, (4.1.7) and (4.1.8) we get
/A foo—0 due/A m w*— cl[Ug=1(w*-clco[Ly—0 U {e,,}1 N Fnlhg)] du
m

c ﬂ/ w* — cl[Ug>1 (w*—clco[Lq —oU {e;n}]anlLO>]du
A

m
c Mwal (/ UgsiLy — o U {e,’n}du)

m A
c(w*l (/ w*-ls gy — o U {ein}dﬂ> :

A
m

where the last inclusion follows from the fact that, Uy>1L, C w*-Is gj.
On the other hand, noting that the multifunction w*-Is g, is measurable, (by
Theorem 5.5 in [12]) and 0 € w*-Is g, — o, we can prove easily that
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/w*-lsg,, —o U{e,tdp C / w*-Is g, —adu+/{e;n}u{0}du,
A A A

which implies

w*-cl </ w*-Is g, —o U {e%}du)
A

c w*-cl </ w-Is g, — o d,bL) + / {e;n} U {0}du,
A A
since the set f A{ei,l} U {0} du is compact. Hence, there exists
a € w*-cl </ w*-Is g, — adu) and b, € f{e;n} u{0}du
A A

such that
[
A

for every m. But, taking a subsequence (e,’nk) of (e},) which w*-converges
to 0 one has limy_, o (x, by, ) = 0. Indeed, choose s, in S{IE, 1U{0} such that

S Sm din = by, Then we have
[{x, b)| = |(X,/ smdp)| = |/<X,Sm>dﬂ|
A A

5/ |<x,Sm)|dM§/ [(x, ep) | die = n(A)l(x, ey,)l.
A A

Hence
/ foo—odu € w*—cl/ w*-Is g, —odu.
A A

f foodp € w*-cl (/ w*-1s g, du) .
A A

From Theorem 4.1, we get easily the following version of Fatou lemma.

Equivalently

d

Corollary 4.7. Let E be a separable Banach space. Let (f,) be sequence in
the space L}Z,[E](,u) such that:

(i) (fn) satisfies the condition L'-1lim sup-MT.
(ii) For every x € E, the sequence ((x, f)) is uniformly integrable.
(iii) There exists b € E' such that b = w*-1lim,,_ fQ fnd .



44 C. Castaing and M. Saadoune

Then there exists foo € L}E,[E 1(w) such that:

() b= Jg food .
(jj) For almost all w € 2 one has fx(w) € w*-cl co [w*-Isf,(w)].
(jij) In particular, if i is nonatomic, then

/Qfoodu € w*-cl </Q w*-Is f, du) .

We end this section by the following version of Fatou which is an analog of
Corollary 4.4 [16] in the framework of L}E,[E J(w) space.

Corollary 4.8. Let E is a separable Banach space. Let ( f) be a sequence in

L};,[E](Q, F., 1) satisfying the condition L'-lim sup-MT. If 11 is nonatomic,
then the following inclusion holds

w*-1s / fodu C w*—cl/ w*-1Is fydu — C*,
Q Q

where C is the cone of all x € E for which (max[0, (—x, f,)]) is uniformly
integrable and C* is the polar cone of C.

Proof. Let b be an arbitrary element of w*-Is fQ fn du. Then there exist a
subsequence of (f;;) (not relabeled) such that b = w* — lim, fQ fandp. An
appeal to Theorem 4.1 produces a function fo, € L}E,[E 1(w), a subsequence
(gn) of (fn) and an increasing sequence (Cy) in F with lim; u(Cy) = 1 for
which (1)—(5) hold.

Lete > 0 and x € C be given. Pick kyp > 1 such that

/ (x', foo)fHLZ/(x/, foo)dp — €
Ck, Q

0
and that

limsup/ (x,gn) du <e.
Q\C

n

These two inequalities combined with (1) and a routine computation give

(x,b) > lim (x, gn)dp —1imSUP/ (x, gn) du
Q\Cko

n Cko n

th (-x’gn>d/'l’_6
n Cko

=fc (x, foo diu — €

ko

Z/(x,foo)du—k.
Q
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Thus (x, b) > fQ (x, foo)dp. As w is nonatomic, by (5), we conclude that

be / foodu — C* € w*-cl (/ w*-Is fndu> - C*.
Q Q

5. Convergences in G1,[E](1)

In this section we proceed to a new convergence result in the space
GIE,[E](/,L) of scalarly integrable mappings f : Q — E’ and its appli-
cations to Fatou lemma. Since |f| ¢ Lﬁ(,u), this study involves both the
LO-1im sup-Mazur and the scalar L'-lim inf-Mazur tightness conditions by
contrast with the L!-limsup-Mazur tightness condition occurring in the
space L J[E1(). Before going further, we need the following G}E,[E]-
extension of Lemma 4.4.

Lemma 5.1. Assume that u is nonatomic and let (Ay)4>1 be a sequence of
measurable multifunctions from Q to o (E’, E)- compact subsets of E'. Sup-
pose that 1goma,Ag is scalarly integrable, for all q,and G-SLIJq>]Aq # 0.
Then: B

(a) w*-cl (G — [qUqw*-clcoAgdp) = w*-cl (G — [oUgAg dp).

(b)) YAeF, w*cl(G— [,coU; Agdp) =w*-cl(G— [,UsA;dp).

Proof. Let o be a fixed element of G'SLqu>1 A, and set

Ay = U;ii](ldﬂmAi A + 1ovdoma;0)-

Then (Ay) is increasing, dom A, = €, for all g, and U, Ay, = Uy A,. Next,
for each ¢ € N and each F € F, define the following multifunction:

Apg = 1pw™-cl coAg + 1a\Fo.

