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CHAPTER 1

Blocking Excitotoxicity

A.H. Kim, G.A. Kerchner, and D.W. Choi

A. Introduction
The major excitatory transmitter in the mammalian central nervous system 
is glutamate, which exerts its signaling actions through the stimulation of
ionotropic and metabotropic receptors (Watkins et al. 1981; Mayer and 
Westbrook 1987; Nakanishi and Masu 1994). Under pathological conditions,
glutamate receptor overactivation can trigger neuronal death, a phenomenon
known as excitotoxicity (Lucas and Newhouse 1957; Olney 1969). Incentive
for developing practical methods for blocking excitotoxicity arises from its
implication in several acute and chronic neurological disease states. While
recent clinical trials aimed at blocking excitotoxicity in stroke patients have
been disappointing, there are several plausible reasons for these trial failures,
including specific study design issues, treatment side effects, and a need to
achieve concurrent block of parallel injury pathways. In our view, the case for
antiexcitotoxic approaches in stroke remains open, and there are other possi-
ble disease targets yet to be explored. Ongoing delineation of the cellular and
molecular underpinnings of excitotoxicity has led to the progressive unveil-
ing of countermeasures, aimed at attenuating presynaptic glutamate release,
postsynaptic receptor activation, the movement or action of cation second 
messengers, or downstream intracellular injury cascades. The excitotoxicity
concept itself may need to be expanded, to encompass the death of oligoden-
drocytes as well as neurons, and ionic derangements besides Ca2+ overload.

B. Contributions to Disease
The ability of glutamate receptor overactivation to cause neuronal death in
humans is demonstrated most directly by the toxicity of several naturally occur-
ring glutamate receptor agonists (Ludolph et al. 2000), including domoic acid,
produced by a phytoplankton that occasionally contaminates blue mussels
(Perl et al. 1990; Teitelbaum et al. 1990), the amino acid b-oxalyl-amino-l-
alanine from seeds of the chickling pea (Ludolph et al. 1987), and the mush-
room poisons acromelic acid and ibotenic acid (Leonhardt 1949).These toxins
all activate ionotropic glutamate receptors and induce a variety of distur-
bances, including seizures and cognitive alterations, as well as neuronal death.



Beyond dietary exposure to exogenous excitotoxins, excitotoxicity may
also be induced by the endogenous neurotransmitter glutamate. Endogenous
glutamate-mediated excitotoxicity has been hypothesized to play a funda-
mental pathogenic role in the neuronal death associated with a wide variety
of acute neurological insults, including brain ischemia (both the transient,
global interruption of blood supply experienced during cardiac arrest with
resuscitation, as well as the focal ischemia associated with thromboembolic
stroke), seizures, mechanical trauma, and isolated hypoxia or hypoglycemia
(Coyle et al. 1981; Rothman and Olney 1986; Choi 1988b). Elevations in
extracellular glutamate concentrations have been observed in the context of
ischemia (Benveniste et al. 1984), seizures (Meldrum 1994), and head trauma
(Katayama et al. 1990). In the context of excessive extracellular accumulation
of glutamate, the movement of cations, including Ca2+, through overactivated
glutamate receptors can lead to multiple toxic consequences (see Sect.E.III.).

Glutamate may become lethal even when its synaptic release and extra-
cellular concentration are not especially elevated, in settings where the ability
of postsynaptic neurons to maintain homeostasis is compromised by energy
depletion (Novelli et al. 1988), for example, due to mitochondrial dysfunction
(Beal 2000; Nicholls and Ward 2000). It is thus plausible that excitotoxicity
may contribute, at least in a secondary fashion, to some of the neuronal 
loss associated with certain neurodegenerative diseases such as Huntington’s
disease (Coyle and Schwarcz 1976; McGgeer and McGeer 1978),
Alzheimer’s disease, or Parkinson’s disease. In amyotrophic lateral sclerosis,
loss of transporter-mediated glutamate uptake has been postulated to induce
the excitotoxic death of motor neurons (Rothstein et al. 1992).

C. Excitotoxicity in Brief
Glutamate kills central neurons by activating several subtypes of ionotropic
receptors: N-methyl-d-aspartate (NMDA), a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate (Olverman et al. 1984; Wisden
and Seeburg 1993; Hollmann and Heinemann 1994; Kerchner et al. 1999).
Much has been learned about the mechanisms underlying excitotoxic death
through studies performed in vitro over the past 15years. Intense exposure to
either glutamate or NMDA for only a few minutes is sufficient to trigger wide-
spread necrosis of cultured cortical neurons over the next hours, a phenome-
non we have called “rapidly-triggered excitotoxicity” (Choi 1992). Neurons
swell acutely, due to the massive influx of Na+ (through NMDA or AMPA/
kainate receptors) followed by Cl- and water, and then undergo delayed neu-
rodegeneration several hours later. This latter component is dependent upon
NMDA receptor activation and the presence of extracellular Ca2+ and is 
associated with a massive increase in cytoplasmic free Ca2+ concentrations
(Ogura et al. 1988; Cheng et al. 1999). The importance of elevations in intra-
cellular Ca2+ in mediating excitotoxicity is underscored by the ability of cell-
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permeable Ca2+ chelators to attenuate glutamate-mediated cell death in neu-
ronal culture as well as to decrease injury induced by experimental focal
ischemia in rodents (Tymianski et al. 1993).

Neuronal swelling consequent to Na+, Cl-, and water influx is not always
lethal. Brief exposure to kainate induces marked cortical neuronal swelling in
vitro but is followed by little delayed neurodegeneration. The high perme-
ability of NMDA receptors to Ca2+ is crucial to the ability of brief glutamate
exposure to trigger widespread cortical neuronal death, a hypothesis strength-
ened by the observation that a subset of cortical neurons containing Ca2+-
permeable AMPA receptors, formed when the critical mRNA-edited GluR2
(GluR-B) subunit is absent from heteromeric AMPA receptor complexes
(Burnashev et al. 1992), is selectively vulnerable to brief, intense activation of
those receptors (Koh and Choi 1988; Turetsky et al. 1994).

On the other hand, if the exposure time is lengthened from minutes to
hours, AMPA/kainate receptor agonists can destroy most cortical neurons
(“slowly-triggered excitotoxicity”) (Choi 1992; Gwag et al. 1997). AMPA or
kainate toxicity in cultured hippocampal or cerebellar neurons is also depen-
dent upon the presence of extracellular Ca2+ (Garthwaite and Garthwaite
1986; Rothman et al. 1987). Prolonged activation of AMPA or kainate recep-
tors will induce Na+ influx and sustained depolarization, promoting Ca2+

entry via voltage-gated Ca2+ channels and reverse operation of the Na+/Ca2+

exchanger (Choi 1988a; Yu and Choi 1997). Additionally, Ca2+ release from
intracellular stores may contribute to cytoplasmic Ca2+ accumulation 
(Frandsen and Schousboe 1991).

There are probably many potentially lethal derangements in cellular
processes induced by profound elevations in cytoplasmic Ca2+, but work in
recent years has assigned particular responsibility for ensuing cellular ne-
crosis to the activation of catabolic enzymes, generation of free radicals 
including nitric oxide, impairment of mitochondrial energy production, and
excessive utilization of energy by the DNA repair enzyme poly(ADP-ribose)
polymerase-1 (PARP-1). These downstream steps are discussed further in
Sect.E.III.1.

