Chapter 1

INTRODUCTION

This book is an example of fruitful interaction between (non-classical) propo-
sitional logics and (classical) model theory which was made possible due to
categorical logic. Its main aim consists in investigating the existence of model-
completions for equational theories arising from propositional logics (such as
the theory of Heyting algebras and various kinds of theories related to proposi-
tional modal logic). The existence of model-completions turns out to be related
to proof-theoretic facts concerning interpretability of second order propositional
logic into ordinary propositional logic through the so-called ‘Pitts’ quantifiers’
or ‘bisimulation quantifiers’. On the other hand, the book develops a large
number of topics concerning the categorical structure of finitely presented al-
gebras, with related applications to propositional logics, both standard (like
Beth’s theorems) and new (like effectiveness of internal equivalence relations,
projectivity and definability of dual connectives such as difference). A special
emphasis is put on sheaf representation, showing that much of the nice categor-
ical structure of finitely presented algebras is in fact only a restriction of natural
structure in sheaves. Applications to the theory of classifying toposes are also
covered, yielding new examples.

The book has to be considered mainly as a research book, reporting recent
and often completely new results in the field; we believe it can also be fruitfully
used as a complementary book for graduate courses in categorical and algebraic
logic, universal algebra, model theory, and non-classical logics.

1. Motivating example

The origin of this work goes back to a surprising Theorem of A.M. Pitts, cf.
[Pi2], stating that the second order intuitionistic propositional calculus [ p02
can be interpreted into ordinary intuitionistic propositional calculus IpC'. More
precisely,
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THEOREM 1.1 (A.M. P1TTS) For each propositional variable x and for
each formula t of IpC, there exist formulas 3t and V* t of IpC (effectively
computable from t) containing only variables not equal to x which occur in t,
and such that for any formula u not involving x, we have

F]pc Ft — u iff F[pct—>u

and
"[pcu—>vxt lﬁc I_]pC'Z,L“—)t,

Although the above result looks like a purely proof-theoretical fact, it can be
interpreted model-theoretically in a quite interesting way as a statement about
the theory of Heyting algebras. We summarize the main point below. Using the
identification of intuitionistic formulas with the terms in the first order theory
of Heyting algebras we can characterize semantically the ‘Pitts’ quantifiers’ 3%
and V*, as follows. For a formula ¢(y, z) of IpC, and a tuple of elements @
from a Heyting algebra H, we have that

H = (3")(a@) =1 iff HIx|/t(d, x) is an extension of H

where H [x|/t(@, x) is the Heyting algebra of polynomials H [x] divided by the
congruence generated by the condition ¢(a@, x) = 1. Moreover

HE W)@ =1 iff Hx|Etdx) =1

The proof of these characterizations easily follows from Pitts’ Theorem using
any presentation for H.

This explanation of Pitts’ quantifiers in terms of Heyting algebras can be used
in order to show that the first order theory of Heyting algebras admits a model
completion. In fact, it turns out that the system of equations and inequations
with parameters @ from H

tad,z)=1&w(d,z)#1& ... &up(d,z)#1 (1.1)
is solvable in an extension of H iff the quantifier-free formula
(FFH)@E) =1& VM (t—-w))@ #£1& ...

o & (VP (= um))(@) £ 1 (1.2)

is true in H. If the formula (1.2) is true, we can take H[x|/t(d,x) as an
extension of H in which the system (1.1) has a solution. Conversely, if the
system (1.1) is solvable in an extension H’, then we have a factorization
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HIx]/4(@,x) H

showing that H[x|/t(d,x) is an extension of H in which the system (1.1)
has the solution z = x. This, together with the above characterization of Pitts’
quantifiers, shows that formula (1.2) is true in . Thus the class of existentially
closed Heyting algebras is an elementary class and, as the above quantifier-
elimination procedure is effective, it can easily be shown that the related first
order theory is decidable. In Section 4.7, we shall provide examples of this
decision procedure, together with a list of some basic properties of existentially
closed Heyting algebras.

In this way Pitts” Theorem implies that the first order theory of Heyting
algebras admits a model completion. The interesting point is that the converse
is also true, in a quite general setting. In order to explain what we mean by this,
we need a category-theoretic formulation of Pitts” Theorem. In this equivalent
formulation, Theorem 1.1 just says that the opposite of the category of finitely
presented Heyting algebras is a Heyting category.

The notion of Heyting category ((MR1], [MR2] or logos in [Pil]) is a quite
standard notion in categorical logic: Heyting categories are just ‘Lindenbaum
categories’ for many-sorted intuitionistic first-order theories. A Heyting cate-
gory is a category with finite limits in which finite joins, images and dual images
among subobjects exist and are pullback-stable. Such a structure is needed in
order to interpret first-order intuitionistic logic: terms are interpreted as arrows,
formulas as subobjects and images and dual images along projections corre-
spond to quantifiers. With each first-order many sorted intuitionistic theory,
a Heyting category, built up in a completely syntactic way, can be associated:
objects are formulas, arrows are equivalence classes (with respect to provable
equivalence) of formulas which are provably functional in the restricted do-
mains given by the source and the target of the arrow they define. Conversely,
with each Heyting category, a first-order many sorted intuitionistic theory can
be associated: we have one sort for each object, one term for each arrow, no
relation symbols, and, as axioms, all the formulas which are ‘internally true’ in
the given Heyting category. The two inverse passages are bijective, modulo the
standard notion of equivalence between categories and modulo some natural
notion of equivalence between theories.

Thus, using this category-theoretic formulation of Pitts’ Theorem, we can
say that the fact that HA, i.e. the opposite to the category of finitely presented
Heyting algebras, has enough categorical structure to classify internally a first-
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order intuitionistic theory implies (and actually it is equivalent to, see below) the
fact that the first-order theory of Heyting algebras admits a model completion.

