
Preface

This book could have been entitled “Analysis and Geometry.” The authors
are addressing the following issue: Is it possible to perform some harmonic
analysis on a set? Harmonic analysis on groups has a long tradition. Here
we are given a metric set X with a (positive) Borel measure µ and we would
like to construct some algorithms which in the classical setting rely on the
Fourier transformation. Needless to say, the Fourier transformation does not
exist on an arbitrary metric set.

This endeavor is not a revolution. It is a continuation of a line of research
which was initiated, a century ago, with two fundamental papers that I would
like to discuss briefly.

The first paper is the doctoral dissertation of Alfred Haar, which was
submitted at to University of Göttingen in July 1907. At that time it was
known that the Fourier series expansion of a continuous function may diverge
at a given point. Haar wanted to know if this phenomenon happens for every
orthonormal basis of L2[0, 1]. He answered this question by constructing an
orthonormal basis (today known as the Haar basis) with the property that
the expansion (in this basis) of any continuous function uniformly converges
to that function.

Today we know that Haar was the grandfather of wavelets and we also
know that wavelet bases offer a powerful and flexible alternative to Fourier
analysis. Indeed wavelet bases are unconditional bases of most of the func-
tional spaces we are using in analysis. In other words wavelet expansions
offer an improved numerical stability, as compared with Fourier series expan-
sions. One of the goals of this book is to construct wavelets on any metric set
equipped with a positive measure which is compatible with the given metric.
In this setting we do not have Fourier analysis at our disposal.

The second paper which preluded the authors’ endeavor was written in
French by Marcel Riesz in 1926. It is entitled “Sur les fonctions conjuguées.”
The author proves that the Hilbert transform is bounded on Lp(R) when 1 <
p < ∞. The Hilbert transform H is the convolution with 1

πp.v.
1
x , which is a

distribution. In other wordsH(f)(x) = 1
πp.v.

∫ f(y)
x−ydy. The Fourier transform

v
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of H(f) is −i sign(ξ)f̂(ξ) when f̂(ξ) is the Fourier transform of f. Therefore,
H is isometric on L2(R).

The proof given by Riesz relies on the properties of holomorphic functions
F in the unit disc D of the complex plane. The boundary Γ of D is the unit
circle identified to [0, 2π] and functions on Γ can be written as Fourier series.
If a holomorphic function F in D extends to the boundary Γ, then the Fourier
series of F on Γ coincides with its Taylor series. Moreover if u is the real part
of a holomorphic function F and v is the imaginary part, then v is the Hilbert
transform of u on Γ.

To prove his claim, Riesz used the Cauchy formula and the fact that F p

(F raised to the power p) is still holomorphic when p is an integer or when
F has no zero in D. This attack was named “complex methods” by Antoni
Zygmund.

In the 1950s Alberto Calderón and Zygmund discovered a new strategy
for proving Lp estimates. They could not use complex methods anymore
since they were interested in operators acting on L2(Rn). The operators con-
structed by Calderón and Zygmund are the famous pseudo-differential oper-
ators and soon became one of the most powerful tools in partial differential
equations.

Let us sketch the proof of Lp estimates discovered by Calderón and Zyg-
mund. It begins with a lemma which is known as the “Calderón–Zygmund
decomposition.” It says the following. Let f be any function in L1(Rn) and
let λ > 0 be a given threshold. Then f can be split into a sum u + v where
|u| is bounded by λ and belongs to L2(Rn), while v is oscillating and sup-
ported by a set of measure not exceeding C

λ . As noticed by Joseph Doob, the
proof of this lemma is indeed a stopping time argument applied to a dyadic
martingale. On the other hand, the Haar basis yields a martingale expansion.
Calderón and Zygmund argued as follows. They assumed that the distribu-
tional kernelK(x, y) of an operator T satisfies the following conditions: There
exists a constant C such that for every x ∈ R

n and every x′ �= x one has
∫

|y−x|≥2|x′−x|

|K(x′, y) −K(x, y)|dy ≤ C

and there exists a constant C′ such that for every y ∈ R
n and every y′ �= y

one has ∫

|x−y′|≥2|y−y′|

|K(x, y′) −K(x, y)|dx ≤ C ′. (†)

Calderón and Zygmund proved a remarkable result. If T is bounded on
L2(Rn) and if the distributional kernel K(x, y) of T satisfies (†), then for
every f in L1(Rn), T (f) belongs to weak L1. There exists a constant C
such that for every positive λ the measure of the set of points x for which
|T (f)(x)| > λ does not exceed C ‖f‖1

λ . This is optimal, since f = δx0(Dirac
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mass at x0) yields T (f)(x) = K(x, x0) which belongs to weak L1 and not to
L1. This theorem follows from the Calderón–Zygmund decomposition. Then
the Marcinkiewicz interpolation theorem implies the required Lp estimates
for 1 < p ≤ 2. Applying the same argument to the adjoint operator T ∗, we
obtain the Lp estimates for 2 ≤ p <∞.

