
Preface to the Fourth Edition

This fourth edition of Stochastic Methods is thoroughly revised and augmented, and
has been completely reset. While keeping to the spirit of the book I wrote originally,
I have reorganised the chapters of Fokker-Planck equations and those on approx-
imation methods, and introduced new material on the white noise limit of driven
stochastic systems, and on applications and validity of simulation methods based on
the Poisson representation. Further, in response to the revolution in financial mar-
kets following from the discovery by Fischer Black and Myron Scholes of a reliable
option pricing formula, I have written a chapter on the application of stochastic meth-
ods to financial markets. In doing this, I have not restricted myself to the geometric
Brownian motion model, but have also attempted to give some flavour of the kinds of
methods used to take account of the realities of financial markets. This means that I
have also given a treatment of Lévy processes and their applications to finance, since
these are central to most current thinking.

Since this book was written the rigorous mathematical formulation of stochastic
processes has developed considerably, most particularly towards greater precision
and generality, and this has been reflected in the way the subject is presented in mod-
ern applications, particularly in finance. Nevertheless, I have decided to adhere to my
original decision, to use relatively simple language without excessive rigour; indeed
I am not convinced that the increase in rigour and precision has been of significant
help to those who want to use stochastic methods as a practical tool.

The new organisation of the material in the book is as in the figure on the next
page. Instead of the original ten chapters, there are now fifteen. Some of the increase
is a result of my decision to divide up some of the larger chapters into tighter and
more logically structured smaller chapters, but Chapters 8 and 10 are completely
new. The basic structure of the book is much the same, building on the basis of Ito
stochastic differential equations, and then extending into Fokker-Planck equations
and jump processes. I have put all of the work on the Poisson representation into a
single chapter, and augmented this chapter with new material.

Stochastic Methods, although originally conceived as a book for physicists, chem-
ists and similar scientists, has developed a readership with far more varied tastes,
and this new edition is designed to cater better for the wider readership, as well as to
those I originally had in mind. At the same time, I have tried hard to maintain “look
and feel” of the original, and the same degree of accessibility.

University of Otago, New Zealand C.W. Gardiner
July, 2008

From the Preface to the First Edition

My intention in writing this book was to put down in relatively simple language and
in a reasonably deductive form, all those formulae and methods which have been
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From the Preface to the First Edition VII

scattered throughout the scientific literature on stochastic methods throughout the
eighty years that they have been in use. This might seem an unnecessary aim since
there are scores of books entitled “Stochastic Processes”, and similar titles, but care-
ful perusal of these soon shows that their aim does not coincide with mine. There are
purely theoretical and highly mathematical books, there are books related to electri-
cal engineering or communication theory, and there are books for biologists—many
of them very good, but none of them covering the kind of applications that appear
nowadays so frequently in Statistical Physics, Physical Chemistry, Quantum Optics
and Electronics, and a host of other theoretical subjects.

The main new point of view here is the amount of space which deals with methods
of approximating problems, or transforming them for the purpose of approximating
them. I am fully aware that many workers will not see their methods here. But my
criterion here has been whether an approximation is systematic. Many approxima-
tions are based on unjustifiable or uncontrollable assumptions, and are justified a
posteriori. Such approximations are not the subject of a systematic book—at least,
not until they are properly formulated, and their range of validity controlled. In some
cases I have been able to put certain approximations on a systematic basis, and they
appear here—in other cases I have not.

A word on the background assumed. The reader must have a good knowledge
of practical calculus including contour integration, matrix algebra, differential equa-
tions, both ordinary and partial, at the level expected of a first degree in applied
mathematics, physics or theoretical chemistry.

I expect the readership to consist mainly of theoretical physicists and chemists, and
thus the general standard is that of these people. This is not a rigorous book in the
mathematical sense, but it contains results, all of which I am confident are provable
rigorously, and whose proofs can be developed out of the demonstrations given. The
organisation of the book is as in the following table, and might raise some eyebrows.
For, after introducing the general properties of Markov processes, I have chosen to
base the treatment on the conceptually difficult but intuitively appealing concept of
the stochastic differential equation. I do this because of my own experience of the
simplicity of stochastic differential equation methods, once one has become familiar
with the Ito calculus, which I have presented in Chap. 4 in a rather straightforward
manner, such as I have not seen in any previous text.