This is a rather interesting kind of connection: it says that the existence
of a classical theory (the model completion) is equivalent to the existence of
a suitable intuitionistic theory. Notice that the connection is not completely
trivial, in the sense that it can be shown that the first-order intuitionistic theory
classified by H A, is a theory speaking about Heyting algebras, but it differs
considerably from the model completion of the theory of Heyting algebras. The
two theories are indeed almost contradictory, for instance the statement

VaVy (zVy=1= (z=1lory=1))

is false in any existentially closed (non degenerate) Heyting algebra, but it is
true in the theory classified by the opposite to the category of finitely presented
Heyting algebras.

2. An overview of the book

We describe here the main strategy of the book. In Chapter 3 there is the proof
of a theorem which generalizes the above observations for Heyting algebras.
We take into consideration an arbitrary equational theory 7" satisfying a certain
assumption (see next Section) which is rather strong in general, but which is
often satisfied in varieties of algebras arising from logic. Under this assumption,
we prove (Theorem 3.11) that

T admits a model completion iff 'T' is an r-Heyting category,

where T is the opposite of the category Alg(T')yp of finitely presented 7
algebras. In other words 7" admits a model completion iff the category T
derived from T has some nice categorical structure.

The notion of r-Heyting category is obtained from the notion of Heyting
category by replacing ‘subobject’ by ‘regular subobject’ everywhere in the
definition. This modification is due to the fact that we prefer not to assume
that monos are all regular in T (i.e. that epis are quotients in Alg(T')sp), an
assumption which holds for Heyting algebras as a consequence of the Beth
property (BP), cf. Theorem 2.14, but which may fail in other cases.

In the following three Chapters, we apply Theorem 3.11 to two kinds of
varieties of algebras: Heyting algebras and modal algebras. In both cases we
adopt a similar strategy. Theorem 3.11 says that, under suitable assumptions,
the existence of a model completion for T is equivalent to the existence of
a certain categorical structure in T. Usually it is not easy to decide directly
whether T is an r-Heyting category. But, as this is a purely categorical property,
we can study it in any category equivalent to T. The strategy we adopt for an
equational theory 7' can be summarized in the following four steps:
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1 Embedding. Find an r-Heyting category £ and an embedding
‘I)T : Alg(T)?; — &

which is conservative, preserves finite limits and all the other r-Heyting
category structure that exists in Alg(T)%.

Conservativity ensures that the operations that can be performed in
Alg(T)‘;c’; and are preserved by ®t satisfy automatically any exactness
properties that these operations satisfy in £. In particular the operations of
left (35) and right (V) adjoint to the pullback functors f* (operating on
regular subobjects, see Section 2.3) in Alg(T)%,, if they exist, they auto-
matically satisfy the Beck-Chevalley condition.

In the applications the category £ is (equivalent to) the category of sheaves on
the opposite of the category of finite 7-algebras with the canonical topology.

2 Duality. Identify the image of ®1 in £, i.e. describe in a convenient way a
subcategory M of £ so that we have a factorization of

o L E

Alg(T)%,
Yy
Mt

with the first component being an equivalence of categories and W being
an inclusion.

In the applications this point is slightly reversed. Itis usually more natural to
define a "duality’ functor in the opposite direction, i.e. My — Alg(T)%.

3 Combinatorial condition for existence of adjoints. Now the existence of
the adjoints is reduced to the verification whether the existing adjoints in £
when applied to objects coming from Alg(T), give objects coming from

Alg(T)%,, as well.

In applications, with the help of an appropriate description of M, this can
be reduced to an equivalent condition of a combinatorial nature, expressed
in terms of Ehrenfeucht-Fraissé games on finite Kripke models.

4 Verification of combinatorial conditions. Last, but not least, the combinato-
rial conditions should be verified to establish whether the adjoints do exist,
if they do Alg(T), is an r-Heyting category.

We believe that this method is general and can be applied in other similar
contexts.



Chapter 2

PRELIMINARY NOTIONS

1.  Basic algebraic structures

In this section we recall the main algebraic structures which will be investi-
gated within the book. They are structures that provides an algebraic semantics
for propositional logics. They are usually obtained by enriching posets by some
algebraic operations. We are mainly interested in Heyting and modal algebras
i.e. those algebras that provide counterparts of superintuitionistic and modal
logics.

A partially ordered set (poset, for short) is a set P equipped with a reflexive,
transitive and antisymmetric binary relation <. For such a poset, the infimum
(resp. supremum) of a family {a; };cr of elements of P is an element (it may
or may not exists, but if it exists it is unique) A; a; € P (resp. V, a; € P) such
that for all b € P, we have

(Vielb<a) if  b<Na
i

(or
(ViGIGiSb) iff \/ang)

respectively). In case the index [ is empty, the above conditions say that the
infimum of the empty set is the maximum element of P and the supremum of
the empty set is just the minimum.

We recall some facts about adjoints among posets, although they can be
deduced from the general results about categories given in the Appendix, it is
worth having a direct knowledge of what happens in this special case. The right
adjoint f, (resp. left adjoint f*) to an order-preserving map f : P — () among
posets, is an order-preserving map in the opposite direction, satisfying

fla)<b iff a < fiu(b)

15
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(or
b< fla) f  fHb)<a

respectively) for all @ € P,b € (). Such a right (left) adjoint may not exists,
but if it exists it is unique. It is easily seen that left adjoints preserve existing
suprema and right adjoints existing infima: the latter, for instance, is shown by
an easy chain of equivalences as follows

a < filAibi)
fla) < Aibs
Vi f(a) <b;
Via < fio(b;)
a < A; felbi)

yieldying f«(A; i) = A; f«(bi) as a is arbitrary. If P is complete (i.e. iff
all suprema -or equivalently all infima- exist), then any order-preserving map
f : P — @ has aright adjoint iff it preserves suprema and has a left adjoint iff
it preserves infima. Such adjoints are easily seen to be given by the following

formulas:
L=\ a Fo= A a
fla)<b b<f(a)

forall b € .
A (meet) semilattice is a commutative idempotent monoid, i.e. a structure
(M, A, T) satisfying the equations

aANb=bAa, aANT=a, aha=a, aA{(bAc)=(aAb)Ac (2.1)
for all a, b, c € M. Putting
a<b iff aAb=a

we can define a partial order in any semilattice; the operation A turns out to
be the infimum (also called meer) of the pair {a,b} and T turns out to be
the maximum element. In fact, one can equivalently define a semilattice as a
partially ordered set in which infima exist for all finite sets of elements (this
includes the maximum element, seen as the infimum over the empty set).
Many important further operations can be characterized with respect to the
partial order so introduced: in order to obtain the notion of a latfice! one
simply has to require that also suprema (called joins as well) exist for all finite
sets; equivalently, a lattice is a semilattice with another binary operation V

