Web-Infrastrukturen mit dem **SAP NetWeaver® Application Server**

Oliver Nocon, Volker Zirkel

Inhalt

1	Ein [.]	iführung	5
2	We	eb-Infrastrukturen	9
	2.1	Technische Anforderungen von Webapplikationen	
		Transaktionalität	9
		Skalierbarkeit	9
		Performance	10
		Sicherheit	10
		Stabilität	11
	2.2	Web-Infrastruktur-Szenarien	13
		Typische Webzugriffsszenarien	13
		Klassifizierung von Webzugriffsszenarien	14
		Ist der Zugriff aus dem Internet auf ein internes System sicher?	15
		Lässt sich dieselbe Infrastruktur für internen und externen Zugriff nutzen?	17
	2.3	Netzwerkzonen	19
		Internet	19
		Äußere DMZ (Frontend DMZ)	19
		Innere DMZ (Infrastructure DMZ)	19
		Hochsicherheitszone (Backend-LAN)	20
	2.4	Web-Infrastruktur-Layout	20
		Netzwerkelemente	21
		Empfehlungen	23
3	Loa	ad Balancing	27
	3.1	Load-Balancing-Verfahren	
		Clientbasiertes Load Balancing	28
		DNS-basiertes Load Balancing	29
		Serverbasiertes Load Balancing	31
	3.2	Load-Balancing-Algorithmen	34
	3.3	Setup und Funktionalität des SAP Web Dispatchers	35
		Installation	36
		Initiale Anmeldung	
		Änderung des Load-Balancing-Verfahrens	
		Weitere Funktionen	41

4	Infr	astruktursicherheit	43
	4.1	Härtung der Infrastruktur	43
	4.2	Firewalls	44
		Statische Paketfilter	44
		Dynamische Paketfilter	45
		Application Gateway	45
	4.3	Konfigurationsanforderungen an Application Gateways	47
		Potenzielle Problemfelder	47
		Vermeidung von Problemen	48
	4.4	Konfigurationsanforderungen an Anwendungen	49
		Host-Konfiguration in KMC	49
		Content Rewriting	51
	4.5	Beispiel: Apache als Application Gateway für einen Application Server	52
		Basiskonfiguration Apache als Application Gateway	52
		Vervollständigung der grundlegenden Apache-Konfiguration und Verschlüsselung der	
		Kommunikation	53
	4.6	Beispiel: Apache als Application Gateway für mehrere Application Server	55
5	An۱	wendungssicherheit	57
	5.1	Authentifizierung	57
		Form-based-Login/HTTP Basic Authentication	57
		X.509-Client-Zertifikate	57
		Headerbasierte Authentifizierung	58
		Integrated Windows Authentication	58
		Login-Module	58
		Container-based Authentication	59
		UME-based Authentication	60
	5.2	Access Control Lists im SAP NetWeaver Portal	60
		Administrationsberechtigungen	61
		Endbenutzerberechtigungen	61
		Vererbung von Berechtigungen	62
	5.3	Security Zones im Portal	63
		Ursprüngliches Security-Zone-Konzept	64
		Neues Security-Zone-Konzept	64
		Berechtigungsvergabe für Security Zones	65
		Security Zone Enforcement	65
	5.4	Access Control Lists im Knowledge Management	66
	5.5	Sicherheitsproblematiken im Web	67
	5.6	Beispiel: Prüfung von Security Zones	68
	5.7	Beispiel: Anwendung des Permission Viewers	69
6	Но	chverfügbarkeit	71
	6.1	Ungeplante Ausfallzeit	
		Hochverfügbarkeitslösungen	72
		Hochverfügbarkeit für den SAP NetWeaver Application Server	72

		Beispiel einer Hochverfügbarkeitsarchitektur für den SAP NetWeaver Application Server Java	. 73
		Beispiel eines High-Availability-Setups für den SAP NetWeaver Application Server Dual Stack	. 75
	6.2	Geplante Ausfallzeit	. 77
		Nutzung eines Schattensystems zur Reduzierung von Planned Downtime	. 78
		Nutzung von Virtualisierung zur Erstellung eines Schattensystems	. 81
		Wartungsdurchführung in isolierter Netzwerkumgebung	. 82
		Wartungsabschluss bzw. Rollback	. 82
		Systemrollentausch (Switch)	. 83
7	Sizi	ing und Lasttests	. 85
	7.1	SAP-Sizing-Prozess	
		Prozessbeschreibung	. 86
		Quick Sizer	. 87
		Sizing-Varianten	. 88
		Prozessunterstützung	. 89
	7.2	Beispiel: Quick Sizer	. 89
		Arbeiten mit dem Quick Sizer	
	7.3	Lasttests	. 93
		Lasttestvarianten	. 93
		Lasttestprozess	. 94
		Lasttestsoftware	. 98
8	Per	formance	. 101
	8.1	Client-Performance	. 101
	8.2	Server- bzw. Anwendungsperformance	. 102
		Einflussfaktoren auf die Anwendungsperformance	. 102
		Datenbankperformance	. 102
		Konfiguration der Laufzeitumgebung	. 103
		Serverseitiges Caching	. 103
		Performance der Anwendung	. 104
	8.3	Netzwerkperformance	. 105
		Einflussfaktoren auf die Netzwerkperformance	. 107
		Paketverluste im Netzwerk	. 108
		Netzwerklatenz	. 108
		Bandbreite	. 111
	8.4	Konfiguration des SAP NetWeaver Application Servers Java	. 111
		Keep-Alive	. 111
		Client-Caching	. 112
		Komprimierung	. 114
	8.5	Beispiel: Performanceanalyse	. 115
		Beispielszenario	
		Messung der Netzwerkperformance	. 115
		Messung der Client-Performance	. 116
		Messung der Serverperformance	. 117

9	Wei	itere Zugriffsszenarien	119
	9.1	Terminal-Server	119
		Vorteile	120
		Nachteile	120
		Szenarien für den Einsatz	121
	9.2	Virtual Private Networks	121
		Vorteile	122
		Nachteile	122
	9.3	WAN-Beschleunigung	123
		Web Proxy Caches	123
		WAN-Beschleunigungshardware	124
		Application und Content Delivery	125
		SAP Application Delivery over WAN	125
	9.4	Beispiel: Performanceverbesserung mit Squid	126
10	Zus	ammenfassung und Ausblick	129
	Inde	PY	131

4 Infrastruktursicherheit

In diesem Kapitel wenden wir uns dem Thema Infrastruktursicherheit mit dem Schwerpunkt Application Gateways zu. Nach einem Überblick über generelle Sicherheitsfaktoren, die Sie in Ihrer Infrastruktur berücksichtigen sollten, geben wir Ihnen zunächst eine Einführung in das Thema Firewalls. Im Anschluss daran konzentrieren wir uns auf das Thema Application Gateways, insbesondere auf die Nutzung mit einem SAP NetWeaver Application Server. An den Theorieteil anschließend zeigen wir Ihnen, wie Sie den Apache-Webserver in einer SAP-Landschaft als Application Gateway einsetzen können.

Härtung der Infrastruktur 4.1

Aus Infrastrukturgesichtspunkten beeinflussen mehrere Faktoren die Sicherheit eines Gesamtsystems. Man spricht von Härtung eines Systems bzw. einer Infrastruktur, wenn diese Sicherheitsfaktoren adressiert werden. In diesem Abschnitt führen wir die wichtigsten Aspekte ein, die Ihnen bei der Definition eines sicheren Systems innerhalb eines Projektes helfen sollen.

► Firewall- und Netzwerksicherheit

Einen wichtigen Aspekt stellen Dienste dar, die innerhalb der Infrastruktur erreichbar sind, sogenannte offene Ports. Sofern diese Dienste notwendig sind und daher nicht abgeschaltet werden können, sollten Zugriffe durch strikte Firewall-Regeln mindestens eingeschränkt oder, wenn möglich, sogar verhindert werden.

Ein weiterer wichtiger Aspekt ist die Verschlüsselung des Netzwerkverkehrs. Dies betrifft zum einen die Kommunikation zwischen Client und Server und zum anderen die Kommunikation zwischen serverseitigen Komponenten. Sie sollten besonderes Augenmerk auf die allgemeinen Schutzziele (Integrität, Authentizität, Vertraulichkeit und Verbindlichkeit) legen. Verwendete kryptografische Algorithmen sowie Schlüssellängen und Zertifikate sind dabei typische Auswahlkriterien in der Praxis. Hierzu liefern unter anderem das Bundesamt für Sicherheit in der Informationstechnik (http://www.bsi.de) und das Federal Bureau of Investigation (http://www.fbi.gov) entsprechende Empfehlungen.

► Betriebssystemsicherheit

Für die Betriebssysteme, auf denen Serverkomponenten installiert sind, gilt das Minimalprinzip, das heißt, nur die wirklich notwendigen Komponenten sowie Dienste sollten installiert sein. Jeder ungenutzte Dienst und jede ungenutzte Anwendung kann zu Sicherheitsproblemen führen. Für alle installierten Komponenten sollten immer der neueste Patch sowie die aktuellsten Security-Fixes eingespielt sein. Patches und Fixes sollten zudem nur von den Seiten des Herstellers bezogen werden.

Installierte Dienste und Anwendungen sollten im Kontext eines Benutzers mit eingeschränkten Betriebssystemrechten betrieben werden. Dies verhindert im Falle eines Einbruchs in das System, dass der Einbrecher sofort jegliche Betriebssystemberechtigung erlangt.

