
Chapter 2
Statistical Aspects of Wave Scattering
at Rough Surfaces

A. Sentenac and J. Daillant

2.1 Introduction

The surface state of objects in any scattering experiment is, of necessity, rough. Ir-
regularities are of the most varied nature and length scales, ranging from the atomic
scale, where they are caused by the inner structure of the material, to the mesoscopic
and macroscopic scale where they can be related to the defects in processing in the
case of solid bodies or to fluctuations in the case of liquid surfaces (ocean waves,
for example).

The problem of wave scattering at rough surfaces has thus been a subject of study
in many research areas, such as medical ultrasonic, radar imaging, optics or solid
state physics [1–4]. The main differences stem from the nature of the wavefield and
the wavelength of the incident radiation (which determines the scales of roughness
that have to be accounted for in the models). When tackling the issue of modelling
a scattering experiment, the first difficulty is to describe the geometrical aspect of
the surface. In this chapter, we are interested solely in surface states that are not
well controlled so that the precise defining equation of the surface, z = z(x,y), is
unknown or of little interest. One has (or needs) only information on certain sta-
tistical properties of the surface, such as the height repartition or height to height
correlations. In this probabilistic approach, the shape of the rough surface is de-
scribed by a random function of space coordinates (and possibly time as well). The
wave scattering problem is then viewed as a statistical problem consisting in finding
the statistical characteristics of the scattered field (such as the mean value or field
correlation functions), the statistical properties of the surface being given.

In the first section of this contribution we present the statistical techniques used
to characterise rough surfaces. The second section is devoted to the description of
a surface scattering experiment from a conceptual point of view. In the third sec-
tion, we investigate to what extent the knowledge of the field statistics such as the
mean field or field autocorrelation is relevant for interpreting the data of a scattering
experiment which deals necessarily with deterministic rough samples. Finally, we
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derive in the fourth section a simple expression of the scattered field and scattered
intensity from random rough surfaces under the Born approximation.

2.2 Description of Randomly Rough Surfaces

2.2.1 Introduction

Let us first consider the example of a liquid surface. The exact morphology of the
surface is rapidly fluctuating with time and is not accessible inasmuch as the detector
will integrate over many different surface shapes. However, statistical information
can be obtained and it provides an useful insight on the physical processes. Indeed,
these fluctuations obey Boltzmann statistics and are characterised by a small number
of relevant parameters such as the density of the liquid or its surface tension (see
Sect. 4.5).

We now consider a set of surfaces of artificial origin (such as metallic optical
mirrors) that have undergone similar technological treatments (like polishing and
cleaning). Since it is impossible to reproduce all the microscopic factors affecting
the surface state, these surfaces have complex and completely different defining
equations z = z(x,y). However, if the surface processing is well enough controlled,
they will present some similarities, of statistical nature, that will distinguish them
from surfaces that have received a totally different treatment.

In these two examples, we are faced with the issue of describing a set of real
surfaces which present similar statistical properties and whose defining equations
z(x,y) are unknown or of small interest (see Fig. 2.1). It appears convenient [2] to
approximate this set of surfaces by a statistical ensemble of surfaces that are reali-
sations of a random continuous process of the plane coordinates r‖ = (x,y), whose
statistical properties depend on some relevant parameters of the physical processes
affecting the surface state (like the grain size of the polishing abrasive in the case
of surfaces of artificial origin). It is likely that the characteristic functions z(r‖)
of the surfaces generated by the random process will be different from that of the
real surfaces under study, but the statistical properties of both ensembles should be
the same.

2.2.2 Height Probability Distributions

Generally speaking, a random rough surface is completely described statistically by
the assignment of the n-point (n → ∞) height probability distribution pn(r1‖,z1 . . .
rn‖,zn) where pn(r1‖,z1 . . .rn‖,zn)dz1 . . .dzn is the probability for the surface points
of plane coordinates r1‖, . . . ,rn‖ of being at the height between (z1 . . .zn) and (z1 +
dz1 · · ·zn +dzn). However, in most cases, we restrict the description of the randomly
rough surface to the assignment of the one- and two-point distribution functions
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Fig. 2.1 Examples of various rough surfaces that present the same Gaussian statistical properties

p1(r‖,z) and p2(r1‖,z1;r2‖,z2). Indeed, most scattering theories need solely this
information.

From these probability functions, one can calculate the ensemble average of
any functional of the random variables (z1 . . .zn) where zi = z(ri‖ri‖), through the
integral,

〈F〉(r1‖ . . .rn‖) =
∫ ∞

−∞
F(z1 . . .zn)pn(r1‖,z1 . . .rn‖,zn)dz1 . . .dzn. (2.1)

The domain of integration covers all the possible values for (z1 . . .zn). This quantity
is equivalent to an average of F calculated over an ensemble of surface realisa-
tions Sp,

〈F〉(r1‖ . . .rn‖) = lim
N→∞

1
N

N

∑
p=1

F(zp
1 . . .zp

n), (2.2)

where zp
j is the altitude of the pth surface realisation at plane coordinates r j‖.

With this definition, one obtains in particular the mean height of the surface
through

〈z〉(r‖) =
∫ ∞

−∞
z(r‖)p1(r‖,z)dz. (2.3)
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The mean square height of the surface is given by

〈z2〉(r‖) =
∫ ∞

−∞
z2(r‖)p1(r‖,z)dz. (2.4)

The height–height correlation function Czz is defined by

Czz(r1‖,r2‖) = 〈z1z2〉 =
∫ ∞

−∞
z1z2 p2(r1‖,z1,r2‖,z2)dz1dz2, (2.5)

where z j = z(r j‖). It is also usual to introduce the pair-correlation function g(r1‖,r2‖)
which averages the square of the difference in height between two points of the
surface,

g(r1‖,r2‖) = 〈(z1 − z2)2〉 =
∫ ∞

−∞
(z1 − z2)2 p2(r1‖,z1,r2‖,z2)dz1dz2. (2.6)

Note that g(r1‖,r2‖) = 2〈z2〉(r‖)−2Czz(r1‖,r2‖).

2.2.3 Homogeneity and Ergodicity

Randomly rough surfaces have frequently the property that the character of the
height fluctuations z does not change with the location on the surface. More pre-
cisely, if all the probability distribution functions pi are invariant under any arbi-
trary translation of the spatial origin, the random process is called homogeneous.
As a consequence, the ensemble average of the functional F(z1 . . .zn) will depend
only on the vector difference, r j‖ − r1‖, between one of the n space argument r1‖
and the (n−1) remaining others r j‖, j = 2 . . .n.

〈F〉(r1‖, . . . ,rn‖) = 〈F〉(0‖ . . .rn‖ − r1‖). (2.7)

When the random process is isotropic (i.e. has the same characteristics along any di-
rection) the dependencies reduce to the distance |r j‖−r1‖| between one of the space
argument and the others. Hereafter we will only consider homogeneous isotropic
random processes and we propose a simplified notation for the various functions
already introduced.