For the sake of compactness and simplicity I have normally presented only one
way of formulating certain methods. For example, there are several different ways
of formulating the adiabatic elimination results, though few have been used in this
context. To have given a survey of all formulations would have required an enormous
and almost unreadable book. However, where appropriate I have included specific
references, and further relevant matter can be found in the general bibliography.

Hamilton, New Zealand C.W. Gardiner
January, 1983



2. Probability Concepts

In the preceding chapter, we introduced probability notions without any definitions.
In order to formulate essential concepts more precisely, it is necessary to have some
more precise expression of these concepts. The intention of this chapter is to provide
some background, and to present a number of essential results. It is not a thorough
outline of mathematical probability, for which the reader is referred to standard math-
ematical texts such as those by Feller [2.1] and Papoulis [2.2].

2.1 Events, and Sets of Events

It is convenient to use a notation which is as general as possible in order to describe
those occurrences to which we might wish to assign probabilities. For example, we
may wish to talk about a situation in which there are 6.4×1014 molecules in a certain
region of space; or a situation in which a Brownian particle is at a certain point x in
space; or possibly there are 10 mice and 3 owls in a certain region of a forest.

These occurrences are all examples of practical realisations of events. More ab-
stractly, an event is simply a member of a certain space, which in the cases most
practically occurring can be characterised by a vector of integers

n = (n1, n2, n3 . . . ) , (2.1.1)

or a vector of real numbers

x = (x1, x2, x3 . . . ) . (2.1.2)

The dimension of the vector is arbitrary.
It is convenient to use the language of set theory, introduce the concept of a set of

events, and use the notation

ω ∈ A , (2.1.3)

to indicate that the event ω is one of events contained in A. For example, one may
consider the set A(25) of events in the ecological population in which there are no
more than 25 animals present; clearly the event ω̄ that there are 3 mice, a tiger, and
no other animals present satisfies

ω̄ ∈ A(25) . (2.1.4)

More significantly, suppose we define the set of events A(r,ΔV) that a molecule
is within a volume element ΔV centred on a point r. In this case, the practical sig-
nificance of working in terms of sets of events becomes clear, because we should
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normally be able to determine whether or not a molecule is within a neighbourhood
ΔV of r, but to determine whether the particle is exactly at r is impossible. Thus, if
we define the event ω(y) that the molecule is at point y, it makes sense to ask whether

ω(y) ∈ A(r,ΔV) , (2.1.5)

and to assign a certain probability to the set A(r,ΔV), which is to be interpreted as
the probability of the occurrence of (2.1.5).

2.2 Probabilities

Most people have an intuitive conception of a probability, based on their own experi-
ence. However, a precise formulation of intuitive concepts is fraught with difficulties,
and it has been found most convenient to axiomatise probability theory as an essen-
tially abstract science, in which a probability measure P(A) is assigned to every set
A, in the space of events, including

The set of all events : Ω , (2.2.1)

The set of no events : ∅ , (2.2.2)

in order to define probability, we need our sets of events to form a closed system
(known by mathematicians as a σ-algebra) under the set theoretic operations of
union and intersection.

2.2.1 Probability Axioms

We introduce the probability of A, P(A), as a function of A satisfying the following
probability axioms:

i) P(A) � 0 for all A , (2.2.3)
ii) P(Ω) = 1 , (2.2.4)
iii) If Ai (i = 1, 2, 3, . . . ) is a countable (but possibly infinite) collection of

nonoverlapping sets, i.e., such that

Ai ∩ Ai = ∅ for all i � j , (2.2.5)

then

P
(⋃

i
A
)

=
∑
i

P(Ai) . (2.2.6)

These are all the axioms needed. Consequentially, however, we have:
iv) if Ā is the complement of A, i.e., the set of all events not contained in A, then

P(Ā) = 1 − P(A) , (2.2.7)

v) P(∅) = 0 . (2.2.8)
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2.2.2 The Meaning of P(A)