Recent studies have also suggested that Na+ and Ca2+ may not be the only
cations whose excessive movement across neuronal membranes can mediate
cell death; in particular, movements of Zn2+ or K+ may also contribute. Con-
centrated in synaptic vesicles at excitatory terminals throughout the forebrain
and in some other locations is a chelatable pool of Zn2+ (Timm and Neth 1959;
Perez-Clausell and Danscher 1985; Frederickson 1989). During transient
global ischemia, this synaptic Zn2+ appears to translocate into postsynaptic
neurons that later go on to die (Tonder et al. 1990). Preventing this trans-
location with an extracellular Zn2+ chelator reduced neuronal death (Koh
et al. 1996). The ability of excessive exposure to extracellular Zn2+ to induce
neuronal death has been demonstrated directly in neuronal cell cultures
(Yokoyama et al. 1986; Choi et al. 1988; Manev et al. 1997; Aizenman et al.
2000; Lobner et al. 2000). Zn2+-induced death is potentiated by membrane

Blocking Excitotoxicity 5



depolarization (induced by glutamate receptor agonists or elevated extracel-
lular K+ concentrations), likely reflecting enhancement of toxic Zn2+ entry via
voltage-gated Ca2+ channels and the Na+/Ca2+ exchanger (Weiss et al. 1993; Yin
and Weiss 1995). The ability of Zn2+ to enter cortical neurons through voltage-
gated Ca2+ channels was demonstrated directly in electrophysiological exper-
iments, which also revealed a potentiation of Zn2+ permeation in conditions of
lowered extracellular pH, as may be present during ischemia (Kerchner et al.
2000).

Neuronal intracellular Zn2+ concentration attained during a toxic Zn2+

exposure was correlated to the extent of subsequent cell death, with substan-
tial death occurring at intracellular Zn2+ concentrations exceeding 250–300nM
(Canzoniero et al. 1999); astrocytes are more resistant than neurons to death
induced by comparable elevations of [Zn2+]i (Dineley et al. 2000). At such 
elevated Zn2+ levels, many alterations in intracellular biology can be expected.
One consequence may be disruption of glycolysis due to nicotinamide adenine
dinucleotide (NAD+) depletion and consequent secondary inhibition of 
glyceraldehyde-3-phosphate dehydrogenase, as cortical neurons exposed to
toxic levels of extracellular Zn2+ exhibited loss of ATP and elevation of the
upstream glycolytic substrates dihydroxy-acetone phosphate and fructose 1,6-
bisphosphate (Sheline et al. 2000). While neurons may normally have limited
dependence upon glycolysis for energy production (Magistretti 2000), a
crucial role during pathophysiological conditions such as ischemia is not
implausible. Mitochondrial disturbances and free radical production may also
contribute to Zn2+-induced death (Manev et al. 1997; Kim et al. 1999a,b).

While little attention has been paid historically to the functional impor-
tance of the K+ permeability of glutamate receptor-gated channels, K+ efflux
has been identified as a potentially important component of the sequence of
events leading to programmed cell death. Delayed rectifier K+ channel current
(IK) is enhanced in neurons undergoing apoptosis (Yu et al. 1997b), and block-
ade of these channels by TEA or clofilium attenuated neuronal death induced
by oxygen-glucose deprivation in vitro or by transient focal ischemia in vivo
(Choi et al. 1998). In lymphocytes, loss of intracellular K+ may be a critical step
in the apoptotic cascade, perhaps because DNA fragmentation and proteolytic
activation of caspase-3 are inhibited at normal levels of intracellular free K+

(Bortner et al. 1997; Bortner and Cidlowski 1998). While NMDA receptor
overactivation typically induces neuronal necrosis mediated by Na+ and Ca2+

influx, NMDA receptor activation could induce apoptosis dependent upon K+

efflux when the extracellular concentrations of Na+ and Ca2+ were reduced, as
occurs in the ischemic brain (Yu et al. 1999). Even in the presence of normal
extracellular Na+ and Ca2+, the K+ efflux mediated by glutamate receptor-gated
channels may enhance the propensity of neurons to undergo apoptosis.

D. Extending Excitotoxicity to Glia
Excitotoxicity has conventionally been considered to be specific to neurons.
Although Type I astrocytes express functional AMPA receptors (Condorelli
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et al. 1993; Martin et al. 1993; Matute et al. 1994), they are highly resistant to
death upon activation of those receptors by agonist exposure (Coyle et al.
1981; Rothman 1984; Choi et al. 1987). An ability of glutamate to kill imma-
ture oligodendrocytes in vitro was demonstrated by Volpe and colleagues, but
this toxicity appeared to be dependent upon interference with cellular cysteine
uptake and consequent glutathione depletion, rather than upon glutamate
receptor activation (Oka et al. 1993).

However, recent evidence has suggested that more mature oligoden-
drocytes may also be vulnerable to a true excitotoxic death mediated by 
glutamate receptor overactivation. Oligodendroglial lineage cells and 
oligodendrocytes cultured from rat optic nerve express multiple AMPA and
kainate receptor subunits, and exposure to kainate or AMPA plus cycloth-
iazide (to inhibit AMPA receptor desensitization) can destroy these cells in a
Ca2+-dependent manner (Yoshioka et al. 1995; Matute et al. 1997). Differen-
tiated forebrain oligodendrocytes appear even more sensitive to excitotoxic-
ity, as 100–300mM AMPA alone can trigger widespread cell death within 24h
(Mcdonald et al. 1998a). In vivo, injection of AMPA or kainate into white
matter killed oligodendrocytes near the injection site (Matute et al. 1997), in
a manner sensitive to coinjection of AMPA and kainate receptor antagonists
(Mcdonald et al. 1998a).

While further studies are needed to determine why oligodendrocytes 
are far more vulnerable to AMPA and kainate receptor-mediated toxicity 
than astrocytes, one possible explanation might be the expression of Ca2+-
permeable AMPA receptors in the former cell type (Holzwarth et al. 1994;
Puchalski et al. 1994). Compared to cortical neurons bearing Ca2+-permeable
AMPA receptors, however, oligodendrocytes are killed by longer agonist
exposure times, at least 2–3h (Mcdonald et al. 1998a). This agonist exposure
time appears intermediate between rapidly and slowly triggered excitotoxic-
ity in neurons. Possibly, differences in AMPA receptor expression or behav-
ior, means of buffering internal Ca2+, or intrinsic differences in vulnerability
to Ca2+ overload may account for this difference in susceptibility.