We claim that
seqw*-cl (G— / Ugenw*-cl co Ay du) = sequw*-cl <G—/ Ugen Urer AFyg du) .
A A

Here seq w*-cl(Y) denotes the sequential w*-closure of a set Y C E’. Since,
foreachq € Nandeach F € F, Ar, C quNw*—cl colg, it suffices to
prove the inclusion

G—/ Ugenw™-cl co Ay dp C seqw™-cl U U G-/ Argdu
A geNFer 74

;.1.1)
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To show this, take s € G-SLIJ Jwk-cl coA, and for each ¢ € N, define a set
q=

F, € F and an GL,[E](1) selector, 54, of AF, q as follows:
Fp={weQ: s() ew-clcohg(w)} and s;:=lpzs + la\F,0.

Then we have

veer, [ltes—sldus [ wsiidit [ itoidu
Q Q\Fy Q\Fy

Since limy o u (2 \ Fy) = 0, the preceding estimation implies that

s € sequw™-cl (G-/ UgeN Urer AF g dp).
A

Thus the desired inclusion follows.
On the other hand, since, for each g € N, the multifunction A, satisfies
all the conditions of Lemma 4.3. we have

VgeN, VAeF, G-/

w*-cl coNgdp = w*-cl (G-/ Agdp).
A A

Consequently Vg € N,VF € F,VA € F,
G—/ Afgdp = G—/ le*—clcoAqdpL—i—/ lo\rodu
A A A
= w*-cl (G-f LrAg4dp) +/ lovrodu
A A

= w*-cl (G-/ (1rAg + lo\ro)du).
A

This yields VA € F,

w*-cl () | G—f

Argdpwy=w*-c (] | G-/ 1A+l rodu).
geN FeF A A

qeN FeF

(5.1.2)
Since 1p Ay + la\Fo C UyenAQy, forallg € Nand all F € F, from (5.1.1)
and (5.1.2) we deduce

VYA e F, w*-cl (G—/

Ugs1w*-cl coAg dp) C w*-cl (G-/ UgeNAqd ).
A A

Hence the equality (a) follows. Finally, the equality (b) is a consequence of
the preceding inclusion and the fact that

co UgeN Ay C Ug=1w™-cl coA,.
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The following result is a reformulation of Proposition 4.5 for the multi-
valued Gelfand integral. Its proof is similar using Lemma 5.1.

Proposition 5.2. Let (X,,) be a sequence of measurable multifunctions with
values in E'. If u is nonatomic and if the set G-Si)*_ls x, IS nonempty, then
forall A € F, the equalities

w*-cl <G-/ Ugw*-clcow™-Is (X, N B/ (0, q)) du) = w*-cl (G-/ w*-Is X, d,u) ,
A A

w*-cl (G—/ cow*-Is X, du) = w*-cl <G-/ w*-Is X, du),
A A

hold. Moreover;, the set w*-cl (G- fA w*-Is X, du) is w*-closed and convex.

In particular;, if X, = T, for all n, where T : Q = E’ is a measurable
multifunction such that G-S\ # 0, then

VA e F, w*cl (G—/ col") = w*-cl <G—/ qu).
A A

Consequently the set w*-cl (G- fA r d,u) is w*-closed and convex

Theorem 5.3. Let E is a separable Banach space. Let (f,) be a in
G }5,[E 1(w) satisfying the following conditions:

(i) (f,) is LO-1lim sup-MT.
(ii) (f,) is scalarly L'-1im inf-MT.

Then there exist a function f € G}E,[E](,u), a subsequence (g,) of (fn) and
a sequence (Cy) in F with limg w(Cy) = 1 such that the following hold:

(1)Vk €N, Vn > k, 1¢c.gn € L [EX(w), ¢, foo € L [E](1).
(?j (Ic, llgn ||E;)nzk is uniformly integrable in Lﬁg(u) for each k.
(

V'U € L%O(Q’ ‘Fv /'l’)a hm c (U, gn>d,u = /; (v’ f00>du“
k k

n—oo,n>k

(4) (gn) weakly Komlos converges to foo.
(5) foolw) € w*-clco [w*-1s g,(w)] a.e.
(6) If v is nonatomic, then VA € F,

(€1 Jalofosodi € wel (fy Te,w*ls gndp).

(€2)
/;‘foo dpew*=cl (G-/Aw*-ls fn du> provided that G'SJ;*-ls 0.
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Proof. On account of the LO°-limsup-MT tightness condition (i) and
Proposition 3.4, we provide a subsequence (g,) of (f,), a measurable func-
tion oo : 2 > RT, and a sequence (Cy) in F with limy u(Cy) = 1 such
that

lim lgnldpn = / Poo dpt < 00,
ANCy ANCx

n—o00

for all k € N and for all A € F. In view of this equality, we observe that, for
each k € N, every subsequence (%,) of (g,) admits a subsequence (hﬁ) with
ka |hﬁ| du < oo, for all n € N, such that (1Ckhlf,) is uniformly integrable.
Using this fact and applying Theorem 4.1 to (1¢, g,) via a standard diagonal
procedure, it is possible to find a subsequence of (g,) (not relabeled) and a
function fX € L},[E](n) such that

(1c, 8n)n>k 1s uniformly integrable in L}g,[E](/L),

(1c,8n) weakly Komlds converges to f;‘o,

Vk e N, Yve LY (Q,F, ), lim (v, 1Ckg”>dM=L<v’ fé‘o)d,u,,

n—oo,n>k Jo
ffo(a)) € w¥-clco[w*-1Is g,(w)] ae e Cy.

Furthermore, if @ is nonatomic, then

VA € F, /f;‘od,uew*-cl (/ w*-ls 1ckgndu).
A A
Put
Ci:=C; and Cp:=Ci\Crq for k>1,

and
k=00
. k
foo = ) T fo
k=1

Since % Yo', g w*-converges to fé‘o a.e. on each Cy and (Cy) 1, it follows
that .
Vk,Vj <k, fé’o:fé‘o aeon Cj,

and then
Yk, foo = f;‘o aeon Cg.

