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Extraterrestrial Amino Acids
Z. Martins and M.A. Sephton

1.1
Introduction

The space between the stars, the interstellar medium (ISM), is composed of gas-
phase species (mainly hydrogen and helium atoms) and submicron dust grains
(silicates, carbon-rich particles, and ices). The ISMhasmany different environments
based on its different temperatures (Tk), hydrogen density (nH), and ionization state
of hydrogen (for reviews, see [1–3]); it includes the diffuse ISM (Tk� 100K,
nH� 10–300 cm�3), molecular clouds (Tk� 10–100K, nH� 103–104 cm�3; e.g., [4])
[molecular clouds are not uniform but instead have substructures [5] – they contain
high-density clumps (also called dense cores; nH� 103–105 cm�3), which have
higher densities than the surrounding molecular cloud; even higher densities are
found in small regions, commonly known as �hot molecular cores�, which will
be the future birth place of stars], and hot molecular clouds (Tk� 100–300K,
nH� 106–108 cm�3; e.g., [6]). Observations at radio, millimeter, submillimeter, and
infrared frequencies have led to the discovery of numerous molecules (currently
more than 151) in the interstellar space, some of which are organic in nature
(Table 1.1; an up-to-date list can be found at www.astrochemistry.net). The collapse
of a dense cloud of interstellar gas and dust leads to the formation of a so-called solar
nebula. Atoms and molecules formed in the ISM, together with dust grains are
incorporated in this solar nebula, serving as building blocks from which future
planets, comets, asteroids, and other celestial bodies may originate. Solar system
bodies, such as comets (e.g., [7] and references therein; [8]), meteorites (e.g., [9, 10]),
and interplanetary dust particles (IDPs [11, 12]) are known to contain extraterrestrial
molecules, which might have a heritage from interstellar, nebular, and/or parent
body processing. Delivery of thesemolecules to the early Earth andMars during the
late heavy bombardment (4.5–3.8 billion years ago)may have been important for the
origin of life [13, 14]. Among themolecules delivered to the early Earth, amino acids
may have had a crucial role as they are the building blocks of proteins and enzymes,
therefore having implications for the origin of life. In this chapter we describe
different extraterrestrial environments where amino acids may be present and
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detected, their proposed formation mechanisms, and possible contribution to the
origin of life on Earth.

1.2
ISM

The search for amino acids, in particular for the simplest amino acid glycine
(NH2CH2COOH), in the ISM has been carried on for almost 30 years [15–28].
While in theory glycine may have several conformers in the gas phase [29], astro-
nomical searches have only focused on two (Figure 1.1, adapted from [21, 29]).
Conformer I is the lowest energy form,while conformer II has a higher energy, larger
dipole moment, and therefore stronger spectral lines [30]. Only upper limits of both
conformers were found in the ISM until Kuan et al. [25] reported the detection
of glycine in the hot molecular cores Sgr B2(N-LMH), Orion-KL, and W51 e1/e2.
This detection has been disputed by Snyder et al. [26], who concluded that the spectral
lines necessary for the identification of interstellar glycine have not yet been found.
In addition, they argued that some of the spectral lines identified as glycine by
Kuan et al. [25] could be assigned to other molecular species. Further negative results
include the astronomical searches of Cunningham et al. and Jones et al. [27, 28], who
claim that their observations rule out the detection of both conformers I and II of
glycine in the hot molecular core Sgr B2(N-LMH). They conclude that it is unlikely
that Kuan et al. [25] detected glycine in either Sgr B2(N-LMH) or Orion-KL. No other
amino acid has been detected in the ISM. Despite these results, amino acids were
proposed to be formed in the ISM by energetic processing on dust grain surfaces,
which will then be evaporated, releasing the amino acids into the gas phase (solid-
phase reactions), or synthesized in the gas phase via ion–molecule reactions (gas-
phase reactions). These two processes will now be described in more detail (for a
review, see, e.g., [31]).

1.2.1
Formation of Amino Acids in the ISM via Solid-Phase Reactions

Several mechanisms have been proposed for amino acid formation in the ISM.
These include solid-phase reactions on interstellar ice grains by energetic processing,
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Figure 1.1 Molecular structures of conformers I and II of glycine
in the gas phase (adapted from [21, 29]).
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whichmay occur in coldmolecular clouds (e.g., [32] and references therein). In these
regions of the ISM, inwhich temperatures are very low (<50K), atoms andmolecules
in the gas phase will be accreted onto the surface of dust grains leading to the
formation of ice mantles [33, 34]. Diffusion of accreted atoms leads to surface
reactions, forming additional species in the ice mantles. These interstellar ices are
mainly composed of H2O, CO, CO2, CH4, CH3OH, and NH3, with traces of other
species (Table 1.2; [32, 34–38]). Once these ice grains are formed, energetic processes
[e.g., cosmic rays and ultraviolet (UV) irradiation] may change the ice mantle
composition.
A range of interstellar ice analogs have been irradiated at low temperatures (�10K)

to produce a variety of amino acids. Holtom et al. [39] used galactic cosmic ray
particles to irradiate an ice mixture containing carbon dioxide (CO2) and methyl-
amine (CH3NH2), which produced hydroxycarbonyl (HOCO) and aminomethyl
(CH2NH2) radicals. The recombination of these radicals would then form glycine
and its isomer (CH3NHCOOH). Briggs et al. [40] UV-irradiated a mixture of CO :
H2O :NH3 (5 : 5 : 1) at 12 K for 24 h. This resulted in the formation of an organic
residue, which included among other organic compounds, 0.27% of glycine. Ice
mixtures containing H2O :CH3OH :NH3 : CO : CO2 (2 : 1 : 1 : 1 : 1 molar composi-
tion; [41]), and H2O with NH3, CH3OH, and HCN (0.5–5% NH3, 5–10% CH3OH,
and 0.5–5% HCN, relative to H2O [42]) were UV-irradiated in high vacuum at below
15K. While Bernstein et al. [42] obtained glycine and racemic mixtures (D/L�1) of
alanine and serine, a large variety of amino acidswere foundbyMunõzCaro et al. [41].
These results were confirmed by Nuevo et al. [43, 44].
The exact formation pathway of amino acids in interstellar ices is unknown, but the

Strecker synthesis ([42]; for more details, see Section 1.4), reactions on the surface of

Table 1.2 Abundances of interstellar ices (normalized toH2O) in the
high-mass protostellar objectsW33A andNGC758:IRS9, in the low-
mass protostellar object Elias 29, and the field star Elias 16.