E. Points of Intervention
I. Reducing Extracellular Glutamate

1. Circuit Activity and Glutamate Release

One approach to decreasing excitotoxic injury may be to inhibit neuronal
circuit activity and, therefore, to reduce vesicular glutamate release from
presynaptic terminals. This might be accomplished by several means, includ-
ing: (a) hypothermia; (b) increasing GABAergic tone; (c) K+ channel openers;
(d) modulating adenosine receptors; (e) blocking voltage-gated Na+ channels,
or (f) blocking voltage-gated Ca2+ channels. In the context of decreased energy
substrate availability, as during ischemia, these strategies would have the addi-
tional benefit of reducing energy demand.Another effect of measures directed
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at decreasing glutamate release would likely be reduction of synaptic Zn2+

release from the same nerve terminals (Assaf and Chung 1984; Martinez-
Guijarro et al. 1991), although the suggestion that Zn2+ may be localized to a
subset of synaptic vesicles raises the possibility of a differential modulation of
glutamate and Zn2+ release (Perez-Clausell and Danscher 1985).

a) Hypothermia

Well recognized as a neuroprotective maneuver for decades, hypothermia has
been proposed to be a “gold standard” against which other interventions
should be measured (Buchan 1992). Both intra- and postischemic hypother-
mia produce lasting neuroprotective effects in animal cerebral ischemia
studies (Barone et al. 1997), in large part due to inhibition of glutamate release
(Busto et al. 1989). Neuroprotective effects of hypothermia can also be
demonstrated in neuronal cell cultures, again reflecting a reduction in endo-
genous glutamate release, as well as probably other actions (Bruno et al.
1994).

At present, the clinical use of hypothermia is limited to surgical proce-
dures that require concomitant cardiac arrest and neurosurgical procedures
such as cerebral aneurysm clipping (Tommasino and Picozzi 1998). Although
some benefits of moderate hypothermia have been demonstrated for trau-
matic brain injury (Marion et al. 1997), testing of hypothermic therapy in
human stroke has been slowed by concerns of potential complications such as
coagulopathies, arrhythmias, and myocardial infarction (Steen et al. 1979,
1980). However, hypothermia remains a promising therapeutic approach,
especially if methods can be employed to localize cooling to the brain.

b) Increasing GABAergic Tone

GABA, the major inhibitory neurotransmitter in the mammalian brain, medi-
ates its neuronal effects through three receptor subtypes, GABAA, GABAB,
and GABAC, all presumably pentameric complexes (Bormann 2000). GABAA

and GABAC receptors are ligand-gated chloride channels, while GABAB

receptors are coupled to G-proteins, usually in presynaptic terminals, where
they mediate an increase in K+ conductance and downmodulation of trans-
mitter release (Karlsson and Olpe 1989; Gage 1992). GABAA receptor ago-
nists, such as muscimol or benzodiazepines reduced brain injury following
rodent cerebral (Sternau et al. 1989; Lyden and Hedges 1992; Shuaib et al.
1993; Schwartz-Bloom et al. 1998) or spinal cord (Madden 1994) ischemia.
GABAA receptor stimulation by muscimol also reduced excitotoxicity in 
neuronal culture, presumably by hyperpolarizing membranes and reducing
activation of voltage-gated Ca2+ channels, as well as enhancing the voltage-
dependent Mg2+ block of NMDA receptors (Muir et al. 1996; c.f. Erdo and
Michler 1990). However, a cautionary note was raised by the observation 
that GABAA receptor agonists paradoxically enhanced excitotoxicity induced
by oxygen-glucose deprivation in vitro, possibly due to a contravening 
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effect of maintaining the driving force for Ca2+ in energy-depleted and depo-
larized neurons, thereby outbalancing neuroprotective actions (Muir et al.
1996).

In contrast to GABAA receptor agonists, GABAB receptor agonists like
baclofen have provided inconclusive results in animal cerebral ischemia,
perhaps in part due to complications such as postischemic hypertension and
hemorrhage (Sternau et al. 1989; Rosenbaum et al. 1990; Jackson-Friedman
et al. 1997); they have also been ineffective against excitotoxicity in cell culture
(Muir et al. 1996). GABAC receptors, which exhibit a predominantly retinal
distribution in vertebrates, have not been exploited for antiexcitotoxic pur-
poses (Johnston 1996). Other approaches to increasing GABAergic tone for
antiexcitotoxic effects in vivo include the use of GABA reuptake inhibitors
such as tiagabine (Suzdak and Jansen 1995) and CI-966 (Phillis 1995), or
blockers of GABA metabolism such as the GABA transaminase inhibitor
vigabatrin (Shuaib et al. 1992).

c) Opening K+ Channels

Membrane excitability might also be reduced by increasing the opening of 
K+ channels other than those gated after GABAB receptor activation. Mam-
malian neurons express multiple K+ channel subtypes, including channels that
are voltage-gated (Brown 1993), ATP-sensitive (Haddad and Jiang 1994),
and Ca2+- or Na+-activated (Dryer 1994; Sah 1996). Various K+ channel
openers reduced endogenous glutamate release following brief ischemia in
hippocampal slices (Zini et al. 1993). Activators of ATP-sensitive K+ channels
attenuated excitotoxic death in neuronal cultures, at least in part by de-
creasing the magnitude of intracellular Ca2+ elevation (Abele and Miller
1990). Similar agents, including Y-26763 (Takaba et al. 1997), cromakalim
(Heurteaux et al. 1993), and nicorandil, have exhibited therapeutic value in
animal cerebral ischemia studies. The identification of pharmacological
openers of large-conductance Ca2+-activated K+ channels (BK channels) such
as BMS-204352 may provide another potentially neuroprotective means of
hyperpolarizing neuronal membranes during an excitotoxic insult; phase III
clinical trials are underway for this drug as an acute treatment for stroke
(Bozik et al. 2000). However, a note of caution regarding this approach is
raised by the potential of K+ efflux to promote apoptosis (see Sect.C.).

d) Modulating Adenosine Receptors

Adenosine acts as an agonist at three major receptor subtypes, A1, A2 (A2A

and A2B), and A3, each of which transduces its signals through coupled G-
proteins (Olah et al. 1995). Stimulation of A1 receptors leads to multiple
circuit depressing effects, including enhancement of K+ and non-GABAergic
Cl- conductances and reduction of pre- and postsynaptic Ca2+ conductances
(Mager et al. 1990; Ribeiro 1995). Adenosine protected cortical neurons in
vitro from oxygen-glucose deprivation (Goldberg et al. 1988), presumably
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through activation of presynaptic A1 receptors and a subsequent decrease in
vesicular glutamate release (Corradetti et al. 1984). But results with A1 recep-
tor agonists in animal studies have been inconsistent, perhaps due to drug-
induced bradycardia and hypotension resulting from activation of A1 receptors
in cardiovascular tissues (von Lubitz et al. 1995).

Work on the role of A2 receptors in excitotoxic damage has focused mostly
on the A2A subtype, which enhances glutamate release when activated and
reduces release when antagonized in ischemic cortex (O’regan et al. 1992;
Simpson et al. 1992). However, available evidence suggests a more complicated
role for this receptor in modulating excitotoxicity. Moderately selective A2A

receptor antagonists reduced injury subsequent to cerebral ischemia in the
sensitive gerbil model (Gao and Phillis 1994; von Lubitz et al. 1995), and 
A2A gene deletion provided moderate protection against injury induced by
focal cerebral ischemia in mice (Chen et al. 1999). On the other hand, in con-
trast to the predicted ability of A2A receptor stimulation to augment excito-
toxicity, the selective A2A receptor agonist CGS21680 inhibited hippocampal
injury induced by systemic kainate injection (Jones et al. 1998). Similarly, the
potential contribution of A3 receptors to excitotoxicity appears complex,
especially given the limitations of current pharmacology and highly species-
dependent patterns of expression (von Lubitz 1999; Klotz 2000). Since a
major obstacle for antiexcitotoxic drugs targeting adenosine receptors is the
presence of these receptors in nonneural tissues, adenosine analogs with fewer 
cardiovascular effects have recently been developed. One such A1 receptor-
specific compound, adenosine amine congener (ADAC), reduced injury and
improved functional recovery following rodent cerebral ischemia when
administered as late as 6h postischemia (von Lubitz et al. 1996a; von Lubitz
et al. 1996b).