Auf der Seite des Betriebssystems sollte ein spezielles Augenmerk auf das Dateisystem gelegt werden. Vergeben Sie restriktive Dateisystem-Berechtigungen, damit nicht jeder direkt am System angemeldete Benutzer Zugriff auf schutzwürdige Informationen erhält. Zusätzlich muss sichergestellt werden, dass schützenswerte Daten im Dateisystem durch Verschlüsselungsmechanismen gesichert werden. Ein Beispiel hierfür ist der Secure Store des SAP NetWeaver Application Servers Java, in dem zum Beispiel das Datenbankzugriffspasswort abgelegt ist.

Datenbanksicherheit

Wie beim Thema Betriebssystemsicherheit sollte auch auf Seiten der Datenbank sichergestellt sein, dass alle aktuellen Security-Fixes installiert sind. Zudem gilt, dass innerhalb der Datenbank entsprechende Berechtigungen beispielsweise auf Schemaebene existieren, damit nicht ein beliebiger Datenbankbenutzer Zugriff auf Daten aus einem geschützten Bereich erhält.

► Directory-Server-Sicherheit

Bei der Sicherheit eines eventuell eingesetzten Directory-Servers ist wiederum darauf zu achten, dass über entsprechende Berechtigungen schützenswürdige Bereiche vor Benutzern verborgen werden und das System auf dem aktuellen Patch-Stand gehalten wird.

► Security Audit Logging

Aufgabe des Security Audit Loggings ist die Dokumentation sicherheitskritischer Änderungen, zum Beispiel von Berechtigungsänderungen. Das Security Audit Logging stellt somit einen wichtigen Faktor für die Nachvollziehbarkeit von Änderungen in einem System dar. Es ist wichtig, dass Sie sich mit der entsprechenden Funktionalität der in Ihrem Unternehmen eingesetzten Software auseinandersetzen. Für den AS Java finden Sie zum Beispiel Details in der SAP NetWeaver-Dokumentation im SAP Help Portal auf http://help.sap.com mit dem Suchbegriff »Security Audit Log of the AS Java«.

► Anwendungssicherheit

In Kapitel 5, »Anwendungssicherheit«, gehen wir auf diesen Aspekt im Detail ein. Wichtige Themen in diesem Bereich sind unter anderem Anwendungsberechtigungen und für den Systembetrieb notwendige Anwendungsdienste. Welche Dienste für welche Szenarien deaktiviert werden können, beschreibt SAP-Hinweis 871394.

► Physische Sicherheit

Ergänzend zu den bisher genannten Punkten ist die physische Sicherheit der Server zu betrachten. Der physische Zugriff auf die Server im Rechenzentrum darf nur einem kleinen Kreis autorisierter Personen möglich sein. Außerdem sollten Backup-/Restore-Prozeduren definiert sein, um die Datensicherheit des Systems im Falle eines Hardwareproblems etc. sicherzustellen. Hierzu gehört auch die sichere Verwahrung der Backup-Medien.

In diesem Heft adressieren wir hauptsächlich die Themen Anwendungs- sowie Netzwerksicherheit. Sofern Sie weitere Details zu den thematisierten Bereichen benötigen, empfehlen wir Ihnen die SAP Security Guides der einzelnen Produkte, die hierzu zahlreiche Informationen enthalten. Sie finden die Security Guides im SAP Help Portal (http://help.sap.com) in den einzelnen Anwendungsbereichen.

4.2 Firewalls

Bei Firewalls handelt es sich um Sicherheitskomponenten, die in einem Netzwerk eingesetzt werden. Sie dienen dazu, den Verkehr zwischen bestimmten Netzwerksegmenten abzusichern bzw. zu reglementieren. Wie Sie in Kapitel 2, »Web-Infrastrukturen«, gesehen haben, empfehlen wir den Einsatz einer Firewall zwischen allen Netzwerksegmenten:

- zwischen Internet und äußerer DMZ
- zwischen äußerer DMZ und innerer DMZ
- zwischen innerer DMZ und Hochsicherheitszone
- zwischen Intranet und Hochsicherheitszone
- zwischen Intranet und DMZ

Firewalls sind von einfachen, sogenannten statischen Paketfiltern über ausgereifte dynamische Paketfilter bis hin zu Application Gateways oder Application Layer Firewalls weiterentwickelt worden. Auf die Einzelheiten dieser Firewall-Typen gehen wir im Folgenden näher ein.

Statische Paketfilter

Statische Paketfilter werden auch als Firewalls der ersten Generation bezeichnet. Diese entscheiden anhand der Informationen im IP-Header, ob ein Paket weitergeleitet wird oder nicht. Innerhalb dieses Headers stehen Informationen wie Quelladresse, Zieladresse, also auch die Richtung der Kommunikation, sowie der Serviceport zur Verfügung. Man spricht von statischen Paketfiltern, da die »Lücken« in der Firewall permanent bestehen bleiben und nicht nach Bedarf geöffnet bzw. geschlossen werden.

Das Verfahren ist sehr verbreitet, da es als klassische Router-Lösung in jedem Router verfügbar ist. In Abbildung 4.1 sehen Sie eine Firewall, die den Zugriff über Port 443 (normalerweise für HTTPS genutzt) zulässt. Alle Anfragen an andere Ports sind geblockt.

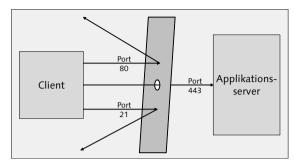


Abbildung 4.1 Statischer Paketfilter

Das Verfahren bietet folgende Vorteile:

- ► Es bietet einen hohen Datendurchsatz.
- ► Es ist transparent für die Anwendung, eine Anpassung aufseiten der Anwendung ist daher nicht nötig.
- Es ist sehr kostengünstig.
- Das Setup ist einfach.

Neben diesen Vorteilen ergeben sich allerdings auch gravierende Nachteile:

- ► Es bestehen direkte Kommunikationsverbindungen zwischen Quelle und Ziel.
- Das Verfahren ist anfällig für IP-Spoofing-Attacken.
- ► Das Regelwerk kann kompliziert und dadurch fehleranfällig werden.
- Eine Benutzerauthentifizierung ist nicht möglich.
- Angriffe auf Anwendungsebene können nicht erkannt werden.

Dynamische Paketfilter

Bei dynamischen Paketfiltern (auch Stateful Packet Filter bzw. Stateful Inspection) handelt es sich um die klassische Firewall-Lösung, die einige Schwächen von statischen Paketfiltern beseitigt. Man spricht daher von Firewalls der zweiten Generation.

Im Gegensatz zu statischen Paketfiltern werden bei dynamischen Paketfiltern die Verbindungskanäle nicht offen gehalten, sondern immer wieder geschlossen, da neben den reinen IP-Informationen zusätzlich Protokollinformationen ausgewertet werden. Dadurch ist es möglich, Informationen zum Status einer Verbindung zu erhalten und die Filterregeln an Protokollspezifikationen anzupassen. Dynamische Paketfilter können somit

Gefahren erkennen, die beim reinen statischen Paketfilter nicht erkannt werden, indem die IP-Pakete nicht einzeln, sondern im Protokollkontext betrachtet werden.

Abbildung 4.2 zeigt, dass neben der reinen Portinformation außerdem überprüft wird, ob es sich bei dem Protokoll um HTTP handelt. Falls nicht, wird die Verbindung untersagt.

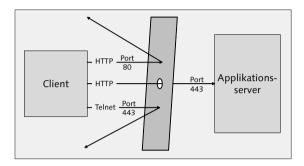


Abbildung 4.2 Dynamischer Paketfilter

Dynamische Paketfilter bieten vielfältige Vorteile:

- ► Sie erlauben einen hohen Datendurchsatz.
- Lücken sind nur zeitweise vorhanden, da die Verbindungskanäle immer wieder geschlossen werden.
- ► Sie bieten die Unterstützung fast aller Dienste.

Neben den genannten Vorteilen ergeben sich allerdings ebenfalls wieder einige Nachteile:

- ► Es bestehen direkte Kommunikationsverbindungen zwischen Quelle und Ziel.
- ► Eine Benutzerauthentifizierung ist nicht möglich.
- ► Angriffe auf Anwendungsebene können nicht erkannt werden.

Application Gateway

Application Gateways oder auch Application Layer Firewalls prüfen den Inhalt der übertragenen Daten auf Anwendungsebene. Ein Application Gateway kann beispielsweise Informationen innerhalb des HTTP-Datenstroms auswerten und auf Basis dieser Informationen entscheiden, ob eine Anfrage erlaubt oder blockiert wird.

Die meisten Application Gateways beinhalten integrierte Proxys. Dies bedeutet, dass es für den Empfänger der Informationen so aussieht, als ob das Application Gateway den Absender der Informationen darstellt. Auf der anderen Seite stellt das Application Gateway für den Application Server den Client dar. Somit agiert das Application Gateway gewissermaßen als Mittelsmann.

Mittelsmann Application Gateway

Man könnte das Application Gateway mit einem Anwalt vergleichen, der zwischen zwei Parteien vermittelt, ohne dass sich die zwei Parteien direkt miteinander unterhalten. Die Parteien müssen sich darüber hinaus gegenseitig nicht kennen bzw. nicht von ihrer Existenz wissen.

Für die Kommunikation werden zwei separate TCP-Verbindungen benötigt, wie in Abbildung 4.3 dargestellt ist:

- ► Client zu Application Gateway
- ► Application Gateway zu Applikationsserver

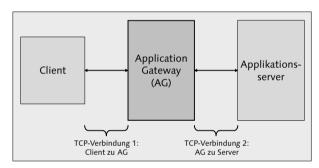


Abbildung 4.3 Application Gateway

Zwischen Client und Server besteht somit keine durchgehende TCP-Verbindung.

