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Integral Calculus in the Complex Plane C

In Section I.5 we already encountered the problem of finding a primitive function
for a given analytic function f : D → C, D ⊂ C open, i. e., an analytic function
F : D → C such that F ′ = f .

In general, one may ask: Which functions f : D → C, D ⊂ C open, have a primitive?
Recall that in the real case any continuous function f : [a, b] → R, a < b, has a
primitive, namely, for example the integral

F (x) :=

∫ x

a

f(t) dt .

Whether one uses the notion of a Riemann integral or the integral for regulated
functions is irrelevant in this connection.

In the complex case the situation however is different. We shall see that a function
that has a primitive must itself already be analytic, and that is, as we already know,
a much stronger condition than just continuity. To explore the similarities with
and differences from real analysis we will attempt to construct a primitive using an
integration process

F (z) =

∫ z

z0

f(ζ) dζ , z0 fixed .

For this we first have to introduce a suitable complex integral, the complex line
integral. In contrast to the real case this not only depends on the starting and end
points, but also on the choice of the curve connecting them. One obtains a primitive
only when one can prove its independence of this choice.

The Cauchy Integral Theorem (A.L. Cauchy, 1814, 1825) is the main result in
this direction. However, as it can be extracted from a letter of C.F. Gauss to F.W.

Bessel sent on December 18, 1811, Gauss already knew the statement of Cauchy’s
Integral Theorem (C.F. Gauss, Werke 8, 90-92).

An extension of the Cauchy Integral Theorem is provided by the Cauchy Integral

Formulas (A.L. Cauchy, 1831), which are themselves a special case of the Residue

Theorem, which is a powerful tool for function theory. However, we shall only get

to the Residue Theorem in the next chapter.

E. Freitag and R. Busam, Complex Analysis,
DOI: 10.1007/978-3-540-93983-2_II, © Springer-Verlag Berlin Heidelberg 2009
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II.1 Complex Line Integrals

A complex-valued function

f : [a, b] −→ C (a, b ∈ R , a < b)

on a real interval is called integrable, if Re f, Im f : [a, b]→ R are integrable
functions in the sense of real analysis. (For instance, in the Riemann sense or
in the sense of a regulated function. Which notion of integral is to be used is
not important, it is only essential that all continuous functions are integrable.)
Then one defines the integral

∫ b

a

f(x) dx :=
∫ b

a

Re f(x) dx+ i
∫ b

a

Im f(x) dx

and furthermore
∫ a

b

f(x) dx := −
∫ b

a

f(x) dx ,

∫ a

a

f(x) dx := 0 .

The usual rules of calculation with Riemann integrals, or with integrals of
regulated functions, then can be extended to complex-valued functions:

(1) The integral is C-linear: For continuous functions f, g : [a, b]→ C the
following holds:

∫ b

a

(f(x) + g(x)) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx ,

∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx (λ ∈ C) .

(2) If f is continuous and F is a primitive of f , i. e. F ′ = f , then
∫ b

a

f(x) dx = F (b)− F (a).

(3)
∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx ≤ (b− a)C , if |f(x)| ≤ C

for all x ∈ [a, b]. This inequality holds for step functions from the triangle
inequality, the general case follows by approximation.
(4) Substitution rule: Let M1,M2 ⊂ R be intervals, a, b ∈M1 and

ϕ : M1−→M2 continuously differentiable and f : M2−→ C continuous.

Then ∫ ϕ(b)

ϕ(a)

f(y) dy =
∫ b

a

f
(
ϕ(x)

)
ϕ′(x) dx .

Proof . If F is a primitive of f , then F ◦ ϕ is a primitive of (f ◦ ϕ)ϕ′. �
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(5) Partial integration

∫ b

a

u(x)v′(x) dx = uv

∣∣∣∣
b

a

−
∫ b

a

u′(x)v(x) dx .

Here u and v : [a, b] → C are continuously differentiable functions. The
proof follows from the product formula (uv)′ = uv′ + u′v. �

Definition II.1.1 A curve is a continuous map

α : [a, b] −→ C , a < b ,

from a compact real interval into the complex plane. We call α(a) the starting
point, and α(b) the end point of α.

a b t 

α( ) 

α( ) α( ) b t 

a 

Examples.
(1) The straight line connecting z, w ∈ C is parametrized by

α : [0, 1] −→ C , α(t) = z + t(w − z) (α(0) = z , α(1) = w) .

(2) The k-fold unit circle, k ∈ Z, is

εk : [0, 1] −→ C , εk(t) = exp(2πikt) .

Definition II.1.2 A curve is called smooth, if it is continuously differen-
tiable.

Definition II.1.3 A curve is called piecewise smooth, if there is a partition

a = a0 < a1 < · · · < an = b

such that the restrictions

αν := α | [aν , aν+1] , 0 ≤ ν < n ,

are smooth.
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7 
6 

5 

4 

3 

2 

α 1 

α 

α 
α 

α α α 

Definition II.1.4 Let
α : [a, b] −→ C

be a smooth curve and

f : D −→ C , D ⊂ C ,

a continuous function, whose domain of definition contains the image of the
curve α, i.e. D ⊃ α

(
[a, b]

)
. Then one defines

∫

α

f :=
∫

α

f(ζ) dζ :=
∫ b

a

f
(
α(t)
)
α′(t) dt ,

and calls this complex number the line integral or contour integral of f
along α.

If α is only piecewise smooth, there exists a partition

a = a0 < · · · < an = b ,

such that the restrictions

αν : [aν , aν+1] −→ C , 0 ≤ ν < n ,

are smooth. In this case we define

∫

α

f(ζ) dζ :=
n−1∑
ν=0

∫

αν

f(ζ) dζ .

It is obvious that this definition does not depend on the choice of the partition.
By the arc length of a smooth curve we mean

l(α) :=
∫ b

a

|α′(t)| dt .

The length of a piecewise smooth curve is

l(α) :=
n−1∑
ν=0

l(αν) .
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Examples.
(1) The length of the straight line connecting z and w is

l(α) = |z − w| .
(2) The arc length of a k-fold unit circle is

l(εk) = 2π |k| .
Now we shall list the fundamental properties of complex line integrals.
The proofs all follow immediately from properties (1) – (5) of the integral∫ b

a
f(x) dx.

Remark II.1.5 The complex line integral has the following properties:

1.
∫

α f is C-linear in f .
2. The “standard estimate” states∣∣∣∣

∫

α

f(ζ) dζ
∣∣∣∣ ≤ C · l(α), if |f(ζ)| ≤ C for all ζ ∈ Image α .

3. The line integral generalizes the ordinary Riemann integral (or the
integral of regulated functions). If

α : [a, b] −→ C , α(t) = t ,

then α′(t) = 1, and for any continuous f : [a, b]→ C one has:
∫

α

f(ζ) dζ =
∫ b

a

f(t) dt .

4. Parameter invariance of the line integral:
Let α : [c, d]→ C be a piecewise smooth curve and

f : D −→ C, Image α ⊂ D ⊂ C ,

a continuous function, and

ϕ : [a, b] −→ [c, d] ( a < b , c < d )

a continuously differentiable function with ϕ(a) = c , ϕ(b) = d . Then
we have ∫

α

f(ζ) dζ =
∫

α◦ϕ

f(ζ) dζ .