Like the adenosine and GABA receptor systems, stimulation of the group
II and group III subtypes of metabotropic glutamate receptors may offer 
yet another modulator-based approach to attenuating transmitter glutamate
release (see Sect. II.3.).

e) Blocking Voltage-Gated Na+ Channels

Na+ influx through voltage-gated Na+ channels provides the electrical force for
action potential generation and circuit excitation; furthermore, as noted above,
intracellular Na+ accumulation promotes Ca2+ influx via voltage-gated Ca2+

channels and reverse operation of the Na+/Ca2+ exchanger. A favorable char-
acteristic to consider when designing or screening Na+ channel blockers for
antiexcitotoxic potential may be the use-dependence of the agent since drugs
with this property would be predicted to inhibit the most active neurons pref-
erentially. The Na+ channel blockers tetrodotoxin (Yamasaki et al. 1991; Lysko
et al. 1994), phenytoin (Cullen et al. 1979; Taft et al. 1989), and riluzole (Pratt
et al. 1992) decreased neuronal injury following cerebral ischemia in rodents.
In culture, the antiexcitotoxic effect of local anesthetics and anticonvulsants
alone, which exert their effects predominantly through use-dependent Na+
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channel blockade, has been variable (Koh and Choi 1987; Ogura et al. 1988;
Mattson and Kater 1989).

White matter represents a particularly important therapeutic target for
Na+ channel blocking drugs. A series of elegant studies using the rat optic
nerve has suggested that activation of voltage-gated Na+ channels in the setting
of anoxic injury is responsible for triggering toxic Ca2+ influx in axons, mainly
through the reverse activity of the Na+/Ca2+ exchanger (Stys et al. 1991). The
prominence of this dependence of Ca2+ influx upon Na+ channels in white
matter may reflect the absence of glutamate receptor-mediated entry routes
available in gray matter. Indeed, in cultured cortical neurons, once NMDA and
AMPA receptors are pharmacologically blocked, an additional neuroprotec-
tive effect of tetrodotoxin or phenytoin against neuronal death triggered by
oxygen-glucose deprivation can be unmasked (Lynch et al. 1995). These find-
ings suggest that combined therapy targeting both postsynaptic glutamate
receptors and axonal Na+ channels may provide more effective neuroprotec-
tion than either alone.

f) Blocking Voltage-Gated Ca2+ Channels

At least seven subtypes of voltage-gated Ca2+ channels, each with distinct elec-
trophysiological properties and cellular localization, have been identified in
mammalian neurons (Miljanich and Ramachandran 1995; Perez-Reyes and
Schneider 1995). Presynaptic N-type Ca2+ channels play a crucial role in vesic-
ular neurotransmitter release (Kamiya et al. 1988; Dutar et al. 1989), and drugs
selective for this channel subtype attenuated neuronal injury in rodent cere-
bral ischemia studies (Valentino et al. 1993; Buchan et al. 1994). P- and Q-
type channels, also expressed presynaptically, regulate physiological glutamate
transmission in hippocampal slices (Wheeler et al. 1994), and a peptide
inhibitor of these channels reduced infarct volume following rodent cerebral
ischemia (Asakura et al. 1997).While L-type Ca2+ channels are predominantly
located on postsynaptic cell bodies, activation of these channels can in certain
cases enhance neurotransmitter release, so that antagonists may offer the dual
benefit of reducing postsynaptic Ca2+ influx as well as presynaptic glutamate
release during an excitotoxic insult (Middlemiss and Spedding 1985). Con-
sistent with these predictions, dihydropyridine antagonists reduced excitotoxic
death in neuronal culture (Abele et al. 1990; Weiss et al. 1990). However, as
with N-type channel blockers, the therapeutic value of neuronal L-type
channel blockade in cerebral ischemia remains ambiguous due to complicat-
ing cardiovascular effects in vivo (Kobayashi and Mori 1998). Additionally,
clinical trials with dihydropyridines in the context of subarachnoid hemor-
rhage or ischemic stroke have yielded inconsistent or disappointing results
(Rosenbaum et al. 1991; American Nimodipine Study Group 1992; Murphy
1992; Kaste et al. 1994). More recently, broad-spectrum neuronal voltage-
gated Ca2+ channel antagonists with minimal cardiovascular side effects, such
as SB 201823A, have shown some promise in rodent cerebral ischemia studies
(Barone et al. 1995).
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2. Glutamate Transport

The Ca2+-dependent, vesicular release of glutamate does not wholly account
for the rise in extracellular glutamate concentrations during brain ischemia. A
substantial contribution is also made in a Ca2+-independent fashion, by reverse
operation of glutamate transporters in both neurons and glia (Nicholls and
Attwell 1990; Szatkowski et al. 1990; Attwell et al. 1993; Jabaudon et al.
2000; Rossi et al. 2000). These transporters normally function to remove 
glutamate from synapses and thus to terminate a synaptic signaling event.
However, since the direction in which a glutamate transporter operates is gov-
erned by the gradients of the other ions that are co- or countertransported,
perturbations in intra- and extracellular ionic conditions can induce release of
glutamate from the cytoplasm of astrocytes and neurons into the extracellu-
lar space.

The transport of one glutamate anion is coupled to cotransport of three
Na+ ions, countertransport of one K+ ion, and cotransport of one proton or
counter-transport of one hydroxyl ion (Kanner and Sharon 1978; Barbour
et al. 1988; Bouvier et al. 1992; Zerangue and Kavanaugh 1996). During brain
ischemia, cells experience a shortage of high-energy phosphates; the Na+-K+

ATPase is inhibited, and extracellular K+ and intracellular Na+ concentrations
rise.The magnitude of this run-down in ionic gradients predicts that glutamate
transporters would operate in reverse until a new equilibrium is reached, with
extracellular glutamate concentrations reaching beyond 100 mM (Szatkowski
and Attwell 1994), levels that are potentially neurotoxic. Therefore, gluta-
mate transporters may represent a useful pharmacological target in attenuat-
ing excitotoxic damage (Vandenberg 1998), whether or not impairment of
transporter function is involved in disease pathogenesis as has been suggested
in the case of amyotrophic lateral sclerosis (see Sect.B). There might be par-
ticular value in developing agents that selectively inhibit reverse transport, in
analogy with the recent development of selective blockers of reverse Na+/Ca2+

exchange (Iwamoto et al. 1996; Hoyt et al. 1998). In addition, glutamate trans-
porters activate a Cl- conductance that is not directly coupled to glutamate
transport (Fairman et al. 1995; Wadiche et al. 1995). That the Cl- conductance
is decoupled from glutamate uptake is supported by the ability of Zn2+ to 
modulate these two activities differentially in certain transporter subtypes
(Spiridon et al. 1998; Vandenberg et al. 1998). By developing an agent that
enhances this hyperpolarizing flow of Cl-, it may be possible to decrease the
magnitude of ischemic depolarization in cells that express transporters, thus
favoring forward operation.