Consequently we get

(gn) weakly Komlds converges to  fio,

Vk e N, Yve LY (Q,F, ), lim (v, gn)dp = /C (v, foo)du,
k

n—oo,n>k Cr
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foo(w) € w*-clco [w*-1s g,(w)] ae.

and, if p is nonatomic, we have

VA e F, Joodp= | faoduewcl (/ Wl d“)
ANCy, ANCy

ANCy,
= w*-cl </ w*-Is 1¢, gn du) .
A

thus proving (1), (2), (3), (4), (5) and (6)-(€1). Next, let us show that f is
scalarly integrable. Fix x in E. By conditions (i), (ii) and Proposition 3.6,
the sequence ((x, g,)) is L'-lim sup-MT. So, applying Proposition 3.4 to the
sequence ({x, g,)), provides a function ¢} € LllRJr (u), a subsequence of (gy,)
still denoted (g;) and an increasing sequence (C ,’c‘ ) in F with limg u(C ,f )=1
such that, for every k£ € N, the following holds:

vAeF. tim [ ltgdldu =/ Vi dp.
=00 JAncy ANCY

Using successively this equality, conclusion (4) and the classical Fatou
lemma we get

n

- S
/ I(x,foo)ld/t:/, lim I—E (x,gi>|du«§/ liminf — E [(x, gi)ld
C]': cx n—-oo n x N—>00 n o

k i=1 G

IA

1 n
timint > [ 1. gld
n—-oo n iz C/f

= lim I(x,gn>|du=/ Yoo dit
c; c;

n—oo

for all k € N. Whence

/|(xsfoo)|dl/«= limf [{x, foodldp < lim/ wéodu=/¢§odu<oo,
Q k—o00 C;(f k—o00 Ci: Q

proving the required integrability property. Finally, let us prove the second
inclusion of (6). Let o € G‘Si;*-ls f Then from (€1) and the inclusion
0 € w*-Is f, — o, it follows that '

/ (foo —0) dpp € w*cl <G —/ lc, (w*—ls fu— a) d,u)
ANCy A

C w*-cl (G —/ w*-Is f, — adu),
A
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for every k € N and every A € F. Consequently, since f, and o are scalarly
integrable, one has Vx € E,VA € F,

<x,/ foo—odu>=f e oo =0 di = fim [ (x.16, (= @) du
A A k—00 J A

= lim <x,/ lck(foo—o)du>
k— o0 A

5* (x, w*-cl (G —/ w*-Is f, — ad,u)) )
A

Moreover, by Proposition 5.2, the set w*-cl(G— [, w*-Is f, du) is w*-closed
convex and so is w*-cl(G — fA w*-ls f, — o du). Hence we get

IA

VA € F, /foo—oduew*-cl (G—/ w*-lsfn—adu).
A A

Thus
/ foodi € w*-cl (G —/ w*-Is f, d,u) )
A A

This completes the proof. O

The following result is a direct consequence of Theorem 5.3, Corol-
lary 4.6 and Theorem 5.8 in [12].

Corollary 5.4. Let E is a separable Banach space. Let ( f,,) be a sequence in
G }E,[E 1(w) satisfying the following two conditions

(i) (fn) is LO-1im sup-MT,

(ii) (fy) is scalarly L'-lim inf-MT.
(iii) iminf | f,| € L ().
Then there exist a function f € G}E,[E](,u), a subsequence (g,) of (f) and
a sequence (Cy) in F with limg w(Cy) = 1 satisfying (1)—(5) of Theorem 5.3
and, if | is nonatomic, then

6') VA € F, / foodu € w*-cl </ w*-Is f;, du) .
A A

Theorem 5.3 extends Theorem 4.1 to the space G}S,[E J(w), by the way,
we get the following G}E,[E ](w)-extension of Corollary 4.8.

Corollary 5.5. Suppose that u is nonatomic, E is a separable Banach space
and (fy) is a sequence in G}E/[E 1(w) satisfying the following two conditions

(i) (fn) is LO-1im sup-MT.
(ii) (fn) is scalarly L'-lim inf-MT.
(iii) liminf | f,| € L ().
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Then the following inclusion holds

w*-1Is / fadp C w*-cl (/ w*-Is f, d,u) - C*,
Q Q

where C is the cone of all x € E for which (max[0, (—x, f,)]) is uniformly
integrable and C* is the polar cone of C.

The proof is the same as that of Corollary 4.8 using Corollary 5.4 and is
omitted. O

- 1
6. Convergencesin L ( E§)(”’) and gcwk( EQ([L)

Our main result in this section is concerned with new convergence results in
1 1
the space Lcwk(E;)(“) and gcwk(Eé)(,u).

Theorem 6.1. Let (X,) be a sequence in Eéwk(E/)(“) satisfying the condi-

tion L'-1lim sup-MT. Then there exist a subsequence (X)) of (Xn), X0 €
,Ci,wk(E,_)(u) and a sequence (Dy) in F with limy u(Dy) = 1 such that the
following hold:

(1) (1X,|) is uniformly integrable in LIIR(Dk)(,u) on each Dy.
(2) (X),) weakly Komlds converges to X oc.

(3) (X)) dy»-Wijsman Komlds converges a.e. to X .

(4) (X)) weakly biting converges 10 X .

Vk>1,Yve LY(Q,F,p), lim / 8 (v, X))du =/ 8% (v, Xoo)d i,
n—00 Jp, Dy
(5) Xoo(w) C w*-clco [w*-1s X,,(w)] a.e.
(6) If i is nonatomic then

VA e F, /Xood,qu*-cl <f w*-lsX;ld;L).
A A

Proof. We will use several arguments of the proof of Theorem 4.1 with ap-
propriate modifications.