5. Let
f : D −→ C , D ⊂ C open ,

be a continuous function, which has a primitive F (i.e. F ′ = f). Then
for any piecewise smooth curve α in D

∫

α

f(ζ) dζ = F
(
α(b)

)− F
(
α(a)

)
.
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The last point in the remark implies:

Theorem II.1.6 If a continuous function f : D → C, D ⊂ C open, has a
primitive then ∫

α

f(ζ) dζ = 0

for any closed piecewise smooth curve α in D.

(A curve α : [a, b]→ C is called closed, if α(a) = α(b).)

Remark II.1.7 Let r > 0 and

α(t) = r exp(it) , 0 ≤ t ≤ 2π ,

(a circle with the“counterclockwise” orientation). Then for n ∈ Z

∫

α

ζn dζ =

{
0 for n �= −1 ,

2πi for n = −1 .

Corollary II.1.71 In the domain D = C• the (continuous) function

f : D −→ C , z �−→ 1
z
,

does not have a primitive.

Otherwise, because of II.1.6, the integral along any closed curve in C• would
have to vanish. However, ∫

α

1
ζ
dζ = 2πi

for the circle line (counterclockwise oriented)

α : [0, 2π] −→ C
• ,

t �−→ r exp(it) (r > 0) .

Proof of II.1.7. In case of n �= −1 the function f(z) = zn has the primitive

F (z) =
zn+1

n+ 1
. Therefore its integral along any closed curve vanishes. For

n = −1, however, we have
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∫

α

ζ−1dζ =
∫ 2π

0

(reit)−1 rieit dt = i
∫ 2π

0

dt = 2πi .

�

A different proof of the above formula uses the principal branch of the loga-
rithm, which makes a “jump of 2πi” while crossing the negative real axis (see
I.5.8).

Exercises for II.1

1. The figure on the right shows a closed curve α,
Give an explicit parametrization for α and calcu-
late

1

2πi

∫

α

1

z
dz .

1

i

−1

−i

��
Re

��Im

�������

����������
��

��
��

�

���
��

��

��
��

� �������

�����

2. Let α : [0, π]→ C be defined by

α(t) := exp(it)

and β : [0, 2]→ C by

β(t) =

{
1 + t(−i− 1) for t ∈ [0, 1] ,

1− t+ i(t− 2) for t ∈ [1, 2] .

Sketch α and β, and calculate
∫

α

1

z
dz and

∫

β

1

z
dz .

3. Prove the transformation invariance of the line integral, II.1.5, (4).

4. Sketch the following curve α (“figure eight”)

α(t) :=

{
1− exp( it) for t ∈ [0, 2π] ,

−1 + exp(−it) for t ∈ [2π, 4π] .

5. Compute ∫

α

z exp(z2) dz ,

where
(a) α is the line between the point 0 and the point 1 + i,
(b) α is the piece of the parabola with equation y = x2, which lies between
the points 0 and 1 + i.

6. Compute ∫

α

sin z dz ,

where α is the piece of the parabola with equation y = x2, which lies between
the points 0 and −1 + i.
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7. Let [a, b] and [c, d] (a < b and c < d) be compact intervals in R.

Show: There is an affine map

ϕ : [a, b] −→ [c, d] ,

t �−→ αt+ β ,

with ϕ(a) = c and ϕ(b) = d.

8. Let R > 0 be a positive number. We consider the curve

β(t) = R exp(it) , 0 ≤ t ≤ π

4
.

Show: ∣∣∣∣
∫

β

exp(iz2) dz

∣∣∣∣ ≤
π(1− exp(−R2))

4R
<

π

4R
.

9. Let α : [a, b] → C be continuously differentiable and assume that the function
f : Image α→ C is continuous.

Show: For any ε > 0 there exists a δ > 0 with the following property:
If {a0, . . . , aN} and {c1, . . . , cN} are finite subsets of [a, b] with

a = a0 ≤ c1 ≤ a1 ≤ c2 ≤ a2 ≤ · · · ≤ aN−1 ≤ cN ≤ aN = b

and
aν − aν−1 < δ for ν = 1, . . . , N ,

then ∣∣∣∣∣
∫

α

f(z) dz −
N∑

ν=1

f
(
α(cν)

) · (α(aν)− α(aν−1)
)
∣∣∣∣∣ < ε .

(Approximation of the line integral by a Riemann sum.)

10. By splitting f into its real and imaginary parts, represent the complex line
integral

∫
α
f(z) dz in terms of real integrals.

Result: If f = u+ iv, α(t) = x(t) + iy(t), t ∈ [a, b], then

∫

α

f(z) dz =

∫

α

(u dx− v dy) + i

∫

α

(v dx+ u dy)

=

∫ b

a

[
u
(
x(t), y(t)

)
x′(t) − v

(
x(t), y(t)

)
y′(t)

]
dt

+ i

∫ b

a

[
v
(
x(t), y(t)

)
x′(t) + u

(
x(t), y(t)

)
y′(t)

]
dt .

11. A smooth curve is called regular if its derivative does not vanish anywhere.
Assume that there are given an analytic function f : D → C, D ⊂ C open, and
a point a ∈ D with f ′(a) �= 0, and also two regular curves α, β : [−1, 1] → D
with α(0) = β(0) = a. One may then consider the oriented angle ∠

(
α′(0), β′(0)

)
(see I.1, Exercise 4). This is the angle between the two intersecting curves. Show
that the two image curves f ◦α and f ◦β intersect with the same angle at their
intersection point f(a) = f

(
α(0)

)
= f
(
β(0)

)
.
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β 

f(a) 

f α 

f 

α 

β 

a 

Thus an analytic function is “angle- and orientation-preserving” at any point
at which its derivative does not vanish (see also Exercise 18 in I.5).

II.2 The Cauchy Integral Theorem

By an interval [a, b] we will always mean a real interval. And we shall always
understand, without mentioning it, that expressions like

a ≤ b , a < b , [a, b]

imply that a and b are real.

Definition II.2.1 A set D ⊂ C is called arcwise connected, if for any two
points z, w ∈ D there is a piecewise smooth curve joining z and w and lying
entirely inside D, such that

α : [a, b] −→ D , α(a) = z , α(b) = w .

Remark II.2.2 Every arcwise connected set D ⊂ C is connected, i.e. every
locally constant function on D is constant.

Proof. Let f : D → C be locally constant. If f is not constant (this is an
indirect proof), then there exist points z, w ∈ D with f(z) �= f(w). Join z
and w by a piecewise smooth curve within D

α : [a, b] −→ D .

Since α is continuous
g(t) = f

(
α(t)
)

is locally constant. Therefore g′(t) = 0, and so g = const. But we have

g(a) = f(z) �= f(w) = g(b) . �

It should be mentioned that for open sets D the converse of II.2.2 also holds,
although we will not make use of this.
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Definition II.2.3 By a domain we understand an arcwise connected
non-empty open set D ⊂ C.

Remark. The connected subsets of R are known to be exactly the intervals.
The concept of a domain is thus a generalization of the notion of an open
interval. However, the domains in C can be much more complicated.
Let

α : [a, b] −→ C and β : [b, c] −→ C , a ≤ b ≤ c ,

be two piecewise smooth curves with the property

α(b) = β(b) .

Then the formula

α⊕ β : [a, c] −→ C ,

(α⊕ β)(t) =

{
α(t) for a ≤ t ≤ b ,

β(t) for b ≤ t ≤ c ,

also defines a piecewise smooth curve. The curve α⊕β is called the composition
of α and β.