II. Manipulating Glutamate Receptors

1. NMDA Antagonists

Consistent with the prominent role of NMDA receptors in mediating gluta-
mate-induced Ca2+ overload and rapidly-triggered excitotoxic neurodegener-
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ation in vitro, NMDA antagonists can reduce the death of cultured cortical
neurons induced by hypoxia, glucose deprivation, and trauma (Choi 1992), and
a substantial literature indicates that NMDA antagonists can reduce neuronal
death in multiple models of brain injury in vivo. These include animal models
of ischemia (Simon et al. 1984; McCulloch 1992), hypoglycemia (Wieloch
1985), sustained seizures (Meldrum 1994), and trauma (McIntosh et al. 1989).
Unfortunately, several recent clinical trials of NMDA antagonists in stroke
patients have been disappointing; side effects including hallucinations, ataxia,
or hypotension were prominent with several drugs (Kemp et al. 1999; Read
et al. 1999). It remains to be seen whether efficacy can be established with this
strategy, perhaps with the aid of enhancements in dosage regimens or drug
characteristics, or whether utility in human stroke will prove to be funda-
mentally constrained (see below). Nonetheless, considering the high potential
of the NMDA receptor system to contribute to excitotoxic neuronal death, we
think it likely that NMDA antagonists will eventually find use as neuropro-
tective agents in one or another disease setting.

NMDA receptor blockade can be achieved in a variety of ways, using
agents that act at distinct molecular sites within the heteromeric receptor
complex. Competitive antagonists bind the glutamate recognition site; channel
blockers, also termed uncompetitive antagonists, bind sites within the channel
pore; glycine antagonists bind the glycine recognition site; and noncompeti-
tive antagonists bind other sites on NMDA receptors, downmodulating recep-
tor activation via remote actions, for example, via allosteric changes. The latter
modulatory sites include those responding to polyamines (Ransom and Stec
1988), redox potential (Aizenman et al. 1989), hydrogen ions (Tang et al. 1990;
Traynelis and Cull-Candy 1990), and Zn2+ (Peters et al. 1987; Westbrook
and Mayer 1987; Christine and Choi 1990; Legendre and Westbrook 1990).
Whereas NMDA receptor activation would be reduced by the free radicals
and lactic acid produced by ischemia, the ischemic release of polyamines,
including putrescine, spermine, and spermidine would be expected to upmod-
ulate NMDA receptor activity (Paschen et al. 1992; Kerchner et al. 1999).
Zn2+ effects might be complex, as acute direct NMDA receptor inhibition
might be followed by more lasting Src kinase-mediated upregulation 
(Manzerra et al. 2001).

A well-recognized theoretical limitation of competitive NMDA receptor
antagonists is that they are more effective when ambient glutamate concen-
trations are low and hence may be more effective against receptors operating
physiologically than at the overactivated receptors contributing to acute exci-
totoxic damage. Channel blockers, glycine antagonists, and noncompetitive
antagonists would not have this difficulty, but all of these antagonists are at
risk for evoking what are probably mechanism-driven cognitive and motor
side effects. NMDA antagonists also have the potential for inducing vac-
uolization or even death in small numbers of neurons in the cingulate or ret-
rosplenial cortex, perhaps mediated by the paradoxical release of excitation
in specific circuits (Olney et al. 1989).
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How might the therapeutic index of NMDA antagonists be improved?
Three approaches are currently being explored: (a) preferentially blocking
overactivated NMDA receptors relative to physiologically-activated receptors,
(b) limiting antagonism with partial or weak antagonists; and (c) enhancing
target specificity with subtype selective antagonists. The first approach might
be achieved by using activity-dependent channel blocking compounds that not
only require channel opening to reach their binding site, but also exhibit a
greater degree of blockade at higher levels of receptor activity. Memantine is
such a compound (and it also has low affinity for its channel binding site – see
below, this section); it has has shown promise in attenuating excitotoxic neu-
ronal loss in vitro as well as brain damage in a rodent model of stroke, at 
concentrations that might permit near-normal levels of physiological NMDA
receptor-mediated synaptic transmission (Chen et al. 1992). In addition, the
apparent affinity of ifenprodil and related antagonists for NMDA receptors
increases at higher agonist concentrations (Kew et al. 1996), which, in addi-
tion to other useful properties (see below, this section), may contribute to a
reduced side effect profile.

Low affinity channel blockers may represent one means to achieve mod-
erate levels of NMDA receptor antagonism. Interestingly, despite the value
generally attached to potency in drug development, an inverse relationship
between drug affinity and toxicity is apparent for many NMDA channel block-
ers (Rogawski 1993; Palmer and Widzowski 2000). In principle, because lower
affinity compounds typically exhibit faster unblocking rates and require a
higher concentration to achieve a given level of blockade, they equilibrate 
with their receptors more quickly, resulting in faster termination of NMDA
receptor gating than is achieved by equieffective doses of higher affinity
agents. At the same time, the faster unbinding of low affinity channel block-
ers should lead to less trapping of antagonist as receptor activity falls off and
channels close. Such properties are attractive and may underlie reduced side
effects.

A practical method for achieving limited antagonism of the NMDA recep-
tor may be through the use of glycine site antagonists. While complete glycine
site antagonism would be expected to generate a set of mechanism-driven side
effects comparable to those produced by glutamate site antagonists and
channel blockers, partial glycine site agonists, such as cycloserine (Hood et al.
1989), by producing limited-efficacy blockade of NMDA receptor activity, may
be able to strike an attractive balance between reduction of excitotoxicity and
the downsides associated with high-level receptor blockade. Alternatively,
levels of the endogenous glycine-site agonist, d-serine (Schell et al. 1995;
Snyder and Kim 2000), might be therapeutically reduced, hopefully still
leaving enough ambient d-serine or glycine to keep receptors from shutting
down completely. d-serine is synthesized by the enzyme serine racemase
(Wolosker et al. 1999) within a discrete population of protoplasmic astrocytes
that ensheath synapses (Schell et al. 1997); degradation of d-serine with
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exogenously applied d-amino acid oxidase inhibits NMDA receptor-mediated
synaptic transmission in hippocampal slices (Mothet et al. 2000).

Another promising approach involves the use of NMDA receptor subunit-
selective antagonists. Ifenprodil, originally recognized as an NMDA antagonist
that interacts with the polyamine binding site (Carter et al. 1989; Reynolds
and Miller 1989), acts as a noncompetitive NMDA receptor antagonist and
reduces excitotoxic neurodegeneration following glutamate or NMDA expo-
sure in vitro (Graham et al. 1992) and focal ischemia in vivo (Gotti et al. 1988).
It turned out to be approximately 400-fold more potent at NMDA receptor
complexes containing the subunit NR2B than those containing NR2A
(Williams 1993), NR2C, or NR2D (Williams 1995). Presumably reflecting this
subtype specificity – and thus regional specificity, as NR2B-containing NMDA
receptors are expressed preferentially in the adult forebrain, in a nonuniform
distribution between various forebrain structures and neuronal populations
(Watanabe et al. 1993; Monyer et al. 1994) – ifenprodil and related compounds
appear to exhibit less side effects than broad spectrum NMDA antagonists
(Kemp et al. 1999).