The arguments which were used in these two steps do not rely on Fourier
methods; therefore, this scheme easily extends to geometrical settings where
the Fourier transformation does not exist. Such generalizations were achieved
by Ronald Coifman and Guido Weiss. They discovered that the “spaces of
homogeneous type” are the metric spaces to which the Calderón–Zygmund
theory extends naturally. A space of homogeneous type is a metric space X
endowed with a positive measure µ which is compatible with the given metric
in a sense which will be detailed in this book. Roughly speaking, the measure
µ(B(x, r)) of a ball centered at x with radius r scales as a power of r.

Coifman and Weiss observed that any bounded operator T : L2(X, dµ) →
L2(X, dµ) whose distributional kernel satisfies (†)—with |x − y′| ≥ 2|y − y′|
replaced by d(x, y′) ≥ 2d(y, y′)—maps L1 into weak L1. That implies Lp

estimates for 1 < p ≤ 2. This can be found in the remarkable book Analyse
Harmonique Non- commutative sur Certains Espaces Homogènes which was
published in 1971.

But this does not tell us how to prove the fundamental L2 estimate. We
will return to this issue after a detour.

In the 1960s Calderón launched an ambitious program. He wanted to free
the pseudo-differential calculus from the unnecessary smoothness assump-
tions which were usually required to obtain commutator estimates. The first
issue he addressed was the following problem. Let A be the pointwise mul-
tiplication by a function A(x) and let T be any pseudo-differential operator
of order 1. Can we find a necessary and sufficient condition on A imply-
ing that all commutators [A, T ] are bounded on L2(Rn)? This is required
for every pseudo-differential operator of order 1 and the particular choices
Tj = ∂

∂xj
, 1 ≤ j ≤ n, show that A must be a Lipschitz function. The other

way around is much more difficult and was proved by Calderón in 1965. The
proof relies on new estimates on the Hardy space H1(R). Calderón proved
that the H1 norm of a holomorphic function F is controlled by the L1 norm
of the Lusin area function of F. This connection between an L2 estimate and
the Hardy space H1 is the most surprising. An explanation will be given by
the T (1) theorem of David and Journé.

This spectacular achievement gave a second life to the theory of Hardy
spaces and Charles Fefferman, in collaboration with Elias Stein, proved that
the dual of H1(Rn) is BMO(Rn). Here H1(Rn) is the real variable version
of the Hardy space H1(R). In other words, H1 is the subspace of L1 which
is defined by n+1 conditions f ∈ L1 and Rjf ∈ L1, where Rj , 1 ≤ j ≤ n, are
the Riesz transforms.

Calderón conjectured that the Cauchy kernel on a Lipschitz curve Γ is
bounded on L2(R). A Lipschitz curve Γ is the graph of a (real-valued)
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Lipschitz function A. The curve Γ admits a parameterization given by
z(x) = x + iA(x),−∞ < x < ∞, and the Cauchy operator can be writ-
ten as

C(f)(x) = p.v.
1
πi

∞∫

−∞
(z(x) − z(y))−1f(y)dy.

If ‖A′‖∞ < 1, the Cauchy operator is given by a Taylor expansion
∞∑

0
Cn(f), where Cn are the iterated commutators between A (the point-

wise multiplication with A(x)) and DnH. Here, as above, H is the Hilbert
transform and D = −i d

dx .
In 1977 Calderón used a refinement of the method which was successful

for the first commutator and could prove the boundedness of the Cauchy
kernel under the frustrating condition ‖A′‖∞ < β, where β is a small positive
number. Guy David combined this result with new real variable methods and
got rid of the limitation in Calderón’s theorem.

But the main breakthrough came when David and Jean-Lin Journé at-
tacked a much more general problem. They moved to R

n and studied singular
integral operators which are defined by

T (f)(x) = p.v.

∫
K(x, y)f(y)dy,

where K(x, y) = −K(y, x), |K(x, y)| ≤ C|x−y|−n, and |∇xK(x, y)| ≤ C′|x−
y|−n−1.

They discovered that T is bounded on L2(Rn) if and only if T (1) ∈
BMO(Rn). Here T (1)(x) = p.v.

∫
K(x, y)dy and in many situations this

calculation is trivial. For instance, when Kn(x, y) = (A(x)−A(y))n

(x−y)n+1 is the n-th
commutator,

p.v.

∫
Kn(x, y)dy = − 1

n
p.v.

∫
Kn−1(x, y)A′(y)dy,

which immediately yields Calderón’s theorem. Complex methods are beaten
by real variable methods and the surprising connection between Hardy spaces
and L2 estimates is explained. Indeed BMO is the dual of H1.

A spectacular discovery by David, Journé, and S. Semmes is the general-
ization of the T (1) theorem to spaces of homogeneous type.