Ice specie

W33A
high-mass
protostar

NGC758:IRS9
high-mass
protostar

Elias 29
low-mass
protostar

Elias 16
field star

H2O 100 100 100 100
CO 9 16 5.6 25
CO2 14 20 22 15
CH4 2 2 <1.6 —

CH3OH 22 5 <4 <3.4
H2CO 1.7–7 5 — —

NH3 3–15 13 <9.2 <6
OCS 0.3 0.05 <0.08 —

C2H6 <0.4 <0.4 — —

HCOOH 0.4–2 3 — —

O2 <20 — — —

OCN– 3 1 <0.24 <0.4

Adapted from [31, 32, 52].
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polycyclic aromatic hydrocarbon flakes [45], and radical–radical reactions [46, 47]
have been proposed. As radical–radical reactions can occur with almost no activation
energy [47], theoretical modeling suggests that glycine may be formed in interstellar
ice mantles via the following radical–radical reaction sequence:

COþOH!COOH ð1:1Þ

CH3 þCOOH!CH3COOH ð1:2Þ

NH2 þCH3COOH!NH2CH2COOHþH ð1:3Þ
Quantum chemical calculations indicate that amino acids may also be formed by
recombination of the radicals COOH and CH2NH2, which are produced by dehy-
drogenation of H2O and CH3OH, and hydrogenation of HCN, respectively [47].
However, all radical–radical reactions described above require the radicals to diffuse
into and/or onto the ice mantle which, as noted by Woon [47], may only occur at
temperatures of 100K or higher, much higher than the temperature in molecular
clouds. Furthermore, Elsila et al. [48] used isotopic labeling techniques to testwhether
Strecker synthesis or radical–radical reactions were responsible for amino acid
formation in interstellar ice analogs. Their results show that amino acid formation
occurs via multiple routes, not matching the previously proposed Strecker synthesis
or radical–radical mechanisms. Ultimately, the need for high UV flux to produce
amino acids in icemantles contrastswith the low expected efficiency ofUVphotolysis
in dark molecular clouds [4]. This, together with the fact that amino acids have low
resistance to UV photolysis [49], raises concerns about the amino acid formation in
interstellar ices by UV photolysis.

1.2.2
Formation of Amino Acids in the ISM via Gas-Phase Reactions

Potential mechanisms alternative to solid-phase reactions include gas-phase
formation of interstellar amino acids via ion–molecule reactions. Amino acids,
once formed, could potentially survive in the gas phase in hot molecular cores,
because the UV flux is sufficiently low (i.e., 300 mag of visual extinction) [31].
Alcohols, aminoalcohols, and formic acid evaporated from interstellar ice grains
(Table 1.2; [50–53]) may produce amino acids in hot molecular cores through
exothermic alkyl and aminoalkyl cation transfer reactions [52]. Aminoalkyl cation
transfer from aminomethanol and aminoethanol to HCOOH can produce protonat-
ed glycine and b-alanine, respectively via the following reactions [52]:

NH2CH2OH
þ
2 þHCOOH!NH2CH2COOH

þ
2 þH2O ð1:4Þ

NH2ðCH2Þ2OHþ
2 þHCOOH!NH2ðCH2Þ2COOHþ

2 þH2O ð1:5Þ
An electron recombination will then produce the neutral amino acids. Further
alkylation may produce a large variety of amino acids through elimination of a water
molecule [31, 52].

8j 1 Extraterrestrial Amino Acids



Alternatively, Blagojevic et al. [54] have experimentally proven the gas-phase
formation of protonated glycine andb-alanine, by reacting protonatedhydroxylamine
with acetic and propanoic acid, respectively:

NH2OH
þ þCH3COOH!NH2CH2COOH

þ þH2O ð1:6Þ

NH2OH
þ þCH3CH2COOH!NH2ðCH2Þ2COOHþ þH2O ð1:7Þ

Neutral amino acids could then be produced by dissociative recombination
reactions [54].
Independently of themechanismof synthesis (solid-phase or gas-phase reactions),

once formed, amino acids would need to be resistant and survive exposure to cosmic
rays and UV radiation in the ISM. The stability of amino acids in interstellar gas and
on interstellar grains has been simulated [49]. Different amino acids [i.e., glycine,
L-alanine, a-aminoisobutyric acid (a-AIB), and b-alanine] were irradiated in frozen
argon, nitrogen, or watermatrices to test their stability against space radiation. It was
shown that these amino acids have very low stability against UV photolysis.
Therefore, amino acids will not survive in environments subject to high UV flux,
such as the diffuse ISM.This doesnot eliminate formation of amino acids in the ISM,
but instead requires that amino acids are incorporated into UV-shielded environ-
ments such as hot molecular cores, in the interior of comets, asteroids, meteorites,
and IDPs.