I Notice that we always require the presence of 1 and T in a lattice (this is different from some common
literature). Sometimes, we also use the notation 1 for T and O for L.
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and another constant .| satisfying equations (2.1) (with A, T replaced by Vv, |
respectively) and moreover the following absorption laws

aN(aVvb)=a, aV(aAb)=a.

A lattice is said to be distributive iff it satisfies one of the two (equivalent)
equations

anN(Vey=(anb)V(aAc), aV(bAc)=(aVb A(aVc).

In a given semilattice M it may happens that for a,b € M the supremum
of the set {c|a A ¢ < b} exists; such an element is called the relative pseu-
docomplement of a relative to b (or the implication of a and b, using logical
terminology) and is written as @ — b. Otherwise said, a — b, if it exists, it is
the unique element satisfying the condition

ahNc<b iff c<a—b

for all c. A Brouwerian semilattice is a semilattice in which all implications
among pairs of elements exist and a Heyting algebra is a Brouwerian semilattice
which is also a distributive lattice. Brouwerian semilattices (hence also Heyting
algebras) may be equivalently introduced for instance through the equations

aN{a—b)=aAb bA(a—b)=0b
a— (bAc)y=(a—b)A(a—c) a—a=T.

This shows that Heyting algebras form an equational class, i.e. a variety. An
important example of a Heyting algebra is given by the open sets of a topological
space; here the partial order is inclusion, (finite) meets and joins are intersections
and unions, whereas implication of the open subsets a and b is the interior of
a’ Ub (where d' is the complement of a). The most important example for us is
given by the downward closed subsets D(P) of a poset P (e C P is downward
closed iff p € a and ¢ < p imply g € a): here the partial order, joins and
meets are again inclusion, intersections and unions, respectively, whereas the
implication of @ and b is

a—b={peP|Vg<p(g€a=qgeb)}

A finite distributive lattice is always a Heyting algebra, because a finite dis-
tributive lattice is complete and, thanks to distributivity, for any element a, the
order preserving map a A (—) preserves suprema, so that it has a right adjoint
a — (—). For the same reason, a finite Brouwerian semilattice is always a
Heyting algebra: in fact joins exists and are distributive as a A (—) preserves
them (being a left adjoint).
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In a Heyting algebra H, negation is introduced through
—a=a— 1;

such operation satisfies many usual laws, but not all the classical ones (for
instance, only three of the four De Morgan identities hold). A Boolean algebra
is a Heyting algebra in which we have —~—a = a (or, equivalently, aV—a = T)
for all a.

In a distributive lattice lattice D certain elements play a special role, they
are the join-irreducible ones. We say that q is join-irreducible iff for all n >
0,b1,...,b, € D, we have

ifa<byVv ---Vb,thenforsomel <i<n, a<h

(notice that join-irreducible elements are non-zero, i.e. different from L, by
taking n = 0 in the above definition). In distributive lattices of the kind D(P),
where P is a finite poset, join-irreducible elements are those of the kind | p for
p € P(here | pis {qg € P|g < p}). InaBoolean algebra B, join-irreducible
elements are called aroms and turn out to be just the minimal non-zero elements.
A Boolean algebra B may have no atoms (in this case we say that it is atomless),
or, at the extreme opposite, it may happen that for any non-zero b € B there is
an atom a < b (in this case, we say that B is atomic).

Distributive lattices and Boolean algebras (also Brouwerian semilattices, but
we shall not use this further result) are locally finite varieties, namely varieties
in which finitely generated algebras are finite; this is easily seen, e.g. in the
case of Boolean algebras, from the fact that if the set G generates the algebra
B, then every element of B admits a representation of the kind A, \/ ; Tij Where
i, range over finite sets of indices and where z;; is either g or —g for some
g € G. This is not true for Heyting algebras since the free Heyting algebra on
one generator is infinite.

Modal algebras are just Boolean algebras endowed with a further unary
‘necessity’ operator O satisfying the conditions:

O(a A b) = Oa A Ob oT =T;

the ‘possibility’ operator < is introduced in any modal algebra through the
definition ©a = —[I—a. We shall mainly deal with K4-algebras, i.e. modal
algebras in which the operator O satisfies the further axiom

Oa < OOa.

We shall meet in the book many interesting varieties of K4-algebras; for the
moment let us only mention S4-algebras (or interior algebras or topological
Boolean algebras), which are characterized by the further axiom

Ha < a.
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The main examples of modal algebras we are interested in are obtained through
frames. A frame is a pair (X, R), where X is a set endowed with a relation (the
accessibility relation of the frame); a transitive frame is a frame in which R
is assumed also to be transitive and a preordered frame is a transitive frame in
which R is also reflexive. Given a frame (resp. a transitive frame, a preordered
frame) (X, R), we can turn P (X ) into a modal algebra (resp. intoa K4-algebra,
into an S4-algebra) by putting, for a C X

Orpa = {pe X |Vg€ X(pRqg=q € a)};
the corresponding definition of the possibility operator is
Ora = {pe X|3g€ X(pRq& g € a)}.

Let us mention how to describe quotients in Heyting and K4-algebras. The
central notion to this respect is the notion of a filter ', which makes sense at the
level of a semilattice R (although it becomes fully operative only when there
are implications): this is a subset of R satisfying the following requirements

s T ek,
w ifaj, a9 € F,thenay Aag € F;
m ifa; € Fand a; < ag, thenag € F.