Even while efforts are underway to improve the molecular profile of
NMDA antagonist drugs, it is worth noting that the simple physiological
channel blocker, Mg2+, responsible for conferring voltage sensitivity to NMDA
receptors (Nowak et al. 1984), has shown promise as a therapeutic agent in
animal models of stroke, as well as traumatic brain injury (Vink and Cernak
2000). It also has been used extensively in humans for the prevention of
seizures associated with preeclampsia and eclampsia (Mason et al. 1994;
Anthony et al. 1996) and has been suggested to reduce the risk of cerebral
palsy in human infants born to preeclamptic mothers (Nelson and Grether
1995). Of course, the beneficial effects of Mg2+ may not be limited to NMDA
receptor antagonism. To the extent that it penetrates into the CNS in a given
disease setting, it would likely reduce glutamate release, and inhibit voltage-
gated Ca2+ channel-mediated Ca2+ entry into neurons and vascular smooth
muscle (the latter effect leading to enhancements of cerebral blood flow).

Finally, there may be some settings where NMDA antagonists, regardless
of molecular mechanism of action, may not be beneficial. As noted above,
NMDA receptor overactivation may already be limited by endogenous tissue
factors such as lowered extracellular pH, Zn2+, and oxygen free radicals. In
addition, there has been recent recognition that the ability of NMDA antag-
onists to reduce Ca2+ influx may concurrently increase the likelihood of apop-
tosis for neurons that are in a state of relative Ca2+ starvation versus Ca2+

overload (Lee et al. 1999). In the developing rat brain, brief administration of
NMDA antagonists has been shown to induce widespread apoptotic neuronal
death (Ikonomidou et al. 1999); in agreement with that observation, the effect
of ethanol to promote massive programmed cell death of central neurons 
in immature rat brains may reflect its ability to inhibit NMDA receptors
(Ikonomidou et al. 2000).
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2. AMPA/Kainate Antagonists

As discussed already, AMPA/kainate receptors can directly mediate excito-
toxic cell death, albeit less powerfully than NMDA receptors. The competitive
AMPA/kainate receptor antagonist NBQX is effective in reducing neuronal
loss following both global (Sheardown et al. 1990) and focal (Buchan et al.
1991) cerebral ischemia, spinal cord ischemia (Xu et al. 1993), and brain
trauma (Wrathall et al. 1992), although the possibility of a contribution from
cerebral hypothermia has been raised (Colbourne et al. 1997). The noncom-
petitive AMPA receptor antagonist GYKI-52466 has also exhibited neuro-
protective effects in studies of global (Le Peillet et al. 1992) or focal (Smith
and Meldrum 1992; Xue et al. 1994) ischemia.

In addition, AMPA/kainate receptor antagonists may be of special value
in certain settings. Although the death of most cortical neurons induced by
brief glutamate exposure at neutral pH is AMPA/kainate receptor antagonist-
insensitive (Koh and Choi 1991), lowering pH selectively enhanced AMPA/
kainate receptor-mediated neurotoxicity, perhaps by delaying recovery of
intracellular Ca2+ homeostasis (McDonald et al. 1998b). In addition, a 
small subpopulation of neurons, largely GABAergic, that express Ca2+-
permeable AMPA receptors exhibits prominent vulnerability to AMPA 
receptor-mediated excitotoxicity (Koh and Choi 1988; Jonas et al. 1994;
Turetsky et al. 1994). Brief glutamate exposure raises intracellular Ca2+ and
destroys these cells even when NMDA receptors are blocked. Ca2+-permeable
AMPA receptors are likely also permeable to Zn2+ and hence confer vulner-
ability to Zn2+ neurotoxicity (Sensi et al. 1997; Weiss and Sensi 2000). Besides
protecting neuronal subpopulations expressing Ca2+-permeable AMPA recep-
tors, AMPA antagonists could have value in reducing the excitotoxic loss of
oligodendrocytes, which likely also express Ca2+-permeable AMPA receptors
(see above).

The prevalence of Ca2+-permeable AMPA receptors in populations of
selectively vulnerable neurons in certain disease settings highlights a 
potentially important therapeutic role for AMPA/kainate antagonists. In 
amyotrophic lateral sclerosis, the motor neurons that undergo selective degen-
eration express AMPA receptors that are Ca2+-permeable due to low levels 
of GluR2 expression (Shaw and Ince 1997). Indeed, brief kainate exposure
induced a Ca2+-dependent and Ca2+-permeable AMPA receptor antagonist-
sensitive death in spinal motor neurons but not dorsal horn neurons (van den
Bosch and Robberecht 2000). In the context of transient global cerebral
ischemia, the prevalence of Ca2+-permeable AMPA receptors may rise among
hippocampal CA1 neurons, a population of cells particularly vulnerable to this
type of insult, due to a downregulation in expression of GluR2 relative to other
AMPA receptor subunits (Pellegrini-Giampietro et al. 1992).

Historically, the roles of AMPA and kainate receptors in neuronal physi-
ology have been difficult to distinguish, due to insufficient pharmacology.With
the development of selective, noncompetitive AMPA receptor antagonists
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(Pelletier et al. 1996), it has become possible to discriminate between the 
relative contributions of AMPA and kainate receptors to several phenomena.
Experiments with cultured cortical neurons have suggested that slowly-
triggered excitotoxicity, induced by prolonged exposure to kainate (see above)
is mediated predominantly by AMPA receptors, suggesting that activation of
cortical neuronal kainate receptors alone may not suffice to induce cell death
(Turetsky et al. 1998). Moreover, there is reason to consider that selective
kainate receptor antagonism could potentially be counterproductive, as acti-
vation of presynaptic kainate receptors by synaptically released glutamate
inhibits excitatory transmission in the hippocampus (Schmitz et al. 2000), a
phenomenon that may reflect a direct negative-feedback pathway for gluta-
mate release. Of note, the AMPA-selective antagonists developed to date
exhibit noncompetitive kinetics, providing effective blockade even in the
context of excess extracellular glutamate.

3. Metabotropic Glutamate Receptors

Eight metabotropic glutamate receptors (mGluRs), which are linked to G-
proteins rather than ion channels, have been identified and segregated into
three groups based on sequence similarity and mechanisms of signal trans-
duction (Nakanishi and Masu 1994; Conn and Pin 1997). Group I mGluRs
(mGluR1 and -5) couple via phospholipase C to phosphoinositide turnover
and Ca2+ release from intracellular stores, whereas group II (mGluR2 and -3)
and III (mGluR4, -6, -7, and -8) receptors couple to the inhibition of adenyl
cyclase and reduction in cAMP levels. Although mGluRs do not directly
mediate excitotoxicity, they can modify excitotoxicity and thus may be useful
targets for therapeutic manipulation. The first clue to neuroprotective actions
was the demonstration that the nonselective mGluR agonist, trans-1-amino-
cyclopentane-1,3-dicarboxylic acid (tACPD), could attenuate glutamate-
induced neuronal death (Koh et al. 1991); nonselective activation of mGluRs
also reduced infarct volume in vivo after focal ischemia (Chiamulera et al.
1992).