+ 
α      = β 

α   β 
(b) (b) 

a b c 

If f is a continuous function, whose domain of definition contains the images
of α and β, then

∫

α⊕β

f(ζ) dζ =
∫

α

f(ζ) dζ +
∫

β

f(ζ) dζ .

For any curve

α : [a, b] −→ C

the reciprocal curve is defined by

α− : [a, b] −→ C ,

t �→ α(b + a− t) . α     = α   (b) (a) 

α     = α   (b) (a)

α 

α 

- 

- 

- 

- 

- 

- 

Obviously we have the reversal rule
∫

α−
f(ζ) dζ = −

∫

α

f(ζ) dζ
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for all continuous functions f with Image α in the domain of definition of f .
Convention. We shall assume, unless the contrary is explicitly mentioned,
that curves are piecewise smooth.

Theorem II.2.4 For a continuous function

f : D −→ C , D ⊂ C a domain ,

the following three statements are equivalent:

(a) f has a primitive.
(b) The integral of f along any closed curve in D vanishes.
(c) The integral f along any curve in D depends only on the beginning
and end points of the curve.

Proof .
(a) ⇒ (b): Theorem II.1.6.
(b) ⇒ (c): Let

α : [a, b] −→ D and β : [c, d] −→ D

be two curves with the same starting and end points. We have to show
∫

α

f =
∫

β

f .

There is no loss of generality in assuming b = c, since by II.1.5, (4) one may
replace β by the curve

t �−→ β(t + c− b) , b ≤ t ≤ b+ (d− c) .

Now, we can consider the closed curve α⊕ β−, and obtain

0 =
∫

α⊕β−
f =

∫

α

f −
∫

β

f .

(c) ⇒ (a): We fix a point z∗ ∈ D and consider

F (z) =
∫ z

z∗
f(ζ) dζ

as the integral of f along some curve connecting z∗ with z within D. The
assumption ensures that the integral does not depend on the choice of the
curve.
Claim. F ′ = f . For the proof, we consider an arbitrary, but for the moment
fixed point z0 ∈ D and show F ′(z0) = f(z0). Since D is open, there is a full
disk U
(z0) around z0 in D. For z ∈ U
(z0), by definition, we have

F (z) =
∫ z

z∗
f(ζ) dζ =

∫ z0

z∗
f(ζ) dζ +

∫ z

z0

f(ζ) dζ = F (z0) +
∫ z

z0

f(ζ) dζ ,
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where we can take the integral from z0 to z along the line segment connecting
them:

σ(z0, z)(t) := z0 + t(z − z0) , 0 ≤ t ≤ 1 .

Since
∫

σ(z0,z)
dζ = z − z0 we have

F (z) = F (z0) + f(z0)(z − z0) + r(z) with

r(z) =
∫

σ(z0,z)

(
f(ζ)− f(z0)

)
dζ .

z 

z 

z 

∗ 

0 

By the continuity of f at z0 there is for any ε > 0 a δ, 0 < δ < �, such that
for all z ∈ D with |z − z0| < δ,

|f(z)− f(z0)| < ε .

Therefore the usual estimate for integrals implies

|r(z)| ≤ |z − z0| · ε .
But this means that F is complex differentiable at z0 and F ′(z0) = f(z0).
Since z0 ∈ D was arbitrary, F must be a primitive for f . �

The existence of a primitive is thus reduced to the question of the vanishing
of line integrals along closed curves. In the next section we shall prove a van-
ishing theorem for differentiable functions and special closed curves, namely
triangular paths.
Let z1, z2, z3 ∈ C be three points in the complex plane. The triangle spanned
by z1, z2, z3 is the point set

Δ := { z ∈ C ; z = t1z1 + t2z2 + t3z3, 0 ≤ t1, t2, t3, t1 + t2 + t3 = 1 } .
Clearly this set is convex, i.e. with any pair of points in Δ the line segment
connecting them also lies in Δ, and Δ is, in fact, the smallest convex set
containing z1, z2 and z3 (their convex hull).

By the triangular path 〈z1, z2, z3〉 we mean the
closed curve

〈z1, z2, z3〉 = α := α1 ⊕ α2 ⊕ α3 , with

α1(t) = z1 + (t− 0) (z2 − z1) , 0 ≤ t ≤ 1 ,

α2(t) = z2 + (t− 1) (z3 − z2) , 1 ≤ t ≤ 2 ,

α3(t) = z3 + (t− 2) (z1 − z3) , 2 ≤ t ≤ 3 .

z z 

z 

1 2 

3 

We obviously have

Image α ⊂ Δ (or precisely Image α =Boundary Δ).

The following theorem is the key for solving the problem of the existence of a
primitive. It is sometimes called the Fundamental Lemma of complex analysis.
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Theorem II.2.5 (Cauchy Integral Theorem for triangular paths, E.
Goursat, 1883/84, 1899; A. Pringsheim, 1901) Let

f : D −→ C , D ⊂ C open ,

be an analytic function (i.e. complex differentiable at any point z ∈ D). Let
z1, z2, z3 be three points in D, such that the triangle they span is also contained
in D; then

∫

〈
z1,z2,z3

〉
f(ζ) dζ = 0 .

Proof . We shall inductively construct a sequence of triangular paths

α(n) = 〈z(n)
1 , z

(n)
2 , z

(n)
3 〉 , n = 0, 1, 2, 3, . . . ,

in the following steps:

(a) α(0) := α = 〈z1, z2, z3〉.

(b) α(n+1) is one of the following four
triangular paths

α
(n)
1 :

〈
z
(n)
1 + z

(n)
2

2
, z

(n)
2 ,

z
(n)
2 + z

(n)
3

2

〉
,

α
(n)
2 :

〈
z
(n)
2 + z

(n)
3

2
, z

(n)
3 ,

z
(n)
1 + z

(n)
3

2

〉
,

α
(n)
3 :

〈
z
(n)
1 + z

(n)
3

2
, z

(n)
1 ,

z
(n)
1 + z

(n)
2

2

〉
,

α
(n)
4 :

〈
z
(n)
1 + z

(n)
2

2
,
z
(n)
2 + z

(n)
3

2
,
z
(n)
1 + z

(n)
3

2

〉
.

z 

z 

z 

1 

2 

3 

Thus we choose

α(n+1) = α
(n)
1 or α(n)

2 or α(n)
3 or α(n)

4 .

So we are partitioning the triangle using lines parallel to the sides and
passing through their midpoints. Obviously the triangles corresponding
to the triangular paths α(n)

ν and α(n) are entirely contained in Δ = Δ(0),
and we have ∫

α(n)
=
∫

α
(n)
1

+
∫

α
(n)
2

+
∫

α
(n)
3

+
∫

α
(n)
4

.
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(c) We can and do choose α(n+1) such that
∣∣∣∣
∫

α(n)
f

∣∣∣∣ ≤ 4
∣∣∣∣
∫

α(n+1)
f

∣∣∣∣ .

From this follows∣∣∣∣
∫

α

f(ζ) dζ
∣∣∣∣ ≤ 4n

∣∣∣∣
∫

α(n)
f(ζ) dζ

∣∣∣∣ .