The mean altitude 〈z〉(r‖) does not depend on the r‖ position and one can find a
reference plane surface such as 〈z〉 = 0. The mean square deviation of the surface is
also a constant and we define the root mean square (rms) height σ as

σ2 = 〈z2〉 =
∫ ∞

−∞
z2 p1(z)dz. (2.8)

The rms height is often used to give an indication of the “degree of roughness”,
the larger the σ the rougher the surface. Note that the arguments of the probability
distribution are much simpler.
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Similarly, the height–height correlation function can be written as

Czz(r1‖,r2‖) = 〈z(0‖)z(r‖)〉 = Czz(r‖) =
∫

z1z2 p2(z1,z2,r‖)dz1dz2, (2.9)

where r‖ = |r‖|. We also introduce, with these simpler notations, the one-point and
two-point characteristic functions,

χ1(s) =
∫ ∞

−∞
p1(z)eiszdz, (2.10)

χ2(s,s′,r‖) =
∫ ∞

−∞
p2(z,z′,r‖)e

isz+is′z′dzdz′. (2.11)

One of the most important attributes of a homogeneous random process is its power
spectrum, P(q‖), that gives an indication of the strength of the surface fluctuations
associated with a particular wavelength. Roughly speaking, the rough surface is
regarded as a superposition of gratings with different periods and heights. The power
spectrum is a tool that relates the height to the period. We introduce the Fourier
transform of the random variable z,

z̃(q‖) =
∫

z(r‖)e
iq‖.r‖dr‖, (2.12)

where q‖ = (qx,qy) is the in-plane wave-vector transfer. We define the spectrum as

P(q‖) = 〈|z̃(q‖)|2〉 = 〈z̃(q‖)z̃(−q‖)〉. (2.13)

The Wiener–Khintchine theorem [5] states that the power spectrum is the Fourier
transform of the correlation function:

P(q‖) =
∫

dr‖eiq‖.r‖〈z(0‖)z(r‖)〉 = 4π2C̃zz(q‖). (2.14)

More precisely, one shows that

〈z̃∗(q‖)z̃(q
′
‖)〉 = 〈z̃(−q‖)z̃(q

′
‖)〉 = 4π2C̃zz(q‖)δ (q‖ −q′

‖). (2.15)

The Fourier components of a homogeneous random variable are independent ran-
dom variables, whose mean square dispersion is given by the Fourier transform of
the correlation function. If the power spectrum decreases slowly with increasing q‖,
the roughness associated to small periods will remain important. Thus, whatever
the length scale, the surface will present irregularities. In the real space, it implies
that the correlation between the heights of two points on the surface will be small,
whatever their separation. As a result, the correlation function will exhibit a singu-
lar behaviour about 0 (discontinuity of the derivative for example). An illustration
of the influence of the correlation function (or power spectrum) on the roughness
aspect of the surface is presented in Fig. 2.2 and detailed in Sect. 2.2.4 in the special
case of a Gaussian distribution of heights.
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Fig. 2.2 Various rough surfaces with Gaussian height distribution but various correlation functions.

From bottom to top, Czz(R) = σ2ξ 4/(ξ 2 +R2)2, Czz(R) = σ2 exp(− R2

ξ 2 ), Czz(R) = σ2 exp(− R
ξ )

Until now we have been interested solely in ensemble average, which necessitates
the knowledge of the complete set of rough surfaces generated by the homogeneous
random process (or the probability distributions). However, sometimes only a single
realisation Sp (with dimension Lx,Ly along Ox and Oy) of the random process is
available and one defines the spatial average of any functional F(z1, . . . ,zn) for this
surface by

F̄p(0‖, . . . ,rn‖) = lim
Lx×Ly→∞

1
LxLy

∫
Lx×Ly

dr′‖F [z(r′‖) . . .z(r′‖ + rn‖)]. (2.16)

It happens frequently that each realisation of the ensemble carries the same statis-
tical information about the homogeneous random process as every other realisation.
The spatial averages calculated for any realisation are then all equal and coincide
with the ensemble average. The homogeneous random process is then said to be an
ergodic process. In this case, the following particular relations hold:

σ2 = 〈z2〉 = lim
Lx,Ly→∞

1
LxLy

∫
Lx×Ly

z2(r‖)dr‖, (2.17)

Czz(r‖) = 〈z(0‖)z(r‖)〉 = lim
Lx,Ly→∞

1
LxLy

∫
Lx×Ly

z(r′‖)z(r
′
‖ + r‖)dr′‖. (2.18)

One can show that Eqs. (2.17) and (2.18) will be satisfied if the correlation function
Czz(r‖) dies out sufficiently rapidly with increasing r‖ (see for demonstration [5]).
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Indeed, this property implies that one realisation of the rough surface can be di-
vided up into subsurfaces of smaller area that are uncorrelated so that an ensemble
of surfaces can be constructed from a single realisation. Spatial averaging amounts
then to ensemble averaging. If the random process is homogeneous and ergodic, all
the realisations will look similar while differing in detail. This is exactly what we
expect in order to describe liquid surfaces varying with time or set of surfaces of
artificial origin. The fact that spatial averaging is equivalent to ensemble averaging
when the surface contains enough correlation lengths to recover all the informa-
tion about the random process is of crucial importance in statistical wave scattering
theory.

2.2.4 The Gaussian Probability Distribution and Various
Correlation Functions

In most theories, the height probability distribution is taken to be Gaussian. The
Gaussian distribution plays a central role because it has an especially simple struc-
ture and, because of the central limit theorem, it is a probability distribution that is
encountered under a great variety of different conditions. If the height z of a surface
is due to a large number of local independent events whose effects are cumulative
(like the passage of grain abrasive), the resulting altitude will obey nearly Gaussian
statistics. This result is a manifestation of the central limit theorem which states that
if a random variable X is the sum of N independent random variables xi, it will have
a Gaussian probability distribution in the limit of large N. Hereafter, we suppose
that the average value of the Gaussian variate z(r‖) is null, 〈z〉 = 0. The Gaussian
height distribution function is written as

p1(z) =
1

σ
√

2π
exp

(
− z2

2σ2

)
. (2.19)

Gaussian variates have the remarkable property that the random process is en-
tirely determined by the height probability distribution and the height–height cor-
relation function Czz. All higher order correlations are expressible in terms of
second-order correlation [5]. The two-point distribution function is given in this
case by

p2(z,z′,r‖) =
1

2π
√

σ4 −C2
zz(r‖)

exp−
[
σ2(z2 + z′2)−2zz′Czz(r‖)

2σ4 −2C2
zz(r‖)

]
. (2.20)

Other useful results on the Gaussian variates are

χ1(s) = 〈eisz〉 = e−s2σ2/2, (2.21)

χ2(s,s′,r‖) =
〈

ei(sz−s′z′)
〉

= e−σ2(s2+s′2)/2ess′Czz(r‖). (2.22)
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The correlation function plays a fundamental role in the surface aspect. It provides
an indication of the length scales over which height changes along the surface. It
gives in particular the distance beyond which two points of the surface can be con-
sidered independent. If the surface is truly random, Czz(r‖) decays to zero with in-
creasing r‖. The simplest and often used form for the correlation function is also
Gaussian,

Czz(r‖) = σ2 exp(−r2
‖/ξ

2). (2.23)

The correlation length ξ is the typical distance between two different irregularities
(or bumps) on the surface. Beyond this distance, the heights are not correlated.