There is no way of making probability theory correspond to reality without requir-
ing a certain degree of intuition. The probability P(A), as axiomatised above, is the
intuitive probability that an “arbitrary” event ω, i.e., an event ω “chosen at ran-
dom”, will satisfy ω ∈ A. Or more explicitly, if we choose an event “at random”
from Ω N times, the relative frequency that the particular event chosen will satisfy
ω ∈ A approaches P(A) as the number of times, N, we choose the event, approaches
infinity. The number of choices N can be visualised as being done one after the
other (“independent” tosses of one die) or at the same time (N dice are thrown at
the same time “independently”). All definitions of this kind must be intuitive, as we
can see by the way undefined terms (“arbitrary”, “at random”, “independent”) keep
turning up. By eliminating what we now think of as intuitive ideas and axiomatis-
ing probability, Kolmogorov [2.3] cleared the road for a rigorous development of
mathematical probability. But the circular definition problems posed by wanting an
intuitive understanding remain. The simplest way of looking at axiomatic probabil-
ity is as a formal method of manipulating probabilities using the axioms. In order to
apply the theory, the probability space must be defined and the probability measure
P assigned. These are a priori probabilities, which are simply assumed. Examples
of such a priori probabilities abound in applied disciplines. For example, in equilib-
rium statistical mechanics one assigns equal probabilities to equal volumes of phase
space. Einstein’s reasoning in Brownian motion assigned a probability φ(Δ) to the
probability of a “push” Δ from a position x at time t.

The task of applying probability is

i) To assume some set of a priori probabilities which seem reasonable and to de-
duce results from this and from the structure of the probability space,

ii) To measure experimental results with some apparatus which is constructed to
measure quantities in accordance with these a priori probabilities.

The structure of the probability space is very important, especially when the space of
events is compounded by the additional concept of time. This extension makes the
effective probability space infinite-dimensional, since we can construct events such
as “the particle was at points xn at times tn for n = 0, 1, 2, . . . ,∞”.

2.2.3 The Meaning of the Axioms

Any intuitive concept of probability gives rise to nonnegative probabilities, and the
probability that an arbitrary event is contained in the set of all events must be 1
no matter what our definition of the word arbitrary. Hence, axioms i) and ii) are
understandable. The heart of the matter lies in axiom iii). Suppose we are dealing
with only 2 sets A and B, and A ∩ B = ∅. This means there are no events contained
in both A and B. Therefore, the probability that ω ∈ A ∪ B is the probability that
either ω ∈ A or ω ∈ B. Intuitive considerations tell us this probability is the sum of
the individual probabilities, i.e.,
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P(A ∪ B) ≡ P{(ω ∈ A) or (ω ∈ B)} = P(A) + P(B) . (2.2.9)

Notice this is not a proof—merely an explanation.
The extension now to any finite number of nonoverlapping sets is obvious, but

the extension only to any countable number of nonoverlapping sets requires some
comment.

This extension must be made restrictive because of the existence of sets labelled
by a continuous index, for example, x, the position in space. The probability of a
molecule being in the set whose only element in x is zero; but the probability of
being in a region R of finite volume is nonzero. The region R is a union of sets of
the form {x}—but not a countable union. Thus axiom iii) is not applicable and the
probability of being in R is not equal to the sum of the probabilities of being in {x}.

2.2.4 Random Variables

The concept of a random variable is a notational convenience which is central to this
book. Suppose we have an abstract probability space whose events can be written
x. Then we can introduce the random variable F(x) which is a function of x, which
takes on certain values for each x. In particular, the identity function of x, written
X(x) is of interest; it is given by

X(x) = x . (2.2.10)

We shall normally use capitals in this book to denote random variables and small
letters x to denote their values whenever it is necessary to make a distinction.

Very often, we have some quite different underlying probability space Ω with val-
ues ω, and talk about X(ω) which is some function of ω, and then omit explicit
mention of ω. This can be for either of two reasons:

i) we specify the events by the values of x anyway, i.e., we identify x and ω;
ii) the underlying events ω are too complicated to describe, or sometimes, even to

know.

For example, in the case of the position of a molecule in a liquid, we really should
interpret each ω as being capable of specifying all the positions, momenta, and ori-
entations of each molecule in that volume of liquid; but this is simply too difficult to
write down, and often unnecessary.