Darüber hinaus ermöglicht die Proxy-Funktionalität, dass bestimmte Informationen auf dem Application Gateway zwischengespeichert/gecachet werden. In diesem Zusammenhang wird auch immer wieder von Reverse-Proxy-Servern gesprochen. Reverse-Proxy-Server ordnet man somit in die Kategorie der Application Gateways ein. Ein Application Gateway ist, genau genommen, mehr als ein Reverse-Proxy, da es meistens mit zusätzlichen Firewall-Funktionalitäten ausgestattet ist.

Der Ausdruck Reverse-Proxy leitet sich davon ab, dass ein solcher Proxy genau umgekehrt zu einem normalen Webproxy funktioniert. Ein Webproxy stellt für einen bzw. mehrere Clients innerhalb eines geschützten Netzwerks eine Verbindung zu vielen Webservern außerhalb dieses Netzwerks dar - eine direkte Kommunikation mit dem Application Server ist nicht möglich. Die Verwendung eines Reverse-Proxys beruht auf der Idee, dass der Server in einem geschützten Netzwerk und die Clients in einem eventuell ungeschützten oder nicht vertrauenswürdigen Netzwerk stehen.

Application Gateways bieten folgende Vorteile:

- ► Sie ermöglichen die Analyse des Datenverkehrs auf Anwendungsebene.
- ► Eine direkte Kommunikationsverbindung zwischen Ouelle und Ziel existiert nicht.
- ► Sie bieten die Unterstützung zusätzlicher Authentifizierung (sofern gewünscht), bevor der Request den Application Server erreicht.
- ► Umfassendes Logging ist möglich, sofern der Datenstrom im Klartext vorliegt.

Obwohl es sich bei Application Gateways um die sichersten erhältlichen Firewalls handelt, bestehen auch hier einige Nachteile:

- ► Sie sind langsamer als Paketfilter.
- ► Eventuell müssen Konfigurationsanpassungen der Anwendungen vorgenommen werden.
- ► Sie unterstützen nicht jede Art von Anwendung/ Dienst (abhängig vom jeweiligen Produkt).
- ► Man muss häufig eine komplexe Konfiguration in Kauf nehmen, was zu Fehlern führen kann.

Welches Application-Gateway-Produkt?

Abhängig von Ihren Sicherheitsanforderungen ergibt sich die Möglichkeit, aus verschiedenen Application-Gateway-Produkten bzw. Produkten mit Application-Gateway-Funktionalitäten zu wählen. Nachfolgend finden Sie eine Auswahl:

SAP Web Dispatcher

Der SAP Web Dispatcher ist mit grundlegenden Application-Gateway-Funktionalitäten ausgestattet (siehe auch Kapitel 3, »Load Balancing«). In diesem Heft konzentrieren wir uns allerdings auf seine Load-Balancing-Funktionalitäten, um eine möglichst heterogene und generische Systeminfrastruktur vorzustellen. Anstelle des Apache-Servers, den wir in unserer Beispielkonfiguration benutzen, kann eventuell auch der SAP Web Dispatcher eingesetzt werden.

Apache-Webserver

Der Apache-Webserver bietet ebenfalls Application-Gateway-Funktionalität. So lassen sich zum Beispiel auf der Basis von regulären Ausdrücken komplexe Weiterleitungsregeln konfigurieren. Alternativ kann durch eigene Module der Datenstrom beliebig angepasst werden. Daher ist Apache als Webserver und Application Gateway häufig im Einsatz.

Da es sich bei Apache um ein Open-Source-Produkt handelt, stellt sich allerdings eventuell die Frage nach dem Support für die Nutzung in einem Produktivszenario.

Spezielles Sicherheitsprodukt

Auf dem Markt sind viele spezialisierte Application-Gateway-Produkte verfügbar, die über vielfältige Konfigurationsoptionen verfügen. Oft handelt es sich um kombinierte Software- und Hardwarekomponenten, die in Ihr Netzwerk als Appliance integriert werden können. Für ein System mit höchsten Sicherheitsanforderungen wird ein solches Produkt wohl in die engere Auswahl kommen.

Nicht zu vernachlässigen ist allerdings der Kosten-Nutzen-Aspekt. Dieser sollte an den individuellen Schutzzielen ausgerichtet sein und spricht eventuell gegen ein solches Produkt.

4.3 Konfigurationsanforderungen an **Application Gateways**

Als einen der Nachteile eines Application Gateways haben wir die möglicherweise fehlende Transparenz auf Anwendungsebene genannt. Der Grund ist, dass ein Application Gateway die Kommunikation auf Anwendungsebene unterbricht - im Falle einer Webanwendung wird die Kommunikation auf HTTP-Ebene unterbrochen.

Potenzielle Problemfelder

Aus den zwei voneinander unabhängigen Kommunikationsverbindungen können mehrere Probleme resultieren, die nachfolgend diskutiert werden sollen.

Probleme mit Servernamen

Aufgrund unterschiedlicher DNS-Auflösung ruft ein Client den Application Server in der Regel mit einem anderen Hostnamen bzw. Full Qualified Domain Name (FQDN) auf als das Application Gateway. Dies kann dazu führen, dass ein Server auf eine Anfrage über das Application Gateway eine URL als Antwort sendet, die der Client nicht erreichen kann; damit tritt eine Fehlersituation auf.

Webanwendungen sollten immer relative URLs zur Referenzierung anderer Ressourcen benutzen, also URLs, die keine Serverinformationen beinhalten, zum Beispiel /irj/servlet/prt/portal/prtroot/test.app. In manchen Situationen sind absolute URLs, wie beispielsweise http://portal.domain.com/test, nicht zu vermeiden. Dies ist unter anderem der Fall, wenn eine Rückreferenz an eine Anwendung geschickt werden muss; zum Beispiel im Fall, dass das Portal einer Anwendung den Link auf die Portal-Stylesheets übergibt, sodass aus dieser Anwendung heraus auf die Portal-Stylesheets zugegriffen werden kann. Dies ist erwünscht, um ein einheitliches Aussehen der Applikation zu erreichen. Des Weiteren muss zum Beispiel eine absolute URL in E-Mail-Benachrichtigungen verschickt werden.

Die Problematik mit Servernamen kann auch im Zusammenhang mit serverseitigen Redirects auftreten, das heißt, wenn ein Server eine Client-Anfrage auf eine andere Ressource bzw. ein anderes Verzeichnis umleitet und dabei ein absolutes Adressierungsschema verwendet.

► Protokollprobleme

Eine gängige Praxis ist, dass auf einem Application Gateway eine verschlüsselte Verbindung terminiert wird. Aus Sicherheitsgesichtspunkten kann dies akzeptabel sein, sofern die Kommunikation vom Application Gateway zum Application Server in einer geschützten Netzwerkumgebung stattfindet. Der Vorteil einer solchen Konfiguration ist die Entlastung des Application Servers. Die für eine SSL-Verbindung notwendige Ver- und Entschlüsselung findet auf dem Application Gateway statt, dies wird als Offloading bezeichnet. Zusätzlich wird der Konfigurationsaufwand reduziert, da keine Zertifikate in die Application Server eingespielt werden müssen.

Der Wechsel des Protokolls von HTTPS zu HTTP kann aber wiederum zu Problemen mit absoluten URLs auf dem Application Server führen, da eine HTTP-Anfrage an den Server gestellt wird und für den Server zunächst nicht ersichtlich ist, dass der Client eine SSL-Anfrage gestellt hat.

Aus Performancegründen und zur Gewährleistung einer fehlerfreien Kommunikation mit dem AS Java sollten Sie darauf achten, dass Ihr Application Gateway HTTP 1.1 unterstützt.

▶ Cookie-Probleme

Ein weiteres denkbares Problemfeld stellen Cookies dar. Cookies werden über den HTTP-Header Set-Cookie ausgegeben. Hier ist es möglich, dass ein Server ein Cookie für eine bestimmte Domäne ausstellt, zum Beispiel company.com. Dies geschieht durch folgenden Eintrag im Set-Cookie-Header:

domain=company.com

Wird nun das Application Gateway über die Domäne company.net angesprochen, akzeptiert der Browser die Domäne company.com nicht, da dies die Cookie-Spezifikation RFC 2109 verbietet (siehe http://rfc. dotsrc.org/rfc/rfc2109.html). Der Browser wird daher den Hostnamen des Servers als gültige Cookie-Domäne wählen. Somit erhält der Client ein Cookie, das nur für server.company.net gültig ist und nicht, wie gewünscht, für die Domäne company.com. Dies führt gewöhnlich zu Folgeproblemen.

► Anmeldeinformationen

Für den Fall, dass auf dem Application Gateway aus Sicherheitsgründen eine Anmeldung durchgeführt werden soll, müssen Sie berücksichtigen, dass der Application Server diese Informationen erhält. Dies gilt selbstverständlich nur für den Fall, dass keine zweistufige Anmeldung gewünscht ist. Bei HTTP-Parametern stellt dies kein Problem dar. Schwierigkeiten entstehen aber in aller Regel, wenn komplexere Anmeldemechanismen wie beispielsweise X.509-Zertifikate zum Einsatz kommen. Hier müssen Sie über geeignete Mechanismen im Application Gateway sicherstellen, dass die Anmeldeinformationen zum Beispiel in einem HTTP-Header an den Application Server weitergeleitet werden.