In certain scattering experiments, one can retrieve the behaviour of the correlation
function for r‖ close to zero. We have thus access to the small scale properties of the
surface. We have seen that the regularity of the correlation function at zero mirrors
the asymptotic behaviour of the power spectrum: the faster the high-frequency com-
ponents of the surface decay to zero, the smoother the correlation function about
zero. The Gaussian scheme whose variations about zero have the quadratic form
σ2(1− (r‖/ξ )2) is thus indicated solely for surfaces that present only one typical
lateral length scale [6].

For surfaces with structures down to arbitrary small scales, one expects the cor-
relation function to be more singular at zero. An example is the self-affine rough
surface for which

g(r‖) = A0r2h
‖ , (2.24)

where A0 is a constant, or

Czz(r‖) = σ2

(
1−

r2h
‖
ξ 2h

)
, (2.25)

with 0 < h < 1. The roughness exponent or Hurst exponent h is the key parame-
ter which describes the height fluctuations at the surface: small h values produce
very rough surfaces while if h is close to 1 the surface is more regular. This ex-
ponent is associated to fractal surfaces with dimension D = 3−h as reported by
Mandelbrodt [7]. The pair-correlation function given in Eq. (2.24) diverges for
r‖ → ∞. Hence, all the length scales along the vertical axis are represented and
the roughness of the surface cannot be defined. We will see below that in that
case, there is no specular reflection. However, very often, some physical processes
limit the divergence of the correlation function, i.e. the roughness saturates at some
in-plane cut-off ξ . Such surfaces are well described by the following correlation
function,

Czz(R) = σ2 exp

(
−R2h

ξ 2h

)
. (2.26)

For liquid surfaces other functional forms described in Sect. 4.5 are used.
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2.2.5 More Complicated Geometries: Multilayers and Volume
Inhomogeneities

Up to now we have considered solely the statistical description of a rough surface
separating two homogeneous media. The mathematical notions that have been in-
troduced can be generalised to more complicated problems such as stacks of rough
surfaces in multilayer components. In this case, one must also consider the corre-
lation function between the different interfaces, 〈zi(0‖)z j(r‖)〉, where zi represents
the height of the i th surface. A detailed description of the statistics of a rough mul-
tilayer is given in Sect. 6.2. One can also describe in a similar fashion the random
fluctuations of the refractive index (or electronic density) ρ . In this case ρ is a ran-
dom continuous variable of the three-dimensional space coordinates (r‖,z). It will
be introduced in Sects. 4.3.3 and 7.3.

2.3 Description of a Surface Scattering Experiment,
Coherence Domains

We have seen how to characterise, with statistical tools, the rough surface geometry.
The next issue is to relate these statistics to the intensity scattered by the sample in a
scattering experiment. In this section, we introduce the main theoretical results that
describe the interaction between electromagnetic waves and surfaces. Attention is
drawn on the notion of “coherence domains” which takes on particular importance
in the modelling of scattering from random media. In this foreword, we present
briefly the basic mechanisms that subtend this concept.

It can be shown (bear in mind the Huygens–Fresnel principle or see Sect. 4.1.4)
that a rough surface illuminated by an electromagnetic incident field acts as a col-
lection of radiating secondary point sources. The superposition of the radiation of
those sources yields the total diffracted field. If the secondary sources are coher-
ently illuminated, the total diffracted field is the sum of the complex amplitudes of
each secondary diffracted beam. In other words, one has to account for the phase
difference in this superposition. As a result, an interference pattern is created. The
coherence domain is the surface region in which all the radiating secondary sources
interfere. It depends trivially on the nature of the illuminating beam (which can be
partially coherent), but more importantly, it depends on the angular resolution of the
detector. To illustrate this assertion, we consider the Young’s holes experiment [8].
Light from a monochromatic point source (or a coherent beam) falls on two pin-
holes located in the sample plane (see Fig. 2.3). We study the transmitted radiation
pattern on a screen parallel to the sample plane at a distance D. In this region, an
interference pattern is formed. The periodicity Λ of the fringes, which is the signa-
ture of the coherence between the two secondary sources, depends on the separation
d between the two pinholes, Λ = λD/d. Suppose now that a detector is moved on
the screen to record the diffracted intensity. As long as the detector width l is close
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to Λ , the modulation of the interference pattern will be detected. On the contrary,
if l > 10Λ the intensity measured by the detector is the average of the fringe in-
tensities. We obtain a constant equal to the sum of the intensities scattered by each
secondary source. In this case, one may consider that from the detector point of view,
the sources radiate in an incoherent way. We see with this simple experiment that
the coherence length is directly linked to the finite extent of the detector (equivalent
to a finite angular resolution).1

We now turn to a more accurate description of a surface scattering experiment.

2.3.1 Scattering Geometry

We consider an ideal scattering experiment consisting in illuminating a rough sam-
ple with a (perfectly coherent monochromatic) beam directed along kin and detect-
ing the flux of Poynting vector in an arbitrary small solid angle in the direction ksc

with a point-like detector located in the far-field region.
The interaction of the beam with the material results in a wave-vector transfer,

q = ksc −kin. (2.27)

Figure 2.3 shows the scattering geometry in the general case of a surface exper-
iment. The plane of incidence contains the incident wave vector kin and the normal
to the surface Oz. In a reflectivity experiment, it is usual to work in the plane of in-
cidence and thus to have ψ = 0. Yet the case ψ �= 0 is of special interest for surface
diffraction experiments in grazing incidence geometry. When working in the plane
of incidence it is also useful to distinguish the symmetric specular geometry for
which θin = θsc and the off-specular geometry for which θin �= θsc. The following
set of Eq. (2.28) gives the components of the wave-vector transfer with the notations
introduced in Fig. 2.3:

1 It is also obviously linked to the degree of coherence fixed by, for example, the incidence slit
opening. However, for x-ray or neutron experiments the resolution is actually generally limited by
the detector slits opening.
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⎧⎨
⎩

qx = k0 (cosθsc cosψ− cosθin)
qy = k0 (cosθsc sinψ)
qz = k0 (sinθsc + sinθin)

. (2.28)

2.3.2 Scattering Cross-Section

In the ideal experimental setup presented in the previous section, one exactly mea-
sures the differential scattering cross-section as described in Fig. 1.1 (the isolated
scattering object is the rough sample in this case). The vectorial electric field E is
written as the sum,

E = Ein +Esc, (2.29)

of the incident plus scattered field. We are interested by the flux of the Poynting
vector S through a surface dS located at the position R of the detector for a unit
incident flux. The precise calculations of the differential scattering cross-section are
detailed in Sect. 4.1.4. In this paragraph, we simply introduce the main steps of the
derivation.