One great advantage of introducing the concept of a random variable is the sim-
plicity with which one may handle functions of random variables, e.g., X2, sin(a ·X),
etc., and compute means and distributions of these. Further, by defining stochastic
differential equations, one can also quite simply talk about time development of ran-
dom variables in a way which is quite analogous to the classical description by means
of differential equations of non-probabilistic systems.
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2.3 Joint and Conditional Probabilities: Independence

2.3.1 Joint Probabilities

We explained in Sect. 2.2.3 how the occurrence of mutually exclusive events is re-
lated to the concept of nonintersecting sets. We now consider the concept P(A ∩ B),
where A∩B is nonempty. An eventωwhich satisfiesω ∈ A will only satisfyω ∈ A∩B
if ω ∈ B as well.

Thus, P(A ∩ B) = P{(ω ∈ A) and (ω ∈ B)} , (2.3.1)

and P(A ∩ B) is called the joint probability that the event ω is contained in both
classes, or, alternatively, that both the events ω ∈ A and ω ∈ B occur. Joint probabil-
ities occur naturally in the context of this book in two ways:

i) When the event is specified by a vector, e.g., m mice and n tigers. The probability
of this event is the joint probability of [m mice (and any number of tigers)] and
[n tigers (and any number of mice)]. All vector specifications are implicitly joint
probabilities in this sense.

ii) When more than one time is considered : what is the probability that (at time t1
there are m1 tigers and n1 mice) and (at time t2 there are m2 tigers and n2 mice).
To consider such a probability, we have effectively created out of the events at
time t1 and events at time t2, joint events involving one event at each time. In
essence, there is no difference between these two cases except for the fundamental
dynamical role of time.

2.3.2 Conditional Probabilities

We may specify conditions on the events we are interested in and consider only these,
e.g., the probability of 21 buffaloes given that we know there are 100 lions. What does
this mean? Clearly, we will be interested only in those events contained in the set B =

{all events where exactly 100 lions occur}. This means that we to define conditional
probabilities, which are defined only on the collection of all sets contained in B. we
define the conditional probability as

P(A | B) = P(A ∩ B)/P(B) , (2.3.2)

and this satisfies our intuitive conception that the conditional probability that ω ∈ A
(given that we know ω ∈ B), is given by dividing the probability of joint occurrence
by the probability (ω ∈ B).

We can define in both directions, i.e., we have

P(A ∩ B) = P(A | B)P(B) = P(B | A)P(A) . (2.3.3)

There is no particular conceptual difference between, say, the probability of {(21
buffaloes) given (100 lions)} and the reversed concept. However, when two times
are involved, we do see a difference. For example, the probability that a particle is
at position x1 at time t1, given that it was at x2 at the previous time t2, is a very
natural thing to consider; indeed, it will turn out to be a central concept in this book.
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The converse looks to the past rather than the future; given that a particle is at x1 at
time t1, what is the probability that that at the previous time t2 it was at position x2.
The first concept—the forward probability—looks at where the particle will go, the
second—the backward probability—at where it came from.

The forward probability has already occurred in this book, for example, the
φ(Δ)dΔ of Einstein (Sect. 1.2.1) is the probability that a particle at x at time t will
be in the range [x + Δ, x + Δ + dΔ] at time t + τ, and similarly in the other exam-
ples. Our intuition tells us as it told Einstein (as can be seen by reading the extract
from his paper) that this kind of conditional probability is directly related to the time
development of a probabilistic system.

2.3.3 Relationship Between Joint Probabilities of Different Orders

Suppose we have a collection of sets Bi such that

Bi ∩ Bj = ∅ , (2.3.4)
⋃
i

Bi = Ω , (2.3.5)

so that the sets divide up the space Ω into nonoverlapping subsets.
Then

⋃
i

(A ∩ Bi) = A ∩
( ⋃

i
Bi

)
= A ∩ Ω = A . (2.3.6)

Using now the probability axiom iii), we see that A ∩ Bi satisfy the conditions on
the Ai used there, so that

∑
i

P(A ∩ Bi) = P
(⋃

i
(A ∩ Bi)

)
, (2.3.7)

= P(A) , (2.3.8)

and thus
∑
i

P(A | Bi)P(Bi) = P(A) . (2.3.9)

Thus, summing over all mutually exclusive possibilities of B in the joint probability
eliminates that variable.