1.3
Comets

Comets are agglomerates of ice, organic compounds, and silicate dust, and are
some of themost primitive bodies in the solar system (for reviews about comets, see,
e.g., [55–57]). Cometswerefirst proposed to have delivered prebioticmolecules to the
early Earth by Chamberlin and Chamberlin [58]. Since then, space telescopes (such
as the Hubble Space Telescope, Infrared Space Observatory, and Spitzer Space
Telescope; e.g., [59–66]), ground-based observations (e.g., [67–69]), cometary fly-bys
(Deep Space 1 mission, and Vega1, Vega2, Suisei, Sakigake, ICE, and Giotto
spacecraft missions; e.g., [70–76]), impacts (Deep Impact mission, which impacted
into the 9P/Tempel comet�s nucleus; e.g., [77–79]), collection of dust from the coma
of a comet (Stardustmission to cometWild-2; e.g., [80–84]), and rendezvousmissions
(such as the Rosetta mission, which will encounter the comet 67P/Churyumov–
Gerasimenko in 2014) advanced our knowledge about these dirty snowballs.
Several organic compounds have been detected in comets (Table 1.3; for reviews,

see, e.g., [7, 8, 85]). Fly-by missions have suggested the presence of amino acids on
comet Halley [71], but their presence could not be confirmed due to the limited
resolution of the mass spectrometers on board the Giotto and Vega spacecrafts. In
addition, only an upper limit of less than 0.15 of glycine relative to water has been
determined in the coma of Hale–Bopp using radio telescopes (Table 1.3; [69]).
Although several amino acid precursors (see Section 1.4), including ammonia,

1.3 Comets j9



Table 1.3 Molecular abundances of ices for comets Halley, Hyakutake, and Hale–Bopp.

Molecule Halley Hyakutake Hale–Bopp

H2O 100 100 100
H2O2 <0.04 <0.03
CO 15 6–30a 20a

CO2 3 <7b 6b

CH4 0.2–1.2 0.7 0.6
C2H2 �0.3 0.5 0.1
C2H6 �0.4 0.4 0.3
CH3C2H <0.045
CH3OH 1.3–1.7 2 2.4
H2CO 0–5 0.2–1a 1.1a

HCOOH 0.08
CH3COOH <0.06
HCOOCH3 0.08
CH3CHO 0.025
H2CCO <0.032
C2H5OH <0.05
CH3OCH3 <0.45
CH2OHCHO <0.04
NH3 0.1–2 0.5 0.7
HCN �0.2 0.1 0.25
HNCO 0.07 0.10
HNC 0.01a 0.04a

CH3CN 0.01 0.02
HC3N 0.02
NH2CHO 0.01
NH2CH2COOH <0.15
C2H5CN <0.01
CH2NH <0.032
HC5N <0.003
N2O <0.23
NH2OH <0.25
H2S 0.04 0.8 1.5
OCS 0.1a 0.3a

SO 0.2–0.8a

CS2 0.1c 0.2c

SO2 0.23
H2CS 0.02
S2 0.005
NaCl <0.0008
NaOH <0.0003

Abundances are normalized to H2O and were measured at around 1AU from the Sun. Adapted
from [8, 32, 69, 86, 245].
aExtended sources (the abundance is model dependent).
bMeasured at 2.9 AU from the Sun.
cAbundance deduced from CS.
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HCN, formaldehyde, and cyanoacetylene, have been observed in the Hyakutake and
Hale–Bopp comets [7], only a very limited number of carbonyl compounds necessary
for the synthesis of amino acids were detected in comets [7, 32, 86]. The ultimate
proof for the presence of amino acids in comets is a sample return mission such as
Stardust, which collected dust from the coma of theWild-2 comet using a lightweight
material called aerogel [80]. Analyses of comet-exposed aerogel samples show
a relative molar abundance of glycine that slightly exceeds that found in control
samples, suggesting a cometary origin for this amino acid [83]. Compound-specific
isotopic analyses of glycine present in comet-exposed aerogel samples have not yet
been performed and therefore it has not been possible to ultimately constrain
its origin. Other amino acids present in the comet-exposed aerogel samples included
e-amino-n-caproic acid, b-alanine, and g -amino-n-butyric acid (g-ABA). The similari-
ty in the distribution of these amino acids in the comet-exposed sample, the witness
tile (whichwitnessed all the terrestrial and space environments as the comet-exposed
samples, but did not �see� comet Wild-2), and the Stardust impact location soil
indicates a terrestrial origin (contamination) for these amino acids [83].

1.4
Meteorites

Meteorites are extraterrestrial objects that survived the passage through the Earth�s
atmosphere and the impact with the Earth�s surface. Excepting the lunar andMartian
meteorites [87–91], all meteorites are thought to have originated from extraterrestrial
bodies located in the asteroid belt (e.g., [92–98]). Although unproven, it was also
suggested that they could have originated from comets ([99–102] and references
therein). Meteorites can be divided into iron, stony-iron, and stony meteorites.
They can be further divided into classes according to their chemical, mineralogical,
and isotopic composition (for reviews, see, e.g., [103–105]). A very primitive class
of stony meteorites, named carbonaceous chondrites, has not been melted since
their formation early in the history of the solar system, around 4.6 billion years ago
(for reviews, see, e.g., [9, 10]). Within the class of carbonaceous chondrites, there are
the CI-, CM-, CK-, CO-, CR-, CV-, CH-, and CB-type chondrites. Chondrites are also
classified and grouped into petrographic types. This refers to the intensity of thermal
metamorphism or aqueous alteration that has occurred on the meteorite parent
body, ranging from types 1 to 6. A petrologic type from 3 to 1 indicates increasing
aqueous alteration. A petrologic type from 3 to 6 indicates increasing thermal
metamorphism.
Carbonaceous chondrites have a relatively high carbon content and can contain up