Auch wenn diese Punkte kritisch klingen mögen, so sind sie in der Regel recht einfach zu vermeiden. Gleichwohl ist es aus unserer Erfahrung wichtig, dass Sie sich potenzielle Probleme bewusst machen, um eventuell auftretende Komplikationen korrekt einschätzen zu können. Die notwendigen Anforderungen, die ein Application Gateway im SAP-Umfeld erfüllen muss, sind in SAP-Hinweis 833960 dokumentiert.

Vermeidung von Problemen

Um die benannten Probleme zu vermeiden, muss der Application Server Kenntnis darüber erlangen, wie der Client das Application Gateway anspricht. Dies bezieht sich auf den Hostnamen, den Port und auf das verwendete Protokoll.

► Host und Port

Hostname und Port sind über den HTTP-Header Host (sogenannter Host-Header) verfügbar. Damit der Application Server korrekt auf die Anfrage reagieren kann, muss ihn dieser HTTP-Header erreichen. Hierfür ist das Application Gateway verantwortlich. Der SAP NetWeaver AS liefert dann seinerseits den lokalen Anwendungen die Information aus dem Host-Header, in Java erfolgt dies über das HttpServletRequest-Objekt.

Protokoll

Da das Protokoll nicht im Host-Header erscheint und sich auf dem Application Gateway, bedingt durch die SSL-Terminierung, verändert, das heißt, ein Protokoll-Switch stattfindet, muss das Application Gateway diese Information ebenfalls dem Application Server mitteilen. Analog zu den Informationen aus dem Host-Header bezieht der Application Server diese Information aus einem HTTP-Header, der durch das Application Gateway gefüllt werden muss. Das Protokoll wird anschließend transparent an die Anwendung weitergegeben.

Der Name des HTTP-Headers ist im AS Java in den Optionen des HTTP-Provider-Service konfigurierbar. Standardmäßig ist der Name des HTTP-Headers ClientProtocol. Um den Namen neu zu konfigurieren, gehen Sie bitte wie im folgenden Kasten, »Konfiguration des Client-Protokoll-Headers (AS Java)«, beschrieben vor

Konfiguration des Client-Protokoll-Headers (AS Java)

Für den Fall, dass Ihr Application Gateway für die Weitergabe der Protokollinformation nicht den HTTP-Header ClientProtocol, sondern einen anderen Namen verwenden soll, gehen Sie folgendermaßen vor:

- 1. Starten Sie den Visual Administrator im Verzeichnis /usr/sap/<SID>/<Instanz>/j2ee/admin mit dem Kommando go bzw. go.bat, und melden Sie sich mit einem Administrator-Account an.
- 2. Navigieren Sie zur Einstellung des Serverknotens über Cluster • Instanz • Server <x>.
- 3. Wählen Sie den HTTP-Provider-Service (Services HTTP Provider).
- 4. Auf dem Reiter Properties ändern Sie nun den Wert des Parameters Protocol Header Name nach Ihren Bedürfnissen (siehe Abbildung 4.4).
- 5. Speichern Sie Ihre Einstellungen.

4.4 Konfigurationsanforderungen an Anwendungen

Möglich ist, dass Anwendungen die Informationen, die der Application Server aus dem Host-Header ausliest und zur Verfügung stellt, nicht nutzen oder auch nicht nutzen können. Anwendungen können zum Beispiel die Informationen nicht verwenden, sobald eine asynchrone

Kommunikation mit dem Benutzer stattfindet, also kein aktueller Benutzer-Request vorhanden ist, aus dem die Informationen bezogen werden könnten.

Host-Konfiguration in KMC

Ein Beispiel für eine asynchrone Kommunikation findet man im Bereich Knowledge Management und Collaboration (KMC), wenn Benutzer eine Benachrichtigung erhalten, dass sich zum Beispiel ein bestimmtes Dokument geändert hat (Subscription Notifications). Zu diesem Zeitpunkt liegt keine aktuelle Benutzeranfrage vor. Somit muss die in der Benachrichtigung verschickte URL aus einem Konfigurationsparameter bezogen werden.

Diese URL konfigurieren Sie wie folgt:

- 1. Rufen Sie das SAP NetWeaver Portal auf, und melden Sie sich mit dem Administrator-Account an, oder benutzen Sie alternativ einen Benutzer, der über die Rolle pcd:portal_content/administrator/super_ admin/super_admin_role verfügt.
- 2. Navigieren Sie über System Administration System Configuration • Knowledge Management • Content Management zur Content-Management-Administra-
- 3. Über Mode Advanced wechseln Sie in die erweiterte Konfiguration.
- 4. Navigieren Sie zu Global Services URL Generator Service.

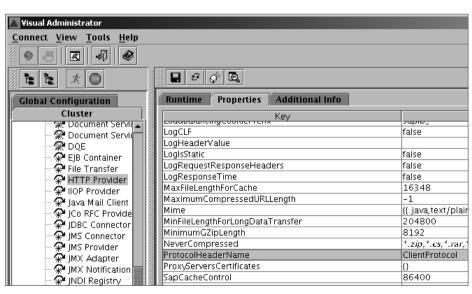


Abbildung 4.4 Änderung des Protokoll-Header-Namens

5. An dieser Stelle pflegen Sie nun Protokoll, Hostnamen sowie Port im Parameter Host mit der URL ein, die Ihre Endbenutzer für den Aufruf des Systems über das Application Gateway benutzen (siehe Abbildung 4.5). Der Eintrag Alternative Host wird für die interne Kommunikation der Such- und Klassifizierungsmaschine zu KMC benutzt und enthält daher meistens eine URL, die eine direkte Kommunikation der Such- und Klassifizierungsmaschine (TREX) mit den Portal-Servern bzw. einem Portal-Server ermöglicht.

Abbildung 4.5 URL-Generator-Konfiguration

Falls das System sowohl für interne Benutzer als auch externe Benutzer im Einsatz ist, muss die im Host-Parameter gepflegte URL sowohl von internen als auch externen Benutzern erreichbar sein. Es ist nicht möglich, eine Unterscheidung dieser Benutzergruppen festzulegen.

Ein identischer Hostname für externe sowie interne Benutzer muss allerdings nicht bedeuten, dass die Zugriffspfade der Benutzer identisch sein müssen, dass demnach zum Beispiel ein Benutzer im firmeninternen Netzwerk nur über das Internet auf die Anwendung zugreifen kann. Eine Unterscheidung ist durch eine unterschiedliche DNS-Konfiguration möglich:

- ▶ Der interne DNS-Server löst den Hostnamen bzw. FQDN in eine IP-Adresse auf, die nur aus dem internen Netzwerk zu erreichen ist.
- ▶ Der externe DNS-Server löst den Hostnamen bzw. FQDN in eine öffentliche IP-Adresse auf, auf die aus dem Internet zugegriffen werden kann.

Ähnliches gilt auch für Anwendungen, die per URL in das Portal eingebunden werden. Hier sollten Sie ebenfalls sicherstellen, dass der Hostname sowohl intern als auch extern erkannt und wiederum vielleicht in verschiedene IP-Adressen aufgelöst wird. Des Weiteren ist es wichtig zu erwähnen, dass das Portal bei einer URL-Integration nicht als Proxy für das eingebundene System dient.

SAP NetWeaver Portal als Content-Proxy?

Häufig wird fälschlicherweise angenommen, dass das SAP NetWeaver Portal als eine Art Content-Proxy für Anwendungen dient, die per URL-Integration eingebunden sind. Dies ist nicht der Fall. Content-Proxy würde in diesem Fall bedeuten, dass der Client nicht direkt mit der Anwendung kommuniziert, sondern nur mit dem Portal, das die Anfragen weiterleitet.

Innerhalb des Portals gibt es prinzipiell zwei Standardmöglichkeiten, um Content in Form einer URL-Integration einzubinden:

► Application-Integrator-iView

Der Application-Integrator-iView ist in der Lage, in Abhängigkeit eines Systemobjekts, das Zugriffsinformationen festlegt, sowie in Abhängigkeit von bestimmten Benutzereinstellungen, den Benutzer per Redirect an eine Anwendung zu senden, die dann benutzerspezifisch reagiert. Redirect bedeutet, dass der Client direkten Zugriff auf den Application Server haben muss – natürlich kann aber auch hierbei wieder ein Application Gateway verwendet werden.

Die einzige Ausnahme bilden an dieser Stelle iViews für SAP BW 3.x, für die iView-Caching über die iView-Propertys Cache Level sowie Cache Validity Period aktiviert ist. Nur für diese Art von iViews ist kein Zugriff auf das Backend-System notwendig.

Details hierzu finden Sie unter dem Stichwort »BEx Web Application or Query as iView in the Portal« in der SAP NetWeaver-Dokumentation im SAP Help Portal.

URL-iView

URL-iViews gibt es in zwei Ausprägungen, in einer clientseitigen sowie in einer serverseitigen Variante. Dies wird über den iView-Parameter Fetch Mode in der Parameterkategorie Advanced gesteuert (siehe Abbildung 4.6).

Der Unterschied der beiden Ausprägungen liegt in der Art und Weise, wie der initiale HTML-Code der Seite an den Client gesendet wird. Bei der serverseitigen Variante bezieht der Portal-Server den HTML-Code von der einzubindenden Anwendung und sendet ihn dann an den Client. Damit ist es möglich, den initialen HTML-Code auf Portal-Serverseite zu cachen. Bei der clientseitigen Variante bezieht der Client über einen vom Portal-Server initiierten Redirect den HTML-Code direkt von der Anwendung oder indirekt über ein Application Gateway.