Hence, in general,
∑
i

P(Ai ∩ Bj ∩Ck . . . ) = P(Bj ∩Ck ∩ . . . ) . (2.3.10)

The result (2.3.9) has very significant consequences in the development of the theory
of stochastic processes, which depends heavily on joint probabilities.

2.3.4 Independence

We need a probabilistic way of specifying what we mean by independent events.
Two sets of events A and B should represent independent sets of events if the spec-
ification that a particular event is contained in B has no influence on the probability
of that event belonging to A. Thus, the conditional probability P(A | B) should be
independent of B, and hence
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P(A ∩ B) = P(A)P(B) . (2.3.11)

In the case of several events, we need a somewhat stronger specification. The events
(ω ∈ Ai)(i = 1, 2, . . . , n) will be considered to be independent if for any subset
(i1, i2, . . . , ik) of the set (1, 2, . . . , n),

P(Ai1 ∩ Ai2 . . . Aik ) = P(Ai1 )P(Ai2 ) . . . P(Aik ) . (2.3.12)

It is important to require factorisation for all possible combinations, as in (2.3.12).
For example, for three sets Ai, it is quite conceivable that

P(Ai ∩ Aj) = P(Ai)P(Aj) , (2.3.13)

for all different i and j, but also that

A1 ∩ A2 = A2 ∩ A3 = A3 ∩ A1 . (see Fig. 2.1) (2.3.14)

This requires

P(A1 ∩ A2 ∩ A3) = P(A2 ∩ A3 ∩ A3) = P(A2 ∩ A3)

= P(A2)P(A3) � P(A1)P(A2)P(A3) . (2.3.15)

We can see that the occurrence of ω ∈ A2 and ω ∈ A3 necessarily implies the occur-
rence of ω ∈ A1. In this sense the events are obviously not independent.

Random variables X1, X2, X3, . . . , will be said to be independent random variables,
if for all sets of the form Ai = x such that ai � x � bi) the events X1 ∈ A1, X2 ∈
A2, X3 ∈ A3, . . . are independent events. This will mean that all values of the Xi are
assumed independently of those of the remaining Xi.

2.4 Mean Values and Probability Density

The mean value (or expectation) of a random variable R(ω) in which the basic events
ω are countably specifiable is given by

〈R〉 =
∑
ω

P(ω)R(ω) , (2.4.1)

A1 A2

A3

Fig. 2.1. Illustration of statistical inde-
pendence in pairs, but not in threes. In
the three sets Aj ∩ Ai is, in all cases, the
central region. By appropriate choice
of probabilities, it can be arranged that
P(Ai ∩ Aj) = P(Ai)P(Aj).
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where P(ω) means the probability of the set containing only the single event ω. In
the case of a continuous variable, the probability axioms above enable us to define a
probability density function p(ω) such that if A(ω0, dω0) is the set

(ω0 � ω < ω0 + dω0) , (2.4.2)

then

p(ω0)dω0 = P[A(ω0, dω0)] ≡ p(ω0, dω0) . (2.4.3)

The last is a notation often used by mathematicians. Details of how this is done have
been nicely explained by Feller [2.1]. In this case,

〈R〉 = ∫
ω∈Ω

dω R(ω)p(ω) . (2.4.4)

One can often (as mentioned in Sect. 2.2.4) use R itself to specify the event, so we
will often write

〈R〉 = ∫ dR R p(R) . (2.4.5)

Obviously, p(R) is not the same function of R as p(ω) is of ω—more precisely

p(R0) dR0 = P (R0 < R < R0 + dR0) . (2.4.6)

2.4.1 Determination of Probability Density by Means of Arbitrary Functions

Suppose for every function f (R) we know

〈 f (R)〉 = ∫ dR f (R)p(R) , (2.4.7)

then we know p(R), which is known as a probability density. The proof follows by
choosing

f (R) =

⎧⎪⎪⎨⎪⎪⎩
1 R0 � R < R0 + dR0 ,

0 otherwise .
(2.4.8)

Because the expectation of an arbitrary function is sometimes a little easier to work
with than a density, this relation will be used occasionally in this book.
Notation: The notation 〈A〉 for the expectation used in this book is a physicist’s
notation. The most common mathematical notation is E(A), which is in my opinion
a little less intuitive.