Step 1. On account of the condition L'-1lim sup-M, Theorem 2.1 in [15]
and Proposition 3.4, there exist a subsequence (X)) of (X,) a function
S L]%%(,u) and an increasing sequence (Dy) in F with limg u(Dy) = 1
such that

(|X,/1|) is uniformly integrable in Lﬁ%(Dk)(u) oneachDy, (6.1.1)
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1 n
lim — )" |Yi|(®) = ¢(w) existsae., and 6.1.2)
1 n
nli)ngoé (xp, . 21: Y,) exists a.e. (6.1.3)
1=

for every subsequence (Y,) of (X)). On the other hand, in view of
Proposition 3.8, we may suppose, for simplicity, that (X)) is compactly
cwk(E;)-tight. Consequently, we can construct a non decreasing sequence,

(Kg),in Eiwk(ﬂ)(u) such that

Vi, u(@\{we Q: X, () C K,(@)}) < (6.1.4)

Q| =

Next, for every p € N, pick a maximal L}E,[E](u)—selection Un,p of X,
that is

8*(xp7 X;/l) = (Xp, Un,p)-
It is clear that (v, ) is also L!'-1lim sup-MT and we have

Vi, W@\ {0 € Q1 vy p(@) C Kg(@)) < p(Q\{w € 21 X)) C Kg()}) < é

As in the proof of Theorem 4.1, let us set

i=q
Q, = U 1g,w*Is (X, N K;) + Lo\ T,

i=1

where B; := dom w*-Is (X, N Q;) and 7 a fixed L}E{ (w)-integrable selector

of w*-Is X/, (such a function is ensured by Theorem 5.7 in [16]). Repeating
mutandis the arguments of the proof of Theorem 4.1 for the sequence (v, )y
instead of (f,) butreplacing (Cy), I'y, Ly, ¢ and o respectively by (Dy), K,
Q4. ¢ and T, we can always find a subsequence of (v, ,) (not relabeled) and
Voo,p € L}l.,[E](u) for each p € N, such that

(Un,p) weakly Komlds converges to v, p € L}E,[E](u) foreach p e N
(6.1.5)

Voo, p(w)—LT(w) € w* — cl[qul(w*—cl co[Qg(w) — Lt (w) U {e,/n}] N Ggm’,(a)))],
(6.1.6)
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where
Gy (@) :=B (Voo p () —LT (), p@) (@) g+leylg). (€=0,1).
Step 2. Let us prove (2) and (3). To do this consider the multifunctions
1 - !/ * 7. 1 - /
S, = ;in and  Xoo = w*-li ;le.,
i=1 i=l
where w*-li C, is the sequential weak™ lower limit of a sequence (C,) in 2£ '
defined by
w*-liCy ={x' € E' : X' =0 (E', E)- lim x; x,, € Cy}.

n—oo

Then, by (6.1.2), (S,) is pointwise bounded a.e., and X is cwk(E})-valued,
the w*-closedness of X, follows easily from the fact that the restriction of
the weak™ topology to bounded sets is metrizable. Moreover, vso, , € S )1(00
and we have

4 . =
lim  8%(xp, Sp(@) = hrrln<xp, o Z vi,p> = (xp, Voo,p) < 8" (xp, Xoo(®)) ae.
i=1

n—-+00
On the other hand it easy to see that

8" (xp, Xoo(w)) < nll)rgo 8" (xp, Sp(w)) ae.
Whence we get

nlingoé*(xp, Sp(w)) = 8% (xp, Xoo(w)) ace. (6.1.7)
We will use an argument in [10, Lemma 3.2]. We have

18 (x, Sp) — 8% (x, Xoo)| < max{8™(x — xp, Sp), 8% (xp — x, Sp)}
+|5*(xps Sn) — 5*(xp7 Xoo)l
+max{8*(x — xp, Xo0), 8" (xp — x, Xo0)

for all x’ € E’ and for all j. Now let x € By and ¢ > 0. There is xp €D
such that |[x — x,|| < &. Then we have

|87 (x, Sp) — 8" (x, Xoo)| < & sup [Su|+18%(xp, Sn) — 8" (xp, Xoo)|+€ [ Xool-
n

Thus, by (6.1.7) and the pointwise boundedness of (S), it follows

Vx € E, lim §*(x, S, (w)) = §*(x, Xoo(w)) a.e. (6.1.8)
n— o0
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By this equality, X  is scalarly measurable, and hence measurable, (see, e.g.,
Corollary 5.3, [12]). Furthermore, returning again to (6.1.2), we get

1 n

[Xoo| < liminflS,| < lim — E |Xl/»|d,u=<p,
n—00 n—>0o pn 4 ;
1=

hence [q [Xool dit < 00.
Next, we claim that

limdg (x', 8y) =dp  (x', Xoo),
n m m

for all x’ € E’ and almost all w € Q. Indeed, since the multifunctions S,, and
Xoo are cwk(Eg)-valued and p(x) := dg: (0, x) is a m*-continuous semi-
norm, we can invoke Theorem II.18 in [17], which, together with (6.1.8),
entail

liminfdg (x',S,) = liminf sup [(x, x) — 8" (x, S,)]
n m

xeUo
> sup lim[({x, x") — 8§*(x, Sp)]
xeyo "
= sup [(x, x") — 8% (x, Xoo)]

xeU°

= dEr/n* (.X/, XOO)

for every x’ € E’ and for almost all w € Q, where U := {x’ € E’ : p(x')<1}
and UV its polar. By definition of X, we have

limsupdp  (x', $,) <dp  (x', Xoo),
n m m
for every x” € E’ and for almost all w € 2. Hence
limdp *('x/s Sn)) =dg *(-x/s Xoo),
n m* m*
for every x’ € E’ and for almost all w € .