This version of the T (1) theorem will receive a careful exposition in this
book. It paves the road to a broader program which is the extension to spaces
of homogeneous type of the Littlewood–Paley theory. The Littlewood–Paley
theory began with the fundamental achievements of J. E. Littlewood and R.
E. A. C. Paley.

Let me say a few words on this discovery. We consider the Fourier series
∞∑

−∞
ck exp(ikx) of a 2π-periodic function f(x) and we define the dyadic blocks

Dj(f)(x), j ∈ N, by
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Djf(x) =
∑

2j≤|k|<2j+1

ck exp(ikx).

Then the square function S(f) of Littlewood and Paley is defined by

S(f)(x) =
( ∞∑

0

|Dj(f)(x)|2) 1
2 .

Littlewood and Paley proved that we have

cp‖f‖p ≤ |c0| + ‖S(f)‖p ≤ Cp‖f‖p

when 1 < p <∞.
The definition of the square function S(f) was generalized by Elias Stein.

Then Lp[0, 2π] can be replaced by Lp(Rn). Jean-Michel Bony used Stein’s
version of the Littlewood–Paley theory to construct his famous paraproducts.
Such paraproducts play a pivotal role in the proof of the T (1) theorem.

The authors of this book show us how to extend the Littlewood–Paley
theory to spaces of homogeneous type. This is a key achievement since
most of the usual functional spaces admit simple characterizations using the
Littlewood–Paley theory.

The last but not the least contribution of the authors is the construc-
tion of wavelet bases on spaces of homogeneous type. Once again, wavelets
offer an alternative to Fourier analysis. As we know, wavelet analysis can
be traced back to a fundamental identity discovered by Calderón. If ψ is a
radial function in the Schwartz class with a vanishing integral and if, for
t > 0, ψt(x) = t−nψ(x

t ), then for f ∈ L2(Rn) we have

f = c

∞∫

0

f ∗ ψ̃t ∗ ψt
dt

t
,

where c > 0 is a normalizing factor and ψ̃(x) = ψ(−x). In other words, one
computes the wavelet coefficients by

W (y, t) =
∫
f(x)ψt(x− y)dx

and one recovers f through

f(x) = c

∞∫

0

∫

Rn

W (y, t)ψt(x− y)dy
dt

t
.

Everything works as if the wavelets ψt,y(x) = t−n/2ψ(x−y
t ) were an ortho-

normal basis of L2(Rn). Indeed, orthonormal wavelet bases exist. There exist
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2n − 1 functions ψε ∈ S (Rn), ε ∈ F,#F = 2n − 1, such that the functions
ψε(x) = 2

nj
2 ψε(2jx − k), j ∈ Z, k ∈ Z

n, ε ∈ F, are an orthonormal basis of
L2(Rn).

The authors succeeded in generalizing the construction of wavelet bases to
spaces of homogeneous type; however, wavelet bases are replaced by frames,
which in many applications offer the same service.

One is amazed by the dramatic changes that occurred in analysis during
the twentieth century. In the 1930s complex methods and Fourier series played
a seminal role. After many improvements, mostly achieved by the Calderón–
Zygmund school, the action takes place today on spaces of homogeneous type.
No group structure is available, the Fourier transform is missing, but a version
of harmonic analysis is still present. Indeed the geometry is conducting the
analysis.

Donggao Deng passed away after completing a preliminary version of this
book. In his last moments he knew his efforts were not in vain and that his
collaboration with Yongsheng Han would eventually lead to this remarkable
treatise.

China 2007 Yves Meyer



Chapter 2

The Boundedness of Calderón-Zygmund
Operators on Wavelet Spaces

We first define test functions and wavelet spaces on spaces of homogeneous
type. Then we prove the main result of this chapter, namely that Calderón-
Zygmund operators whose kernels satisfy an additional smoothness condition
are bounded on wavelet spaces. This result will be a crucial tool to provide
wavelet expansions of functions and distributions on spaces of homogeneous
type in the next chapter.

We first introduce test functions on spaces of homogeneous type.

Definition 2.1. Fix 0 < γ, β < θ. A function f defined on X is said to be a
test function of type (x0, r, β, γ), x0 ∈ X, and r > 0, if f satisfies the following
conditions:

(i) |f(x)| ≤ C rγ

(r+ρ(x,x0))1+γ ;

(ii) |f(x) − f(y)| ≤ C
(

ρ(x,y)
r+ρ(x,x0)

)β
rγ

(r+ρ(x,x0))1+γ for all x, y ∈ X with

ρ(x, y) ≤ 1
2A (r + ρ(x, x0)).

Such functions exist and the reader will find a recipe two lines after Defini-
tion 1.2. If f is a test function of type (x0, r, β, γ), we write f ∈ M(x0, r, β, γ),
and the norm of f in M(x0, r, β, γ) is defined by

‖f‖M(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

One should observe that if f ∈ M(x0, r, β, γ), then

‖f‖1 ≈ ‖f‖M(x0,r,β,γ).