2.4.2 Sets of Probability Zero

If a density p(R) exists, the probability that R is in the interval (R0,R0 + dR) goes
to zero with dR. Hence, the probability that R has exactly the value R0 is zero; and
similarly for any other value.

Thus, in such a case, there are sets S (Ri), each containing only one point Ri, which
have zero probability. From probability axiom iii), any countable union of such sets,
i.e., any set containing only a countable number of points (e.g., all rational numbers)
has probability zero. In general, all equalities in probability theory are at best only
“almost certainly true”, i.e., they may be untrue on sets of probability zero. Alterna-
tively, one says, for example,
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X = Y with probability 1 , (2.4.9)

which is by no means the same as saying that

X(R) = Y(R) for all R . (2.4.10)

Of course, if the theory is to have any connection with reality, events with probability
zero do not occur.

In particular, notice that our previous result if inspected carefully, only implies
that we know p(R) only with probability 1, given that we know 〈 f (R)〉 for all f (R).

2.5 The Interpretation of Mean Values

The question of what to measure in a probabilistic system is nontrivial. In practice,
one measures either a set of individual values of a random variable (the number of
animals of a certain kind in a certain region at certain points in time; the electric
current passing through a given circuit element in each of a large number of replicas
of that circuit, etc.) or alternatively, the measuring procedure may implicitly con-
struct an average of some kind. For example, to measure an electric current, we may
measure the electric charge transferred and divide by the time taken—this gives a
measure of the average number of electrons transferred per unit time. It is important
to note the essential difference in this case, that it will not normally be possible to
measure anything other than a few selected averages and thus, higher moments (for
example) will be unavailable.

In contrast, when we measure individual events (as in counting animals), we can
then construct averages of the observables by the obvious method

X̄N =
1
N

N∑
n=1

X(n) . (2.5.1)

The quantities X(n) are the individual observed values of the quantity X. We expect
that as the number of samples N becomes very large, the quantity X̄N approaches the
mean 〈X〉 and that, in fact,

lim
N→∞

1
N

N∑
n=1

f [X(n)] = lim
N→∞

f (X)N = 〈 f (X)〉 (2.5.2)

and such a procedure will determine the probability density function p(x) of X if we
carry out this procedure for all functions f . The validity of this procedure depends
on the degree of independence of the successive measurements and is dealt with in
Sect. 2.5.2.

In the case where only averages themselves are directly determined by the mea-
suring method, it will not normally be possible to measure X(n) and therefore, it
will not, in general, be possible to determine f (X)N . All that will be available will
be f (X̄N)—quite a different thing unless f is linear. We can often find situations in
which measurable quantities are related (by means of some theory) to mean values
of certain functions, but to hope to measure, for example, the mean value of an arbi-
trary function of the number of electrons in a conductor is quite hopeless. The mean
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number—yes, and indeed even the mean square number, but the measuring methods
available are not direct. We do not enumerate the individual numbers of electrons at
different times and hence arbitrary functions are not attainable.

2.5.1 Moments, Correlations, and Covariances

Quantities of interest are given by the moments 〈Xn〉 since these are often easily
calculated. However, probability densities must always vanish as x → ±∞, so we
see that higher moments tell us only about the properties of unlikely large values of
X. In practice we find that the most important quantities are related to the first and
second moments. In particular, for a single variable X, the variance defined by

var[X] ≡ {σ[X]}2 ≡ 〈[X − 〈X〉]2〉 , (2.5.3)

and as is well known, the variance var[X] or its square root the standard deviation
σ[X], is a measure of the degree to which the values of X deviate from the mean
value 〈X〉.

In the case of several variables, we define the covariance matrix as

〈Xi, Xj〉 ≡ 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 ≡ 〈XiXj〉 − 〈Xi〉〈Xj〉 . (2.5.4)

Obviously,

〈Xi, Xi〉 = var[Xi]. (2.5.5)

If the variables are independent in pairs, the covariance matrix is diagonal.