to 3wt% of organic carbon. More than 70% of it is composed of a solvent-insoluble
macromolecularmaterial, while less than 30% is amixture of solvent-soluble organic
compounds. Carbonaceous chondrites, as revealed by extensive analyses of the
Murchison meteorite, have a rich organic inventory that includes organic com-
pounds important in terrestrial biochemistry (Table 1.4). These include amino
acids (e.g., [106–108]), carboxylic acids (e.g., [109, 110]), purines and pyrimidines
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(e.g., [111–113]), polyols [114], diamino acids [115], dicarboxylic acids (e.g., [116–
119]), sulfonic acids [120], hydrocarbons (e.g., [121, 122]), alcohols (e.g., [123]),
amines and amides (e.g., [124, 125]), and aldehydes and ketones [123].
The first evidence of extraterrestrial amino acids in a meteorite was obtained

by Kvenvolden et al. [121], after analyzing a sample of the Murchison meteorite
which had recently fallen in Australia in 1969. These authors detected several amino
acids in this meteorite, including the nonprotein amino acids a-AIB and isovaline,
which suggested an abiotic and extraterrestrial origin for these compounds. Since
then, Murchison has been the most analyzed carbonaceous chondrite for amino
acids, with more than 80 different amino acids identified, the majority of which are
rare (or nonexistent) in the terrestrial biosphere (for reviews, see, e.g., [107, 108]).
These amino acids have carbon numbers from C2 through C8, and show complete
structural diversity (i.e., all isomers of a certain amino acid are present). They can be
divided into two structural types, monoamino alkanoic acids and monoamino
dialkanoic acids, which can occur as N-alkyl derivatives or cyclic amino acids, with
structural preference in abundance order a> g >b. Branched-chain amino acid
isomers predominate over straight ones and there is an exponential decline in
concentration with increasing carbon number within homologous series.
Amino acids have also been reported in several other carbonaceous chondrites

besides Murchison (Table 1.5). Within the CM2 group the total amino acid abun-
dances and distributions are highly variable; Murray [126], Yamato (Y-) 74 662 [127,
128], and Lewis Cliff (LEW) 90 500 [129, 130] show an amino acid distribution and

Table 1.4 Abundances (in ppm) of the soluble organic matter found in the Murchison meteorite.

Compounds Concentration

Carboxylic acids (monocarboxylic) 332
Sulfonic acids 67
Amino acids 60
Dicarboximides >50
Dicarboxylic acids >30
Polyols 24
Ketones 17
Hydrocarbons (aromatic) 15–28
Hydroxycarboxylic acids 15
Hydrocarbons (aliphatic) 12–35
Alcohols 11
Aldehydes 11
Amines 8
Pyridine carboxylic acid >7
Phosphonic acid 1.5
Purines 1.2
Diamino acids 0.4
Benzothiophenes 0.3
Pyrimidines 0.06
Basic N-heterocycles 0.05–0.5

Adapted from [9, 10, 161, 246].
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abundance similar to the CM2 Murchison. While the CM2 Y-791 198 has an
extremely high total amino acid concentration (71 ppm [131, 132]), which is about
5 times as high asMurchison (15 ppb), the CM2s Essebi, Nogoya,Mighei [133], Allan
Hills (ALHA) 77 306 [134–136], ALH 83 100 [130], Y-79 331, and Belgica (B-)
7904 [137] have much lower amino acid abundances, some being depleted in amino
acids (Table 1.5). For Essebi, Botta et al. [133] consider that the high abundances
(relative to glycine) of g-ABAandb-alanine are derived from terrestrial contamination
at the fall site.
CM1s chondrites were analyzed for the first time for amino acids by Botta

et al. [138]. ALH 88 045, MET (Meteorite Hills) 01 070, and LAP (La Paz) 0227 have
total amino acid concentration much lower than the average of the CM2s. According
to Botta et al. [138], these results and the similar relative amino acid abundances
between the CM1 class meteorites and the CM2 Murchison are explained by
decomposition of a CM2-like amino acid distribution during extensive aqueous
alteration in the CM1s meteorite parent body.
The CI1 chondrites Orgueil and Ivuna have total amino acid abundances of about

4.2 ppm,withb-alanine, glycine, and g-ABA as themost abundant amino acids, while
glycine and a-AIB are the most abundant amino acids in the CM2 chondrites
Murchison and Murray [136]. The CV3 Allende [133, 139] and the ungrouped C2
Tagish Lakemeteorites [133, 140] are essentially free of amino acids (total amino acid
abundances of 2 and 1 ppm, respectively), with most of the amino acids probably
being terrestrial contaminants.
The highest amino acid abundances ever measured in a meteorite were found

on the CR2s EET 92 042 and GRA 95 229, with total amino acid concentrations of
180 and 249 ppm, respectively [141]. The most abundant amino acids present in
these meteorites are the a-amino acids glycine, isovaline, a-AIB and alanine.
The high d13C results together with the racemic enantiomeric ratios deter-
mined [141] for most amino acids indicate an extraterrestrial origin for these
compounds (see Section 1.4.1). In addition, these authors analyzed the CR1 GRO
95 577, which was found to be depleted in amino acids (1 ppb). Other CRs analyzed
include the CR2 chondrites Renazzo [133] and Shişr 033 [142]. Renazzo has a total
amino acid abundance of only 4.8 ppm, which is similar to the CI chondrites
Orgueil and Ivuna. This meteorite has a distinct amino acid distribution, with g-
ABA, glycine, and L-glutamic acid as the most abundant amino acids. Only upper
limits for alanine and a-AIB were reported for Renazzo, while isovaline was
tentatively identified [133]. The most abundant amino acids in the Shişr 033
meteorite are glycine, L-glutamic acid, L-alanine, and L-aspartic acid. In addition
to this, Shişr 033 D/L protein amino acid ratios are smaller than 0.4 and in
agreement with the D/L amino acid ratios of Shişr 033 fall-site soil. These results
suggest extensive amino acid contamination of the meteorite (see Section 1.4.1).
However, Shişr 033 contains a small fraction of extraterrestrial amino acids, as
indicated by the presence of a-AIB [142].
Apart from carbonaceous chondrites, amino acid analyses have also been carried