We say that a function f is a scaling function if f ∈ M(x0, r, β, γ) and∫
f(x)dµ(x) = 1.
Now fix x0 ∈ X and denote M(β, γ) = M(x0, 1, β, γ). It is easy to see that

M(x1, r, β, γ) = M(β, γ) with equivalent norms for all x1 ∈ X and r > 0.
Furthermore, it is also easy to check that M(β, γ) is a Banach space with
respect to the norm in M(β, γ).

D. Deng and Y. Han, Harmonic Analysis 27
on Spaces of Homogeneous Type, Lecture Notes in Mathematics 1966,
c© Springer-Verlag Berlin Heidelberg 2009
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Definition 2.2. A function f defined on X is said to be a wavelet of type
(x0, r, β, γ) if f ∈ M(x0, r, β, γ) and

∫
f(x)dµ(x) = 0. We denote this by

f ∈ M0(x0, r, β, γ).

These wavelets are named molecules by Guido Weiss. A compactly supported
molecule is an atom. Atomic decompositions preluded wavelet analysis, as
indicated in the Introduction. Moreover Caderón-Zygmund operators T sat-
isfying T (1) = T ∗(1) = 0 have the remarkable property map a molecule into
a molecule. We use the notation M0(β, γ), when the dependence in x0 and
r can be forgotten, as a space of wavelets with regularity (β, γ).

To study the boundedness of Calderón-Zygmund singular integral opera-
tors on a wavelet space, we define the following “strong” weak boundedness
property.

Definition 2.3. An operator T defined by a distributional kernel K, is said
to have the “strong weak boundedness property” if there exist η > 0 and
C <∞ such that

|〈K, f〉| ≤ Cr (2.1)

for all f ∈ Cη
0 (X × X) with supp(f) ⊆ B(x1, r) × B(y1, r), x1 and y1 ∈

X, ‖f‖∞ ≤ 1, ‖f(·, y)‖η ≤ r−η , and ‖f(x, ·)‖η ≤ r−η for all x and y ∈ X.

If T has the “strong weak boundedness property”, we write T ∈ SWBP.
Note that if ψ and φ are functions satisfying the conditions in Defini-

tion 1.15, then f(x, y) = ψ(x) × φ(y) satisfies the conditions in Definition
2.3, and hence |〈Tψ, φ〉| = |〈K, f〉| ≤ Cr if T has the “strong weak bound-
edness property”. This means that the strong weak boundedness property
implies the weak boundedness property. However, in the standard situa-
tion of R

n, the weak boundedness property implies the strong one. In-
deed any smooth function f(x, y), x ∈ B, y ∈ B, supported by B × B can
be written, by a double Fourier series expansion, as

∑
αjfj(x)gj(y) with∑ |αj | <∞, ‖fj‖Cβ

0
≤ 1, ‖gj‖Cβ

0
≤ 1.

If T ∈ CZK(ε), we say that T ∗(1) = 0 if
∫
T (f)(x)dx = 0 for all f ∈

M0(β, γ). Similarly, T (1) = 0 if
∫
T ∗(f)(x)dx = 0 for all f ∈ M0(β, γ).

The main result in this chapter is the following theorem.

Theorem 2.4. Suppose that T ∈ CZK(ε) ∩ SWBP, and T (1) = T ∗(1) = 0.
Suppose further that K(x, y), the kernel of T, satisfies the following condition:

|K(x, y) −K(x′, y) −K(x, y′) +K(x′, y′)| (2.2)
≤ Cρ(x, x′)ερ(y, y′)ερ(x, y)−(1+2ε)

for ρ(x, x′), ρ(y, y′) ≤ 1
2Aρ(x, y). Then there exists a constant C such that

for each wavelet f ∈ M0(x0, r, β, γ) with x0 ∈ X, r > 0 and 0 < β, γ < ε,
Tf ∈ M0(x0, r, β, γ). Moreover
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‖T (f)‖M(x0,r,β,γ) ≤ C‖T ‖‖f‖M(x0,r,β,γ) (2.3)

where ‖T ‖ denote the smallest constant in the “strong weak boundedness prop-
erty” and in the estimates of the kernel of T.

Before proving Theorem 2.4, we observe that this theorem will provide
wavelet expansions which, as in the standard case of R

n, will be the building
blocks of most functional spaces.

To prove Theorem 2.4, we first need the following lemma.

Lemma 2.5. Suppose that T is a continuous linear operator from Ċη
0 to (Ċη

0 )′

satisfying T ∈ CZK(ε)∩SWBP with η < ε, and T (1) = 0. Then there exists
a constant C such that

‖Tφ‖∞ ≤ C (2.4)

whenever there exist x0 ∈ X and r > 0 such that suppφ ⊆ B(x0, r) with
‖φ‖∞ ≤ 1 and ‖φ‖η ≤ r−η .