Abbildung 4.6 iView Fetch Mode

Wichtig zu erwähnen ist, dass jeder Folge-Request in beiden Fällen immer über die Anwendungs-URL erfolgt. Diese Folge-Requests sind zum Beispiel für Stylesheets, Bilder etc. erforderlich.

Abbildung 4.7 zeigt den Request-Flow bei einem serverseitigen URL-iView. Hier sehen Sie, wie zunächst der Client beim Server den iView anfragt (1). Sofern der iView noch nicht auf dem Server gecached ist, stellt der Server eine Anfrage (2a) und empfängt die Antwort (2b). Den empfangenen HTML-Code sendet der Server dann an den Client (3). Die weitere Kommunikation findet direkt zwischen Client und Anwendung statt (...).

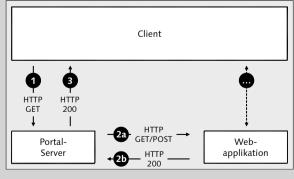


Abbildung 4.7 Serverseitiger URL-iView

Content Rewriting

Manche Anwendungen generieren trotz fehlender Notwendigkeit absolute URLs auf der Basis von Konfigurationseinträgen. Falls Sie Einfluss auf die Anwendungsentwicklung haben, sollten Sie diesen Punkt entsprechend adressieren.

Für den Fall, dass es zeitnah nicht gelingt, die Anwendung zu beeinflussen, besteht noch die Möglichkeit des sogenannten Content Rewritings auf dem Application Gateway. Dies bedeutet, dass das Application Gateway nicht nur die HTTP-Header-Informationen, sondern auch statische Content-Informationen, wie beispielsweise den HTML-Code, entsprechend den Anforderungen umschreibt.

Dieses Verfahren wird von einigen Application Gateways angeboten, hat aber mehrere Nachteile, weshalb Sie dies nur in Ausnahmesituationen einsetzen sollten:

► Fehleranfälligkeit

Ein großes Problem stellt die Fehleranfälligkeit von Content Rewriting dar. Zum einen muss jede mögliche Variante bedacht werden, wie die absolute URL generiert werden kann, zum Beispiel auch innerhalb von JavaScript auf Client-Seite, und zum anderen bedeutet jede neue Version der einzubindenden Anwendung potenziellen Nachbesserungsbedarf bei den Rewrite-Regeln.

► Erhöhter Ressourcenbedarf und Geschwindigkeitseinbußen

Der komplette Content muss analysiert (geparst) und eventuell umgeschrieben werden, was aufgrund aufwendiger String-Operationen zu erhöhtem Bedarf an Systemressourcen, vorrangig CPU und Speicher, auf dem Application Gateway führt. Zudem bedeuten diese String-Operationen je nach Regelwerk einen gewissen Geschwindigkeitsnachteil bei der Beantwortung des Requests.

► Anwendungswissen erforderlich

Wie beim Aspekt Fehleranfälligkeit angedeutet, können die Ersetzungsoperationen je nach Anwendung recht komplex werden. Um hier eine wirklich ganzheitliche Sicht zu erhalten und nicht eventuell bestimmte Szenarien zu übersehen, ist es wichtig, die Anwendung sehr gut zu kennen.

Testaufwand

Um sicherzustellen, dass nicht bestimmte Szenarien übersehen wurden, ist ein kontinuierlicher Testaufwand erforderlich, da sich die eingebundene Anwendung je nach Version unterschiedlich verhalten kann. Auf dem Apache-Server existiert für das Umschreiben von Content zum Beispiel das Modul mod ext filter, mit dem Sie eine Filterfunktionalität umsetzen können. Die Apache-Dokumentation empfiehlt allerdings, dieses Modul nur zu Testzwecken zu nutzen. Daher gibt es von verschiedenen Anbietern jeweils eigene Filtermodule, die für diesen Zweck in den Apache-Server geladen werden können.

4.5 Beispiel: Apache als Application Gateway für einen Application Server

Das folgende Beispiel stellt Ihnen eine Apache-Konfiguration vor, bei der der Apache-Server als Application Gateway agiert. Zunächst beschreiben wir eine einfache Konfiguration mit einer unverschlüsselten Verbindung zwischen Client und Application Gateway.

Sicherheitshinweis

Die vorgestellte Apache-Konfiguration soll ausschließlich dazu dienen, die grundlegenden Ideen zu vermitteln, sie entspricht nicht den Sicherheitsanforderungen eines Produktivsystems. Um die Konfiguration für Produktivsysteme nutzen zu können, müssen Sie den Apache-Server entsprechend den aktuellen Sicherheitsempfehlungen konfigurieren. Die hier beschriebene Konfiguration ist eine Ausgangsbasis und muss entsprechend Ihren Sicherheitsanforderungen weiter verfeinert werden.

Da dies häufig aus Sicherheitsgründen nicht für den Einsatz in einer produktiven Umgebung ausreicht, zeigen wir Ihnen im zweiten Teil dieses Abschnitts noch eine Konfiguration, bei der eine verschlüsselte Verbindung (HTTPS) zwischen Client und Application Gateway besteht. Die verschlüsselte Verbindung wird dazu auf dem Apache-Server terminiert. Hierbei können zusätzlich sogenannte Cryptographic Hardware Accelerators zum Einsatz kommen, um ein Offloading des SSL Processing Overheads zu erreichen. Der Apache-Server kommuniziert dann verschlüsselt mit dem Client und unverschlüsselt über HTTP mit dem Application Server. Wie oben beschrieben, setzt diese Konfigurationsoption voraus, dass sich der Apache-Server sowie der Application Server in demselben geschützten Netzwerksegment befinden.

Basiskonfiguration Apache als Application Gateway

Für unser Beispiel verwenden wir die Version 2.2.4 des Apache-Webservers. Folgende Apache-Module sind für die Durchführung der Beispielkonfiguration erforderlich:

- ▶ mod rewrite
- ▶ mod_proxy
- mod_proxy_http
- mod_headers
- mod ssl
- 1. Sofern die Module nicht in den Apache-Server hinein kompiliert sind, müssen sie separat geladen werden. Dies geschieht in der zentralen Konfigurationsdatei des Apache-Servers:
 - <ApacheVerzeichnis>/conf/httpd.conf.
- 2. Sie müssen folgende Einträge in der Konfigurationsdatei pflegen, damit die Module geladen werden:

```
LoadModule rewrite_module modules/
 mod rewrite.so
LoadModule proxy_module modules/
 mod_proxy.so
LoadModule proxy_http_module modules/
 mod_proxy_http.so
LoadModule headers_module modules/
 mod_headers.so
LoadModule ssl_module modules/
 mod_ssl.so
```

- 3. Nachdem die notwendigen Module geladen sind, müssen sie konfiguriert werden. Dies geschieht wiederum in der Apache-Konfigurationsdatei.
- 4. Für die Weiterleitung des Requests vom Apache-Server an Ihren Portal-Server bzw. an Ihren Application Server müssen Sie zunächst die Rewrite-Engine aktivieren. Die Rewrite-Engine sorgt dafür, dass Requests des Clients korrekt an den Application Server weitergeschickt bzw. umgeschrieben werden. Dies geschieht durch folgende Anweisung in der Apache-Konfigurationsdatei:

RewriteEngine On

5. Um den Sicherheitsanforderungen gerecht zu werden und außerdem für die Tests einen guten Überblick über die Weiterleitung zu erhalten, aktivieren Sie in der Apache-Konfiguration außerdem das Logging der Rewrite-Engine. Hierzu definieren Sie den Pfad zur Log-Datei sowie den Log-Level. Mögliche Werte für den Log-Level sind 0 bis 9, wobei 0 kein Logging bedeutet und 9 das maximal mögliche Logging. Ein Log-Level größer 2 ist allerdings für den Produktivbetrieb aus Performancegründen nicht empfohlen. Folgende Parameter bieten sich für eine Testkonfiguration an:

RewriteLog logs/rewrite.log RewriteLogLevel 3

6. Bezüglich des Rewritings fehlt nun noch die Information, welche Requests wohin weitergeleitet werden. Dies geschieht über folgende Konfiguration:

```
RewriteRule ^/ir.j/(.*)
 http://<server>:<port>/irj/$1?%
 {QUERY_STRING} [P,L]
RewriteRule ^/logon/(.*)
 http://<server>:<port>/logon/$1?%
 {QUERY_STRING} [P,L]
RewriteRule ^/webdynpro/(.*)
 http://<server>:<port>/webdynpro/$1?%
  {QUERY_STRING} [P,L]
```

Jede der drei Konfigurationszeilen ist für die Weiterleitung eines bestimmten Pfads zuständig:

- ► /iri Pfad für das Portal
- ▶ /logon Pfad für die Standard-Logon-Grafiken sowie das Stylesheet. Diese Grafiken können über UME-Konfigurationsparameter geändert werden (ume. logon.branding_image, ume.logon.branding_ style, ume.logon.branding_text), wodurch diese Weiterleitung vermieden werden kann.
- /webdynpro Einstiegspfad für Web-Dynpro-Anwendungen

Diese drei Weiterleitungen sind für ein rudimentäres Portalszenario inklusive der Nutzung von Web-Dynpro-Anwendungen auf dem AS Java ausreichend. Ersetzen Sie die Einträge <server> sowie <port> durch die Informationen Ihres Portals bzw. Application Servers. Zusätzlich zum kompletten Pfad wird ein eventuell vorhandener Query-String weitergeleitet. Zudem führen die Parameter P und L dazu, dass der Request durch das Proxy-Modul geschickt (P) und die Prozessierung nach der jeweiligen Regel beendet (L) wird. Für den Betrieb weiterer Java-Anwendungen bzw. für einen AS ABAP können Sie die Einträge entsprechend erweitern.