out on Martian meteorites. As our present knowledge of amino acids potentially
present inMarsmay be accessed from thesemeteorites (see also Section 1.6), amino
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acid analyses have been performed in the Martian meteorites EET 79 001 [143],
ALH 84 001 [144], and Miller Range (MIL) 03 346 [145]. In all three samples, the
meteoritic amino acid distribution was similar to the one in the AllanHills ice, which
suggested that the ice meltwater was the source of the amino acids in these
meteorites. In addition, analysis of the Nakhla meteorite, which fell in Egypt, shows
that the amino acid distribution (including the D/L ratios) is similar to the one in the
sea-floor sediment from the Nile Delta [146].

1.4.1
Sources of Meteoritic Amino Acids (Extraterrestrial versus Terrestrial Contamination)

In order to determine if the amino acids present in carbonaceous chondrites are
indigenous to the meteorites, four approaches are generally applied: (i) detection
of amino acids that are unusual in the terrestrial environment, (ii) comparison of
the absolute abundances of amino acids in the meteorites to the levels found in the
fall-site environment (soil or ice), (iii) determination of enantiomeric ratios (D/L
ratios), and (iv) determination of compound specific stable isotope ratios of hydrogen,
carbon, and nitrogen.

1.4.1.1 Detection of Amino Acids that are Unusual in the Terrestrial Environment
The majority of the more than 80 different amino acids identified in carbonaceous
meteorites are nonexistent (or rare) in terrestrial proteins (for a review, see,
e.g., [108]). Extraterrestrial meteoritic nonprotein amino acids such as a-AIB,
isovaline, b-ABA, and b-AIB have concentrations usually in the order of a few
hundred parts per billion maximum (Table 1.5). However, Murchison [126] has a
higher abundance of a-AIB (2901 ppb), while Murray and LEW90 500 [126, 129, 130]
contain higher abundances of both a-AIB (1968 and 2706 ppb, respectively) and
isovaline (2834 and 1306 ppb, respectively). The highest abundances of a-AIB,
isovaline, b-ABA, and b-AIB were detected in the CR2 chondrites EET92 042
and GRA95 229 [141]. The CM2 Y791 198 ([131, 132]) contained similar abundances
of a-AIB, b-ABA, and b-AIB as EET92 042 and GRA95 229, but lower abundance of
isovaline (Table 1.5).

1.4.1.2 Determination of the Amino Acid Content of the Meteorite Fall Environment
Samples collected from meteorite fall sites have been analyzed for amino acids and
their distribution compared to the one from the carbonaceous chondrites. Ice from
the Antarctic regions of Allan Hills [143, 144] and La Paz [130, 147] contained only
trace levels of aspartic acid, serine, glycine, alanine, and g-ABA (less than 1 ppb of
total amino acid concentration). No isovaline or b-ABA was detected above detection
limits. Only an upper limit ofa-AIB (<2 ppt) was detected in the AllanHills ice [144],
while a relatively high abundance (ranging between 25 and 46 ppt) of a-AIB was
detected in the La Paz Antarctic ice [130, 147].
Soil samples from the Shişr 033 fall site show that the most abundant amino

acids are L-glutamic acid, L-aspartic acid, glycine, and L-alanine, with nonprotein
amino acids absent from the soil [142]. In addition, comparison of the protein
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amino acid enantiomeric ratios of Shişr 033 to those of the soil (D/L<0.4) shows
agreement, indicating that most of the amino acids in this meteorite are terrestrial
in origin. On the other hand, a soil sample collected close to the fall site of the
Murchison meteorite showed much smaller amino acid relative concentrations
(glycine¼ 1) when compared to the Murchison meteorite, indicating that the
majority of the amino acids present in this meteorite are extraterrestrial in
origin [133].

1.4.1.3 Determination of Enantiomeric Ratios
Chirality is a useful tool for determining the origin (biotic versus abiotic) of amino
acids in meteorites. On Earth most proteins and enzymes are made of only the
L-enantiomer of chiral amino acids; however, abiotic synthesis of amino acids
yields racemic mixtures (D/L�1). If we assume that meteoritic protein amino acids
were racemic (D/L�1) prior to the meteorite fall to Earth, then their D/L ratios can be
used as a diagnostic signature to determine the degree of terrestrial L-amino acid
contamination they have experienced. In fact, racemic amino acid ratios for protein
(and nonprotein) amino acids in carbonaceous chondrites indicate an abiotic
synthetic origin. Although racemicmixtures have beenobserved formost nonprotein
chiral amino acids (Table 1.5), small L-enantiomeric excess for some nonprotein
amino acids has been reported in the Murchison and Murray meteorites [148–150].
Six a-methyl-a-amino acids unknown or rare in the terrestrial biosphere (both
diastereomers of a-amino-a,b-dimethyl-pentanoic acid, isovaline, a-methylnorva-
line, a-methylnorleucine, and a-methylvaline) had L-enantiomeric excesses ranging
from 2.8 to 9.2% in Murchison and from 1.0 to 6.0% in Murray [148, 149]. More
specifically, Murchison has shown to have an L-enantiomeric excess of isovaline
ranging from 0 to 15.2% with significant variation both between meteorite stones
and even within the samemeteorite stone [150]. The meteoritic enantiomeric excess
of a-methyl-a-amino acids and the absence for the a-H-a-amino acids may be
explained by the resistance to racemization of a-methyl-a-amino acids during
aqueous alteration in the meteorite parent body, due to their lack of an a-hydro-
gen [149, 151, 152]. Another explanation could be a different amino acid formation
process, namely pre-solar formation for thea-methyl-a-amino acids and subsequent
incorporation into the parent body, followed by parent body formation of the a-H-a-
amino acids [149, 152].