Proof. We follow the idea of the proof in [M1]. Fix a function θ ∈ C∞(R)
with the following properties: θ(x) = 1 for |x| ≤ 1 and θ(x) = 0 for |x| > 2.
Let χ0(x) = θ(ρ(x,x0)

2r ) and χ1 = 1−χ0. Then φ = φχ0 and for all ψ ∈ Cη
0 (X),

〈Tφ, ψ〉 = 〈K(x, y), φ(y)ψ(x)〉 = 〈K(x, y), χ0(y)φ(y)ψ(x)〉
= 〈K(x, y), χ0(y)[φ(y) − φ(x)]ψ(x)〉 + 〈K(x, y), χ0(y)φ(x)ψ(x)〉
:= p+ q

where K(x, y) is the distribution kernel of T.
To estimate p, let λδ(x, y) = θ(ρ(x,y)

δ ). Then

p = 〈K(x, y), (1 − λδ(x, y))χ0(y)[φ(y) − φ(x)]ψ(x)〉
+〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉

:= p1,δ + p2,δ. (2.5)

Since K is locally integrable on Ω = {(x, y) ∈ X × X : x �= y}, the first
term on the right hand side of (2.5) satisfies

|p1,δ| =
∣
∣
∣
∣

∫

Ω

K(x, y)(1 − λδ(x, y))χ0(y)[φ(y) − φ(x)]ψ(x)dµ(x)dµ(y)
∣
∣
∣
∣

≤ C

∫

X

∫

X

|K(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)|dµ(x)dµ(y)

≤ C

∫

X

|ψ(x)|dµ(x) = C‖ψ‖1.

Thus it remains to show that lim
δ→0

p2,δ = 0, i.e.,
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lim
δ→0

〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉 = 0, (2.6)

and it is here that we use the “strong” weak boundedness property of T :

|〈K, f〉| ≤ Cr (2.7)

for all f ∈ Cη
0 (X × X) satisfying suppf ⊆ B(x0, r) × B(y0, r), ‖f‖∞ ≤

1, ‖f(·, y)‖η ≤ r−η and ‖f(x, ·)‖η ≤ r−η for all x, y ∈ X.
To show (2.6), let {yj}j∈Z ∈ X be a maximal collection of points satisfying

1
2
δ < inf

j �=k
ρ(yj , yk) ≤ δ. (2.8)

By the maximality of {yj}j∈Z, we have that for each x ∈ X there ex-
ists a point yj such that ρ(x, yj) ≤ δ. Let ηj(y) = θ(ρ(y,yj)

δ ) and η̄j(y) =
[∑

i

ηi(y)
]−1

ηj(y). To see that η̄j is well defined, it suffices to show that

for any y ∈ X, there are only finitely many ηj with ηj(y) �= 0. This
follows from the following fact: ηj(y) �= 0 if and only if ρ(y, yj) ≤ 2δ
and hence this implies that B(yj , δ) ⊆ B(y, 4Aδ). Inequalities (2.8) show
B(yj ,

δ
4A ) ∩ B(yk,

δ
4A ) = φ, and thus there are at most CA points yj ∈ X

such that B(yj ,
δ

4A ) ⊆ B(y, 4Aδ). Now let Γ = {j : η̄j(y)χ0(y) �= 0}. Note
that #Γ ≤ Crδ since µ(suppχ0) ∼ r and µ(suppη̄j) ∼ δ. We write

λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x) =
∑

j∈Γ

λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x),

and we obtain

〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉
=

∑

j∈Γ

〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)〉.

It is then easy to check that supp{λδ(x, y)η̄j(y)χ0(y)[φ(y)−φ(x)]ψ(x)} ⊆
B(yj , 3Aδ) ×B(yj , 2δ) and

‖λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)‖∞ ≤ Cδη

where C is a constant depending only on θ, φ, ψ, x0, and r but not on δ and j.
We claim that

‖λδ(., y)η̄j(y)χ0(y)[φ(y) − φ(.)]ψ(.)‖η ≤ C, (2.9)

and

‖λδ(x, .)η̄j(.)χ0(.)[φ(.) − φ(x)]ψ(x)‖η ≤ C. (2.10)
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We accept (2.9) and (2.10) for the moment. Then, since T satisfies the
“strong” weak boundedness property, we have

|〈K(x, y), λδ(x, y)χ0(y)[φ(y) − φ(x)]ψ(x)〉|
≤

∑

j∈Γ

|〈K(x, y), λδ(x, y)η̄j(y)χ0(y)[φ(y) − φ(x)]ψ(x)〉|

≤
∑

j∈Γ

Cµ(B(yj , 3Aδ))δη ≤ C
r

δ
CAδδη = CArδη

which yields (2.6).
It remains to show (2.9) and (2.10). We prove only (2.9) since the proof

of (2.10) is similar. To show (2.9) it suffices to show that for x, x1 ∈ X and
ρ(x, x1) ≤ δ,

|η̄j(y)χ0(y)|
∣
∣λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)

∣
∣

≤ Cρ(x, x1)η,

since if ρ(x, x1) ≥ δ, then the expansion on the left above is clearly bounded
by

|η̄j(y)χ0(y)|
{|λδ(x, y)[φ(y) − φ(x)]ψ(x)| + |λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|

}

≤ Cδη ≤ Cρ(x, x1)η.