One assumes that the detector located at R is placed far from the sample (far-field
approximation). We define the scattering direction by the vector ksc (see Fig. 2.3),

ksc = k0û = k0R/R. (2.30)

It is shown in Sect. 4.1.4 that the scattered field can be viewed as the sum of the
wavelets radiated by the electric dipoles induced in the material by the incident field
(these radiating electric dipoles are the coherent secondary sources presented in the
introduction). The strength of the induced dipole located at r′ in the sample is given
by the total field times the permittivity contrast at this point, [k2(r′)− k2

0]E(r′). Let
us recall that for x-rays,

(k2(r′)− k2
0) = k2

0[n
2(r′)−1] = −4πreρel(r′), (2.31)

where ρel is the local electron density and re the classical electron radius.2 In the
far-field region, the scattered field can be written as, see Eq. (4.19) (the far-field
approximation and its validity domain are discussed in more detail in Chap. 4),

2 If one is only interested in materials with low atomic numbers for which the x-ray frequency is
much larger than all atomic frequencies, the electrons can be considered as free electrons plunged
into an electric field E. In this case, the movement of the electron is governed by medv/dt =
−eE, where me, v, −e, are the mass, the velocity and the charge of the electron, respectively.
We find v = (ie/meω)E for a eiωt time dependence of the electric field. Thus, the current density
is j = −eρelv = −(ie2ρel/meω)E where ρel is the local electron density. Writing the Maxwell’s
equations in the form curlH = j + ε0∂E/∂ t = ∂D/∂ t = n2ε0∂E/∂ t (depending on whether the
system is viewed as a set of electrons in a vacuum or as a material of refractive index n), one
obtains by identification that n = 1− (e2/2meε0ω2)ρel = 1− (λ 2/2π)reρel ≈ 1−10−6, with re =
(e2/4πε0mec2) the “classical electron radius”. A complete and rigorous demonstration is given
in [9].
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Esc(R) =
exp(−ik0R)

4πR

∫
dr′(k2(r′)− k2

0)E⊥(r′)eiksc.r′, (2.32)

where
E⊥(r′) = E(r′)− û.E(r′)û (2.33)

represents the component of the electric field that is orthogonal to the direction of
propagation given by û. Expression (2.32) shows that the scattered electric field
Esc(R) can be approximated by a plane wave [8] with wave vector ksc = k0R/R =
k0û and amplitude,

Esc(ksc) = Esc(R). (2.34)

The Poynting vector is then readily obtained,

S =
1

2μ0c
|Esc(R)|2û. (2.35)

The flux of the Poynting vector for a unit incident flux (or normalised by the in-
cident flux through a unit surface normal to the propagation direction) yields the
differential scattering cross-section in the direction given by ksc,

dσ
dΩ

=
1

16π2|Ein|2

∣∣∣∣
∫

[k2(r′)− k2
0]E⊥(r′)eiksc.r′dr′

∣∣∣∣
2

. (2.36)

Note that dσ/dΩ involves a double integration, which can be cast in the form,

dσ
dΩ

=
1

16π2|Ein|2
∫

dr
∫

dr′(k2(r)− k2
0)(k

2(r+ r′)− k2
0)

E⊥(r).E∗
⊥(r+ r′)eiksc.r′ , (2.37)

where u∗ stands for the conjugate of u. By integrating formally Eq. (2.32) over the
vertical axis, one obtains a surface integral,

Esc(R) =
exp(−ik0R)

4πR

∫
E⊥(r′‖,kscz)e

iksc‖.r
′
‖dr′‖, (2.38)

with
E⊥(r′‖,kscz) =

∫
[k2(r′)− k2

0]e
iksczz′E⊥(r′)dz′. (2.39)

We see that Eq. (2.39) is a one-dimensional Fourier transform, thus the variations
of E⊥ with kscz are directly linked to the thickness of the sample. On the other hand,
the variations of Esc with ksc‖ are related to the width of the illuminated area (i.e.
the region for which [k2(r′)− k2

0]E is non-zero).

2.3.3 Coherence Domains

Up to now, we have considered an ideal experiment with a point-like detector. In
reality, the detector has a finite size and one must integrate the differential scattering
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cross-section over the detector solid angle, ΔΩdet. Since the cross-section is defined
as a function of wave vectors, it is more convenient to transform the integration
over the solid angle ΔΩdet centred about the direction ksc into an integration in the
(kx,ky) plane. The measured intensity (scattering cross-section convoluted with the
resolution function) is then given by

I =
1

16π2

1
|Ein|

∫
dk‖R(k‖)

×
∫

dr‖

∫
dr′‖E

∗
⊥(r‖ + r′‖,kz).E⊥(r‖,kz)eik‖.r

′
‖ , (2.40)

where R(k‖) is the detector acceptance in the (kx,ky) plane. The expression of R
in the wave-vector space is not easily obtained. In an x-ray experiment, it depends
on the parameters (height, width) of the collecting slits. The reader is referred to
Sect. 4.4 for a detailed expression of R as a function of the detector shape. In
this introductory chapter it is sufficient to take for R a Gaussian function centred
about ksc‖,

R(kscx,kscy) = C exp

[
− (kx − kscx)2

2Δk2
x

− (ky − kscy)2

2Δk2
y

]
. (2.41)

The variables Δkx,Δky govern the angular aperture of the detector. If one assumes
that the integrand does not vary significantly along kz inside Δkx Δky,3 the resulting
intensity is given by

I =
1

16π2

1
|Ein|

∫ ∫
dr‖dr′‖E

∗
⊥(r‖ + r′‖,kscz).E⊥(r‖,kscz)eiksc‖.r

′
‖R̃(r′‖), (2.42)

where
R̃(r‖) = 2πCΔkxΔkye−

1
2Δk2

x x2− 1
2Δk2

y y2
. (2.43)

We now examine Eq. (2.38) that gives the scattered field as the sum of the fields ra-
diated by all the induced dipoles in the sample. We see that the electric field radiated
in the direction ksc by the “effective” dipole placed at point r‖ is added coherently
to the field radiated by another dipole placed at r‖ + r′‖ whatever the distance be-
tween the points. The intensity, measured by an ideal experiment (coherent source
and point-like detector), is given by a double integration of infinite extent which
contains the incoherent term |E⊥(r‖,kscz)|2 and the cross-product (namely the in-
terference term) E⊥(r‖,kscz).E ∗