1.4.1.4 Determination of Compound-Specific Stable Isotope Ratios of Hydrogen,
Carbon, and Nitrogen
For meteoritic nonchiral amino acids, such as glycine, a-AIB, b-ABA, and b-alanine,
compound-specific stable isotope measurements are the only means to establish
their origin. The abundances of stable isotopes are expressed in d values. These
indicate the difference in per mil (½) between the ratio in the sample and the same
ratio in the standard, as shown by:

dð½Þ ¼ ðRsample�RstandardÞ
Rstandard

� 1000 ð1:8Þ
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where R represents D=1H for hydrogen, 13C=12C for carbon, and 15N=14N for
nitrogen. The standards usually used are standard mean ocean water for hydrogen,
Pee Dee Belemnite for carbon, and air for nitrogen.
Stable isotope analyses of the total amino acid fractions of theMurchisonmeteorite

showed dD¼ þ 1370½, d15N ¼ þ 90½, and d13C ¼ þ 23:1½ [153], which were
later confirmed by Pizzarello et al. [154, 155], who obtained dD¼ þ 1751½,
d15N ¼ þ 94½, and d13C ¼ þ 26½. Stable isotope analyses were obtained for
individual amino acids in different meteorites (Table 1.6; [126, 141, 150, 156–159]).
These values (with a few exceptions, in which there is terrestrial contribution) are
clearly outside the amino acid terrestrial range (from�70.5 to þ 11.25½; [160]) and
fall within the range of those measured for other indigenous polar organic
compounds present in meteorites [161]. The highly enriched dD, d15N, and d13C
values determined for the meteoritic amino acids indicate primitive extraterrestrial
organic matter.
The deuterium enrichment of amino acids is thought to be the result of interstellar

chemical reactions (e.g., gas-phase ion–molecule reaction and reactions on interstel-
lar grain surfaces) which formed the amino acid precursors. These reactions occur in
the low temperatures of dense clouds (T< 50K) in which deuterium fractionation is
efficient (e.g., [162–164]).Meteoritic amino acids would have then been formed from
their deuterium-enriched interstellar precursors and deuterium-depleted water
([165] and references therein) by synthesis (aqueous alteration) in the meteorite
parent body (see Section 1.4.2). However, a-amino acids are more deuterium (and
13C)-enriched than a-hydroxy acids [117], which is inconsistent with a Strecker-
cyanohydrin-type synthesis froma commonprecursor [116, 166]. Differencesmay be
explained by different reaction paths leading to different isotopic distributions [164].
The 15N enrichment of amino acids is also thought to be due to chemical fraction-
ation in interstellar ion–molecule exchange reactions [167, 168].
The hydrogen isotope composition of meteoritic amino acids follows a relatively

simple pattern, inwhich dDvariesmorewith the structure of their carbon chains (dD
is higher for amino acids having a branched alkyl chain) than with the chain
length [159]. On the other hand, d13C of a-amino acids (a-methyl-a- and a-H-a-
amino acids) decreases with increasing carbon chain length (with the a-methyl-a-
amino acids more 13C-enriched than the corresponding a-H-a-amino acids), while
d13C for non-a-amino acids remains unchanged or increases with increasing carbon
chain length [158]. This suggests diverse synthetic processes for meteoritic amino
acids, in particular that the amino acid carbon chain elongation followed at least two
synthetic pathways [158, 159].

1.4.2
Synthesis of Meteoritic Amino Acids

Meteoritic amino acids are thought to be formed by a variety of synthetic pathways.
Namely, it is suggested thata-amino acids formby a two-step process, inwhich thea-
amino acid precursors (carbonyl compounds, ammonia, and HCN) were present (or
formed) in a proto-solar nebula and were later incorporated into an asteroidal parent
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body [169]. During aqueous alteration on the asteroidal parent body, Strecker-
cyanohydrinsynthesiswouldhave takenplace to forma-aminoacids (Figure1.2; [108,
116, 163, 166]). Since the carbonyl precursors (aldehydes and ketones) are thought to
be synthesized by the addition of a single-carbon donor to the growing alkane chain, a
decrease of the a-amino acid abundances with increasing chain length is expected.
Also, synthesis of branched carbon chain analogs is expected to be favored over
straight-carbon chain analogs (e.g., [108]), and this trend is observed in the EET
92 042 and GRA 95 229 meteorites [141]. Additional support for this hypothesis is
the finding of a-amino acid, a-hydroxy acids [116, 117, 166], and imino acids [170]
in carbonaceous meteorites. However, non-a-amino acids cannot be produced by
the Strecker-cyanohydrin synthesis. Alternatively, meteoritic b-amino acids are
thought to be synthesized by Michael addition of ammonia to a,b-unsaturated
nitriles, followed by reduction/hydrolysis (Figure 1.3; e.g., [108] and references
therein). These precursor molecules have been detected in the ISM (Table 1.1 and
reference therein) and also in comets (Table 1.3 and references therein). A chemical
reaction such as a Michael addition could occur on the parent body of meteorites.
For example, the extensively aqueous altered CI chondrites Orgueil and Ivuna are
rich in b-alanine, but depleted in a-amino acids. As suggested [138], this might
indicate that the CI parent body was depleted in carbonyl compounds (aldehydes
and ketones) necessary for the Strecker-cyanohydrin synthesis to occur. Additional
synthetic pathways in the meteorite parent body have been proposed for non-a-
amino acids (for a review, see, e.g., [108]). For example, hydrolysis of lactams
and carboxy lactams, which have been detected in carbonaceous meteorites [125],
gives the corresponding b-, g -, and d-amino acids, and dicarboxylic amino acids,
respectively.
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Figure 1.2 The Strecker-cyanohydrin synthetic pathway for the
formation of a-amino a-hydroxy and imino acids (adapted
from [116, 133, 171, 247]). R1 and R2 correspond to H or
CnH2n þ 1. If R3 corresponds to H then a-amino acids are
produced; if R3 is an amino acid then imino acids are produced.
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1.5
Micrometeorites and IDPs