Applying the results obtained above for the sequence (X)) to any other
subsequence (¥,) of (X)) gives X/ € Eiwk(E*)(l’L) such that

) 1 n
Vx € E, nlinolob‘* (x, - ZY,‘((U)) =68 (x, X (@) ae.

i=1

1 n
vx' € E', limsupdp (x/, - E Y,-(w)) =dp (X', X)), ae.
n m l:1 m
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Then returning to (6.1.3) and (6.1.8) we deduce that Xoo = X/, thus com-
pleting the proof of (2) and (3).
Step 3. Using (6.1.1), conclusion (2) and Lebegue—Vitali theorem, we get

1 n
o0 : * - . _ *
Vk>1, Yve L7 (R, F, ), nlimoo/Dké (v, . Z;Yz)du—/Dk 8 (v, Xoo)dpt,
i=
for every subsequence (Y,,) of (X},). This is equivalent to

Vk>1, Yve LY (Q,F, u), nlgr(}o 8* (v, X,’»)dﬂ:/ §*(v, Xoo)d e,

Dy, Dy

thus proving (4).
Step 4. To prove (5) and (6) let us set

(@) == [Xool (@) + ¢(@) + lle, |l gy and
(@) = [Xool (@) + 2 T(@)l g, + ¢ (@) + lle, Il ;-
Since vk € S)l(oo, it follows from (6.1.6) for £ = 0 that
85 (xp, Xoo (@) = (xp, Voo, j (@)
< 8 (xp, w* — cl[Ug=1w*-clco[ Qg (w) U {e),}]

Nw*-cl co U B (s(w), p(w) + ||e;n||E,’7)])

seSx
< 8" (xp, w* = cl[Ug=1w*-clco[ Qg (w) U {e;,}1 N B (0, ri(w))])
for every p and for every m. Since the multifunction
= w* — cl[Ugz1 (w*-clco[ Qg (@) U {e,}1N B (0, ri (@)))]]

is cwk(E})-valued, E; is Suslin and its dual is equal to E, by virtue of
Proposition II1-35 in [17], the preceding inequality entails

Xoo(@) C w* — cl[Ug=1w*-clco[ Qg (w) U {e), 1 N B0, ri (w))]
C w* — cl (Ug=1w*-clco[ Qg (w) U {e;,}]). (6.1.9)
Similarly, using again (6.1.6) but this time for £ = 1, we obtain

Xoo(@)—1(®) C w*— cl[Ug1(w*-clco[ Qg (@) —T(w) U {e, INB g/ (0, rp(w)) ]
(6.1.10)
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Inclusion (5) is a consequence of (6.1.9). Indeed, it suffices to proceed as in
the Step 1 of the proof of Theorem 4.1, by using an argument in the proof of
Theorem 8 in [2]. Finally, to prove (6) take u € 8)1(00 and note that (6.1.10)
entails

u(w)—1(w) € w*—cl [qulw*—clco[Qq(w)—r(a))U{e;n}]DEE/(O, rz(w))].

Since the sequence (w*-clco[ Qg (w) — T U {e),}1 N B:(0, r2(w))) satisfies
all the conditions of Lemma 4.4, repeating exactly the same arguments as in
the Step 2 of the proof of Theorem 4.1, we deduce that

/ udp € w*-cl </ qulQ; d,u> = w*-cl </ w*-1s X, du),
A A A

which yields the desired inclusion (6). O

From Theorem 6.1 we derive the following Biting lemma in L’iw K(E") ().

We refer to [8,9, 14] dealing with Biting lemma in ﬁiwk(E) ().

Corollary 6.2. Suppose that E is a separable Banach space, (X,) is a
bounded sequence in ﬁlwk( E{)(pL). Then there exist a subsequence (X)) of

(X)) and X € Liwk(E;)(/‘) such that the following hold:

(i) (X)) weakly biting converges to X «
(ii) Xoo(@) C w¥clco[w*-1s X, (w)] a.e.

Our second main result presents a version of Theorem 5.3 for multifunc-

tions in the space G Clw K E,)(u). The L'-lim sup-MT condition is replaced by

the L% — lim sup and the scalar L' — lim inf Mazur tightness conditions

Theorem 6.3. Let (X,,) be a sequence in gclw K(E!) (w) satisfying the following
conditions:

(i) (X,) is LO-1lim sup-MT.

(ii) (X,) is scalarly L'-lim inf-MT.

Then there exist a subsequence (X)) of (X,), Xoo € gjwk(E,)(u) and a se-

quence (Dy) in F with limg u(Dy) = 1 such that thefollowihg hold:

(1) Vk € N,V =k 16, X, € L1 s Le, Xoo € Ly o) (10):

(2) (¢, |1 X, Dn>k is uniformly integrable in Lﬁ{(,u) for each k.
(3) (X),) weakly Komlds converges to X oc.
(4) (X)) dy»-Wijsman Komlds converges a.e. t0 X .
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(5)
Vk>1, YveLP(Q,F, ), lim / 8* (v, X))du = / 8% (v, Xoo)d .
n—oo,n>k Dy, Dy

In particular,
Vx € E, lim 8 (x, X,)dpu = 8*(x, Xoo)d 1.
n—>o0 Jc, C
(6) Xoo(@) C w*-clco [w*-Is X, (w)] a.e.
(7) If i is nonatomic then VA € F,
(C1) [a 1D, Xoodu C w*-cl (f, 1p,w*-Is X, dp) .
(C2) G—/ Xoodp C w*-cl (G—/ w*-Is X, dj), provided that G'Szi)*—lsX # 0.
A A "

Proof. Reasoning as in the beginning of the proof of Theorem 5.3 by
using Proposition 3.6 and Theorem 6.1, we find a subsequence (X)) of
(X0, Xgo € Eiwk(E,)(,u) and an increasing sequence (D) in F with
limg p(Dy) = 1 such that Vk € N,

(1p. X, Du=k is uniformly integrable in L}g,[E](u).

(1p,X}) weakly Komls converges to X% .

Yv e LF (R, F, n), lim ; 8* (v, lpk)(’;l(a)))du:/SZ 8*(v, X';O)du.

n—oo,n>k
Xk (@) c w*-clcow*-1s X (w) ae.oneach Dy.

Furthermore, if © is nonatomic, then

VA € F, / Xk dp c w*-cl ([ w*-Is 1p, X, d,u) )
A A

Put
Dy:=D; and Dj:=Dy\ Dy for k=>1,

and
k=00
Xoo 1=y 1p XK.
k=1
Since % DT MER X[ (w)) converges to §*(x, Xgo (w)) forall x € E and for
almost everywhere w € Dy and (Dy) 1, it follows that

VK Y <k, 8% (x, Xbo(@) = 8" (x, XK (),
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for all x € E and for almost everywhere w € D;. Hence
Vk,Vj <k, Xl =x% aeon D;j
which yields
Vk, Xoo = X’go a.e.on Dy.