⊥(r‖ + r′‖,kscz). When the detector has a finite size,
the double integration is modified by the introduction of the resolution function R̃

3 This assumption is not straightforward. It is seen in Eq. (2.39) that the thicker the sample, the
faster the variations of E⊥ with kz. In an x-ray experiment, the sample under study is generally
a thin film (a couple of microns) and we are interested by the structure along z of the material
(multilayers). Hence, the size of the detector is chosen so that its angular resolution permits to
resolve the interference pattern caused by the stack of layers. This amounts to saying that the kz

modulation of E ∗
⊥(r‖ + r′‖,kz).E⊥(r‖,kz) is not averaged in the detector.
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which is the Fourier transform of the angular characteristic function of the detec-
tor. In our example, R̃ is a Gaussian whose support in the (x,y) plane is roughly
1/[Δkx ×Δky]. This function limits the domain over which the contribution of the
cross term to the total intensity is significant. This domain can be called the coher-
ence domain Scoh due to the detector. The fields radiated by two points that belong
to this domain will add coherently in the detector (the cross term value is important),
while the fields coming from two points outside this domain will add incoherently
(the cross term contribution is damped to zero). The resulting intensity can be seen
as the incoherent sum of intensities that are scattered from various regions of the
sample whose sizes coincide with the coherent domain given by the detector. This
can be readily understood by rewriting Eq. (2.42) in the form [10],

I ∝ ∑
i =1,N

∫
Scoh

dr‖

∫
Scoh

dr′‖

E ∗
⊥(ri‖ + r‖ + r′‖,kscz).E⊥(ri‖ + r‖,kscz)eiksc‖.r

′
‖R̃(r′‖), (2.44)

where ri is the centre of the different coherent regions Scoh. Hence, integrating the
intensity over a certain solid angle is equivalent to summing the intensities (i.e.
incoherent process) from various regions of the illuminated sample. This is the
main result of this paragraph. The finite angular resolution of the detector intro-
duces coherence lengths beyond which two radiating sources can be considered
incoherent (even though the incident beam is perfectly coherent). Note that the plu-
ral is not fortuitous, indeed, the angular resolution of the detector can be differ-
ent in the xOy and xOz plane, thus the coherent lengths vary along Ox, Oz and
Oy. In a typical x-ray experiment (see Sect. 4.4), the sample is illuminated coher-
ently over 5 mm2 but the angular resolution of the detector yields coherence do-
mains of solely a couple of square microns. More precisely, a detection slit with
height 100μm, width 1 cm placed at 1 m of the sample with θsc = 10 mrad limits
the coherent length along Oz to 1 μm, along Ox to 100μm and that along Oy to
10 nm. Finally, in this introductory section, we have restricted our analysis solely
to a detector of finite extent. In general, the incident source has also a finite angu-
lar resolution. However, coherence domains induced by the incident angular res-
olution is usually much bigger than that given by the detector angular resolution
so that we do not consider it here. (The calculation scheme would be very similar.)
A more complete description of the resolution function of the experiment is given in
Sect. 4.4.2.

2.4 Statistical Formulation of the Diffraction Problem

In this section, we point out, through various numerical simulations, the pertinence
of a statistical description of the surface and of the scattered power for modelling a
scattering experiment in which the rough sample is necessarily deterministic. The
main steps of our analysis are as follows: Within the coherence domain, the field
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radiated by the induced dipoles (or secondary sources) of the sample interfere. We
call speckle the complicated intensity pattern stemming from these interferences.
The angular resolution of the detector yields an incoherent averaging of the speckle
structures (the intensities are added over a certain angular domain). This angular
integration can be performed with an ensemble average by invoking

1. The ergodicity property of the rough surface (i.e. we assume that the sample is
one particular realisation of an ergodic random process)

2. The equivalence between finite angular resolution and limited coherence do-
mains

It appears finally that the diffused intensity measured by the detector is ade-
quately modelled by the mean square of the electric field viewed as a function of the
random variable z. Throughout this section, the numerical examples are given in the
optical domain. The wavelength is about 1μm and the perfectly coherent incident
beam is directed along the Oz axis.

2.4.1 To What Extent Is a Statistical Formulation
of the Diffraction Problem Relevant?

In Sect. 2.3 it has been shown how to calculate formally the electromagnetic power
measured by the detector in a scattering experiment. To obtain the differential scat-
tering cross-section, one needs to know the permittivity contrast at each point of
the sample and the electric field at those points, Eq. (2.37). If the geometry of the
sample is perfectly well known (i.e. deterministic like gratings), various techniques
(such as the integral boundary method [11,12]) permit to obtain without any approx-
imation the field inside the sample. It is thus possible to simulate with accuracy the
experimental results. In the case of scattering by gratings (i.e. periodic surfaces) the
good agreement between experimental results and calculations confirms the validity
of the numerical simulations [12].

We study the scattered intensity from different rough deterministic surfaces sn

(e.g. those presented in Fig. 2.1) illuminated by a perfectly coherent beam. In this
experiment, we suppose that the size of the coherence domains induced by the finite
resolution of the detector is close to that of the illuminated area A. In other words,
all the fringes of the interference pattern stemming from the coherent sum of the
fields radiated by every illuminated point of the surface are resolved by the detec-
tor. We observe in Fig. 2.4 that the angular distribution of the intensity scattered
by each surface presents a chaotic behaviour. This phenomenon can be explained
by recalling that the scattered field consists of many coherent wavelets, each aris-
ing from a different microscopic element of the rough surface, see Eq. (2.38). The
random height position of these elements yields a random dephasing of the vari-
ous coherent wavelets which results in a granular intensity pattern. This seemingly
random angular intensity behaviour, known as speckle effect, is obtained when the
coherence domains include many correlation lengths of the surface, when the rough-
ness is not negligible as compared to the wavelength (so that the random dephasing
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Fig. 2.4 Simulations of the
differential scattering
cross-section for the surfaces
presented in Fig. 2.1. The
illuminated area covers
40 μm which explains the
large angular width of the
speckle. The incident
wavelength is 1μm, the
refractive index is n = 1.5.
Normal incidence. The
calculations are performed
with a rigorous integral
boundary method (no
approximation in solving
Eq. (2.37) other than the
numerical
discretisations) [13]
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amplitude is important) and most importantly when the size of the coherence do-
mains is close to that of the illuminated area so that the speckle is not averaged in
the detector. To retrieve the precise angular behaviour of the intensity, one needs
an accurate deterministic description of the surface [14]. In Fig. 2.4 the surfaces sn

present totally different intensity patterns even though they have the same statis-
tical properties. However, some similarities can be found in the curves plotted in
Fig. 2.4. For example, the typical angular width of the spikes is the same for all
surfaces. Indeed, in our numerical experiment it is linked to the width L of the il-
luminated area (which is here equivalent to the coherence domain). The smallest
angular period of the fringes formed by the (farthest-off) coherent point-source pair
on the surface determines the minimal angular width λ/L of the speckle spikes. This
is clearly illustrated in Fig. 2.5, the larger the coherently illuminated area the thin-
ner the angular speckle structures. In optics and radar imaging, sufficiently coherent
incident beams (lasers) combined with detectors with fine angular resolution permit
to study this phenomenon [14]. In x-ray experiments, the speckle effect can also be
visualised in certain configurations. At grazing angles (e.g. θsc = 1 mrad), the ap-
parent resolution of the detector δqx = k0θδθ (see Sect. 4.5.2.1) may be better than
10−7 k0 m−1. The size of the illuminated area being 5 mm, the speckle structures are
resolved in the detector.