Micrometeorites (MMs) and IDPs are thought to be the remains of comets and
asteroids (for reviews, see, e.g., [171–176]). MMs are small extraterrestrial dust
particles, typically in the range 50mm to 2mm [177], that have survived atmospheric
entry. They are collected in deep-sea sediments [171, 178], Antarctic ice [179–181],
and Greenland lake deposits [182–184]. On the other hand, IDPs are extraterrestrial
particles (usually measuring less than 30mm in size), which are collected from the
Earth�s stratosphere (at an altitude of�20 km) byNASA aircraft (e.g., [171, 185, 186]).
Several organic molecules have been found in IDPs and MMs, such as ketone

and aliphatic hydrocarbons [12, 187–189], and polycyclic aromatic hydrocarbons [11,
190]. Antarctic micrometeorites (AMMs) have also been analyzed for amino
acids [191–193].MostAMMsanalyzed byBrinton et al. [191] had very low abundances
of amino acids and high L-enantiomeric excess, with a distribution similar to that
found in the Antarctic ice. One set of samples containing around 30MMs was found
to containa-AIB at high levels (�280 ppm).However, the identification ofa-AIBwas
tentative and needs further confirmation [191]. In addition, Glavin et al. [192] studied
455 AMMs and none of them contained a-AIB. A third study by Matrajt et al. [193]
analyzed 300 AMMs and founda-AIB in around 100MMs. These authors calculated
that only around 14% of AMMs analyzed so far contained a-AIB.

1.6
Mars

The possibility of Mars harboring alien life (presently and/or in the past) is the focus
of future space missions planned to the Red Planet. Their target compounds
indicative of life include, among others, amino acids [194–196]. These are key
biomolecules on Earth, but are also produced by abiotic reactions such as those
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Figure 1.3 Michael-addition of ammonia to a a,b-unsaturated
nitrile to formab-amino alkylnitrile that is then hydrolyzed to form
a b-amino acid (b-alanine) (adapted from [133]).
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occurring in the parent body of meteorites (see Section 1.4.2). Amino acids synthe-
sized elsewhere in the solar systemmay therefore be delivered intact into the surface
of Mars. In fact, large amounts of carbonaceous material are thought to be delivered
to the surface of Mars by IDPs and meteorites every year [14, 197, 198]. However, in
1976 the Viking landers found no organic molecules above the parts per billion to
parts per million levels on the surface of Mars (e.g., [199, 200]), even though they
should have been able to detect amino acids on the order of tens of parts per
million [201, 202]. This might be explained by chemical reactions occurring in the
surface ofMars, leading to the destruction of organicmolecules. For example, oxidant
molecules may react with any potential organic compound present in the surface of
the Martian soil, leading to their destruction. These oxidizing molecules may be
formed by UV photolysis of the Martian atmosphere [203–207], interaction of
Martianminerals with atmospheric H2O2 [208] or UV radiation [209], or by chemical
weathering of silicates by low-temperature frost and adsorbed water in the Martian
soil [210, 211]. In addition, amino acids directly exposed toMars-likeUVradiation are
rapidly degraded [212–214]. For example, thin films of glycine and D-alanine have
half-lives in the order of 104–105 s when irradiated under simulated noon-timeMars
equatorial surface conditions [213].
If present, amino acids should therefore be in the subsurface of the Red Planet,

shielded from exterior radiation. As shown by Kminek and Bada [215], amino acids
can survive up to 3 billion years at a depth of more than 2m. In particular, Aubrey
et al. [216] found that the amino acids glycine and alanine have a half-life of up to 1.1
billion years, if buried under simulated Martian conditions. Similar results had
previously been obtained by Kanavarioti and Mancinelli [217], based on amino acid
decomposition rates in aqueous solutions. They found that a fraction of the amino
acids phenylalanine, alanine, and pyroglutamic acid would have been preserved
buried beneath the surface of Mars up to 3.5 billion years.
Themineralogical composition of Martian soils may also have an influence on the

amino acid stability [216, 218, 219]. Peeters et al. [218, 219] have shown that different
mineralogical compositions of Mars soil analogs lead to differences in amino acid
stability (for a review about Mars soil analogs, see [220]); in particular, clay mineral
matrices seem to have a shielding effect, protecting amino acids against destruction.
In addition, Aubrey et al. [216] determined that amino acids can be preserved for
geologically long periods (billions of years) in sulfatemineral matrices. These results
suggest that locations on Mars containing clay and/or sulfate minerals (for a review,
see, e.g., [221]) should be the prime targets for futuremissions with the goal to search
for life, in particular for its amino acid constituents.