By the construction of η̄j , it follows that

|η̄j(y)χ0(y)| ≤ C

for all y ∈ X. Thus

|η̄j(y)χ0(y)||λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|
≤ C|λδ(x, y)[φ(y) − φ(x)]ψ(x) − λδ(x1, y)[φ(y) − φ(x1)]ψ(x1)|
≤ C|[λδ(x, y) − λδ(x1, y)][φ(y) − φ(x)]ψ(x)|

+|λδ(x1, y)[φ(x) − φ(x1)]ψ(x)|
+|λδ(x1, y)[φ(y) − φ(x1)][ψ(x) − ψ(x1)]|

:= I + II + III.

Recall that ρ(x, x1) ≤ δ. If ρ(x, y) > Cδ, where C is a constant depending
on A but not on δ, then λδ(x, y) = λδ(x1, y) = 0, so I = 0. Thus we may
assume that ρ(x, y) ≤ Cδ and with θ in (1.7),

I ≤ C
∣
∣
∣
ρ(x, y)
δ

− ρ(x1, y)
δ

∣
∣
∣ρ(x, y)η ≤ Cδη−1ρ(x, x1)θ[ρ(x, y) + ρ(x1, y)]1−θ

≤ Cδη−θρ(x, x1)θ ≤ Cρ(x, x1)η
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since we may assume η ≤ θ. Terms II and III are easy to estimate:

II ≤ Cρ(x, x1)η,

III ≤ Cρ(x, x1)η,

since we can assume that δ < 1. This completes the proof of (2.9) and implies

|p| ≤ C‖ψ‖1.

To finish the proof of Lemma 2.5, we now estimate q. It suffices to show
that for x ∈ B(x0, r),

|Tχ0(x)| ≤ C. (2.11)

To see this, it is easy to check that q = 〈Tχ0, φψ〉, and hence (2.10) implies

|q| ≤ ‖Tχ0‖L∞(B(x0,r))‖φψ‖L1(B(x0,r)) ≤ C‖ψ‖1.

To show (2.11), we use Meyer’s idea again ([M1]). Let ψ ∈ Cη(X)
with suppψ ⊆ B(x0, r) and

∫
ψ(x)dµ(x) = 0. By the facts that T (1) =

0,
∫
ψ(x)dµ(x) = 0, and the conditions on K, we obtain

|〈Tχ0, ψ〉| = | − 〈Tχ1, ψ〉| =
∣
∣
∣
∣

∫∫
[K(x, y) −K(x0, y)]χ1(y)ψ(x)dµ(x)dµ(y)

∣
∣
∣
∣

≤ C‖ψ‖1.

Thus, Tχ0(x) = ω + γ(x) for x ∈ B(x0, r), where ω is a constant
and ‖γ‖∞ ≤ C. To estimate ω, choose φ1 ∈ Cη

0 (X) with supp φ1 ⊆
B(x0, r), ‖φ1‖∞ ≤ 1, ‖φ1‖η ≤ r−η and

∫
φ1(x)dµ(x) = Cr. We then have, by

the “strong” weak boundedness property of T,
∣
∣
∣
∣Crω +

∫
φ1(x)γ(x)dµ(x)

∣
∣
∣
∣ = |〈Tχ0, φ1〉| ≤ Cr

which implies |ω| ≤ C and hence Lemma 2.5.

We remark that the calculation above, together with the dominated con-
vergence theorem and T 1 = 0, yields the following integral representation:

〈Tφ, ψ〉
=

∫

Ω

K(x, y){χ0(y)[φ(y) − φ(x)] − χ1(y)φ(x)}ψ(x)dµ(y)dµ(x) (2.12)

and

〈K(x, y), [φ(y) − φ(x)]χ0(y)〉
= lim

δ→0

∫

ρ(x,y)≥δ

K(x, y)χ0(y)[φ(y) − φ(x)]dµ(y) (2.13)

where χ0, φ and ψ are defined as above.



2 Boundedness of CZO on Wavelet Space 33

We return to prove the Theorem 2.4. Fix a function θ ∈ C1(R) with
supp θ ⊆ {x ∈ R : |x| ≤ 2} and θ = 1 on {x ∈ R : |x| ≤ 1}. Suppose
that f ∈ M0(x0, r, β, γ) with x0 ∈ X, r > 0 and 0 < β, γ < ε. We first
prove that T (f)(x) satisfies the size condition (i) of Definition 2.1. To do
this, we first consider the case where ρ(x, x0) ≤ 5r. Set 1 = ξ(y)+η(y) where
ξ(y) = θ(ρ(y,x0)

10Ar ). Then we have

T (f)(x) =
∫
K(x, y)ξ(y)[f(y) − f(x)]dµ(y) +

∫
K(x, y)η(y)f(y)dµ(y)

+f(x)
∫
K(x, y)ξ(y)dµ(y) := I + II + III.