Consequently we get

(X;) weakly Komlés converges to  Xoo,

Vk e N,Vv € LY (Q, F, ), lim /D 8 (v, X))du = / 8% (v, Xoo)dt,
k

n—oo,n>k Dy
Xoo(w) C w*-clco[w*-1s X;l(a))] a.e.

and, if p is nonatomic, we have

VA € F, /leXooduzlekX’goduzf xk du
A A ANDy

C w*-cl ( w*-ls 1p, X, dp) = w*-cl (/ w*-ls 1p, X, du)
ANDy, A

whence follow (1), (2), (3), (4), (5), (6) and (7)-(C1). Next, let us show that
X~ 1is scalarly integrable. Fix x in E. By conditions (i), (ii) and Propo-
sition 3.5, the sequence (8*(x, X)) is L'-limsup-MT. Applying Proposi-
tion 3.4, provides a function 6} € Lﬁ§+ (), a subsequence of (X)) still de-
noted (X)) and a sequence (By) in F with limg u(B;) = 1 such that, for
every k € N, the following holds:

VAeF, lim 16 (x, X)) |dp = / 0. du.
=00 JANB} ANBY

This equality, conclusion (3) and the classical Fatou lemma entail

1 n
[ 5 xeodn = [ tim 12308 X
BX BX n—-oo n “
k k i=1
] n
< | timinf— 3" 18", X)) ldp
[, i 315t x

NI [ *ew !
< l}lrggcl)f;;/ka [8%(x, X)]dp

A

= lim |8*(x,X,’l)|dy,=/ 0%, du
n— o0 B}: B])(c
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for all k € N. Whence
/ 8% (x, Xoo) | dp = lim / 18 (x, Xoo) | dpt
Q k—o00 B;(c
T k—oo

< lim ng,d,uzf 0%, dpn < oo,
B} Q

which shows the desired integrability property.
Finally, let us show the second inclusion of (7). Let o € G-SIL*_ Is X,
then from inclusion (C;) we deduce

VxcE, G-/ 1p,(Xoo —0)dp Cw*-cl (G-/ Ip,(w*Is X,, — o) du)
A A
Cw*-cl (G-/ w*-Is X,,—o d,u), (6.3.1)
A

where the last inclusion follows the fact 0 € w*-Is X,, — o a.e. Since
Ip, Xeo € ﬁlwk(E/)(“)’ for all & € N, by Strassen formula (see again

Theorem V-14, [17]), it follows

Vk e N, / §*(x, 1p, (Xoo —0))dp
A

=/8*(x,IDkXoo)du—/<x,Ichr>du
A A

:8*(x,/ leXood,u)—<x,/ IDkadu>
A A

= §*(x, G-/ Ip,(Xoo —0)dp). (6.3.2)
A
From (6.3.1), (6.3.2) and the fact that (D) 1 1 it follows
Vxe E, YAeF, & <x,G—f Xoo—adu)
A
< / §*(x, Xoo —0)dp
A

= lim [ §*(x,1p,(Xeo —0))du
k—o0 J A

= lim 8*(x,G—/ 1p,(Xoc —0)dp)
k—o00 A

< §*(x, w*-cl (G-/ w*-Is X,, —odw)). (6.3.3)
A
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Moreover, by Proposition 5.2, the set w*-cl (G- fA w*-Is X, du) is convex
w*-closed and so is w*-cl (G- fA w*-Is X, —o du). Therefore (6.3.3) entails

G—/ Xoo —0dpu C w*-cl <G—/ w*-Is X, —ad,u) )
A A

Equivalently
G—/ Xoodp C w*-cl (G—/ w*-Is X, du),
A A

which is the desired inclusion (C»). O

As a direct consequence of Theorem 6.3, Corollary 4.6 and Theorem 5.8
in [12] we have the following

Corollary 6.4. Let (X)) be a sequence in gclwk(E,)(u) satisfying the follow-
ing conditions: '
(i) (X,) is LO-1im sup-MT.
(ii) (X,) is scalarly L'-liminf -MT.
(iii) liminf d g, (0, X,,) € L (1)

Then there exist a multifunction Xoo € ch, wk( E/)(,u), a subsequence (X)) of
(Xy) and a sequence (Dy) in F with limy [,L(Dk) = 1 satisfying (1)—(6) of
Theorem 6.3, and if |1 is nonatomic

(7 VA e F, G—/

Xoodp C w*-cl (f w*-Is X, du) .
A A

The following is an application of the preceding result to weak compact-
ness in the space ggwk(E,) ()

Corollary 6.5. Let (X)) be a sequence in chwk( E,_)(/JL) satisfying the follow-
ing conditions:

(i) (Xp) is LO-1im sup-MT.
(ii) (6*(x, X)) is uniformly integrable.

Then there exist a subsequence (X)) of (X,) and X € ggwk(m(u) such
that
VAe F,Vx € E,

lim 8*(x,X;l)du,=/ 8*(x, Xoo)dt
A

n—o0 A

with Xoo(@) C w¥clco [w*-1s X, (w)] a.e.
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We finish this section by providing the following Fatou lemma which
is a multivalued version of Corollary 5.5. Its proof is essentially based on
Theorem 5.3 and Proposition 3.5.

Proposition 6.6. Suppose that v is nonatomic, E is a separable Banach
space and (X)) in chwk(E,) () satisfying the following conditions:

(i) (X,) is LO-1im sup-MT,
(ii) (Xp) is scalarly L'-lim inf -MT.
(iii) liminfd g (0, X,,) € L (1)

Then the following inclusion holds

w*-1s G-/ X,du C w*-cl <f w*-Is X, d,u) - C*,
Q Q

where C is the cone of all x € E for which (max[0, §*(—x, X,,)]) is uni-
formly integrable and C* is the polar cone of C.