We now suppose that the illuminated area is increased enough so that the typi-
cal angular width of the speckle structures will be much smaller than the angular
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Fig. 2.5 Illustration of the dependence of the angular width of the speckle structures on the size of
the illuminated area. Simulation of the intensity angular distribution for one rough surface illumi-
nated in the first case over 60 μm and in the second case over 30 μm. The incident wavelength is
1 μm, the refractive index is n = 1.5, normal incidence

resolution of the detector. The detector integrates the intensity over a certain solid
angle and, as a result, the fine structures disappear. One notices then that the smooth
intensity patterns obtained for all the different surfaces sn are quite similar. This is
not surprising. Indeed, we have seen in the previous paragraph that the finite angu-
lar resolution of the detector is equivalent to the introduction of a coherence domain
Scoh (that is smaller than the illuminated area A). The measured intensity can be
considered the incoherent sum of intensities stemming from the different subsur-
faces of size Scoh that constitute the sample. We now suppose that the illuminated
area is big enough to cover many “coherent” subsurfaces, A > 30Scoh. Moreover, we
suppose that the coherence domain is large enough so that each subsurface presents
the same statistical properties Lcoh > 30ξ , where ξ is the correlation length and
Lcoh the coherence length. If the set of surfaces {sn} can be described by an ergodic
stationary process, the ensemble of subsurfaces obtained from one particular reali-
sation s j will define the same random process with the same ensemble averaging as
that created from any other realisation sk. Consequently, the scattered intensity from
one “big” surface s j can be seen as the ensemble average of the “subsurface” Scoh

scattered intensity which should be the same for all sk. This assertion is supported
by a comparison between two different numerical treatments of the same scattering
experiment [13, 15].

In Fig. 2.6 we have plotted the diffuse intensity obtained from a deterministic
rough surface S j illuminated by a perfectly coherent Gaussian beam, with a detector
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Fig. 2.6 Simulation of the differential scattering cross-section of a rough deterministic surface
which is one realisation of a random process. The illuminated area covers 3 mm (roughly several
thousands of optical wavelengths). The statistics of the random process are Gaussian height distri-
bution with σ = 0.2μm and Gaussian correlation function with ξ = 1μm. The incident wavelength
is 1 μm. Courtesy of Prof. M. Saillard [13]

of infinite resolution. The rough surface is one realisation of a random process with
Gaussian height distribution function and Gaussian correlation function with corre-
lation length ξ . The incident beam is chosen wide enough so that the illuminated
part of S j is representative of the ergodic random process. In other words, S j can
be divided into many subsurfaces (with similar statistical properties) whose set de-
scribes accurately the random process. The total length of the illuminated spot is
5000ξ . It is seen in Fig. 2.6 that the scattered intensity exhibits a very thin speckle
pattern. In general these fine structures are not visible. In Fig. 2.7 we have aver-
aged the diffuse intensity over an angular width of 5◦, corresponding to the angular
resolution of a detector. We compare in Fig. 2.7 the angular averaged pattern with
the ensemble average of the scattered intensity from subsurfaces that are generated
with the same random process as S j but whose coherent illuminated domain is now
restricted to 30ξ (i.e. to the coherence domain induced by the finite resolution of
the detector). We obtain a perfect agreement between the two scattering patterns.
In this example, we no longer need the precise value of the characteristic function
z(r‖) but solely the statistical properties of the random process that describe conve-
niently these particular surfaces. The integration of the intensity over the solid angle
ΔΩ will then be replaced by the calculation of the ensemble average of the inten-
sity. This ensemble averaging appears also naturally in the case of surfaces varying
with time (such as liquid surfaces like ocean) by recording the intensity during a
sufficiently long amount of time.
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Fig. 2.7 Solid line: Angular average over 5◦ of the differential scattering cross-section of the “big
surface” presented in Fig. 2.6; dotted line: ensemble average of the differential scattering cross-
section of rough surfaces with the same statistics as the “big surface”. Size of each realisation is
30μm, no angular averaging. Courtesy of Prof. Saillard [13]

Each subsurface (either spread spatially via the coherence domains or tempo-
rally) generates an electric field E. The latter can be viewed as a function of the
random process z. The intensity measured by the detector is then related to the mean
(in the ensemble averaging sense) square of the field, 〈|E|2〉. The purpose of most
wave scattering theories is to evaluate the various moments of E. More precisely,
the random field can be divided into a mean and a fluctuating part,

E = 〈E〉+δE. (2.45)

We usually study separately the different contributions to the intensity.

2.4.2 Notions on Coherent (Specular) and Incoherent
(Diffuse) Intensity

In the far field, the scattered electric field Esc behaves like a plane wave with wave
vector ksc and amplitude E(ksc), see Eq. (2.32). It can be written as the sum of a
mean part and a fluctuating part,

Esc = 〈Esc〉+δEsc. (2.46)
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The previous discussions have shown that the measured scattered intensity from
a rough sample (whose deterministic surface profile is assumed to be one realisation
of a given ergodic random process) can be evaluated with the ensemble average of
the intensity 〈|Esc(ksc)|2〉,

〈|Esc|2〉 = |〈Esc〉|2 + 〈|δEsc|2〉. (2.47)

The first term on the right-hand side of Eq. (2.47) is called the coherent intensity
while the second term is known as the incoherent intensity. It is sometimes useful to
tell the coherent and incoherent processes in the scattered intensity. In the following,
we show that the coherent part is a Dirac function that contributes solely to the
specular direction [4] if the randomly rough surface is statistically homogeneous in
the (Oxy) plane.