Using (2.13),

|I| ≤ C

∫

ρ(x,y)≤25A2r

|K(x, y)||f(y) − f(x)|dµ(y)

≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤25A2r

ρ(x, y)−1 ρ(x, y)
β

r1+β
dµ(y)

≤ C‖f‖M(x0,r,β,γ)r
−1.

By Lemma 2.5,

|III| ≤ C|f(x)| ≤ C‖f‖M(x0,r,β,γ)r
−1.

For term II we have

|II| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥10Ar

ρ(x, y)−1 rγ

ρ(y, x0)1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)r
−1

since ρ(x, x0) ≤ 5r.
This implies that T (f)(x) satisfies (i) of Definition 2.1 with ρ(x, x0) ≤ 5r.

Consider now ρ(x, x0) = R > 5r. Following the proof in [M1], set 1 = I(y) +
J(y) + L(y), where I(y) = θ(4Aρ(y,x)

R ), J(y) = θ(4Aρ(y,x0)
R ), and f1(y) =

f(y)I(y), f2(y) = f(y)J(y), and f3(y) = f(y)L(y). Then it is easy to check
the following estimates:

|f1(y)| ≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
; (2.14)

|f1(y) − f1(y′)| ≤ |I(y)||f(y) − f(y′)| + |f(y′)||I(y) − I(y′)| (2.15)

≤ C‖f‖M(x0,r,β,γ)
ρ(y, y′)β

Rβ

rγ

R1+γ

for all y and y′;
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|f3(y)| ≤ C‖f‖M(x0,r,β,γ)
rγ

ρ(y, x0)1+γ
χ{y∈X:ρ(y,x0)>

1
4A R}; (2.16)

∫
|f3(y)|dµ(y) ≤ C‖f‖M(x0,r,β,γ)

rγ

Rγ
; (2.17)

∣
∣
∣
∣

∫
f2(y)dµ(y)

∣
∣
∣
∣ =

∣
∣
∣
∣−

∫
f1(y)dµ(y) −

∫
f3(y)dµ(y)

∣
∣
∣
∣ (2.18)

≤ C‖f‖M(x0,r,β,γ)
rγ

Rγ
.

We write

T (f1)(x) =
∫
K(x, y)u(y)[f1(y) − f1(x)]dµ(y) + f1(x)

∫
K(x, y)u(y)dµ(y)

= σ1(x) + σ2(x)

where u(y) = θ(2Aρ(x,y)
R ). Applying the estimate (2.15) and Lemma 2.5, we

obtain

|σ1(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤R
A

ρ(x, y)−1 ρ(x, y)
β

Rβ

rγ

R1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
;

and

|σ2(x)| ≤ C|f1(x)| ≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
.

Notice that x is not in the support of f2. We can write

T (f2)(x) =
∫

[K(x, y) −K(x, x0)]f2(y)dµ(y) +K(x, x0)
∫
f2(y)dµ(y)

= δ1(x) + δ2(x).

Using the estimates on the kernel of T and on f2 in (2.18), we then get

|δ1(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x0,y)≤ R
2A

ρ(x0, y)ε

R1+ε

rγ

ρ(x0, y)1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ

since γ < ε, and

|δ2(x)| ≤ CR−1

∣
∣
∣
∣

∫
f2(y)dµ(y)

∣
∣
∣
∣ ≤ C‖f‖M(x0,r,β,γ)

rγ

R1+γ
.

Finally, since x is not in the support of f3, (2.16) implies
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|T (f3)(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥ R
4A ,ρ(x0,y)≥ R

4A

ρ(x, y)−1 rγ

ρ(x0, y)1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)
rγ

R1+γ
.

This yields that T (f)(x) satisfies (i) of Definition 2.1 for ρ(x, x0) > 5r and
hence, estimate (i) of Definition 2.1 for all x ∈ X.

Now we prove that T (f)(x) satisfies the smoothness condition (ii) of De-
finition 2.1. To do this, set ρ(x, x0) = R and ρ(x, x′) = δ. We consider
first the case where R ≥ 10r and δ ≤ 1

20A2 (r + R). As in the above, set
1 = I(y) + J(y) + L(y), where I(y) = θ( 8Aρ(y,x)

R ), J(y) = θ(8Aρ(y,x0)
R ), and

f1(y) = f(y)I(y), f2(y) = f(y)J(y), and f3(y) = f(y)L(y). We write

T (f1)(x) =
∫
K(x, y)u(y)[f1(y) − f1(x)]dµ(y)

+
∫
K(x, y)v(y)f1(y)dµ(y) + f1(x)

∫
K(x, y)u(y)dµ(y)

where u(y) = θ(ρ(x,y)
2Aδ ) and v(y) = 1−u(y). Denote the first term of the above

right-hand side by p(x) and the last two terms by q(x). The size condition of
K and the smoothness of f1 in (2.15) yield

|p(x)| ≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≤4Aδ

ρ(x, y)−1 ρ(x, y)
β

Rβ

rγ

R1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

This estimate still holds with x replaced by x′ for ρ(x, x′) = δ. Thus

|p(x) − p(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

For q(x), using the condition T 1 = 0, we obtain

q(x) − q(x′) =
∫

[K(x, y) −K(x′, y)]v(y)[f1(y) − f1(x)]dµ(y)

+[f1(y) − f1(x)]
∫
K(x, y)u(y)dµ(y)

= I + II.