The closed triangles Δ(n) are nested

Δ = Δ(0) ⊃ Δ(1) ⊃ Δ(2) ⊃ · · ·
(Δ(n) is the triangle corresponding to the triangular path α(n)). By Can-

tor’s theorem for nested “intervals” there is a point z0, which is con-
tained in all these triangles. We then use the fact that f is complex
differentiable there:

f(z)− f(z0) = f ′(z0)(z − z0) + r(z) with lim
z→z0

r(z)
|z − z0| = 0 .

Since the affine part z �→ f(z0) + f ′(z0)(z − z0) has a primitive, we have
∫

α(n)
f(ζ) dζ =

∫

α(n)
r(ζ) dζ

and therefore ∣∣∣∣
∫

α

f(ζ) dζ
∣∣∣∣ ≤ 4n

∣∣∣∣
∫

α(n)
r(ζ) dζ

∣∣∣∣ .

We shall now prove that the right-hand side converges to 0 for n → ∞.
Let ε > 0. There exists δ > 0 with

|r(z)| ≤ ε |z − z0| for all z ∈ D with |z − z0| < δ .

If n is large enough, n ≥ N , then

Δ(n) ⊂ Uδ(z0) .

In addition,

|z − z0| ≤ l(α(n)) =
1
2n

l(α) for z ∈ Δ(n) .

We get ∣∣∣∣
∫

α

f(ζ) dζ
∣∣∣∣ ≤ 4n · l(α(n)) · εl(α(n)) = l(α)2 · ε

for any positive ε and thus
∫

α

f(ζ) dζ = 0 . �
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For non-analytic functions this theorem is false. For example the integral of
f(z) = |z|2 along a triangle path is usually different from 0, as one verifies by
direct computation.

Definition II.2.6 A star-shaped domain is an open set D ⊂ C with the
following property: There is a point z∗ ∈ D such that for each point z ∈ D the
whole line segment joining z∗ and z is contained in D:

{ z∗ + t(z − z∗) ; t ∈ [0, 1] } ⊂ D .

The point z∗ is not uniquely determined, and is called a (possible) star center.
Remark. Since one can join any two points through the star center, a star
domain is arcwise connected, and therefore a domain.
Examples.

(1) Each convex domain is star-shaped, in particular, any open disk is
star-shaped. Each point of the convex domain can be chosen as the star
center.
(2) The plane slit along the negative real axis is star-shaped. (As star
centers we can take points x ∈ R, x > 0, and only such points.)
(3) An open disk Ur(a), from which we remove finitely many line segments
which join a boundary point b with a point on the straight line between
a and b.
(4) D = C• = C \ {0} is not star-shaped since any z∗ ∈ C• cannot be a
star center for the point z := −z∗ “cannot be seen from” z∗.
(5) The annulus R = { z ∈ C ; r < |z| < R } , 0 < r < R, is not star-
shaped.
(6) The ring sector
{
z = z0 + ζ�eiϕ ; r < � < R , 0 < ϕ < β

} ⊂ R , ζ, z0 ∈ C , |ζ| = 1 ,

is star-shaped, if β < π and cos β
2 > r

R .
(7) In the following figure the three left domains are star-shaped, the
right one is not.

star-shaped not star-shaped 
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Theorem II.2.7 (Cauchy Integral Theorem for star domains)

Version 1. Let
f : D −→ C

be an analytic function on a star domain D ⊂ C. Then the integral f along
any closed curve in D vanishes.
Version 2. Each analytic function f defined on a star domain D has a
primitive in D.

Corollary In arbitrary domains D ⊂ C an analytic function has, at least
locally, a primitive, i.e. for each point a ∈ D there is an open neighborhood
U ⊂ D of a, such that f | U has a primitive.
Taking into account II.2.4, both versions of the theorem are clearly equivalent.
We will proof the second version. So, let z∗ ∈ D be a star center and F be
defined by

F (z) =
∫ z

z∗
f(ζ) dζ ,

where the integral is taken along the line segment connecting z∗ with z. If
z0 ∈ D is an arbitrary point, then the line segment connecting z0 and z does
not have to lie in D. But there does exist a disk around z0 which is entirely
contained in D. It is easy to see then that:
If z is a point in this disk, then the entire triangle spanned by z∗, z0 and z is
contained in D.

z 

z 

z 

0 

∗ 

Then Cauchy’s integral theorem for triangular paths implies
∫ z0

z∗
+
∫ z

z0

+
∫ z∗

z

= 0 .

(In each case integration is taken along the connecting line segments.) Now
we can repeat word-for-word the proof of II.2.4, (c) ⇒ (a).
Proof of the Corollary. The proof is clear, since for each a ∈ D there is an
open disk Uε(a) with Uε(a) ⊂ D, and disks are convex, and thus certainly
star-shaped. �

Thus we have achieved a solution to our existence problem for star domains.
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As an application of II.2.7 we get a new construction of the principal branch
of the logarithm as a primitive of 1/z in the star domain C−, namely

L(z) :=
∫ z

1

1
ζ
dζ .

One integrates along some curve connecting 1 with z
in C−. Since the functions L and Log have the same
derivatives, and coincide at a point (z = 1), we have
L(z) = Log(z) for z ∈ C−. If one chooses as the curve
the line segment from 1 to |z| and then the arc from
|z| to z = |z|eiϕ, we obtain the form we already know

L(z) =
∫ |z|

1

1
t
dt + i

∫ ϕ

0

dt = log |z|+ i Arg z .
  |   |     z   

| z | z =     e ϕ i 

ϕ 
1 0 

The following variant of II.2.7 is a useful tool:

Corollary II.2.71 Let f : D → C be a continuous function in a star domain
D with center z∗. If f is complex differentiable at every point z �= z∗, then f
has a primitive in D.

Proof . As one can see from the proof of II.2.7,
it is enough to show that

∫ z0

z∗
+
∫ z

z0

+
∫ z∗

z

= 0 ,

where we may assume that the triangle Δ
spanned by z∗, z0 and z is entirely contained
within D.

w 

z 

z 

w 

0 0 z 
* 

Moreover, we can assume z∗ �= z and z∗ �= z0. Let w, resp. w0, be an arbitrary
point different from z∗ on the line segment between z∗ and z, resp. z∗ and
z0. From the Cauchy integral theorem for triangular paths (II.2.5 above) the
integrals along the paths 〈w0, z0, w〉 and 〈z0, z, w〉 vanish. On the other hand,
we have

∫

〈z∗,z0,z〉
=
∫

〈z∗,w0,w〉
+
∫

〈w0,z0,w〉
+
∫

〈z0,z,w〉
=
∫

〈z∗,w0,w〉
.

The assertion now follows by passing to the limit
w → z∗ , w0 → z∗ . �

Definition II.2.8 A domain D ⊂ C is called an elementary domain, if
any analytic function defined on D has a primitive in D.

Any star domain is thus an elementary domain. For example, C−, the plane
cut along the negative real axis, is an elementary domain. In this connection
it is of interest to note:
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Theorem II.2.9 Let f : D → C be an analytic function on an elementary
domain, let f ′ also be analytic1, and f(z) �= 0 for all z ∈ D. Then there exists
an analytic function h : D → C with the property

f(z) = exp
(
h(z)

)
.

The function h is called an analytic branch of the logarithm of f .

Corollary II.2.91 Under the assumptions in II.2.9, there exists for any n ∈ N

an analytic function H : D → C with Hn = f .