1.7
Delivery of Extraterrestrial Amino Acid to the Earth and its Importance to the Origin
of Life

Independently of the environment where extraterrestrial amino acids were formed,
these molecules were exogenously delivered to the early Earth during the period of
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late heavy bombardment 4.5–3.8 billion years ago. In fact, comets, meteorites, MMs,
and IDPs are thought to have delivered tons of organic carbon per year to our planet
during this period of time [13, 14, 222], just before life emerged (e.g., [223–225]).
Although we do not know what the production rates of different organic
compounds were on the early Earth (i.e., impact-shock synthesis, endogenous
production by UV light or electrical discharge, and synthesis in submarine hydro-
thermal vents), the higher the content of key molecules in primitive extraterrestrial
materials, the more likely it is that exogenous material played a role in the origin of
life. As noted by Chyba and Sagan [14], the heavy bombardment may have delivered
or produced organic molecules in the early Earth in quantities comparable to other
sources, possibly playing an important role for the origin of life.
The survival rate of amino acids in extraterrestrial bodies under simulated Earth

atmospheric entry has been studied by several authors. Amino acids present in the
interior of meteorites bigger than 1mm survive atmospheric deceleration ([226]; see
also Section 1.4), as the meteorite only experiences pyrolytic temperatures (>600 �C)
and melting on the surface (<1mm depth [227]). This does not happen with
smaller particles such as MMs and IDPs, which are uniformly heated. In fact, it is
estimated thatmostMMs and IDPs are heated for a few seconds to peak temperatures
of up to 1700 �Cduring atmospheric entry [228–230]. However, a small percentage of
dust (MMs and IDPs) enters the atmosphere at temperatures below 700 �C [173, 228,
231–233]. Glavin and Bada [234] investigated the sublimation of amino acids from
sub-100mmMurchison meteorite grains to test the survival of amino acids in MMs
during atmospheric entry. They found that under vacuum (800mT) and at 550 �C,
only glycine survived. All other amino acids (including a-AIB and isovaline) were
completely destroyed, which is not surprising if we consider that, with a few
exceptions, pure amino acids suffer thermal decomposition in the range of
200–600 �C[235].Glavin andBada [234] also found thatmethylamineandethylamine,
which are the a-decarboxylation products of glycine and alanine, respectively, were
not detected. This indicates thata-decarboxylation did not occur or that these amines
were also decomposed during the experiments. Although amino acids are expected
to have a higher atmospheric entry survival in smaller cosmic dust particles
(<50mm) [228, 231],Matrajt et al. [236] found similar results to Glavin and Bada [234]
using activated alumina with grain sizes ranging from 5 to 9mm,which suggests that
the amino acid survival is not greatly dependent on the grain size. On the other hand,
Matrajt et al. [236] demonstrated that the combinationofporosity andheatshield effect
(i.e., ablative cooling) of extraterrestrial dust particles during atmospheric heating
results inpoorheat transfer to theparticle�s interior, providing thermalprotection and
allowing organic compounds to survive. This reinforces the idea that IDPs, which are
around 10% organic carbon by mass, can decelerate in the atmosphere and deliver
organic compounds intact [222], andmight have been themajor source of exogenous
organics in the early Earth as suggested by Chyba and Sagan [14].
Nonprotein amino acids, a-AIB and racemic isovaline, have been detected within

around 1m above and below the sediments of the iridium-rich Cretaceous/Tertiary
boundary at Stevns Klint, Denmark byZhao andBada [237]. These authors suggested
that the sediments represented components of a large bolide (i.e., a comet), which
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collided with the Earth 65 million years ago. These results are not in agreement
with xenon measurements at the Cretaceous/Tertiary boundary [238, 239] or with
two-dimensional smoothed particle hydrodynamics simulations of cometary organic
pyrolysis by impacts [13]. However, Chyba et al. [13] noted the lack of relevant kinetic
data for high-temperature pyrolysis of organicmolecules. Further work on amino acid
survival in simulated large asteroidal and cometary shock impacts has beenperformed
[240–243]. Peterson et al. [240] conducted a series of shock impact experiments over a
pressure range of 3.5–32GPa using powdered Murchison and Allende meteorite
samples. These were previously extracted to eliminate their original amino acid
content and subsequently doped with known amino acids. The results show that
amino acids diminished substantially with increasing high pressures and new
�daughter� amino acids were formed, in particular b-alanine, glycine, alanine, g-
ABA, and b-AIB. At 30GPa, the abundances of the daughter compounds exceeded
those of the remaining initial amino acids. However, as noted by Blank et al. [242],
these authors did not refer to the porosity of the starting material or the temperature
conditions of the experiments. Further shock experiments in the range 5–21GPa and
139–597 �C and using aqueous amino acid solutions were performed by Blank
et al. [242]. In all the experiments a large fraction of amino acids survived, supporting
the hypothesis that organic compounds could survive impact processes. In addition,
high-resolution hydrocode simulations of comet impacts, over different projectile
radii, impact velocities, and angles, show that significant amounts of amino acids can
be delivered intact to the Earth via kilometer-sized comet impacts [241, 243].

1.8
Conclusions

To date, extraterrestrial amino acids have only been unequivocally identified in
meteorites and a few AMMs. However, the potential precursors of these prebiotic
molecules are abundant in a variety of extraterrestrial environments, including
the ISM and comets. This suggests that meteoritic amino acids may have a
contribution from interstellar, nebular and/or parent body processing. The delivery
of these prebiotic molecules to the early Earth during the period of heavy bombard-
ment (4.5–3.8 billion years ago) may have provided the necessary feedstock for the
evolution of emergent life systems.
Laboratory analyses of meteoritic material together with future missions (includ-

ing sample return missions) to solar system planets (e.g., Mars Science Laboratory,
ExoMars), satellites, asteroids, and comets may expand our inventory of amino acids
in extraterrestrial environments.
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