Die Funktionalität des Rewriting-Moduls ist sehr umfangreich. Weitere Details finden Sie in der Apache-Dokumentation auf http://httpd.apache.org/ docs/2.2.

Vervollständigung der grundlegenden Apache-Konfiguration und Verschlüsselung der Kommunikation

Prinzipiell sollte der initiale Zugriff so funktionieren, allerdings fehlen noch zwei Bausteine: Zum einen ist bisher nur der Kommunikationsweg zum Application Server berücksichtigt, der Kommunikationsweg der Antwort allerdings noch nicht. Zum anderen wird bisher der Host-Header noch nicht an den Application Server weitergeschickt.

1. Um diese fehlende Funktionalität zu erlangen, erweitern Sie die Konfiguration durch folgende Zeilen:

ProxyRequests Off ProxyPreserveHost On ProxyPassReverse /irj/ http://<server>:<port>/irj/ ProxyPassReverse /logon/ http://<server>:<port>/logon/ ProxyPassReverse /webdynpro/ http://<server>:<port>/webdynpro/ Die Direktive ProxyRequests Off deaktiviert die Forward-Proxy-Funktionalität, da hier nur die Reverse-Proxy-Funktionalität benötigt wird. ProxyPreserveHost instruiert den Apache-Server, den Host-Header weiterzuleiten und ist essenziell für eine korrekte Funktion. Die letzten drei Konfigurationszeilen sind für den Kommunikationsweg vom Application Server zum Client verantwortlich.

2. Starten Sie den Apache-Server neu, und versuchen Sie, über http://<ApacheHost>:<ApachePort>/irj/ auf ihn zuzugreifen. Sie sollten nun erkennen, dass Ihr Application Server über die URL des Apache-Servers aufgerufen werden kann.

3. Zusätzlich können Sie den Komfort für Ihre Anwender dadurch erhöhen, dass Sie Zugriffe auf die irj-Applikation ohne den abschließenden Schrägstrich (/) sowie den Zugriff auf den Apache-Webserver ohne Angabe der irj-Applikation durch Verwendung der RedirectMatch-Anweisung weiterleiten:

RedirectMatch 301 ^/\$ http://<ApacheHost>:<ApachePort>/ irj/portal RedirectMatch 302 ^/irj\$ http://<ApacheHost>:<ApachePort>/ ir.j/portal

4. Um dieses Szenario etwas zu erweitern und somit praxisnäher zu gestalten, aktivieren Sie auf dem Apache-Server HTTPS und terminieren es dort. Terminierung bedeutet, dass ab diesem Punkt die weitere Kommunikation Richtung Application Server unverschlüsselt über HTTP stattfindet. Somit ist keine HTTPS-Konfiguration auf dem Application Server notwendig. Für den Betrieb von SSL mit Apache wird das Modul mod_ss1 benötigt, das über folgende Konfiguration geladen wird, sofern es nicht mit Ihrem Server kompiliert wurde:

LoadModule ssl_module modules/mod_ssl.so Weitere Details zur SSL-Konfiguration des Apache-Servers finden Sie in der Apache-Dokumentation. Für die Generierung des für die SSL-Kommunikation erforderlichen Serverzertifikats empfehlen wir Ihnen den Zertifikatservice SAP-SSL-Test-Server (siehe Kasten »SAP-SSL-Test-Server-Zertifikat«).

In Listing 4.1 sehen Sie einen Auszug aus der Apache-Virtual-Host-Konfiguration für die SSL-Kommunikation. Auf die Parameter für die Apache-SSL-Konfiguration haben wir an dieser Stelle aus Gründen der Übersichtlichkeit verzichtet. Die Weiterleitungskonfiguration unterscheidet sich nur durch einen zusätzlichen Parameter (in Fettschrift formatiert) von der für HTTP notwendigen Konfiguration. Dieser Parameter (RequestHeader set) stellt unter Benutzung des Moduls mod_headers sicher, dass der Application Server über das Protokoll informiert wird, mit dem der Client mit dem Apache-Server kommuniziert.

SAP-SSL-Test-Server-Zertifikat

Über den SAP-SSL-Test-Server-Zertifikat-Service können Sie Testzertifikate für die SSL-Kommunikation generieren. Diese Zertifikate haben eine Gültigkeit von acht Wochen. Zunächst müssen Sie allerdings für Ihren Server einen privaten Serverschlüssel generieren.

- 1. Dies geschieht zum Beispiel mit openss 1 über das folgende Kommando auf Betriebssystemebene: openssl genrsa -out server.key -des3 1024
- 2. Auf der Basis dieses Schlüssels kann eine Zertifikatsanfrage (Certificate Signing Request, CSR) über den folgenden openssl-Befehl generiert werden: openssl reg -new -key server.key -out server.csr
- 3. Bei der Abfrage der Zertifikatdetails müssen Sie sicherstellen, dass der Common Name (cn) dem voll qualifizierten Hostnamen (zum Beispiel host. domain.com) entspricht. Außerdem sollten Sie die Abfrage nach der E-Mail-Adresse nur mit Enter bestätigen, da eine gepflegte E-Mail-Adresse zu einem Fehler bei der Erstellung von SAP-Test-Zertifikaten führt.
- 4. Öffnen Sie nun die Seite http://service.sap.com/ tcs-ssl-test bzw. http://service.sap.com/ssltest, und wählen Sie Test it Now!.
- 5. Öffnen Sie die Datei server.csr mit einem Texteditor, und kopieren Sie den Inhalt in das Feld Enter data for public key. Mit dem Button Continue starten Sie die Erstellung des Testzertifikats.
- 6. Das generierte Zertifikat erhalten Sie in einem Textfeld. Kopieren Sie den Inhalt in eine neue Textdatei, und speichern Sie diese unter dem Namen server.crt. Diese Datei stellt Ihr Serverzertifikat dar, das Sie für die SSL-Konfiguration des Apache-Servers benutzen können.

Die in Abschnitt 4.5, »Beispiel: Apache als Application Gateway für einen Application Server«, vorgestellte Konfiguration ist eine recht verbreitete Konfigurationsvariante. Abbildung 4.8 zeigt schematisch den Kommunikationsverlauf inklusive der übertragenen Header-Informationen (Host sowie ClientProtocol).

```
<VirtualHost _default_:443>
ServerName <server>:443
RewriteEngine On
RewriteLog logs/rewrite.log
RewriteLogLevel 3
RequestHeader set ClientProtocol HTTPS
RewriteRule ^/irj/(.*) http://<server>:<port>/irj/$1?%{QUERY_STRING} [P,L]
RewriteRule ^/logon/(.*) http://<server>:<port>/logon/$1?%{QUERY STRING} [P.L]
RewriteRule ^/webdynpro/(.*) http://<server>:<port>/webdynpro/$1?%{QUERY_STRING} [P,L]
ProxyRequests Off
ProxyPreserveHost On
ProxyPassReverse /irj/ http://<server>:<port>/irj/
ProxyPassReverse /logon/ http://<server>:<port>/logon/
ProxyPassReverse /webdynpro/ http://<server>:<port>/webdynpro/
RedirectMatch 301 ^/$ https://<ApacheHost>:<ApachePort>/irj/portal
RedirectMatch 302 ^/irj$ https://<ApacheHost>:<ApachePort>/irj/portal
</VirtualHost>
```

Listing 4.1 Apache-Konfiguration – Weiterleitung mit SSL-Terminierung

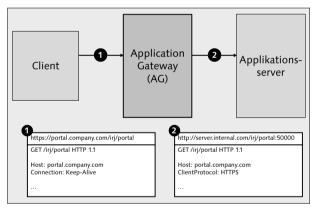


Abbildung 4.8 SSL-Terminierung am Application Gateway

4.6 Beispiel: Apache als Application Gateway für mehrere Application Server

Der in Abschnitt 4.3, »Konfigurationsanforderungen an Application Gateways«, angesprochene SAP-Hinweis 833960 beschreibt die Einschränkung, dass SAP keine Konfiguration unterstützt, bei der mehrere Application Server unter einem externen Hostnamen zusammengefasst werden. Hintergrund ist, dass bei einer solchen Konfiguration, je nach Art der integrierten Anwendungen, URLs identisch sein können.

Das Beispiel in diesem Abschnitt zeigt daher, wie Sie einen Apache-Server konfigurieren, um mit einem einzigen Application Gateway mehrere Anwendungen zu schützen. Hierzu müssen Ihre Clients allerdings HTTP 1.1 verwenden, und Sie müssen auf dem Apache-Server eine Virtual-Host-Konfiguration erstellen. Dies bedeutet, dass mit einer einzigen IP-Adresse mehrere Hostnamen mit unterschiedlicher Konfiguration betrieben werden können.