Proof of the Corollary. Set H(z) = exp
(

1
nh(z)

)
. �

Proof of Theorem II.2.9. Let F be a primitive of f ′/f . Then one can check
immediately that, with

G(z) =

(
exp
(
F (z)

)
f(z)

)
,

one has G′(z) = 0 for all z ∈ D. Therefore

exp
(
F (z)

)
= C f(z) for all z ∈ D

with some nonzero constant C. Since exp : C→ C• is surjective one can write
this in the form C = exp(c). The function

h(z) = F (z)− c

has the desired property. �

Since the function f(z) = 1/z does not have a primitive in the punctured plane
C•, we see that C• is not an elementary domain; however it is not true that
any elementary domain must be star-shaped, as the following construction
shows:

Remark II.2.10 Let D and D′ be two elementary domains. If D ∩ D′ is
non-empty and connected, then D ∪D′ is also an elementary domain.
Corollary. Slitted annuli are elementary domains.

←− elementary domain
non-elementary domain →

Proof of II.2.10. Let f : D ∪D′ → C be analytic. By assumption there exist
primitives
1 Actually, this assumption is unnecessary by II.3.4.
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F1 : D −→ C, F2 : D′ −→ C .

The difference F1 − F2 must be locally constant in D ∩ D′, and therefore
constant since D∩D′ is connected. By addition of a constant if necessary, one
may assume

F1 | D ∩D′ = F2 | D ∩D′ .

The functions F1 and F2 now glue to a single function

F : D ∪D′ −→ C . �

The following is also immediately clear:

Remark II.2.11 Let
D1 ⊂ D2 ⊂ D3 ⊂ · · ·

be an increasing sequence of elementary domains. Then their union

D =
∞⋃

n=1

Dn

is also an elementary domain.

It can be shown (in a non-trivial way) that with the two constructions above
give all elementary domains starting from disks.
We shall later obtain a simple topological characterization of elementary do-
mains (see Appendix C of Chapter IV):
Elementary domains are precisely the so-called simply connected domains.
(Intuitively these are the domains “without holes”).
For practical purposes this characterization of elementary domains is not so
important. For this reason we postpone the proof of this theorem. More ele-
mentary domains can be obtained by means of conformal mappings (cf. I.5.13).

Remark II.2.12 Let D ⊂ C be an elementary domain and

ϕ : D −→ D∗

a globally conformal mapping of D onto the domain D∗. We assume that its
derivative is analytic. Then D∗ is also an elementary domain.

Proof . We have to show: Any analytic function f∗ : D∗ → C has a primitive
F ∗. This can naturally be reduced to checking the corresponding statement
for D.

D
ϕ ��

f∗◦ϕ ���
��

��
��

D∗

f∗
����

��
��

��

C
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For if f∗ : D∗ → C is analytic, then so is f∗ ◦ ϕ : D → C analytic. But then

(f∗ ◦ ϕ)ϕ′ : D −→ C

is analytic, and so has a primitive F . (Here we have to assume that ϕ′ is also
analytic. This condition is, as we shall see in following sections, automati-
cally satisfied.) In fact, F ∗ := F ◦ ϕ−1 is analytic (ϕ−1 is analytic too!) and
F ∗′ = f∗. �

Exercises for II.2

1. Which of the following subsets of C are domains?

(a) {z ∈ C;
∣∣z2 − 3

∣∣ < 1},
(b) {z ∈ C;

∣∣z2 − 1
∣∣ < 3},

(c) {z ∈ C;
∣∣|z|2 − 2

∣∣ < 1},
(d) {z ∈ C;

∣∣z2 − 1
∣∣ < 1},

(e) {z ∈ C; z + |z| �= 0},
(f) { z ∈ C; 0 < x < 1, 0 < y < 1 }−

∞⋃
n=2

{x+ iy; x = 1/n, 0 < y ≤ 1/2 }.
2. Let z0, . . . , zN ∈ C (N ∈ N). Define the line segments connecting zν with zν+1

(ν = 0, 1, . . . , N − 1) by

αν : [ν, ν + 1] −→ C with αν(t) = zν + (t− ν)(zν+1 − zν) .

Then α := α1 ⊕ α2 ⊕ · · · ⊕ αN−1 defines a curve α : [0, N ] → C. One calls α
the polygonal path, which joins z0 with zN (along z1, z2, . . . , zN−1).

Show: An open set D ⊂ C is connected (and thus a domain) if and only if
any two points of D can be connected by a polygonal path α inside D (i.e.
Image α ⊂ D).

3. Let a ∈ C, ε > 0. The punctured disk

•
Uε(a) := { z ∈ C ; 0 < |z − a| < ε } ,

is a domain.

Deduce: If D ⊂ C is a domain and z1, . . . , zm are finitely many points, then the
set D′ := D \ {z1, . . . , zm} is also a domain.

4. Let ∅ �= D ⊂ C be open. The continuous function

f : D −→ C , z �−→ z ,

has no primitive in D.

5. For α : [0, 1]→ C with α(t) = exp(2πit) compute

∫

α

1/|z| dz ,
∫

α

1/(|z|2) dz , and show

∣∣∣∣
∫

α

1/(4 + 3z) dz

∣∣∣∣ ≤ 2π .
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6. Let
D := { z ∈ C; 1 < |z| < 3 }

and α : [0, 1]→ D be defined by α(t) = 2 exp(2πit). Calculate
∫

α

1

z
dz .

7. For a, b ∈ R
•
+, let α, β : [0, 1]→ C be defined by

α(t) := a cos 2πt+ ia sin 2πt ,

β(t) := a cos 2πt+ ib sin 2πt .

(a) Show: ∫

α

1

z
dz =

∫

β

1

z
dz .

(b) Show using (a)

∫ 2π

0

1

a2 cos2 t+ b2 sin2 t
dt =

2π

ab
.

8. Let D1,D2 ⊂ C be star domains with the common star center z∗ . Then D1∪D2

and D1 ∩D2 are also star domains with respect to z∗ .

9. Which of the following domains are star-shaped?
(a)
{
z ∈ C; |z| < 1 and |z + 1| > √2

}
,

(b)
{
z ∈ C; |z| < 1 and |z − 2| > √5

}
,

(c) { z ∈ C; |z| < 2 and |z + i| > 2 }.
In each case determine the set of all star centers.

10. Show that the “sickle-shaped domain”

D = { z ∈ C ; |z| < 1 , |z − 1/2| > 1/2 }
is an elementary domain.

11. Let 0 < r < R and f be the function

f :
•
UR(0) −→ C ,

z �−→ R+ z

(R− z)z .

Show that f(z) =
1

z
+

2

R− z , and, by integrating along the curve α,

α : [0, 2π] −→ C , α(t) = r exp(it) ,

that
1

2π

∫ 2π

0

R2 − r2
R2 − 2Rr cos t+ r2

dt = 1 .

Show in a similar manner:

1

2π

∫ 2π

0

R cos t

R2 − 2Rr cos t+ r2
dt =

r

R2 − r2 , if 0 ≤ r < R .
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12. Lemma on polynomial growth
Let P be a nonconstant polynomial of degree n:

P (z) = anz
n + · · ·+ a0 , aν ∈ C , 0 ≤ ν ≤ n , n ≥ 1 , an �= 0 .