Given a subset S C R, there exists the minimum filter [S] containing S, which
is given by

[S] = {b€ R|In>0,3a1,...,an € Sst.ar A--- Nap < b}

In particular, the minimum (or principal) filter containing an element a is just
[a] = {bla < b}. For the case of modal algebras, the relevant notion is the
notion of modal filter, which is an ordinary filter satisfying the further condition

m ifag € F,then Qa € F.

A formula for the minimum modal filter [S],,, containing a set S can be easily
given; it simplifies considerably for the case of K'4-algebras where we have

[S] = {be R|3n>0,3a1,...,a, € Ss.t. Ota; A---AOa, < b}

(here O q; stands for a; A Oa;). Consequently, the principal modal filter
corresponding to an element a is just [a],, = [O%al.

In Heyting algebras, the lattice of filters and the lattice of congruences are
isomorphic; given a congruence =~, we can associate to it the filter {a|a ~ T}
and given a filter F we can associate to it the congruence ¢ ~ biffa < b € F
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MODEL COMPLETIONS

1. r-Heyting categories

In this section we introduce the notions of r-regular and r-Heyting categories
and study some of their basic properties. Roughly speaking, these notions are
obtained from the extensively studied notions of regular and Heyting category
(see e.g. [MR1], [MR2]]) ‘by replacing monos with regular monos and regular
epis by epis’. In case all subobjects are regular, the two notions coincide (this
is evident from Proposition 3.3 below), so, for instance, any topos is r-regular
and also r-Heyting. In case not all monos are regular, the two concepts are quite
distinct: posets and order-preserving maps, for instance, form an r-Heyting
category which is not even regular. As we saw in Proposition 2.14, regularity
of monos in the opposite of the category of finitely presented algebras follows
from some appropriate version of Beth theorem, which is often true (e.g. it
holds in all varieties of Heyting and of K4-algebras, see [Ma5] and Section
5.6 below). Up to some extent, the theory of r-regular and r-Heyting categories
goes parallel to that of regular and Heyting categories: some of the properties
established in this section, for instance, are obtained through adaptations of
standard arguments.

The best way to introduce r-regular categories is probably through stable
factorization systems. Given a category C, a pair of classes of arrows (£, M)
is said to be a stable factorization system for C iff the following four conditions
are satisfied (see [FK], but we follow the equivalent formulation of [CJKP]):

(1) both £ and M contain identities and are closed under left and right compo-
sition with isomorphisms;

(ii) each map f in C can be written as m o e withm € M ande € &;

(iii) whenever we have a commutative square,

49
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A—E—~pB

C—5—D
withm € Mande € &, thereisaunique w : B — C'suchthatwoe = u
and mow = v;
(iv) whenever we have a pullback square

/

A—Y% B

C——D

the fact that e € £ implies that ¢’ € £.

The decomposition in (ii) is said to be a factorization for f; this factorization
is unique in the sense that if f = m o e can be factored as well as m’ o €, for
m' € M and e’ € £, then using (iii), it can be shown that there is an invertible
map w such that w o e = ¢’ and m’ o w = m. In a factorization system, both £
and M are closed under composition [CIKP]: let us recall how to show it for
M (for £ the proof is analogous). It is sufficient to have a characterization of
arrows in M, from which the desired property easily follows. So let us prove
that for all f : C' — D, f belongs to M iff f is orthogonal to £, i.e. iff the
following condition is satisfied:

- ‘for every e € &€ and for every commutative square

there is a unique w : B — C'suchthatwoe =wuand fow = v’

One side is just (iii); for the other side, take a factorization m o e of f and
consider the square
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€

C D’
ido m

C

7 D

to get w such that w o e = id¢c. As e o w and idp, both fills the diagonal of
the square

€

C D

D —5— D

they are equal by (iii), so e is iso and f € M by (i).

Having established that an arrow belongs to M iff it is orthogonal to &, it
is not difficult to see that if C =% D 2 E are both orthogonal to £, so is
mo 0 M.

We say that a category C is r-regular iff it has finite limits and moreover
taking £ =all epis and M =all regular monos, we get a stable factorization
system for C. As conditions (i) and (iii) are trivially true in this case (by the
definition of epi and regular mono), C is r-regular iff it has finite limits, each
arrow has an epi/regular mono factorization and epis are stable under pullbacks.

PROPOSITION 3.1 If C is r-regular, then the pullback functors operating on
regular subobjects have left adjoints satisfying the Beck-Chevalley condition.

Proof. The statement of the Proposition says that for every arrow f : B — Ain
C, for every regular subobject S < B, there is a regular subobject 37(S) — A
satisfying the condition

34(8) < T iff S<fH(T)

for every regular subobject T — A. The Beck-Chevalley condition says that
for every pullback square

3.1)
c-P2 .

D2 1

By A

f2
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and for every regular subobject S — Bj, the equation

f2(31(9)) = 3p, (P1(S)) (3.2

holds in Sub,(Ba).
Let us fix a morphism f : B — A and aregularmono s : § — B in C. We
take as 3;(.5) the second component of the factorization of f o s. We can form

\\
\/\/

of all the named arrows; the arrows without names might not exist, but if they
do, they are unique making the obvious shapes to commute, ( f*(7") is a pullback
of t along f). Now if 37(S) < T, i.e. if 3¢(S) — T exists in (3.3), then the
two arrows

(3.3)

s-BLta §-348—T-H4

are equal, hence by the universal property of the pullback, S — f*(T) exists
in (3.3), showing that S < f*(T).

On the other hand, if S < f*(T') i.e. S — f*(T') exists in (3.3), then the
outer penthagon in (3.3) commutes, and 3¢(S) — T exists, by the property
(iii) of the definition of a stable factorization system, as e is an epi, and ¢ is a
regular mono.