Since mGluR group II and III receptors typically have inhibitory effects
on circuit excitation and glutamate release, whereas group I receptors are typ-
ically proexcitatory (Conn and Pin 1997; Cartmell and Schoepp 2000), it is
plausible that agonists selective for group II or III mGluRs would have more
powerful antiexcitotoxic effects than nonselective agonists. The mechanisms
by which group II/III mGluRs downregulate transmitter release are not
entirely understood but likely involve inhibition of presynaptic voltage-gated
Ca2+ channels (Stefani et al. 1996) and activation of presynaptic K+ conduc-
tances (Sladeczek et al. 1993). Initial studies with group II agonists suggested
antiexcitotoxic actions against NMDA-induced degeneration in vitro (Bruno
et al. 1995a; Pizzi et al. 1996), although available drugs had confounding 
weak agonist/antagonist activity at NMDA receptors (Buisson et al. 1996;
Contractor et al. 1998). The more selective group II mGluR agonist, (+)-2-
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aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), was subse-
quently found surprisingly to lack antiexcitotoxic effects either in vitro or in
vivo (Lam et al. 1998; Behrens et al. 1999). However, the group III mGluR
agonists l-(+)-2-amino-4-phosphonobutyric acid and l-serine-O-phosphate
did reduce trauma-induced neuronal death in vitro, adding to the protective
effects of an NMDA antagonist (Faden et al. 1997). Recently, it was demon-
strated that the selective group III mGluR agonist (+)-4-phosphonophenyl-
glycine attenuated NMDA-induced excitotoxic neuronal death both in cortical
cultures and in vivo; these effects were completely abolished in mice lacking
the mGluR4 gene (Bruno et al. 2000).

Agonists at group I mGluRs enhance neuronal excitability through
several mechanisms, including regulation of Ca2+ and K+ channels (Conn and
Pin 1997). In addition, these mGluRs have complex modulatory effects upon
NMDA receptors, inducing both a rapid, membrane-delimited reduction of
NMDA receptor currents (Yu et al. 1997a) and a long-term NMDA receptor
upregulation via Src family kinase-mediated phosphorylation of NR2 recep-
tors (Behrens et al. 2000); the latter effect may be more important from 
the standpoint of excitotoxicity. Consistent with proexcitatory and NMDA
receptor-enhancing actions, activation of group I mGluRs generally potenti-
ates excitotoxicity. In cell culture studies, neuronal death secondary to NMDA
or kainate exposure (Bruno et al. 1995b; Buisson and Choi 1995; Strasser et
al. 1998) or traumatic injury (Mukhin et al. 1996) was potentiated by group I
mGluR agonists and attenuated by antagonists.

III. Blocking Downstream Mediators

1. Downstream Effects of Cellular Ca2+ Overload

Many enzymes, including proteases, lipases, endonucleases, kinases, and phos-
phatases are activated directly or indirectly by increases in intracellular Ca2+

concentration and may contribute to cellular damage after excitotoxic recep-
tor activation. Calpain inhibition attenuated neuronal death triggered by
exogenous excitotoxins in vitro (Brorson et al. 1994) and following transient
global ischemia in rodents (Lee et al. 1991). More recently, MDL 28,170, a
potent inhibitor of calpains, decreased infarct volume after focal ischemia
when administered even 6h postocclusion (Markgraf et al. 1998). Ca2+-
activated cytoplasmic phospholipase A2 (cPLA2) can catabolize phospholipids
to liberate arachidonic acid (Dumuis et al. 1988), which may augment excito-
toxicity by reducing glutamate reuptake (Yu et al. 1986), promoting glutamate
release (Freeman et al. 1990), and producing free radicals in the process of
downstream metabolism (see next section). cPLA2 gene deletion increased the
resistance of mice to focal ischemia-induced brain injury (Bonventre et al.
1997).

Although Ca2+-activated endonucleases have also been suggested to con-
tribute to excitotoxic death, the poor selectivity of available endonuclease
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inhibitors needs to be kept in mind (Kure et al. 1991; Roberts-Lewis et al.
1993; Zeevalk et al. 1993; Posner et al. 1995).

2. Free Radical Formation

Cytosolic Ca2+ loading consequent to glutamate receptor stimulation triggers
the formation of multiple free radical species, which have deleterious effects
on proteins, DNA, and lipids.Antioxidants can reduce neuronal death induced
by exogenous excitotoxins in culture or by intrastriatal injection of excito-
toxins in vivo (Dykens et al. 1987; Miyamoto and Coyle 1990; Monyer et al.
1990).

At least four pathways may link an excitotoxic increase in intracellular
free Ca2+ to free radical overproduction: xanthine dehydrogenase, cyclooxy-
genases, nitric oxide synthases, or mitochondrial electron transport. Elevated
intracellular Ca2+ indirectly converts xanthine dehydrogenase into xanthine
oxidase, which can produce superoxide radicals (•O2

-) (Dykens et al. 1987;
Atlante et al. 1997). However, due to the low expression of this enzyme in
the human brain, the pathophysiological relevance of this free radical pathway
in humans remains uncertain (Sarnesto et al. 1996). Cyclooxygenase (COX)-
mediated metabolism of arachidonic acid to a prostaglandin intermediate can
also lead to the production of toxic •O2

- (Chan et al. 1985; Wei et al. 1986).
Fenamate derivatives, which inhibit both COX-1 and -2, decreased the cell
death induced by either NMDA or kainate in isolated chick retina (Chen
et al. 1998). In cortical neuronal cultures, NMDA-induced excitotoxicity was
decreased by a specific COX-2 inhibitor, NS-398 (Hewett et al. 2000). Con-
sistent with a role for COX proteins in brain injury subsequent to focal
ischemia, prostaglandin production was observed to increase early (15min)
following focal ischemia in rats and was attenuated by pretreatment with the
fenamate derivative meclofenamate (Bucci et al. 1990). Significantly, COX-2
inhibition afforded neuroprotection against focal ischemia when administered
to rats postocclusion (Nogawa et al. 1997).

Rises in intracellular Ca2+ concentration can also activate neuronal nitric
oxide synthase (nNOS), which forms the weak oxidant, nitric oxide (Dawson
and Snyder 1994). In the presence of •O2

-, however, nitric oxide can be con-
verted to peroxynitrite, a powerfully destructive free radical (Beckman and
Koppenol 1996). Thus, nNOS plays a central role in mediating cell death
induced by the overactivation of NMDA receptors in neuronal culture
(Dawson et al. 1991; Dawson et al. 1996) and in mouse striatum in vivo (Ayata
et al. 1997), as well as in rodents following focal ischemia (Huang et al. 1994).
An inducible form of nitric oxide synthase, iNOS, which is expressed in
inflammatory (Iadecola et al. 1995a), vascular (Iadecola et al. 1996), and glial
(Endoh et al. 1994) cells after cytokine exposure in culture (Hewett et al.
1994) or after the onset of ischemia in vivo, can also contribute to excitotoxic
damage. In vitro, cytokine-dependent induction of iNOS in astrocytes 
potentiated NMDA-mediated neuronal death (Hewett et al. 1994), and
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aminoguanidine, an inhibitor of iNOS, reduced infarct volume following focal
ischemia, even when administered 24h following occlusion (Iadecola et al.
1995b; Zhang et al. 1996).