Then, for all z ∈ C with the property

|z| ≥ � := max

{
1,

2

|an|
n−1∑
ν=0

|aν |
}
,

we have
1

2
|an| |z|n ≤ |P (z)| ≤ 3

2
|an| |z|n .

Corollary. Any root of the polynomial P lies in the open disk with radius ρ
centered at the origin.

13. A proof of the Fundamental Theorem of Algebra
Let P be a nonconstant polynomial of degree n,

P (z) = anz
n + · · ·+ a0 , aν ∈ C, 0 ≤ ν ≤ n, n ≥ 1, an �= 0 .

We have P (z) = z(anz
n−1 + · · ·+ a1) + a0 = zQ(z) + a0.

Assumption: P (z) �= 0 for all z ∈ C.
Then for z �= 0 we have

1

z
=

P (z)

zP (z)
=
zQ(z) + a0

zP (z)
=
Q(z)

P (z)
+

a0

zP (z)
.

By integration along α(t) = R exp(it), 0 ≤ t ≤ 2π, R > 0, it follows that

2πi =

∫

α

a0

zP (z)
dz .

By using the lemma on growth of polynomials, derive a contradiction (consider
the limit R→∞).

14. Let a ∈ R, a > 0. Consider the
“rectangular path” α sketched in
the figure.

α = α1 ⊕ α2 ⊕ α3 ⊕ α4.

Since

f(z) = e−z2/2

Re

Im

α1

α2

α3

α4

−R +R0

ia

��

��		





is analytic in C, and C is star-shaped, it follows from the Cauchy integral
theorem for star domains that

0 =

∫

α

f(z) dz =

∫

α1

f(z) dz +

∫

α2

f(z) dz +

∫

α3

f(z) dz +

∫

α4

f(z) dz .
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Show:

lim
R→∞

∣∣∣∣
∫

α2

f(z) dz

∣∣∣∣ = lim
R→∞

∣∣∣∣
∫

α4

f(z) dz

∣∣∣∣ = 0

and deduce that
∫ ∞

−∞
e−

1
2 (x+ia)2 dx =

∫ ∞

−∞
e−x2/2 dx (=

√
2π) .

I(a) :=

∫ ∞

−∞
e−

1
2 (x+ia)2dx := lim

R→∞

∫ R

−R

e−
1
2 (x+ia)2dx

is therefore independent of a and has the value
√

2π.

Corollary. (The Fourier transform of x �→ e−x2/2)

∫ ∞

0

e−x2/2 cos(ax) dx =
1

2

√
2π e−a2/2 .

15. Let D ⊂ C be a domain with the property

z ∈ D =⇒ −z ∈ D
and f : D → C a continuous and even function (f(z) = f(−z)). Moreover, for
some r > 0 let the closed disk Ur(0) be contained in D. Then

∫

αr

f = 0 for αr(t) := r exp(2πit) , 0 ≤ t ≤ 1 .

16. Continuous branches of the logarithm

Let D ⊂ C
• be a domain which does not contain the origin. A continuous

function l : D → C with exp l(z) = z for all z ∈ D is called a continuous branch
of the logarithm.

Show:
(a) Any other continuous branch of the logarithm l̃ has the form l̃ =
l + 2πik, k ∈ Z.
(b) Any continuous branch of the logarithm l is in fact analytic, and
l′(z) = 1/z.
(c) On D there exists a unique continuous branch of the logarithm only if
the function 1/z has a primitive on D.
(d) Construct two domains D1 and D2 and continuous branches l1 : D1 →
C, l2 : D2 → C of the logarithm, such that their difference is not constant
on D1 ∩D2.

17. Fresnel Integrals
Show: ∫ ∞

0

cos
(
t2
)
dt =

∫ ∞

0

sin
(
t2
)
dt =

1

4

√
2π .

Hint. Compare the function f(z) := exp(iz2) on the real axis and on the first
bisector. The value of the integral

∫∞
0

exp(−t2) dt =
√
π/2 can be used. Use

also the inequality in Exercise 8, Sect. II.1.
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II.3 The Cauchy Integral Formulas

The following lemma is a special case of the Cauchy integral formula:
Lemma II.3.1 One has

∮

α

dζ

ζ − a
= 2πi ,

where integration is performed along the circle

α(t) = z0 +reit , z0 ∈ C , 0 ≤ t ≤ 2π , r > 0 ,

and a is an arbitrary point in the interior of the
disc (|a− z0| < r).

{ r 

a 

z 
0 

In the case a = z0(= 0) we have already formulated this in II.1.7, and we can
reduce II.3.1 to this case by using the Cauchy integral theorem; in fact we
will show ∮

|ζ−z0|=r

dζ

ζ − a
=
∮

|ζ−a|=


dζ

ζ − a
,

where � ≤ r − |z0 − a|.
Remark. We use a suggestive way of writing integrals along circles, which is
self understanding.

Proof.

2 

z 0 z 0 
a a 

1 α 

α 

So it is claimed that the integrals along both of the circles drawn above agree.
We shall limit ourselves to make the proof intuitively clear from the figure.
It is easy but a little wearisome, to translate it into precise formulas. We
introduce two additional curves α1 and α2 (see the above figure on the right
and the next on the left). Slit the plane along the dashed lines, and get, in this
way, a star domain in which the function z �→ 1

z−a is analytic. The integral
“along the closed curve we have drawn”, which is composed by a (small)
circular arc, line segments and a (large) circular arc, vanishes by the Cauchy

integral theorem II.2.7 for star domains. The same argument holds for the
figure reflected along the line connecting a and z0, and the curve α2 sketched
on the right. Therefore
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∫

α1

1
ζ − a

dζ = 0 and
∫

α2

1
ζ − a

dζ = 0 .

If one adds the two integrals, the contributions of the straight segments cancel,
since the lines are traversed in reverse directions:

α 1 

a 

2 α 

a 

Therefore it follows that (taking into account the orientation!)

2πi =
∮

|ζ−a|=


1
ζ − a

dζ =
∮

|ζ−z0|=r

1
ζ − a

dζ .

�

From now on we shall use the notations

Ur(z0) = { z ∈ C ; |z − z0| < r }
U r(z0) = { z ∈ C ; |z − z0| ≤ r }

for the respectively open and closed disks of radius r > 0 around z0 ∈ C.

Theorem II.3.2 (Cauchy Integral Formula, A.L. Cauchy, 1831) Let

f : D −→ C , D ⊂ C open ,

be an analytic function. Assume that the closed disk U r(z0) is contained com-
pletely in D. Then for each point z ∈ Ur(z0)

f(z) =
1

2πi

∮

α

f(ζ)
ζ − z

dζ ,

where the integral is taken “around the circle α”, i.e. along the closed curve

α(t) = z0 + reit , 0 ≤ t ≤ 2π .

We emphasize that the point z needs not to be the center of
the disk. It only has to lie in the interior of the disk!
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Using the compactness of U r(z0) one can easily show that there exists an
R > r such that

D ⊃ UR(z0) ⊃ U r(z0) .

We can thus assume that D is a disk. The function

g(w) :=

⎧
⎨
⎩
f(w)− f(z)

w − z
for w �= z ,

f ′(z) for w = z ,

is continuous in D and away from z is, in fact, analytic. We can therefore
apply the Cauchy integral theorem II.2.71 and obtain

∮
f(ζ)− f(z)

ζ − z
dζ = 0 .