Using Lemma 2.5 and the estimate for f1 in (2.15),

|II| ≤ C|f1(x) − f1(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

Observing
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|f1(y) − f1(x)||v(y)| ≤ C‖f‖M(x0,r,β,γ)
ρ(x, y)β

Rβ

rγ

R1+γ

for all y ∈ X, we see that I is dominated by

C

∫

ρ(x,y)≥2Aδ

|K(x, y) −K(x′, y)||v(y)||f1(y) − f1(x)|dµ(y)

≤ C‖f‖M(x0,r,β,γ)

∫

ρ(x,y)≥2Aδ

ρ(x, x′)ε

ρ(x, y)1+ε
ρ(x, y)β

Rβ

rγ

R1+γ
dµ(y)

≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ

since β < ε. This implies

|T (f1)(x) − T (f1)(x′)| ≤ C‖f‖M(x0,r,β,γ)
δβ

Rβ

rγ

R1+γ
.

Note that for ρ(x, x′) = δ ≤ 1
20A2 (r +R) and R ≥ 10r, x and x′ are not in

the supports of f2 and f3. Using the condition for K and the estimate for f2
in (2.18), then

|T (f2)(x) − T (f2)(x′)| =
∣
∣
∣
∣

∫
[K(x, y) −K(x′, y)]f2(y)dµ(y)

∣
∣
∣
∣

≤
∫

|K(x, y) −K(x′, y) −K(x, x0) −K(x′, x0)||f2(y)|dµ(y)

+|K(x, x0) −K(x′, x0)|
∣
∣
∣
∣

∫
f2(y)dµ(y)

∣
∣
∣
∣

≤ C‖f‖M(x0,r,β,γ)

{∫

ρ(x0,y)≤ R
4A

ρ(x, x′)ερ(y, x0)ε

R2+ε
rγ

ρ(y, x0)1+γ
dµ(y)

+
δε

R1+ε

rγ

Rγ

}

≤ C‖f‖M(x0,r,β,γ)
δε

Rε

rγ

R1+γ

since γ < ε. Finally, we have

|T (f3)(x) − T (f3)(x′)| =
∣
∣
∣
∣

∫
[K(x, y) −K(x′, y)]f3(y)dµ(y)

∣
∣
∣
∣

≤ C

∫

ρ(x,y)≥ R
8A≥2Aδ

ρ(x, x′)ε

ρ(x, y)1+ε |f3(y)|dµ(y) ≤ C‖f‖M(x0,r,β,γ)
δε

Rε

rγ

R1+γ
.

These estimates imply that T (f)(x) satisfies the condition (ii) of Definition
2.1 for the case where ρ(x, x0) = R ≥ 10r and ρ(x, x′) = δ ≤ 1

20A2 (r+R). We
now consider the other cases. Note first that if ρ(x, x0) = R and 1

2A (r+R) ≥
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ρ(x, x′) = δ ≥ 1
20A2 (r+R), then the estimate (ii) of Definition 2.1 for T (f)(x)

follows from the estimate (i) of Definition 2.1 for T (f)(x). So we only need
to consider the case where R ≤ 10r and δ ≤ 1

20A2 (r+R). This case is similar
and easier. In fact, all we need to do is to replace R in the proof above by r.
We leave these details to the reader. The proof of Theorem 2.4 is completed.

We remark that the condition in (2.2) is also necessary for the boundedness
of Calderón-Zygmund operators on wavelet spaces. To be precise, in the next
chapter, we will prove all kinds of Calderón’s identities and use them to
provide all kinds of wavelet expansions of functions and distributions on
spaces of homogeneous type. Suppose that T is a Calderón-Zygmund operator
and maps the wavelet space M0(x0, r, β, γ) to itself. By the wavelet expansion
given in Theorem 3.25 below, K(x, y), the kernel of T, can be written as
K(x, y) =

∑

λ∈Λ

T (ψ̃λ)(x)ψλ(y). Since ψ̃λ(x) is a wavelet, by the assumption

on T, T (ψ̃λ)(x) is also a wavelet. Then one can easily check that K(x, y)
satisfies the condition (2.2) but the exponent ε must be replaced by ε′ with
0 < ε′ < β, γ. We leave these details to the reader.