In most approximate theories, the random rough surface is of infinite extent and
illuminated by a plane wave. Suppose we know the scattered far-field Esc from a
rough surface of defining equation z = z(r‖). We now address the issue of how
Esc is modified when the whole surface is shifted horizontally by a vector d. It is
clear that such a shift will not modify the physical problem. However, the incident
wave amplitude acquires an additional phase factor exp(ikin.d) and similarly each
scattered plane wave Esc acquires, when returning to the primary coordinates, the
phase factor exp(−iksc.d). Thus we obtain,

E
z(r‖−d)
sc = e−i(ksc−kin).dE

z(r‖)
sc . (2.48)

We now suppose that the irregularities of the rough surface stem from a random
spatially homogeneous process. In this case, the ensemble average is invariant under
any translation in the (xOy) plane,

〈
E

z(r‖−d)
sc

〉
=
〈

E
z(r‖)
sc

〉
. (2.49)

This equality is only possible if

〈Esc〉 = Aδ (ksc‖ −kin‖). (2.50)

Hence, when the illuminated domain (or coherence domain) is infinite, the co-
herent intensity is a Dirac distribution in the Fresnel reflection (or transmission)
direction. For this reason it is also called specular intensity. Note that unlike the
coherent term, the incoherent intensity is a function in the ksc‖ plane and its contri-
bution in specular direction tends to zero as the detector acceptance is decreased. In
real life, the incident beam is space limited, the coherence domain is finite, thus the
specular component becomes a function whose angular width is roughly given by
λ/Lcoh.

In many x-ray experiments, one is solely interested in the specularly reflected
intensity. This configuration allows the determination of the z-dependent electron
density profile and is often used for studying stratified interfaces (amphiphilic or
polymer-adsorbed film). The modelisation of the coherent intensity requires the
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evaluation of the single integral Eq. (2.32) that gives the field amplitude while the
incoherent intensity requires the evaluation of a double integral Eq. (2.37). It is
thus much simpler to calculate only the coherent intensity and many elaborate the-
ories have been devoted to this issue [4]. Chapter 3 of this book gives a thorough
description of the main techniques developed for modelling the specular intensity
from rough multilayers. However, it is important to bear in mind that the energy
measured by the detector about the specular direction comes from both the coherent
and incoherent processes inasmuch as the solid angle of collection is non-zero. The
incoherent part is not always negligible as compared to the coherent part especially
when one moves away from the grazing angles. An estimation of both contributions
is then needed to interpret the data.

2.5 Statistical Formulation of the Scattered Intensity Under
the Born Approximation

In this last section, we illustrate the notions introduced previously with a simple
and widely used model that permits to evaluate the scattering crosssection of ran-
dom rough surfaces within a probabilistic framework. We discuss the relationship
between the scattered intensity and the statistics of the surfaces. The main princi-
ples of the Born development have been introduced in Chap. 1, Appendix 1.A, and a
complementary approach of the Born approximation is given in Chap. 4 with some
insights on the electromagnetic properties of the scattered field.

2.5.1 The Differential Scattering Cross-Section

We start from Eq. (2.32) that gives the scattered far field as the sum of the fields
radiated by the induced dipoles in the sample. The main difficulty of this integral
is to evaluate the exact field E inside the scattering object. In the x-ray domain, the
permittivity contrast is very small (≈ 10−6) and one can assume that the incident
field is not drastically perturbed by surrounding radiating dipoles. Hence, a popular
assumption (known as the Born approximation) is to approximate E by Ein. With
this approximation the integrand is readily calculated. For an incident plane wave
Eine−ikin.r, the differential scattering cross-section can be expressed as

dσ
dΩ

=
1

16π2

|Ein⊥|2
|Ein|2

∫
dr
∫

dr′[k2(r)− k2
0][k

2(r′)− k2
0]e

iq.(r−r′), (2.51)

where Ein⊥ is the projection of the incident electric field on the plane normal to
the direction of observation of the differential cross-section. Denoting the unit vec-
tors in direction Ein and Esc, êin = Ein/Ein and (êsc)2 = Esc/Esc, respectively, we
have |Ein⊥| = Ein(êin .̂esc)2. In x-ray experiments, the incident field impinges on
the surface at grazing angle and one studies the scattered intensity in the vicinity
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of the specular component. In this configuration, the orthogonal component of the
incident field with respect to the scattered direction is close to the total incident
amplitude. Yet, we retain the projection term (êin .̂esc)2 in the differential scattering
cross-section for completeness and coherence with the results of Chap. 1. Bearing
in mind the value of the permittivity contrast as a function of the electronic density,
Eq. (2.31), Eq. (2.51) simplifies to

dσ
dΩ

= r2
e(êin êsc)2

∫
dr
∫

dr′ρel(r)ρel(r′)eiq.(r−r′), (2.52)

with ρel the electron density and re the classical electron radius.4 In the case of a
rough interface separating two semi-infinite homogeneous media one gets,

dσ
dΩ

= r2
eρ2

el(êin .̂esc)2
∫ z(r‖)

−∞
dz
∫ z(r′‖)

−∞
dz′
∫

dr‖

∫
dr′‖eiq.(r−r′). (2.53)

Integrating Eq. (2.53) over (z,z′) (with the inclusion of a small absorption term to
ensure the convergence at −∞) yields,

dσ
dΩ

=
ρ2

elr
2
e

q2
z

(êin .̂esc)2
∫

dr‖

∫
dr′‖eiq‖.(r‖−r′‖)eiqz[z(r‖)−z(r′‖)]. (2.54)

This equation concerns a priori the scattering from any (deterministic or not) object.
In this chapter, we are mostly interested by the scattering from surfaces whose sur-
face profile z is unknown or of no interest. We have seen in the preceding sections
that if z is described by a random homogeneous ergodic process, the intensity mea-
sured by the detector can be approximated by the ensemble average of the scattering
cross-section. It amounts to replacing in Eq. (2.54) the integration over the surface
by an ensemble average,

∫
f (r‖)dr‖ = LxLy〈 f 〉, where Lx,Ly are the dimensions of

the surface along Ox and Oy. One obtains,

dσ
dΩ

=
ρ2

elr
2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖
〈

eiqz[z(r‖)−z(0‖)]
〉
. (2.55)

4 One can make a general presentation of elastic scattering under the Born approximation from
the scattering by an isolated object as presented in Sect. 1.2.4 and Appendix 1.A. The differential
scattering cross-section can be cast in the form

dσ
dΩ

=

∣∣∣∣∣∑j
beiq.r j

∣∣∣∣∣
2

=
∣∣∣∣
∫

drρbeiq.r
∣∣∣∣
2

,

where ρ is the density of scattering objects and b their scattered length as introduced in Eq. (1.34).
The complex exponential is the result of the phase shift between waves scattered in the ksc direction
by scatterers separated by a vector r as shown in Fig. 2.8. For neutrons, b is the scattering length
which takes into account the strong interaction between the neutrons and the nuclei (we do not
consider here magnetic materials); for x-rays, b = re = (e2/4πε0mec2) = 2.8× 10−15 m which is
the classical radius of the electron.
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Fig. 2.8 Phase shift between the waves scattered by two point scatterers separated by a vector r.
The phase shift is (ksc −kin).r = q.r

Note that the expression (2.55) of the differential scattering cross-section ac-
counts for both the coherent and incoherent processes. Hence, this integral does not
converge in the function sense, it contains a Dirac distribution if the surface is infi-
nite. This property will be illustrated with various examples in the following. If the
probability density of z is Gaussian, we can write the differential cross-section as

dσ
dΩ

=
ρ2

elr
2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖e−
1
2 q2

z 〈[z(r‖)−z(0‖)]
2〉. (2.56)

We see that, under the Born approximation (where we neglect multiple scatter-
ing) the scattered intensity is related to the Fourier transform of the exponential

of the pair-correlation function, g(r‖) =
〈[

z(r‖)− z(0‖)
]2〉

. In the following we

illustrate this result by studying the differential scattering crosssection for various
pair-correlation functions. We start by the expression of the scattering differential
cross-section in the case of a flat surface.