2.5.2 The Law of Large Numbers

As an application of the previous concepts, let us investigate the following model
of measurement. We assume that we measure the same quantity N times, obtaining
sample values of the random variable X(n); (n = 1, 2, . . . ,N). Since these are all
measurements of the same quantity at successive times, we assume that for every
n, X(n) has the same probability distribution but we do not assume the X(n) to be
independent. However, provided the covariance matrix 〈X(n), X(m)〉 vanishes suffi-
ciently rapidly as |n − m| → ∞, then defining

X̄N =
1
N

N∑
n=1

X(n) , (2.5.6)

we shall show

lim
N→∞

X̄N = 〈X〉 . (2.5.7)

It is clear that

〈X̄N〉 = 〈X〉 . (2.5.8)

We now calculate the variance of X̄N and show that as N → ∞ it vanishes under
certain conditions:
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〈X̄N X̄N〉 − 〈X̄N〉2 =
1

N2

N∑
n,m=1
〈Xn, Xm〉 . (2.5.9)

Provided 〈Xn, Xm〉 falls off sufficiently rapidly as |n − m| → ∞, we find

lim
N→∞

(var[X̄N]) = 0 , (2.5.10)

so that lim
N→∞

X̄N is a deterministic variable equal to 〈X〉.
Two models of 〈Xn, Xm〉 can be chosen.

a) 〈Xn, Xm〉 ∼ Kλ|m−n| , (λ < 1) , (2.5.11)

for which one finds

var[X̄N] =
2K
N2

(
λN+2 − N(λ − 1) − λ

(λ − 1)2

)
− K

N
→ 0 . (2.5.12)

b) 〈Xn, Xm〉 ∼ |n − m|−1 , (n � m) , (2.5.13)

and one finds approximately

var[X̄N] ∼ 2
N

log N − 1
N
→ 0 . (2.5.14)

In both these cases, var[XN]→ 0, but the rate of convergence is very different. Inter-
preting n,m as the times at which the measurement is carried out, one sees than even
very slowly decaying correlations are permissible. The law of large numbers comes
in many forms, which are nicely summarised by Papoulis [2.2]. The central limit
theorem is an even more precise result in which the limiting distribution function of
X̄N − 〈X〉 is determined (see Sect. 2.8.2).

2.6 Characteristic Function

One would like a condition where the variables are independent, not just in pairs. To
this end (and others) we define the characteristic function.

If s is the vector (s1, s2, . . . , sn), and X = (X1, X2, . . . , Xn) is a vector of random
variables, then the characteristic function (or moment generating function) is defined
by

φ(s) = 〈exp(is · X)〉 = ∫ dx p(x) exp(is · x) . (2.6.1)

The characteristic function has the following properties ([2.1], Chap. XV)

i) φ(0) = 1 .

ii)
∣∣∣φ(s)

∣∣∣ � 1 .

iii) φ(s) is a uniformly continuous function of its arguments for all finite real s [2.4].

iv) If the moments 〈∏
i

Xmi
i 〉 exist, then

〈 ∏
i

Xmi
i

〉
=

[∏
i

(
−i

∂

∂si

)mi

φ(s)

]

s=0
. (2.6.2)
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v) A sequence of probability densities converges to limiting probability density if
and only if the corresponding characteristic functions converge to the correspond-
ing characteristic function of the limiting probability density.

vi) Fourier inversion formula

p(x) = (2π)−n ∫ ds φ(s) exp(−ix · s) . (2.6.3)

Because of this inversion formula, φ(s) determines p(x) with probability 1.
Hence, the characteristic function does truly characterise the probability density.

vii) Independent random variables: from the definition of independent random vari-
ables in Sect. 2.3.4, it follows that the variables X1, X2 . . . are independent if and
only if

p(x1, x2, . . . , xn) = p1(x1)p2(x2) . . . pn(xn) , (2.6.4)

in which case,

φ(s1, s2, . . . sn) = φ1(s1)φ2(s2) . . . φn(sn). (2.6.5)

viii) Sum of independent random variables: if X1, X2, . . . , are independent random
variables and if