It remains to show the Beck-Chevalley condition. Let us consider a pullback

square (3.1) and let S < By bea regular mono. Take the further pullback
pi(S) — 8§

s’ s

C

5 B
What we have to show is that the factorization of py o &' is just (up to an
isomorphism) the factorization of f; o s pulled back along f». But it is a
general property of stable factorization systems that in a pullback square



MODEL COMFPLETIONS 53

7 q1 Y

q2 g1

Y, X

g2

the factorization of g3 is obtained by taking the factorization m o e of g; and by
successively pulling back m and e: this property is essentially due to condition
(iv) ensuring that members of £ are pullback-stable, whereas pullback-stability
of members of M follows from conditions (i)-(iii) [CJKP] (in our case, anyway,
stability of regular monos under pullbacks is a general fact). O

We shall reverse Proposition 3.1 in order to get an alternative definition of
r-regular category. First, we prove a Lemma:

LEMMA 3.2 Let C a category with finite limits, and f : B — A a morphism
in C. Then

(1) f is epi iff for every regular subobject S — A, we have that idg < f*(S)
implies idg < S

(ii) if, moreover, the pullback functor f* : Sub.(A) — Sub,(B) has a left
adjoint 35 : Sub,(B) — Subr(A), then f is epi iff ids < 3y(idp).

Proof. Ad (i). Let f : B — Abean epi and let S — A be a regular mono such
that idg < f*(S); this means that we have a pullback square

B

S
idp

B

7 A

so S — A s epi as a second component of an epic arrow. Being also a regular
mono, it is an isomorphism. Vice versa, suppose that idg < f*(S) implies
idgy < Sforall S € Sub,(A) and suppose that g; o f = g2 o f for some parallel
arrows of domain A. Let S <> A be the equalizer of g1, go; by the universal
property of equalizers, we have a unique map f’ : B — S suchthatso f' = f.
As s is mono, it turns out that the diagram
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HEYTING ALGEBRAS

We shall develop a duality for the category finitely presented Heyting algebras
H Ajpp. Using acombinatorial description My of H A%, we shall prove that tis
a Heyting category and hence, according to Theorem 3.8, the theory of Heyting
algebras Ty admits a model completion T7;. Then we shall study some further
properties of H A%? and we shall derive some conclusions from these studies
for intuitionistic propositional logic /pC. We introduce a sheaf semantics for
second order logic and show how to use it to eliminate quantifiers in T7;.

1. Basic definitions

In this Chapter, we shall mainly deal with finite posets, to be indicated with
the letters P, (), . . .; their elements will be usually written as p, ¢, . . . and their
ordering (reflexive, transitive and antisymmetric) relations will be written sim-
ply as <, leaving the more explicit notation <p, <g, . . . for contexts requiring
such further specification. A poset P is called rooted iff it has a greatest element
p(P) (sometimes we indicate it simply as p instead of p(P)). If a basic finite
poset L (the poset of ‘labels’) is fixed, we call an L-evaluation or simply an
evaluation a pair (P, u), where P is a rooted finite poset and v : P — L is
an order-preserving map. This notion has a strict relation with finite Kripke
models. In fact if (L, <) is (P(), 2) (where F'is a finite list of propositional
letters), then an L-evaluation u : P — L is the same as a Kripke model for the
propositional intuitionistic language built up from 5!

We define for every n € w and for every pair of L-evaluations v : P — L
and v : Q — L, the notions of being n-equivalent (written u ~, v) and of

1 According to our conventions, we have that (for p, g € P) if p < ¢ then u(p) 2 u(g), that is we use <
where standard literature uses >.
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being n-less than or equal to (written v <,, v). These notions are motivated by
the fact (implicit in what is proved in the next section) that in the case of Kripke
models being n-equivalent means exactly to satisfy the same formulas up to
implicational degree n, see Exercise 1. Similarly, u <,, v means that u satisfies
all formulas up to implicational degree n that v satisfies. We define also for two
L-evaluations u, v the notions of being infinitely equivalent (written u ~, v)
and infinitely less than or equal to (written u < v). All these notions are
parallel to the analogous definitions introduced in [Fil], [Fi2] for modal logic,
see Chapter 5. We prefer to introduce them by means of Ehrenfeucht-Fraissé
games.

Letu: P — Landwv : Q — L be two L-evaluations. The game we are
interested in has two players, player I and player II. Player I can choose either a
point in P or a point in () and player II must answer by choosing a point in the
other poset and the only rule is that, if (p € P, q € Q) is the last move played,
then in the successive move the two players can only choose points (p’, ¢’) such
that p’ < pand ¢’ < q. If {p1,q1),...,(p;i,q),... are the points chosen at
the end of the game, after infinitely many moves, player II wins iff for every
i=1,2,..., we have that u(p;) = v(g;). We say that

- U ~oo v iff player I has a winning strategy,

- u ~yp v (for n > 0) iff player Il has a winning strategy for the first n-moves,
i.e. he has a winning strategy provided we stipulate that the game terminates
after n moves;

u ~g v iff u(p(P)) = v(p(Q));

u <o v iff player Il has a winning strategy in the modified game, where the
word ‘modified’ refers to the fact that we have an additional rule forcing
player I to play in the domain of u the first move;

- u <, v (forn > 0) iff player Il has a winning strategy for the first n moves
in the modified game;

< u o viffu(p(P)) < v(p(Q)).

Therelations ~,, and ~ are clearly equivalence relations, whereas the relations
<, and <, are only reflexive and transitive. Notice also that for every n,
u ~y v implies u ~g v because <y, is antisymmetric. The straightforward
proposition below (to be often used without explicit mention in the following)
provides equivalent definitions. We fix a notation: if v : P — L is an L-
evaluation and p € P, uy, is u restricted in the domain to the downward closed

subset | p={p’ : p’ <p}.