Proof. Let b be an arbitrary element of w*-Is G- [, X, d/v. Then there ex-
ist a subsequence of (X,) (not relabeled) and an associated sequence (f;;)
of G}E,[E](p,)—selectors such that b = w*-1lim,_, o fQ fndu. By (i) the se-
quence (f;) is L9 lim sup-MT. Furthermore, by (i), (ii) and Proposition 3.6,
(X,) is scalarly L'-1lim sup-MT. Using the inequality

Vxe E, lx, fu(@)| < [6"(x, Xp(@)| + 8" (—x, Xu(0)| ae.,

and Proposition 3.5, we conclude that ( f;,) is scalarly L'-1lim sup-MT. Con-
sequently, according to Theorem 5.3, we find foo € G}Z,[E](,u), a subse-
quence (g,) of (f,) and a sequence (Cx) in F with limg u(Cyx) = 1 such
that

VkeN, VxeE, YAeF lim (x, gn)du = f (x, foo)du,
=00 JAnCy ANCy
(6.6.1)

VA e F, / le, foodpt € w*-cl </ lo,w*-Is g, d,u) . (6.6.2)
A A

We claim that

/ foodp € w¥-cl </ w*-Is X, du) . (6.6.3)
A A

Indeed, since condition (iii) ensures that Sllu*_ Is X, is non empty, thanks to

Theorem 5.8 in [12], we can choose ¢ in € SIL*_IS X, Then from (6.6.2) and
the inclusion 0 € w*-Is X,, — o a.e., it follows that
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Vx € E, / le, (foo —0) dp € w*-cl (/ le, (w*-Is gn — U)d//,)
A A

C w*-cl (/ w*-Is X,, — adu) .
A

This inclusion and the same arguments used in the proof of Theorem 5.3 -
(€2) prove our claim. On the other hand, let C’ be the cone of all x € E
for which (max[0, —(x, f,)]) is uniformly integrable and C’ its polar cone.
Since, foreachn € N, g, is a selector of X, necessary C C C’. Using (6.6.1)
and reasoning as in the proof of Corollary 4.8 we deduce

be/ foodu—C/C/ foodu — C*. (6.6.4)
Q Q

Combining (6.6.3)) and (6.6.4) gives

b € w*-cl </ w*-Is X, du) — C*.
A

7. Conditional expectation of weakly* closed convex
random sets in the dual

We finish our paper by providing the existence of conditional expectation of
w*-closed random sets which led to Fatou lemma for conditional expectation
in the space L}E,[E](u) and ﬁiwk(E;)(“)'

In the following, B is a complete sub o-algebra of F. For any subset H
in L}E,[E](B, w), and for any v € LY (B, ) we set

8* (v, H) = sup (v, u).
ueH

Definition 7.1. We shall say that T is a F-random (resp. B-random) closed
convex set in E}, if the multifunction T : Q = E is F (resp. B) measurable,
that is, the graph of T belongs to F x B(E;) (resp. B x B(E})).

We begin to state the existence and uniqueness of conditional expectation
of an integrably bounded F-random closed convex set I' in E (thatis, |I'| €
Ly(F).

Definition 7.2. A B-random closed convex set ¥ in E; is called conditional
expectation of T if:

(i) There is B € LIIR{Jr (B) such that = (w) C B(w)Bg a.e.

(ii)Vx € E,VB € B, fB 8*(x, T(w))du(w) = fB §*(x, M'(w))du(w).
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Since E} is Suslin and its dual is equal to E, by virtue of Theorem V.14
(i7) is equivalent to

VB ¢ B, / S (@)dp() = / I (@)dp (),
B B
which is equivalent to
Vx € E, 8*(x, () = EBs*(x,T(w)) ae.

here EB f denotes the usual conditional expectation of an integrable func-
tion f. We provide an existence and uniqueness result of conditional expec-
tation of an integrably bounded F-random closed convex set in E; extending
Theorem VIIL.34 in [17] because here the strong dual E, of E is no longer
separable. This need a careful look involving a sequentially compactness re-
sult in [13, Corollary 6.5.10], and some other techniques.

Theorem 7.3. Under the foregoing hypotheses there exists a unique (for
equality a.e.) conditional expectation of I', . Moreover X has the prop-
erties:

(a) (w) C EB(T)(w)Bp a.e.
(b) The integral functionals

Is v / 8*(v(w), T(w))du(w) and Ir : v / §*(v(w), T'(w))du(w)
Q Q

are continuous on the closed unit ball EL%O(B) of L%O(Q, B, i) endowed
with the topology of convergence in measure and coincide on the subset of
all simple functions v =Y _7_, 1p,x;, with the disjoint B; € B, x; € E.

(c) S%(B) is sequentially G(L}S,[E](B), LY (B)) compact (here S%;(B)
denotes the set of all L}E,[E](Q, B, ) selections of ¥) and satisfies the
inclusion

EBSL(F) c SL(B).
(d) Furthermore one has
5* (v, EPSL(F) = (v, S3,(B))
forallv e LY (B).

Proof. Step 1 To prove the existence of ¥ we apply Theorem V.17 in [17]
by recalling that E/ is a e.l.c Suslin space and E is its dual. Then we
take in this theorem A:Lﬁ{(Q, B, 1) and A* = L%?(Q, B, n). We put
M(f) = [ fTdu for f € A*. Since E' = U,nBp/, the mapping M mets
conditions (i)—(iv) of Theorem V.17 in [17]. So there exist a B-measurable
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convex o (E’, E) compact valued, scalarly integrable multifunction ¥ such
that, Vf € A*, M(f) = [ fZdp. Taking f=15(B € B), we obtain
Jp Tdu = [ Tdp. The uniqueness follows easily as in the proof of The-
orem VIII.34 in [17]. Indeed, let X and X, be two convex 3-measurable
convex o (E’, E) compact valued, scalarly integrable multifunction such that

Ve A, M(f) =/f21du=ff22du-

By Strassen Theorem V.14 in [17], we have, forevery x € E, §*(x, Z1(w)) =
8*(x, Xy (w)) a.e. By Proposition I11.35, we deduce that X (w) = o (w) a.e.