2.5.2 Ideally Flat Surfaces

For ideally flat surfaces g(r‖) is zero everywhere at the surface and the scattering
cross-section yields

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2
∫

dr‖eiq‖.r‖ . (2.57)

The integral is the Fourier transform of a constant so that,5

dσ
dΩ

=
4π2r2

eρ2
elLxLy

q2
z

(êin .̂esc)2δ (q‖). (2.58)

The scattered intensity is thus a Dirac distribution in the Fresnel reflection direc-
tion. As expected, for a perfectly flat surface, the reflectivity comes solely from a

5 Let us recall that δ (q‖) = 1
4π2

∫
e−iq‖.r‖dr‖.
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coherent process (Sect. 2.4.2), the incoherent scattering is null 〈δE2〉= 0. Note that
the reflectivity decreases as a power law with qz. We now turn to the more compli-
cated problem of scattering from rough surfaces that are described statistically by a
homogeneous ergodic random process.

2.5.3 Self-Affine Rough Surfaces

2.5.3.1 Surfaces Without Cut-Off

We first consider self-affine rough surfaces with pair-correlation function g given by
Eq. (2.24), g(r‖) = A0r2h

‖ . With this pair-correlation function, the roughness cannot
be determined since there is no saturation. The scattering cross-section is in this
case,

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2
∫

dr‖e−
q2
z
2 AR2h

eiq‖.r‖ , (2.59)

and can be expressed in polar coordinates as

dσ
dΩ

=
r2

0ρ2
e LxLy

q2
z

(êin .̂esc)2
∫

dr‖e−
q2
z
2 AR2h

J0(q‖r‖), (2.60)

with q‖ being the modulus of the in-plane scattering wave vector and J0 the zeroth
order Bessel function. The above integral has analytical solutions for h = 0.5 and
h = 1 and has to be calculated numerically in other cases. For h = 1, the integration
yields,

dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

(êin .̂esc)2e
−q2

‖/q4
z , (2.61)

and for h = 0.5,

dσ
dΩ

= (êin .̂esc)2 r2
eρ2

elLxLy

q2
z

πA(
q2
‖ +
(

A
2

)2
q4

z

)3/2
. (2.62)

The above expressions clearly show that for surfaces of this kind the scattering is
purely diffuse (no Dirac distribution, no specular component).

2.5.3.2 Surfaces with Cut-Off

Rough surfaces are said to present a cut-off length when the correlation function
Czz(r‖) tends to zero when r‖ increases (for example see Eq. (2.26), when Czz(r‖) =

σ2 exp
(
−

r2h
‖
ξ 2h

)
, the cut-off is ξ ). In this general case an analytical calculation is not

possible and the scattering cross-section becomes,
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dσ
dΩ

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖eq2
zCzz(r‖)eiq‖.r‖ . (2.63)

The integrand in Eq. (2.63) does not tend to 0 when r‖ is increased. The inte-
gration over an infinite surface does not exist in the function sense. Indeed, dσ/dΩ
accounts for both the coherent and incoherent contributions to the scattered power.
It is possible to extract the specular (coherent) and the diffuse (incoherent) compo-
nents by writing the integrand in the form,

eq2
zCzz(r‖) = 1+

(
eq2

zCzz(r‖) −1
)

. (2.64)

The distributive part (or Dirac function) characterises the coherent or specular re-
flectivity while the regular part gives the diffuse power. Equation (2.63) is then cast
in the form,

dσ
dΩ

=
(

dσ
dΩ

)
coh

+
(

dσ
dΩ

)
incoh

, (2.65)

with
(

dσ
dΩ

)
coh

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖eiq‖.r‖

=
4π2r2

eρ2
elLxLy

q2
z

e−q2
zσ2

δ (q‖)(êin .̂esc)2 (2.66)

and
(

dσ
dΩ

)
incoh

=
r2

eρ2
elLxLy

q2
z

e−q2
zσ2

(êin .̂esc)2
∫

dr‖
(

eq2
zCzz(r‖) −1

)
eiq‖.r‖ . (2.67)

The specular part is similar to that of a flat surface except that it is reduced by the
roughness Debye–Waller factor e−q2

zσ2
. The diffuse scattering part may be deter-

mined numerically if one knows the functional form of the correlation function.
When q2

zCzz(r‖) is small, the exponential can be developed as 1+q2
zCzz(r‖). In this

case, the differential scattering cross-section appears to be proportional to the power
spectrum of the surface P(q‖),

(
dσ
dΩ

)
incoh

= r2
eρ2

elLxLye−q2
zσ2

4π2P(q‖)(êin .̂esc)2. (2.68)

We see with Eqs. (2.66) and (2.68) that the Born assumption permits to evaluate
both the coherent and incoherent scattering cross-sections of rough surfaces in a
relatively simple way. This technique can be applied without additional difficulties
to more complicated structures such as multilayers or inhomogeneous films. Unfor-
tunately, in many configurations, the Born assumption proves to be too restrictive
and one can miss major features of the scattering process. More accurate models
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such as the distorted-wave Born approximation have been developed and are pre-
sented in Chap. 4 of this book. Yet, the expressions of the coherent and incoherent
scattering cross-sections given here by the first Born approximation provide useful
insights on how the measured intensity relates to the shape (statistics) of the sam-
ple. The coherent reflectivity, Eq. (2.66), does not give direct information on the
surface lateral fluctuations, except for the overall roughness σ , but it provides the
electronic density of the plane substrate. Hence, reflectivity experiments are used
in general to probe, along the vertical axis, the electronic density of samples that
is roughly homogeneous in the (xOy) plane but varies in a deterministic way along
Oz (e.g. typically multilayers). Chapter 3 of this book is devoted to this issue. On
the other hand the incoherent scattering Eq. (2.68) is directly linked to the height–
height correlation function of the surface. Bearing in mind the physical meaning
of the power spectrum, Sect. 2.2.3, we see that measuring the diffuse intensity at
increasing q‖ permits to probe the surface state at decreasing lateral scales. Hence,
scattering experiments can be a powerful tool to characterise the rough sample in
the lateral (Oxy) plane. This property will be developed and detailed in Chap. 4.
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