In Listing 4.2 ist eine Konfiguration mit zwei Virtual Hosts dargestellt, die durch NameVirtualHost eingeleitet wird. Um die Virtual-Host-Konfigurationen zu unterscheiden, wird der Parameter ServerName (in Listing 4.2 fett markiert) pro Virtual Host unterschiedlich konfiguriert. Dadurch beeinflussen sich die beiden Anwendungen nicht gegenseitig. Die beiden Virtual Hosts definieren zudem ihre eigenen Rewrite-Regeln.

```
NameVirtualHost *:80
 <VirtualHost *:80>
     ServerName <server1Extern>
     RewriteRule ^/irj/(.*) http://<server>:<port>/irj/$1?%{QUERY_STRING} [P,L]
     RewriteRule ^/logon/(.*) http://<server>:<port>/logon/$1?%{QUERY_STRING} [P,L]
     RewriteRule ^/webdynpro/(.*) http://<server>:<port>/webdynpro/$1?%{QUERY_STRING} [P,L]
     ProxyRequests Off
     ProxyPreserveHost On
     ProxyPassReverse /irj/ http://<server>:<port>/irj/
     ProxyPassReverse /logon/ http://<server>:<port>/logon/
     ProxyPassReverse /webdynpro/ http://<server>:<port>/webdynpro/
     RedirectMatch 301 ^/$ http://<server1Extern>:<ApachePort>/irj/portal
     RedirectMatch 302 ^/irj$ http://<server1Extern>:<ApachePort>/irj/portal
</VirtualHost>
 <VirtualHost *:80>
      ServerName <server2Extern>
     RewriteRule ^/irj/(.*) http://<server2>:<port>/irj/$1?%{QUERY_STRING} [P,L]
     RewriteRule \ ^/logon/(.*) \ http://<server2>:<port>/logon/$1?%{QUERY_STRING} \ [P,L] \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ 
     RewriteRule ^/webdynpro/(.*) http://<server2>:<port>/webdynpro/$1?%{QUERY_STRING}
     ProxyRequests Off
     ProxyPreserveHost On
     ProxyPassReverse /irj/ http://<server2>:<port>/irj/
     ProxyPassReverse /logon/ http://<server2>:<port>/logon/
     ProxyPassReverse /webdynpro/ http://<server2>:<port>/webdynpro/
     RedirectMatch 301 ^/$ http://<server2Extern>:<ApachePort>/irj/portal
      RedirectMatch 302 ^/irj$ http://<server2Extern>:<ApachePort>/irj/portal
</VirtualHost>
```

Listing 4.2 Apache-Konfiguration – Virtual Hosts für mehrere Application Server

Index

Α	RewriteEngine 52	C
A-Gate 25	RewriteLog 53	Cache
ABAP-Workprozess 10	RewriteRule 53	HTTP-Cache 104
absolute URL 47, 51	Appliance 27, 47	iView-Cache 104
Access Control List (ACL) 16, 60, 66	Application Delivery over WAN → ADoW	KMC 104
Administrationsberechtigung 61	Application Gateway 11, 21, 45	Navigation-Cache 104
Endbenutzerberechtigung 61, 63	Application-Integrator-iView 50	UME Cache 104
KMC 66	Application Layer Firewall 45	CacheControl 112
Permission Viewer 69	Application und Content Delivery 125	Caching 104, 110, 111
Role-Assigner-Berechtigung 61	Archivierung 83	clientseitiges 112
Additional Application Server 75	Ausfallzeit	serverseitiges 103
Administrationsberechtigung 61	geplante 77	Cascading Stylesheet 110
ADoW 13, 23	ungeplante 72	Sprites 110
Client-Frontend 23, 125	Authentifizierung 14, 57	Certificate Signing Request \rightarrow CSR
GZip-Offloading 126	Container-based Authentication 59	$CFE \rightarrow ADoW$
Komprimierung 125	headerbasierte 58	Citrix 119
Server-Frontend 23, 125	UME-based Authentication 60	Clickstream 95
SSL-Offloading 126	В	Client-Caching 112
Webcaching 125	D	$Client\text{-}Frontend \to ADoW$
AJAX 110	Backup 77	Client-Performance 101
Akamai 125	Backup und Restore 44	ClientProtocol 48
Akzeptanz 82, 104	Bandbreite 111	Cluster-Gruppe 73, 74
anonymer Benutzer 60, 69	Base64 57	Cluster-Knoten 73, 74
Antwortzeit 95	Basic Authentication 29	Cluster-Ressource 73
Anwendungsperformance 102	Benchmark 85, 86, 93, 99	Container-based Authentication 59
Anwendungssicherheit 16, 44	Benutzerzahl 87	Content Administration 60
Apache 16, 27, 47, 52	Berechtigungseditor 60	Content-Proxy 50
httpd.conf 52	Betriebshandbuch 72	Content Rewriting 51
LoadModule 52	Betriebskosten 18	Cookie 48, 106
mod_ext_filter 52	Betriebssystem	Spezifikation 48
mod_headers 52, 54	Virtualisierung 83	Corporate Directory 24
mod_proxy 27, 52	Sicherheit 43	Cross-Site Scripting \rightarrow XSS
mod_proxy_http 52	BEx Web 25	Cryptographic Hardware Accelerator 52
mod_rewrite 52	BI-Bericht 25	CSR 54
mod_ssl 52, 54	Blacklist 16	Customizing 80
NameVirtualHost 56	Browser-Caching 15, 110	_
ProxyPreserveHost 53	Browser-Favoriten 29	D
RedirectMatch 54	Business Server Pages 25	Datenbank 102
RequestHeader 54		Cluster 73
		Connection-Pool 103

Datenbanksicherheit 44	G	
Index 103	Garbage Collection 97, 103	ICA 119
Performance 102	GoingLive-Check 89	ICM 35, 112
Reconnect 11	domgelve-eneck op	icm/server_port 39
Server 22	Н	Independent Computing Architecture —
Datendurchsatz 87		ICA
demilitarisierte Zone \rightarrow DMZ	Hacker 68	Infrastruktur
Denial of Service → DoS	Hardware	
Dialoginstanz 75, 76	Ausfall 71	physikalische 86
Dialogschritt 9	Cluster 73	technische 86, 93 Infrastruktursicherheit 43
Directory-Server 44, 72	Kosten 87	
Directory-Server-Sicherheit 44	Load-Balancer 22	Instanz 10
DMZ 15, 19, 44	Planung 85	Integrated Windows Authentication 58
äußere 44	Sizing 77	Kerberos 58
innere 44	Tausch 71	NTLM 58
Domain Name Service (DNS) 18	Härtung 43	Interception-Proxy 123
Record 30	Header-Login 58	Internet Connection Manager → ICM
Resource Record Set 30	High-Availability-Setup 74	Internet Service Provider \rightarrow ISP
Server 29, 50	Host-Header 48, 53, 106	Internet Transaction Server \rightarrow ITS
	Hostname 50	IP-Spoofing 45
DoS 11, 68, 97	virtueller 11	IPsec 122
Dual Stack 73	HTML 9	ISO/OSI-Basisreferenzmodell 31
dynamischer Paketfilter 45	HTML-Rendering 24	ISP 14
E	HTTP 9, 105, 109	ITS 25
L .	Access Log 117	iView-Caching 50, 104
E-Mail-Benachrichtigung 47	Analyse 115, 118	_
E-Recruiting 5	Basic Authentication 57	J
EFP 14, 105	Cache 104	J2EE 59
End-to-end-Analyse 115, 118	Client 105	Java Authentication and Authorization
Endbenutzerberechtigung 61, 63	Cookies 106	Service (JAAS)
Enqueue Replication Server \rightarrow ERS	HTTPS 15, 57	Login-Module 58
Enqueue-Server 73, 74	HTTP Watch 116	Login-Module-Flag 59
Locktable 73	Keep-Alive 106, 111	Login-Module-Option 59
Enterprise SOA 5	Persistent Connections 106	Login-Module-Stack 59
ERS 74, 76		Java Connector → JCo
ESS-Szenario 90	Pipelining 106	Java-iView 24
Exploit 16	Provider Service 114, 117	
External Facing Portal → EFP	Request 101, 105	Java-Serverprozess 10
Ğ	Response 101, 105	Java Virtual Machine → JVM
F	Ressource 102	JavaScript
	Server 105	On-Demand-JavaScript 110
Failover Target 76	HTTP-Header 29, 58, 105	JCo 24
Favorit 29	ClientProtocol 48, 54	JVM 96, 103
Fetch Mode 50	Connection close 109	Garbage Collection 103
Fileshare 75	Host 48, 54, 106	Konfiguration 103
Firewall 19, 44	Set-Cookie 48, 106	IZ
First Line of Defense 11	HTTP-Provider-Service 34, 49, 112	K
Form-based-Login 57	httpd.conf 52	Keep-Alive 106, 109
Full Qualified Domain Name (FQDN)	HttpServletRequest-Objekt 48	URL 33
47, 50	Hypertext Markup Language $ ightarrow$ HTML	Kerberos 58
	$\hbox{Hypertext Transfer Protocol} \rightarrow \hbox{HTTP}$	Kernel 82
		Kioskszenario 121