The assertion now follows from II.3.1. �

In particular, the Cauchy integral formula holds for z = z0:

f(z0) =
1
2π

∫ 2π

0

f
(
z0 + r exp(it)

)
dt

(this is the so-called mean value equation).
The essence of the Cauchy integral formula is that it computes the values of
analytic functions in the interior of a disk from their values on the boundary.
From the Leibniz rule one gets analogous formulas for the derivatives.

Lemma II.3.3 (Leibniz rule) Let

f : [a, b]×D −→ C , D ⊂ C open ,

be a continuous function, which is analytic in D for any fixed t ∈ [a, b]. The
derivative

∂f

∂z
: [a, b]×D −→ C

is also assumed to be continuous. Then the function

g(z) :=
∫ b

a

f(t, z) dt

is analytic in D, and

g′(z) =
∫ b

a

∂f(t, z)
∂z

dt .

Proof . One can reduce II.3.3 to the analogous result for the real case, since
complex differentiability can be expressed using partial derivatives (Theorem
I.5.3). Thus one uses the real form of the Leibniz criterion to verify the
Cauchy-Riemann equations and the formula for the derivative of g.



II.3 The Cauchy Integral Formulas 95

For the sake of completeness we shall formulate and prove the real form of
the Leibniz rule that we need.
Let f : [a, b] × [c, d] −→ R be a continuous function. Suppose that the partial
derivative

(t, x) �→ ∂

∂x
f(t, x)

exists and is continuous. Then

g(x) =
∫ b

a

f(t, x) dt

is also differentiable, and one has

g′(x) =
∫ b

a

∂

∂x
f(t, x) dt .

Proof . We take the difference quotient at x0 ∈ D:

g(x)− g(x0)
x− x0

=
∫ b

a

f(t, x)− f(t, x0)
x− x0

dt .

By the mean value theorem of differential calculus

f(t, x)− f(t, x0)
x− x0

=
∂

∂x
f(t, ξ)

with a t-dependent point ξ between x0 and x. By the theorem of uniform
continuity (cf. Exercise 7 from I.3) for any given ε > 0 there exists a δ > 0
with the property
∣∣∣∣
∂

∂x
f(t1, x1)− ∂

∂x
f(t2, x2)

∣∣∣∣ < ε if |x1 − x2| < δ , |t1 − t2| < δ .

In particular,
∣∣∣∣
∂

∂x
f(t, ξ)− ∂

∂x
f(t, x0)

∣∣∣∣ < ε if |x− x0| < δ .

It is decisive here that δ does not depend on t! Now we obtain
∣∣∣∣∣
g(x) − g(x0)

x− x0
−
∫ b

a

∂

∂x
f(t, x0) dt

∣∣∣∣∣ ≤ ε(b − a) if |x− x0| < δ .

�
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Theorem II.3.4 (Generalized Cauchy Integral Formula) With the as-
sumptions and notation of II.3.2 we have: Every analytic function is arbitrar-
ily often complex differentiable. Each derivative is again analytic. For n ∈ N0

and all z with |z − z0| < r we have

f (n)(z) =
n!
2πi

∮

α

f(ζ)
(ζ − z)n+1

dζ ,

where α(t) = z0 + reit, 0 ≤ t ≤ 2π.

The proof follows by induction on n with the help of II.3.2 and II.3.3. �

For another proof see Exercise 10 in II.3.
Remark. Therefore it has also been proved that the assumptions of continuity
of the derivative f ′, resp. of analyticity of f ′, we have previously made, were
superfluous as they are automatically fulfilled. Moreover it follows that u =
Re f and v = Im f are in fact C∞-functions.
It was not necessary to use Lemma II.3.3 in its full generality for the proof
of II.3.4. It would be possible just to check the required special case directly.
Then one can get back II.3.3 from II.3.4 in full generality by using the Fubini

theorem: If f : [a, b]× [c, d]→ C is a continuous function, then
∫ b

a

∫ d

c

f(x, y) dy dx =
∫ d

c

∫ b

a

f(x, y) dx dy .

The following theorem gives a kind of partial converse to the Cauchy integral
theorem.

Theorem II.3.5 (Morera’s Theorem, (G. Morera, 1886)) Let D ⊂ C

be open and
f : D −→ C

be continuous. For every triangular path 〈z1, z2, z3〉 whose triangle is entirely
contained in D assume ∫

〈z1,z2,z3〉
f(ζ) dζ = 0 .

Then f is analytic.

Proof . For each point z0 ∈ D there is an open neighborhood Uε(z0) ⊂ D. It
is enough to show that f is analytic in Uε(z0). For z ∈ Uε(z0) let

F (z) :=
∫

σ(z0,z)

f(ζ) dζ ,

where σ(z0, z) is the line segment connecting z0 and z. As in II.2.4 (c) ⇒
(a) one shows that F is a primitive of f in Uε(z0), i. e. F ′(z) = f(z) for
z ∈ Uε(z0). In particular, f is analytic itself as the derivative of an analytic
function. �
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Definition II.3.6 An analytic function f : C→ C is said to be entire.

An entire function is thus an analytic function defined on the entire complex
plane C.
Examples. Polynomials P : C → C, and exp, cos, sin : C → C are entire
functions.

Theorem II.3.7 (Liouville’s Theorem, J. Liouville, 1847) Every
bounded entire function is constant.
Equivalently: A nonconstant entire function cannot be bounded.

(In particular, for instance, cos cannot be bounded. In fact

cos ix =
ex + e−x

2
→∞ for x→∞ .

Liouville actually only treated the special case of elliptic functions (cf. Chap-
ter V and Exercise 7 in II.3).
Proof . We show f ′(z) = 0 for every point z ∈ C. From the Cauchy integral
formula

f ′(z) =
1

2πi

∮

|ζ−z|=r

f(ζ)
(ζ − z)2

dζ ,

which holds for every r > 0, it follows that

|f ′(z)| ≤ 1
2π

2πr︸︷︷︸
arc

length

C

r2
=

C

r
.

The assertion can now be obtained by passing to the limit r →∞. �

From Liouville’s Theorem follows easily:

Theorem II.3.8 (Fundamental Theorem of Algebra) Each nonconstant
complex polynomial has a root.

Proof . Let

P (z) = a0 + a1z + · · ·+ anz
n , aν ∈ C , 0 ≤ ν ≤ n , n ≥ 1 , an �= 0 .

be a polynomial of degree ≥ 1. Then

|P (z)| → ∞ for |z| → ∞
i.e. for each C > 0 there exists an R > 0 such that

|z| ≥ R =⇒ |P (z)| ≥ C ,

(Note:2 One has z−nP (z) → an for |z| → ∞.) We assume that P has no
complex root. Then 1/P is a bounded entire function and so 1/P is a constant
by Liouville’s theorem. �

2 Cf. also Exercise 12 in II.2.
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Corollary II.3.9 Every polynomial

P (z) = a0 + a1z + · · ·+ anz
n , aν ∈ C, 0 ≤ ν ≤ n ,

of degree n ≥ 1 can be written as a product of n linear factors and a constant
C ∈ C•

P (z) = C(z − α1) · · · (z − αn) .

The numbers α1, . . . , αn ∈ C are uniquely determined up to their order, and
C = an.

Proof . If n ≥ 1, there exists a zero α1. We reorder the polynomial by powers
of (z − α1)

P (z) = b0 + b1(z − α1) + · · · .