ProprosITION 4.1 Given two L-evaluations w . P — L,v : Q — L, and
n € w, we have



HEYTING ALGEBRAS 75

(1) u~pri viffVp € P 3g € Q (up ~y vg) and vice versa;
(i) v<pnviffype Pdge @ (up ~n Uq);
(iii) u <o viff(Vp € P3q € Qsuchthatuy, ~o ug) iff (3 € Q (u ~o0 vg));

(v) 4~ viffu <o vandv <, u). O

Example Let L be a three element partial order with set of nodes {a, b, ¢} given
by the following Hasse diagram

L:

o —CS —a

Consider the following three L-evaluations on three different four element
posets:

. a . a . a
b b b b c
1 /N |
¢ b C b
In the above picture, we put in place of points of the poset the values of evalu-
ations at these points.
Then u ~o v but u 743 v, and © ~1 w but v %y w.

Notice that saying that ‘u ~,, v’ is equivalent to say that ‘u ~, v holds for
every n’. In fact, on one side it is evident that if there exists an infinite strategy,
then there are also strategies for n games for every n. Vice versa, suppose
that there are all such finite strategies and suppose that player I chooses a point
p € P. Our posets are finite so that, as for every n > 0 there exists g, € @
such that uy, ~, vg,, there is also ¢ € Q (independent of n) such that u, ~,, v,
for every n. Player Il answers this ¢ and continuing this way, it is clear that we
can define the desired winning infinite strategy.

With each L-evaluation u : P — [ we associate for every n € w a set
Typen(u) of ~p-equivalence classes by: Type,(u) = {[lupln : p € P}
(where, of course, [up]y, is the ~,-equivalence class of u,). An important,
although simple, fact is given by the following proposition:

PROPOSITION 4.2 Fix a finite poset L and n € w; then there are only finitely
many equivalence classes of L-evaluations with respect to ~,.

Proof. This is evident for n = 0. For n > 0, we argue by induction as follows.
By Proposition 4.1(i), we have that u ~y, v iff Type,_1(u) = Typen_1(v),
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hence there cannot be more non ~,-equivalent L-evaluations than sets of ~,,_1
equivalence classes.? O

For infinite equivalence the result of the previous Proposition is not true,
but on the other hand infinite equivalence can be characterized in terms of
open maps (see Proposition 4.4 below). Recall from Chapter 2 that an order-
preserving map h : P — @ is called open iff forall p € P,q € Q, if ¢ < h(p)
then there exists p’ < p such that h(p') = ¢. Notice that if ) is rooted and h
open, h is surjective iff the inverse image of the root of () is non-empty. As
shown in Chapter 2, open maps are exactly Birkhoff duals of Heyting algebras
homomorphisms.

LEMMA 4.3 Givenan L-evaluationu : P — L and anopenmap h : Q — P,
we have that (uoh) <. u. Moreover, if h is also surjective, then (uoh) ~o .

Proof. Clearly it is sufficient to prove the second part of the claim (for (u o
h) ~oo Up(p), hence (u o h) <e u follows). So suppose that h is surjective.
We have the following infinite strategy for player II: if player I plays ¢ € @,
the answer is h(q), if he plays in P the answer is suggested by the openness of
h (or by the surjectivity of h in the first move), so that we reach only positions
of the kind (g, h(g)). It is evident that in this way player Il wins. O

PROPOSITION 4.4 For two L-evaluations v : P — L, v : Q — L, we have
that u ~o, v iff there is a commutative square

R h

P

Q——1L

such that R is a finite rooted poset and h, k are open surjective maps. Moreover
u <o v iff there is a commutative square like the above one, with the only
difference that now k is not required to be surjective.

Proof. Suppose that © ~ v. Take R = {(p,q) : up ~oo vg}. Order is
the restriction of the product order on P x @ and h, k are the two projections,
restricted in their domains. R is clearly rooted, the square commutes and 7, k
are surjective and open. The latter can be shown as follows (e.g. for h).

2This is only an exponential strict upper bound, because not all sets of ~, _1-equivalence classes are legal,
i.e. are of the form Typen_1(u) for some u (for instance, for n = 1 only subsets of L having a greatest
element are legal and the situation becomes more involved for larger n, see {Ur] , [Gh1]).
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Suppose that (p, ¢) € R and that p’ < p; we have that there exists ¢’ < ¢ such
that u,y ~o vy. For such ¢’ we have that (p’,¢') € R, (¢v/,¢') < (p,q) and
h(p’, q/) — p/.

Conversely, suppose that there is a commutative square with the required
properties. Now u ~, (1 o h), by Lemma 4.3 and similarly v ~o (v o k),
hence u ~, v.

The characterization of u <., v follows from the above characterization of
~qo and Proposition 4.1 (iii). O

It is interesting to know that, given an L-evaluation u, for sufficiently large n
(strictly depending on w) infinite equivalence to v is the same as n-equivalence
to u. By ht(P), we denote the height of the finite poset P, i.e. the length of a
maximal chain in P. We have

PROPOSITION 4.5 Let v : P — L be an L-evaluation. For n{P) =
2 ht(P) — 1 we have that for every v : Q — L, u ~ppy v iff u ~oo V.

Proof. The claim is clear for ht(P) = 1, because in this case P is a one-
point poset and u ~1 v means that v is constant. Suppose that ht(P) > 1
and that u ~,(py v: we define an infinite strategy for player 1. We recall
that, as u ~,(p) v, for every g € () there must exist a point p € P such that
Up ~n(P)-1 Vg- Such p may or may not be the root of P. Player II behaves
as follows: as long as player I plays a point ¢ € @, such that u ~p(py_1 Vg,
player II answers the root of u. After an initial (possibly empty) sequence of
such moves we reach a position (p(P), q) with u ~,(py_; v,. If now player I
tries with p € P (different from p(P), otherwise answer is obviously ¢), then
there exists ¢’ < ¢ such that u, ~n(Py—2 g player I answers such q and
wins by induction hypothesis. If player I tries with ¢’ € @ such that there exists
p # p(P) sothat u, ~,(py_1 vy, then player Il answers such p and wins again
by induction hypothesis. O

