
Preface

A basic problem in geometry is to find canonical metrics on smooth manifolds.
Such metrics can be specified, for instance, by curvature conditions or extremality
properties, and are expected to contain basic information on the topology of the
underlying manifold. Constant curvature metrics on surfaces are such canonical
metrics. Their distinguished role is emphasized by classical uniformization theory.
A more recent characterization of these metrics describes them as critical points of
the determinant functional for the Laplacian. The key tool here is Polyakov’s vari-
ational formula for the determinant. In higher dimensions, however, it is necessary
to further restrict the problem, for instance, to the search for canonical metrics in
conformal classes. Here two metrics are considered to belong to the same confor-
mal class if they differ by a nowhere vanishing factor. A typical question in that
direction is the Yamabe problem ([165]), which asks for constant scalar curvature
metrics in conformal classes.

In connection with the problem of understanding the structure of Polyakov
type formulas for the determinants of conformally covariant differential operators
in higher dimensions, Branson ([31]) discovered a remarkable curvature quantity
which now is called Branson’s Q-curvature. It is one of the main objects in this
book.

Q-curvature is a scalar local Riemannian curvature invariant on manifolds of
even dimension. On surfaces it coincides with Gauß curvature. On four-manifolds
it first appeared in connection with the conformally covariant Paneitz operator. In
this case, it is a certain linear combination of squared scalar curvature, the squared
norm of Ricci curvature and the Laplacian of scalar curvature. On a manifold of
dimension n,Q-curvature is an nth-order curvature invariant. One of its remarkable
properties is that its behaviour under conformal changes of the metric is governed
by an nth-order linear conformally covariant differential operator. In dimensions
two and four, the respective operators are the Laplacian and the Paneitz operator.
In higher dimensions, these operators are replaced by certain conformally covariant
powers of the Laplacian (GJMS-operators) ([124]).

Besides their significance in conformal geometry, GJMS-operators also play
an important role in physics. This is due to the fact that their definition extends to
Lorentzian manifolds. They are common generalizations of the Yamabe operator
and the conformally covariant powers of the wave operator on Minkowski space.
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In recent years, new connections of Q-curvature with other parts of mathe-
matics and theoretical physics have been discovered. Probably the most remarkable
one is the relation to geometric scattering on asymptotically hyperbolic Einstein
spaces. This is a relation in the spirit of the conjectural AdS/CFT-duality ([171]),
which connects gravitation with gauge field theory, and which led to an outburst
of activities in theoretical physics (for reviews see [1], [82]). In geometric analysis,
recent efforts are being directed towards an understanding of the geometric signif-
icance of Q-curvature in dimension four, for instance, by studying Yamabe type
problems and Q-curvature flows (for a review see [170]). Here one of the prob-
lems is to characterize the conformal classes which contain a metric with constant
Q-curvature. Much less is known in higher dimensions.

Although Q-curvature is an intrinsic Riemannian curvature invariant, all
known conceptual definitions in general dimension take one or another extrinsic
point of view. The situation somewhat resembles Weyl’s formula for the volume
of a tube ([130]). This formula shows that the volume of a tube of a closed sub-
manifold of Euclidean space is a polynomial in its radius, and the coefficients
depend only on the intrinsic curvature of the submanifold. In particular, the Euler
characteristic of the submanifold appears in the leading coefficient.

In the present book, we develop a new extrinsic point of view towards Q-
curvature with the emphasis on general structural results. The guiding idea is to
associate to a hypersurface i : Σ ↪→ M and a general background metric g on
M certain one-parameter families of conformally covariant local operators which
map functions on M to functions on Σ. Q-curvature and the GJMS-operator of the
submanifold (Σ, i∗(g)) appear in the respective linear and constant coefficients of
these families, and the fundamental transformation law of Q-curvature is a direct
consequence of the covariance of the family. In particular, we introduce two specific
constructions of conformally covariant families with such properties: the residue
families and the tractor families.

The setting of residue families is more restricted, however. Here Σ is the
boundary of M , and the background metric on M is a canonical extension of a
given metric on Σ. Such situations arise in connection with conformally compact
Einstein metrics and the Fefferman-Graham construction of an ambient metric.
The closely related Poincaré-Einstein metrics associate to any conformal class on
Σ a diffeomorphism class of conformally compact Einstein metrics on M with
the given class as conformal infinity ([199]). The method of the ambient metric
was introduced in [99] as a fundamental systematic construction of conformal
invariants. During the last two decades the ambient metric had a major influence
on the subject of conformal geometry. For full details see [96].

Poincaré-Einstein metrics are used in theoretical physics in connection with
the speculative holographic principle in quantum gravity ([29], [227]). The bulk
space/boundary duality between superstring theory on AdS-space and super-
symmetric Yang-Mills theory on Minkowski space is regarded as a concrete man-
ifestation of the principle.
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In a pure gravity setting with homogeneous metrics, a related bulk/boundary
duality is Helgason’s well-known theory of Poisson transformations in harmonic
analysis on symmetric spaces ([140]). Versions of that transform for conformally
compact Einstein spaces play an important role in attempts to establish rigorous
statements in the AdS/CFT-duality.