While mitochondria have the ability to buffer elevations in intracellular
Ca2+ (Gunter and Pfeiffer 1990; Wang and Thayer 1996), excessive Ca2+ accu-
mulation in mitochondria may lead to the uncoupling of energy production
from electron transport and the formation of toxic levels of free radicals
(Dugan et al. 1995; Reynolds and Hastings 1995; Schinder et al. 1996; White
and Reynolds 1996). Pharmacological blockade of mitochondrial Ca2+ uptake
substantially decreased glutamate-mediated neuronal death in culture (Stout
et al. 1998). Furthermore, additional increases in free radical production may
occur if mitochondria release their Ca2+ stores into the cytoplasm, amplifying
the Ca2+-dependent free radical cascades mentioned above (White and
Reynolds 1996).

Beneficial results have been obtained with several free radical scavenger
drugs in animal studies of ischemic or traumatic brain injury (Clemens and
Panetta 1994), although the magnitude of neuroprotection observed has typ-
ically not been very large.Additionally, recent clinical trial experience with the
antioxidant tirilazad mesylate in subarachnoid hemorrhage was not especially
encouraging (Ranttas Investigators 1996; Kassell et al. 1996; Haley et al.
1997). It is possible that more powerful antioxidant agents may yield greater
therapeutic benefits. The spin trapping agent, a-phenyl-N-tert-butyl nitrone
(PBN) reduced infarct volume following focal ischemia (Cao and Phillis
1994) when administered up to 3h after ischemia onset (Zhao et al. 1994),
perhaps reflecting an ability of its breakdown product, N-t-butyl hydroxy-
lamine, to inhibit mitochondrial superoxide production (Atamna et al., 2000).

Recent reports have suggested that Zn2+-induced neuronal death may also
in part be mediated by an increase in oxidative stress. In neuronal cultures,
Zn2+ exposure caused an early increase in reactive oxygen species production
and lipid peroxidation, and antioxidants attenuated neuronal death triggered
by Zn2+ (Kim et al. 1999a,b; Sensi et al. 1999); however, in other studies a rel-
atively lower prominence of free radical-mediated injury after Zn2+ exposure
was observed (L.L. Dugan and D.W. Choi, unpublished results).

3. The Role of PARP

A particularly damaging consequence of reactive oxygen species formation
may be single-stranded DNA breakage, leading to activation of the repair
enzyme, poly(ADP-ribose) polymerase-1 (PARP-1), and consequent deple-
tion of cellular NAD+ and energy stores (Szabo and Dawson 1998). Consis-
tent with the idea that PARP-1 activation leads to lethal energy depletion
under excitotoxic conditions, pharmacological inhibition or gene deletion of
PARP-1 attenuated neuronal death induced by glutamate receptor agonists in
vitro (Zhang et al. 1994; Eliasson et al. 1997). PARP-1 knockout mice also
exhibited increased resistance to focal ischemia (Zhang et al. 1994; Eliasson
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et al. 1997; Endres et al. 1997) as well as to damage induced by intrastriatal
NMDA injection (Mandir et al. 2000). Several PARP inhibitors have demon-
strated neuroprotective effects in rodent focal ischemia studies (Endres et al.
1997; Takahashi et al. 1997).

F. A Cautionary Note for Antiexcitotoxic Strategies:
Enhanced Apoptosis?

The basic nature of excitotoxicity – influx of cations into cells through over-
activated glutamate receptors, leading to acute cell swelling and subsequent
death – is suggestive of necrosis. Indeed, multiple studies support the notion
that excitotoxic glutamate receptor overactivation in vitro typically induces
necrosis (Gottron et al. 1997; Gwag et al. 1997; Chihab et al. 1998). However,
any insult can probably induce programmed cell death in certain circum-
stances, and excitotoxicity is no exception, particularly when excitotoxic con-
ditions are mild or when target neurons are immature (Bonfoco et al. 1995;
McDonald et al. 1997).Apoptosis after excitotoxic insults may also be favored
by reductions in extracellular Na+ and Ca2+, as occur in ischemic tissue; these
disturbances alter the ionic driving forces governing NMDA receptor currents,
increasing, in particular, the relative contribution of proapoptotic K+ efflux (Yu
et al. 1997b, 1999). In vivo, intrastriatal injection of excitotoxins (Ferrer et al.
1995; Portera-Cailliau et al. 1995; Qin et al. 1996) and cerebral ischemia
(Linnik et al. 1993; Macmanus et al. 1993) lead to neuronal death outcomes
that lie on a spectrum of morphological and biochemical phenotypes, ranging
from necrosis to classic apoptosis, with many cells exhibiting a mixture of
markers.The greater prominence of apoptosis after excitotoxin administration
in vivo compared to in vitro, particularly at sites remote from an injection site
in vivo, may reflect in part loss of innervation or trophic support originally
provided by destroyed injection-site neurons.

The idea that certain insults may drive neurons simultaneously towards
excitotoxic necrosis and apoptosis argues for caution in selecting neuropro-
tective strategies, since maneuvers that attenuate one type of death may have
little effect or even a deleterious influence on the other. For instance, upstream
antiexcitotoxic approaches reducing glutamate release or glutamate receptor
activation may have a general tendency to reduce excitotoxic necrosis but
enhance apoptosis triggered by other independent events. The converse may
also be true. One might conceivably use mild proexcitotoxic manipulations
such as the activation of group I mGluRs to raise intracellular Ca2+ and atten-
uate neuronal apoptosis (Allen et al. 2000).

Compared to upstream antiexcitotoxic approaches, downstream strategies
aimed at blocking intracellular injury events may afford more opportunity 
for blocking excitotoxic necrosis without promoting apoptosis. Indeed, some
strategies, such as free radical scavengers, may be effective against both exci-
totoxic necrosis and apoptosis. Besides a reduced risk of enhancing apoptosis,
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downstream approaches may generally offer a longer therapeutic window 
of opportunity than upstream approaches. However, since glutamate receptor
overactivation triggers multiple parallel injury cascades, downstream ap-
proaches may be unlikely to achieve the neuroprotective efficacy of upstream
approaches, unless several pathways are simultaneously targeted.

If the contribution of excitotoxic necrosis to injury is large enough,
upstream antiexcitotoxic approaches alone may be of value, but if apoptosis
is prominent, it may be necessary to add concurrent blockers of apoptosis.
Alternatively, it may be possible to separate a necrotic phase of injury from
an apoptotic phase in time and/or space. For example, after ischemic insults,
excitotoxic necrosis may be most prominent near the ischemic core and at
early time points, whereas apoptosis may be more prominent in penumbral
regions and at later time points.
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