Klonen 78	minimale Berechtigung 62	statischer 44
KMC 18, 49, 66, 104	Minimalprinzip 43	Paketverlust 108
ACL 66	MinumumGZipLength 114	PAM 35
Alternative Host 50	Mitarbeiter 67	Patchen 71
Berechtigung 67	mod_ext_filter 52	PCD 60, 82
Notification 49	mod_headers 52, 54	Peak-Load-Sizing 88
Repository 66	mod_proxy 27, 52	Peak-Load-Szenario 82, 93
Repository Manager 113	mod_proxy_http 52	perfmon 96
Ressource 66	mod_rewrite 52	Performance 86, 101
Service Permission 67	mod_ssl 52	Anwendung 101, 102
Subscription 49	MSCS 72	Client 101
URL Generator Service 49		Datenbank 102
Knowledge Management	N	Hardwareausstattung 101
Read-Only-Flag 113	NAT 24	Netzwerk 101, 105
Repository 25	NAT 31	Server 101, 102
Knowledge Management und	Navigation-Cache 104	Webbrowser-Konfiguration 101
Collaboration \rightarrow KMC	Network Address Translation → NAT	Performance-Messung
Komponententest 93	Network Requirements 108	Client 116
Komprimierung 111, 114	Network-Sizing 85	Netzwerk 115
,	Netzwerk	Server 117
L	Bandbreite 111	Permission Viewer 69
	LAN 108	Personalisierung 61, 62
LAN 108	Latenz 108	physische Sicherheit 44
Landscaping 86	Paketverlust 108	ping 115
Lastausgleich 72	Performance 105	Pipelining 106
Lastgenerator 95	Qualität 14	PKI 57
Lasttest 86	Round Trip Time 108	Planned Downtime 71, 77
Lasttestprozess 94	Satellitenverbindung 108	Policy Configuration 58
Lasttestsoftware 98	Sicherheit 43	Polling 76
Lastverteilung 27	Umgebung 82	Portal-Content 80
Latenz 108	WAN 108	Portal Content Catalog 61
LDAP 22, 72	Netzwerkzone 6, 19	Portal Content Catalog 01 Portal Content Directory → PCD
LDAPS 24	NeverCompressed 114	Portal-Service
listPermissions 70	niping 115	Content Fetching 113
Load Balancing 18, 22, 27, 46, 72	NTLM 58	PortalAnywhere.Go 68
clientbasiertes 28		Positivliste 16
DNS-basiertes 29	O	Primary Application Server 75, 76
funktionales 35	offener Port 43	Product Availability Matrix → PAM
Microsoft Network Load Balancing 30	öffentliches Portal 5	Profildatei 39
serverbasiertes 31	Offloading 47, 52	Profilparameter
Loadtest 94	GZip 126	ProtocolHeaderName 49
Locktable 73	SSL 126	Protokoll-Switch 48
Login-Modul 58	On-Demand-JavaScript 110	
Logon-Gruppe 35	Online-Bewerbermanagement 5	Proxy 46 Proxy-Server 19
	Online-Shop 5	
M	Open Source 47	Prozessorlast 98
Managed Services 125	Openssl 54	Public Key Infrastructure → PKI
Mercury LoadRunner 96	•	Q
Message Server 37, 73, 74	Р	~
Microsoft Cluster Service → MSCS	Dalcatiltar 44 4C	Quellsystem 81
Microsoft Terminal Services 120	Paketfilter 44, 46	Quick Sizer 86, 87, 90
	dynamischer 45	

R	SAP-Kernel 36	Self-Service-Funktion 5
	SAP Management Console (SAP MC) 40	Server-Frontend \rightarrow ADoW
Read-only-Modus 82	SAP Microsoft Management Console	Serverperformance 102, 117
Rechenzentrum 44	(SAP MMC) 40	Serverprozess 10
Redirect 47, 50	SAP NetWeaver Application Server Java	serverseitiges Caching 103
Referenzinstallation 88	Client-Caching 112	Service Level Agreement → SLA
Regressionstest 89, 99	HTTP-Provider-Service 112, 114, 117	Session-Information 9
reguläre Ausdrücke 47	Keep-Alive 111	Session-Persistenz 10
relative URL 47	Komprimierung 114	Session Stickiness 10, 27, 32
Release-Upgrade 77	SAP Solution Manager 118	$SFE \rightarrow ADoW$
Releasewechsel 99	SAP Solution Manager Diagnostics 115,	Sicherheit 6, 10
Remote Desktop Connection 120	118	Sicherheitslücke 16
Remote Desktop Protocol 120	SAP-SSL-Test-Server-Zertifikat-Service	Sicherheitsuntersuchung 68
Remote Function Call \rightarrow RFC	SAP Volume Test Optimization Onsite 94	simple_round_robin 38
Remote-Standort 20	SAP Web Dispatcher 16, 35, 46, 72, 112	Single Points of Failure → SPOF
Rendering 24	SapCacheControl 112	Single Sign-On 71
Request 105	SAPINST 72	Sizing 85
Resource Record Set 30	saplb-Cookie 34	benutzerbasiertes 88
Response 105	sapmnt 73	durchsatzbasiertes 88
Ressourcen-Management 82	SAPS 85	Projekt 18
Restore 80, 83	sapstartsrv 40	Prozess 85, 87
Reverse-Proxy 19, 46	Satellitenverbindung 108	T-Shirt-Größe 89
Zugriff 11	Scale-in 10	Skalierbarkeit 9, 85
Rewrite-Regel 51	Scale-out 10	Skripterstellung 95
RFC 22	Schattensystem 78, 80	Skriptrekorder 96
Role-Assigner-Berechtigung 61	Schlüssellänge 43	SLA 71, 78
Rollback 79, 83	Schutzziel 43, 47	Smartcard 58
Round Robin 34, 35	Script-Kiddies 68	SNC 16
Weighted 34, 35	SCS 73	Sniffer
Round Trip Time \rightarrow RTT	SD 85	Browser-Plug-in 109
Router 44	SDM 73	Ethereal 108
rstatd 96	Second Level of Security 66	Wireshark 108
RTT 30, 108, 114	Secure Network Communications → SNC	Social Engineer 68
	Secure Sockets Layer → SSL	Software-Cluster 73
S	Secure Store 43	Software-Load-Balancer 22
Safaty Laval 64	Secured 122	Sperrtabelle 73, 75
Safety Level 64 Sales and Distribution Benchmark → SD	Security Audit 68	Split Mirror 77
	Security-Audit 16	SPNego 58
SAP Active Global Support 89, 94	Security Audit Logging 44	SPOF 72, 75
SAP Application Delivery over WAN 23,	Security by obscurity 16	SQL Injection 68
125		Squid 126
SAP Application Performance Standard	Security Optimization Service 68	•
→ SAPS	Security-Provider-Service 58	SSL 16, 57, 117, 122
SAP Central Services → SCS	Security Zone 63	SSL-Terminierung 32, 35, 48
SAP Config Tool 66	-Dcom.sap.nw.sz 66	Startseite 105
sap-contextid 35	Berechtigungsvergabe 65	Stateful Inspection 45
SAP GoingLive-Check 99	Prüfung 68	Stateful Packet Filter 45
SAP GUI	SafetyLevel 64	Stresstest 94
für HTML 25	Second Level of Security 66	Such- und Klassifizierungsmaschine 23
für Java 25	Security Zone Enforcement 65	Support Package Stack 77
für Windows 25	SecurityArea 64	Switch 83
SAP Internet Connection Manager 112	Vendor 64	Switchover-Gruppe 76

Switchover-Lösung 72, 73	URL-Integration 50	Web Access Management → WAM 58
System Copy Tool 78	URL-iView 50, 63	Web Cache 23, 41, 123
Systemadministration 60	clientseitiger 50	Web Dispatcher 72
Systemkopie 78, 80	serverseitiger 50	Web Dynpro 10, 27, 53, 59, 60
Systemobjekt 62	User Management Engine → UME	Web-Infrastruktur 6
Systemrollentausch 83		Web Proxy Cache 123
	V	Kosten 124
Т	Vererbung	Nachteil 124
Transmission Control Protocol (TCP) 31,	von Berechtigungen 62	Performance 124
46, 106, 109	Verfügbarkeit 71	Sicherheit 124
Slowstart 106	Verschlüsselung 43	Vorteil 124
Three Way Handshake 109	Verzeichnisdienst 22, 72	Webbrowser
Terminal-Server 14, 21, 119	Virtual Host 54, 55	Cache-Konfiguration 110
Einsatzszenario 121	Virtual Private Network → VPN	Firefox 106
Hardwareanforderung 120	Virtualisierung 81	Internet Explorer 106
Nachteil 120	Visual Administrator 49, 58, 111, 112,	WebGUI 25
Performance 120	117	Webproxy 46
Sicherheit 120	Volumentest 94	Webservice 24
Vorteil 120	Voraussetzung 7	Webzugriffsszenario 13
Terminal Services Client 120	VPN 14, 20, 121	weighted_round_robin 38
Thinktime 87, 96	Client 122	Whitelist 16
Three Way Handshake 109	End-to-End 121	Workload 85
Transaktion 9	End-to-Site 122	Workprozess 10
Transaktionalität 9	Gateway 122	Konzept 11
Transport 77	Sicherheit 122	wpdispmon 38
Transportverschlüsselung 57	Site-to-Site 121	••
TREX → Such- und Klassifizierungs-	VPN-Gateway 122	X
maschine	VPN-Tunnel 122	X Window System 119
		X.509-Client-Zertifikat 41, 48, 57
U	W	X11 119
UME 57	W-Gate 25	XSS 68
UME Cache 104	WAM 58	
UME-based Authentication 60	WAN 108	Z
Unified Rendering Framework → UR	WAN-Beschleunigung 123	ZBV 57
Uniform Resource Locator → URL	Application und Content Delivery 125	ZDM 80
Unplanned Downtime 71	Hardware 124	Zeiterfassung 11
UR 10	SAP Application Delivery over WAN	zentrale Benutzerverwaltung → ZBV
URL 16	125	Zentralinstanz 75, 76
absolute 47	Web Proxy Cache 123	Zero Downtime Maintenance → ZDM
relative 47	Wartungsarbeit 72	Zertifikat 43, 47, 54
URL-Filterregel 41	Watchdog 41, 72	zusätzlicher Applikationsserver 76
URL Generator Service 49	Web 2.0 5, 110	Zusuziiciici Applikationsservei 70
ONE Generator Service 45	**CD 2.0 J, 110	