The residue families are defined by a certain residue construction, which has
its origin in the spectral theory of Kleinian manifolds. This explains the name.
These families can be regarded as local counterparts of the global scattering op-
erator. They naturally lead to an understanding of Q-curvature of a metric on
the boundary at infinity as part of a hologram of the associated Poincaré-Einstein
metric in one higher dimension. More precisely, the holographic formulas describe
Q-curvature in terms of holographic coefficients of the Poincaré-Einstein metric
and its harmonic functions. Combining that relation between Q-curvature and
residue families with structural properties of residue families (factorization rela-
tions), uncovers recursive structures among Q-curvatures and GJMS-operators. It
is here where the lower order relatives Q2N (2N < n) of Branson’s Q-curvature
Qn become important. All in all, the residue families are an effective tool for the
systematic study of the interplay between the asymptotic geometry of Poincaré-
Einstein metrics on bulk space and GJMS-operators (and Q-curvatures) of their
conformal infinities.

The theory of the tractor families is an attempt to take a wider perspective.
Here the conformal compactifications of Poincaré-Einstein metrics are replaced
by arbitrary background metrics, and we extract the intrinsic Q-curvature of the
submanifold using an appropriate extrinsic construction near Σ. That perspective
leads to the notions of extrinsic and odd order Q-curvatures, which relate the
subject of Q-curvature with conformal submanifold theory. The tractor families
are defined in terms of the conformally invariant tractor calculus ([17]). A closely
related construction was used in [40] in a different connection.

For certain classes of metrics, residue families and tractor families coincide.
Such relations imply tractor formulas for GJMS-operators and Q-curvature, and
will be termed holographic duality.

The new approach to Q-curvature grew out of results which relate the divisors
of Selberg zeta functions to automorphic distributions. Such results are related to
the dream of an interpretation of the Riemann-Weil explicit formula in analytic
number theory as a version of a Lefschetz fixed point formula. The hope is that
a cohomological interpretation may also contain a key to the Riemann hypothesis
([78]). In the same spirit, it was shown in [151] that, using Osborne’s character
formula, the Selberg trace formula can be regarded as a Lefschetz formula for the
geodesic flow. This leads to characterizations of the divisors of Selberg zeta func-
tions in terms of cohomology of Anosov foliations and representation theory. The
basic principle is that the complex numbers which appear as zeros or poles of a
zeta function are characterized by the non-vanishing of the Euler characteristics
of associated complexes. Moreover, the values of the corresponding Euler char-
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acteristics yield the multiplicities. Equivariant Poisson transformations translate
these results into characterizations in terms of group cohomology with values in
distributions on the geodesic boundary of rank one symmetric spaces. The latter
result can be regarded as a version of holography: the divisor, i.e., zeros and poles
with multiplicities, of a zeta function, which is defined by the lengths of closed
geodesics of a hyperbolic manifold, is completely characterized in terms of a the-
ory which is formulated on a manifold of one dimension less. The cohomological
objects which correspond to the zeros of the Riemann zeta function remain to be
found, however.

The fascination of Q-curvature stems from its central role in the complex web
of ideas outlined above. In this framework, we observe how classical and modern
differential geometry, geometric analysis, harmonic analysis and theoretical physics
meet each other.

Although in four dimensions the geometric meaning of Q-curvature has been
studied intensively in recent years, there are only few results in higher dimensions.
It would be pleasing if the perspectives and the structural insights presented here
help to enter this unexplored field. Presently, the future role of Q-curvature is hard
to predict, and it seems that we are now taking only the first steps towards its
comprehension.

The reader will easily notice that the theory in this book has open ends on
different levels. In addition to a number of explicitly formulated conjectures, there
are results that are derived under conditions which certainly can be relaxed, and
the full consequences of some arguments and constructions are not yet predictable.
Moreover, the basic ideas should apply also in different contexts. We hope that
this will motivate further investigations.

At first glance, it might seem that the text contains a jungle of complicated
formulas. To some extent, this is typical for the subject. On the other hand, we
believe that the ambitious reader finally will be delighted by the ways in which
complex but beautiful formulas emerge from simple principles, albeit sometimes
through non-trivial calculations. The disclosure of some of the hidden structures
is one of the aims of this work.

First and foremost, the book is a research monograph presenting a new the-
ory. On the other hand, we have attempted of a self-contained presentation of the
material so that it should be accessible for non-specialists. Although we strictly
concentrate on the development of new ideas, we necessarily touch upon many
of the recent developments in conformal differential geometry. Therefore, the text
may also serve as an informal introduction to the subject. We hope that we have
succeeded in finding some balance between the presentation of structural ideas and
the discussion of full (calculational) details. In particular, we also included proofs
of some results which might be considered as well-known by specialists. But since
the various fields which are touched upon here do not have a common folklore,
proofs are given if required for the sake of a coherent presentation. Also, due to
varying conventions, it was sometimes easier to supply proofs than to refer to the
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literature. The list of references is not representative for any of the numerous fields
linked with the subject.

The early phases of the work were financed by a grant of the Swedish Re-
search Council (VR) at Uppsala University. Since 2005 Sonderforschungsbereich
647 “Space-Time-Matter” at Humboldt-University, Berlin supported the research
as part of a project initiated by H. Baum. Special thanks go to the participants of
my courses and the seminars at Humboldt-University on the subject during the
years 2005–2008. Over the years, I benefited a lot from discussions with H. Baum,
T. Branson, A. Čap, R. Gover, F. Leitner, T. Leistner, M. Olbrich, B. Ørsted,
P. Somberg, V. Souček, and from the stimulating annual conferences in Srni. In a
series of lectures in Srni 2005, I had the privilege of presenting part of the results.
In later stages of the project, discussions with R. Graham influenced the shape of
the theory. Finally, I am grateful to the reviewers for valuable hints.
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