The next Lemma will complete the list of basic properties of the relations
~yn and <,. Before stating the Lemma, we introduce a useful construction
on L-evaluations. Suppose that w : P — L, v :  — L are L-evaluations
such that v <p u. The grafting of v below the root of P is an L-evaluation
vau : P' — L defined as follows. P’ is P 4 @ (disjoint union as sets) with the
following order <’: q <ps p iff either (p = p(P)) or (p,q € Pand g <p p) or
(p,q € Q and ¢ < p). Moreover, v < acts as u on P and as v on Q) (this is
order-preserving because v <g w). It is immediately seen that:

LEMMA 4.6 (v<u)oig = v (where ig is the open inclusion of @ into P'),
hence v <o (v <Qu). Moreover, if for some n € w, v <p, u, then u ~p (v Au)
Od



Chapter 5

DUALITY FOR MODAL ALGEBRAS

In this Chapter we shall develop a duality for finitely presented modal alge-
bras in a similar way we have developed a duality for finitely presented Heyting
algebras in the previous Chapter. We point out below to some slight differences
between these dualities.

The duality for modal algebras has a parameter S, being an equational theory
containing the equational theory of K4-algebras with the finite model property
and (AP) for finite algebras. In varieties of K4-algebras, the principal con-
gruences do not correspond to elements of algebras, but rather to elements of
form a A Oa. This is a source of some additional technical complications. In
order to define properly the dual category Mg we need to use games to define
two kinds of relations ~,,, =,, which reflects the difference between arbitrary
elements of algebras and those that are of form a A Oa. The first relation serves
to define morphisms and the second to define objects in the dual categories. As
one could see from an exercise at the end of the previous Chapter the index n
in the relation ~,, was reflecting the implicational degree of the intuitionistic
formulas. This time the index is related to the nesting of the necessity connec-
tive 0. The site on which the sheaves are defined in the dual category differ
slightly, as well. The frames we consider are the duals of all finite S-algebras
not only of those which are subdirectly irreducible.

In the exercises the reader will find some hints on how one can develop a
similar duality for a theory S without (AP) for finite algebras.

1. Frames, evaluations and games

In this Section we define frames, evaluations and games on evaluations.
Games give rise to some equivalence relations. We also study some basic
properties of these notions that will be used later.
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Recall from Section 2.1 that K4 denote the first order equational theory in
the language A, V, —, =, 0, 1, O consisting of the following axioms:

(i) axioms of Boolean algebras;
(ii)) 01 =1and O(p A q) = Op A Og;
(iii) Op < OOp.

The connective < is defined in the usual way as ~0O-. Modal formulas are
terms in the above language.

If S is an equational theory containing K4 then by Alg(S) we denote the
category of all S-algebras (i.e. algebras satisfying the axioms of S), and by
Alg(S) fin, and Alg(S) s, we denote the full subcategories of Alg(S) of finite
and finitely presented S-algebras, respectively.

If X,Y are sets and f : X — Y is a function then YX denotes the set of
functions from X to Y, and f° : 2¥ — 2% is the dual map of ’composing with
f’. The Boolean operations on 2X are denoted by Ax, Vx, —x,x,0x, 1x.

We will use the same letter for Boolean algebras and their universes. If B
is a boolean algebra, and together with the operation O : B — B satisfies the
axioms of K4, then the corresponding K4-algebra will be denoted by (B, O).
Recall that by a frame we mean a pair (X, R) where X is a finite set and R
is a binary relation on X. The relation R is called the accessibility relation
of the frame (X, R). If R is transitive, the frame is called transitive as well.
From now on all frames are assumed to be transitive. The frame algebra of
(X, R) is the K4-algebra (2%, Ax, Vx, —x, ~x,0x, 1 x, Og) (to be denoted
(2X,0g)), where forv : X — 2 € 2X¥ and z € X, Og(v)(x) = 1iff for all
y € X, xz Ryimplies v(y) = 1.

By a morphism of frames f : (X, R) — (Y, S) we mean a function f : X —
Y which is an open frame map, i.e.

(i) z Rz’ implies f(x) S f(z'), for z, 2’ € X

(ii) foranyz € X andy € Y,if f(z) Sy thenthereis 2’ € X suchthatz Rz’
and f(z') = y.

It can be easily checked that f : (X, R) — (Y, .S) is a frame morphism iff the
dual map f°: (2¥,0g) — (2%, Og) is a homomorphism of S-algebras.

In this way we have defined a category F of finite frames and morphisms of
frames. The category F, as remarked in Section 2.1 is equivalent to the dual of
the category of finite K4-algebras. More precisely, we have a functor

Alg(K4) i, — FP (5.1)
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(B7 D) — (at(B)’ R\:‘)

where at(B) is the set of atoms of the boolean algebra B and Rg is the bi-
nary relation on at(B) defined by « Rp 2’ iff z < <z’. The functor acts on
morphisms in the obvious way. Moreover, we have a functor

F — Alg(K4) s, (5.2)
(Xa R) — (2X7 DR)

associating with a finite frame its frame algebra and with every frame morphism
its dual map. They are essential inverses one to the other establishing the
mentioned duality Alg(K4)¢;, ~ F. Note that via this duality the empty
frame (0, 0) correspond to the K4-algebra in which 0 = 1.

This duality restricts to some subcategories. Let S be an equational theory
containing K4, Fg be the full subcategory of the category F corresponding
via the above duality to the subcategory Alg(S)yin, i.e. we have Alg(S) sin =
Fs°. By an S-frame we mean an object of Fg. For some theories S, the
objects of the category Fg can be described in a simple way in terms of their
accessibility relations. We list below some of them (notice that any equational
theory S containing K4 can be axiomatized by equations of the form ¢ = 1,
where t is any term, hence it is possible to introduce S simply by specifying a
set of terms, which could be viewed as a set of axioms of a logic):

Logic S | Axioms Description
of the accessibility
relation
S4 K4+Op—p reflexive
S4.2 S4 + reflexive and
SOp — OCp locally confluent
$4.3 S4 + reflexive and
O(Opy — p2) V O(Opy — p1) | locally linear
Grz S4 + partial order
(3(O(p — Op) — p) > p)
G K4 + (0(dp — p) — Op) irreflexive
S5 S4+Cp — 0OCp equivalence relation

A frame (X, R) is locally confluent iff for any x,y, z € X, if (zRy and zRz)
then there is ¢ € X such that (y Rt and zRt). A frame (X, R) is locally linear
iff for any x,y, z € X, if (x Ry and x Rz) then (y Rz or zRy).