From P (α1) = 0 it follows that b0 = 0 and therefore

P (z) = (z − α1)Q(z) , degreeQ = n− 1 .

The assertion then follows by induction on n. �

If one collects equal αν , then one gets for P a formula

P (z) = C(z − β1)ν1 · · · (z − βr)νr

with pairwise different βj ∈ C and integers νj , for which we then have
ν1 + · · ·+ νr = n.
We shall obtain other function-theoretic proofs of the fundamental theorem
of algebra later (cf. also Exercise 13 in II.2 of this Chapter and application of
the Residue Theorem III.6.3).

Exercises for II.3

We shall denote by αa;r the curve whose image is the circle with center a and radius
r > 0, i.e. with

αa;r : [0, 2π] −→ C, αa,r(t) = a+ reit .

1. Compute, using the Cauchy integral theorem and the Cauchy integral for-
mula, the following integrals:

(a)

∫

α2;1

z7 + 1

z2(z4 + 1)
dz ,

(c)

∫

α0;3

e−z

(z + 2)3
dz ,

(b)

∫

α1;3/2

z7 + 1

z2(z4 + 1)
dz ,

(d)

∫

α0;3

cosπz

z2 − 1
dz ,

(e)

∫

α0;r

sin z

z − b dz , (b ∈ C , |b| �= r) .
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2. Compute, using the Cauchy integral theorem and the Cauchy integral for-
mula, the following integrals:

(a)
1

2πi

∫

αi;1

ez

z2 + 1
dz ,

(c)
1

2πi

∫

α0;3

ez

z2 + 1
dz ,

(b)
1

2πi

∫

α−i;1

ez

z2 + 1
dz ,

(d)
1

2πi

∫

α1+2i;5

4z

z2 + 9
dz .

3. Compute

(a)

∫

α1;1

(
z

z − 1

)n

dz , n ∈ N ,

(b)

∫

α0;r

1

(z − a)n(z − b)m
dz , |a| < r < |b| , n,m ∈ N .

4. Let α = α1 ⊕ α2 be the curve sketched in the figure with R > 1 and

f(z) :=
1

1 + z2
.

iR 

α 

α 

1 

2 

R -R 

Im 

Re - 

Show: ∫

α

f(z) dz =

∫

α1

f(z) dz +

∫

α2

f(z) dz = π

and

lim
R→∞

∣∣∣∣
∫

α2

f(z) dz

∣∣∣∣ = 0 .

Deduce that: ∫ ∞

−∞

1

1 + x2
dx = lim

R→∞

∫ R

−R

1

1 + x2
dx = π .

These indefinite integrals could have been calculated more easily (arctan is a
primitive!). However, this gives a first indication of how one can compute real
integrals using complex methods. We shall return to this when applying the
residue theorem cf. III.7).

5. Let α be the closed curve considered in Exercise 4 of II.1 (“figure eight”).
Compute the integral ∫

α

1

1− z2
dz .

6. Show: If f : C → C is analytic and if there is a real number M such that for
all z ∈ C

Re f(z) ≤M ,

then f is constant.

Hint. Consider g := exp ◦f and apply Liouville’s theorem to g.
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7. Let ω and ω′ be complex numbers which are linearly independent over R.

Show: If f : C→ C is analytic and

f(z + ω) = f(z) = f(z + ω′) for all z ∈ C ,

then f is constant (J. Liouville, 1847).

8. Gauss-Lucas Theorem (C.F. Gauss, 1816; F. Lucas, 1879)

Let P be a complex polynomial of degree n ≥ 1, with n not necessarily different
zeros ζ1, . . . , ζn ∈ C. Show that for all z ∈ C \ {ζ1, . . . , ζn}

P ′(z)
P (z)

=
1

z − ζ1 +
1

z − ζ2 + · · ·+ 1

z − ζn
=

n∑
ν=1

z − ζν

|z − ζν |2
.

Deduce from this the Gauss-Lucas theorem:
For each zero ζ of P ′ there are n real numbers λ1, . . . , λn with

λ1 ≥ 0, . . . , λn ≥ 0,

n∑
j=1

λj = 1 and ζ =

n∑
ν=1

λνζν .

Thus one can say: The zeros of P ′ lie in the “convex hull” of the zero set of P .

9. Show that every rational function R (i.e. R(z) = P (z)/Q(z), P,Q polynomi-
als, Q �= 0) can be written as the sum of a polynomial and a finite linear
combination, with complex coefficients, of “simple functions” of the form

z �→ 1

(z − s)n
, n ∈ N , s ∈ C ,

the so-called “partial fractions” (Partial fraction decomposition theorem), see
also Chapter III, Appendix A to Sections III.4 and III.5, Proposition A.7).

Deduce: If the coefficients of P and Q are real, then f has “a real partial fraction
decomposition” (by putting together pairs of complex conjugate zeros, or rather
by putting together the corresponding partial fractions (see also Exercise 10 in
I.1).

10. A somewhat more direct proof of the generalized Cauchy integral formula
(Theorem II.3.4) is obtained with the following Lemma:

Let α : [a, b] → C be a piecewise smooth curve and let ϕ : Image α → C be
continuous. For z ∈ D := C \ Image α and m ∈ N let

Fm(z) :=
1

2πi

∫

α

ϕ(ζ)

(ζ − z)m
dζ .

Then Fm is analytic in D and for all z ∈ D
F ′

m(z) = m Fm+1(z) .

Prove this by direct estimate (without using the Leibniz rule).

11. Let D ⊂ C be open, and L ⊂ C a line. If f : D → C is a continuous function,
which is analytic at all points z ∈ D, z �∈ L, then f is analytic on the whole D.
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12. The Schwarz Reflection principle (H.A. Schwarz, 1867)

Let D �= ∅ be a domain which is symmetric with respect to the real axis (i.e.
z ∈ D =⇒ z̄ ∈ D). We consider the subsets

D+ := { z ∈ D ; Im z > 0 } ,
D− := { z ∈ D ; Im z < 0 } ,
D0 := { z ∈ D ; Im z = 0 } = D ∩ R .

If f : D+ ∪ D0 → C is continuous, f | D+ analytic and f(D0) ⊂ R, then the
function defined by

f̃(z) :=

{
f(z) for z ∈ D+ ∪D0 ,

f(z̄) for z ∈ D+ ,

is analytic.

13. Let f be a continuous function on the compact interval [a, b].

Show: The function defined by

F (z) =

∫ b

a

exp(−zt) f(t) dt

is analytic on the whole C, and

F ′(z) = −
∫ b

a

exp(−zt)tf(t) dt .

14. Let D ⊂ C be a domain and
f : D −→ C

be an analytic function.

Show: The function
ϕ : D ×D −→ C

with

ϕ(ζ, z) :=

⎧⎨
⎩
f(ζ) − f(z)

ζ − z if ζ �= z ,

f ′(ζ) if ζ = z ,

is a continuous function of two variables.

For each given z ∈ D the function

ζ �−→ ϕ(ζ, z)

is analytic in D.

15. Determine all pairs (f, g) of entire functions with the property

f2 + g2 = 1 .

Result:

f = cos ◦h and g = sin ◦h, where h is an arbitrary entire function.

16. Let f : C→ C be a non-constant, entire function. Then f(C) is dense in C.