We will denote EBT' =3 the unique B-measurable convex o (E’, E)
compact valued, scalarly integrable multifunction ¥ which verifies

Vf e A*, M(f):/fzdu.

Taking f = 15(B € B), we obtain

/EBFd,uzf Tdp.
B B

Now we provide the properties of the conditional expectation E Br It is wor-
thy to mention that, when I'=u € L%,[E](f), then the EB of u, EBu, be-
longs to L}E,[E](B) and satisfies

VfelLy (R, B, w, /fudu:/fEBud,u.

Step 2 (a) For x € E, one has

§*(x, Z(w)) = EBS*(x, T(O)) (@) < EB(||x]1.IT]) (@)
= |IXIEB(IT ) (@) = EB(IT)(@)8*(x, Bg).
for a.e. w € . Again by [17, Proposition II1.35], we have X (w) C

EB(T)(@)Bg.
(b) It is clear that the formula

/ 5* (0(@), T(@))dp(@) = / 5* (0(@), T(@))d (@)

holds if v = Z?:l 1p,x;, with the disjoint B; € B,x; € E. Now we claim
that the integral functionals

Is v / §*(v(w), T(w)du(w) and Ir v / §*(v(w), T'(w))dpu(w)
Q Q
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are continuous on the closed unit ball EL%O(B) of LY (2, B, i) endowed with

the topology of convergence in measure. Indeed we have for v, w € EL?(B)
the estimate

‘ /Q 5 (v(@), B(@)dp(w) — /Q 5 (w(®), T(@)du()

< /Q 15 (0(@), @) — 5w (@), (@) du)

< [ max @ (@) = w(o), 2@, 5" W@ ~ v(0). Z@)du()
<2 [ Iv@ - w@ I EE(r) @dpc)

and similarly

' [ 5w rendite) - [ 5w rendue
< [ 150 ) - 5" ). T@)ldu(e)
< [ max* (@) — w(@), T@). 8" (o) = v@), F@)dun(o)

=< 2/ [[v(@) — w(@)||T'|(w)dpu(w).

So (b) follows. If E is reflexive, one can see that Iy, and I+ are Mackey con-
tinuous since the topology of convergence in measure on B L¥(B) coincides

with the Mackey convergence 7 (L%, L}E,).
(c) The sequential o (LL,[E](B), L%’ (B)) compactness of 531; (B) follows
from Step 1 and Corollary 6.5.10 in [13]. Letu € Sll (F) and x € E. Then

(x, EBuy < EB[(5*(x, T()] = 6*(x, 2()) ae.
So again by [17, Proposition II1.35], EBu € Sé (B) and hence

EBSL(F) c SL(B). ™

(d) By (%), it is immediate that
§* (v, EBSL(F)) < 8*(v, SL(B))

for all v € LY (B). Let us prove the converse inequality
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5* (v, EBSL(F)) = 8*(v, SL(B)). ()

Letv € L3 (B). Let u be a maximal F measurable selection of I' associated
with v, that is

(v(w), u(w)) = §*(v(w), T'(w)), Yo e Q.

See [17, Theorem II1.22]. Then it is obvious that u € LL,[E](, F, ).
Furthermore, by applying the equality of conditional expectation given in

Step 2(b)
/(v,u)d,u = /(v, EBbt)d/L.

§*(v, EBSL(F)) = (v, EBu) = /(v, EBu)dpu

One has

=f<v,u>du= (v, ) =/Qs*<v<w>,r(w>>du(w>

= / §*(v(w), Z(w))du(w) (by (b) and approximation)
Q
> (v,uy) forany u € Sé(B).
Finally
8" (v, EBSL(F)) = 8*(v. S1.(B)) (e %)
forall v € LF (B). O

Remarks. When E is a reflexive separable Banach space and I' €
Llwk(E,)(Q,}', ), then conditional expectation EBL of T belongs to

Ecl,wk(E,)(Q, B, 1) and satisfies
8% (v, EBSHF)) = 8" (v, S5 (B))
forall v € LY (B) so that
EBSL(F) = SLB)

because EBSIL(]-') and S&Z(B) are convex O'(Ll,(B),L%O(B)) compact,
meanwhile the existence and uniqueness of EB met in Theorem 7.3 are un-
usual because the dual space is not strongly separable. See also [27] dealing
with CE of Random Sets in the dual of a separable Fréchet space via the
regular conditional probability.

To end the paper we provide the existence and uniqueness of condi-
tional expectation of a closed convex F random set in Ej in the line of
[17, Theorem VIIL.35].
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Theorem 7.4. Let T" be a closed convex F-random set in E', which admits an
selection ugy € L}E,[E](}'). For every n and very w, let

Tw(@) = T'(o) [ wo() +nBp),

n

E(w) = whel |:U EB(Fn)(w)i| .

Then: (a) ¥ which is a.e. convex, is a unique (for the equality a.e.) B closed
convex random set in E|, with

Vo e L (B), /Q 5* (0(@), T(@))du(w) = /Q 5* (0(@), T'(@))d ().

(b) X is the smallest (for inclusion a.e.) of the B closed convex random set ®
such that
EBSL(F) c 84B).

We shall denote EPT = % and says that ¥ is the conditional expectation
of T.

Proof. The proof is the same as in [17, Theorem VIII.35], using Theorem 7.3,
the monotone convergence theorem and measurable projection theorem
which ensures the uniqueness. Here the measurability of X is ensured
thanks to Corollary 5.3 in [12]; at this point, let us mention that I" ad-
mits a L}E,[E](]-" ) selection iff d(0, I') is p-integrable (see Lemma 5.6 in
[12]). O

The results obtained in this section led to Fatou lemma for conditional
expectation of weak-star random sets in a dual space.
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