In all the above cases, the class of frame algebras of the finite frames indi-
cated in the third column generates the variety Alg(S), where S is axiomatized
as shown in the second column. The fact that Alg(S) s, generates Alg(S)
means that S has the finite model property. The finite model property can be
equivalently stated by asking that finitely generated free S-algebras embed into



118 SHEAVES, GAMES, AND MODEL COMPLETIONS

products of finite S-algebras. In view of Proposition 2.19, the same property,
if true, extends in our case to finitely presented algebras. In order to establish
the finite model property, specific techniques are needed: in Section 2.1 we
saw only how to get it quickly for the basic K4-case; we won’t even sketch
in the sequel the proofs for other cases (including the cases mentioned in the
above table), the reader is referred to [CZ] as an excellent textbook on such
questions. In fact, there is no need for our purposes to enter in such (interesting
but non trivial) field. For instance, we never need to know that G-algebras
(also called diagonalizable algebras) can be axiomatized by the single equation
O(Op — p) — Op = 1, we could simply define G-algebras as the algebras be-
longing to the variety generated by the class of finite irreflexive frame algebras.
Only proof-theoretic (or at least decidability) questions would be sensitive to
the existence of nice axiomatizations, but such questions are outside the scope
of this book. On the other hand, we shall almost exclusively deal with systems
S having the finite model property, so that all such systems are fully specified
once the class of finite S-frame algebras is given.

By an L-evaluation, or simply evaluation, v : (X, R) — L we mean a
function v : X — L, where (X, R) is a frame and L is a finite set. Note that if
L ="P(pi1,...,pn) then an L-evaluation is nothing but a usual Kripke model
which forces modal formulas in variables p1, .. ., p, (see the exercises for the
description of the forcing relation).

We fix an arbitrary equational theory S containing K4 for the rest of the
section. Consequently, from now on by a frame we mean an S-frame. Let
(X,R)beaframe,Y C X, S = RN (Y xY). Then (Y, S) is a generated
subframe of (X, R) iff foranyy € Y andx € X, if yRx thenz € Y. We have
the following easy Lemma (for further information concerning classes of finite
frames see the exercises):

LEMMA 5.1 (i) If(Y,S)is a generated subframe of an S-frame (X,R) then (V,S)
is an S-frame as well;

(1) If (X4, R;) are S-frames for i=1,...,n then the disjoint sum {1} (X;, R;)
is an S-frame;

(i) If f : (X, R) — (Y, S) is a surjective morphism of frames and (X, R) is
an S-frame then (Y, S) is an S-frame as well.

We shall define three relations on evaluations in terms of some games. They
are variants of the Ehrenfeucht-Fraissé games adopted by K.Fine to the context
of modal logic. In fact, we will describe only one game and the others will be
obtained as slight modifications of its. Letv : (X, R) — Landu : (Y, S) — L
be two L-evaluations, n be a natural number or co. The n-game on v and v is
played by two players, Player I and Player II. In the first move Player I chooses
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one frame, either (X, R) or (Y, S) and a node in it. Player Il answers by choos-
ing a node in the other frame. After k moves the players already constructed
sequences < Ty, ..., Tk >, < Y1,-- -, Yk > With z; Rw;11, y; Syiq1 for every
i < k. Then in the (k + 1)-st move Player I chooses one of the frames, say
(X, R), and a node xjy; € X such that z;, R 2. Player Il chooses a node
in the other frame, say y,1 € Y, such that y;, S yi 1. If Player II can’t make
a move! at his turn then he immediately loses. Otherwise, the game terminates
after m moves if either Player I can’t make a move or m = n (if n = oo then
m = n means that both players plays infinitely many moves). Then Player I
wins iff for all natural & < m, v(zx) = u(y)-
We define forn > 1

- v ~, u iff Player II has a winning strategy in n-game on v and u.

- v <, u iff Player II has a winning strategy in n-game on v and u modified
so that Player I must play the first move in X.

Forn>0andz € X,y € Y we define

- (v,z) ~p (u,y) iff Player I has a winning strategy in n + 1-game on v and
u modified so that the first moves of the players must be x and y.

Notice that the relations <,, and =, are defined on L-evaluations whereas
the relation ~,, is defined on L-evaluations with a distinguished nodes. The
relations ~,, and ~,, are clearly equivalence relations, whereas the relation <, is
only reflexive and transitive. The equivalence class of a pair (v, x) with respect
to the equivalence relation ~,, will be denoted by [(v, «)],,. The straightforward
proposition below provides equivalent definitions of these relations.

PROPOSITION 5.2 Given two L-evaluations v : (X,R) — L, u: (Y, S) —
Lonodesz € X,y €Y, andn € w. We have:

@) (v,2) ~o (u,y) iff v(z) = uly);

(i) (v,2) ~py1 (u,y) iffv(z) = u(y), and Vo' € X Iy € Y (ifz Ra' then
y Sy and (v,2') ~n (u,y')), andvice versa;

(i) v <ppr uiffVz € X Yy €Y (v, @) ~n (u,9);
(iv) v = wiff v <ps1 uandv Zpi1 .

W) (0, %) ~eo (1,7) iff v(z) = uly), and Vo' € X Iy € Y (if v Ra' then
ySy' and (v,7') ~ (u,y’)), andvice versa;

1Since accessibility relations of our frames need not to be reflexive it may happen that there is no point
accessible from a given point.