Y =
n∑

i=1
Xi , (2.6.6)

and the characteristic function of Y is

φy(s) = 〈exp(isY)〉 , (2.6.7)

then

φy(s) =
n∏

i=1
φi(s) . (2.6.8)

The characteristic function plays an important role in this book which arises from
the convergence property (v), which allows us to perform limiting processes on the
characteristic function rather than the probability distribution itself, and often makes
proofs easier. Further, the fact that the characteristic function is truly characteristic,
i.e., the inversion formula (vi), shows that different characteristic functions arise from
different distributions. As well as this, the straightforward derivation of the moments
by (2.6.2) makes any determination of the characteristic function directly relevant to
measurable quantities.

2.7 Cumulant Generating Function: Correlation Functions
and Cumulants

A further important property of the characteristic function arises by considering its
logarithm

Φ(s) = log φ(s) , (2.7.1)
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which is called the cumulant generating function. Let us assume that all moments
exist so that φ(s) and hence, Φ(s), is expandable in a power series which can be
written as

Φ(s) =
∞∑

r=1
ir

∑
{m}
〈〈Xm1

1 Xm2
2 . . . Xmn

n 〉〉
sm1

1 sm2
2 . . . smn

n

m1!m2! . . .mn!
δ

(
r,

n∑
i=1

mi

)
,

(2.7.2)

where the quantities 〈〈Xm1
1 Xm2

2 . . . Xmn
n 〉〉 are called the cumulants of the variables X.

The notation chosen should not be taken to mean that the cumulants are functions of
the particular product of powers of the X; it rather indicates the moment of highest
order which occurs in their expression in terms of moments. Stratonovich [2.5] also
uses the term correlation functions, a term which we shall reserve for cumulants
which involve more than one Xi. For, if the X are all independent, the factorisation
property (2.6.6) implies that Φ(s) (the cumulant generating function) is a sum of
n terms, each of which is a function of only one si and hence the coefficient of
mixed terms, i.e., the correlation functions (in our terminology) are all zero and the
converse is also true. Thus, the magnitude of the correlation functions is a measure
of the degree of correlation.

The cumulants and correlation functions can be evaluated in terms of moments by
expanding the characteristic function as a power series:

φ(s) =
∞∑

r=1

ir

r!
∑
{m}
〈Xm1

1 Xm2
2 . . . Xmn

n 〉
r!

m1!m2! . . .mn!
δ

(
r,

n∑
i=1

mi

)
sm1

1 sm2
2 . . . smn

n .

(2.7.3)

Expanding the logarithm in a power series, and comparing it with (2.7.2) for Φ(s),
the relationship between the cumulants and the moments can be deduced. No simple
formula can be given, but the first few cumulants can be exhibited: we find

〈〈Xi〉〉 = 〈Xi〉 , (2.7.4)

〈〈XiXj〉〉 = 〈XiXj〉 − 〈Xi〉〈Xj〉 , (2.7.5)

〈〈XiXjXk〉〉 = 〈XiXjXk〉 − 〈XiXj〉〈Xk〉 − 〈Xi〉〈XjXk〉 − 〈XiXk〉〈Xj〉 + 2〈Xi〉〈Xj〉〈Xk〉 .
(2.7.6)

Here, all formulae are also valid for any number of equal i, j, k, l. An explicit gen-
eral formula can be given as follows. Suppose we wish to calculate the cumulant
〈〈X1X2X3 . . . Xn〉〉. The procedure is the following:

i) Write a sequence of n dots . . . . . . ;
ii) Divide into p + 1 subsets by inserting angle brackets

〈. . . 〉〈. .〉〈. . . . . . 〉. .〈. .〉 ; (2.7.7)

iii) Distribute the symbols X1 . . . Xn in place of the dots in such a way that all differ-
ent expressions of this kind occur, e.g.,

〈X1〉〈X2X3〉 = 〈X1〉〈X3X2〉 � 〈X3〉〈X1X2〉 ; (2.7.8)

iv) Take the sum of all such terms for a given p. Call this Cp(X1, X2, . . . , Xn);
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v) 〈〈X1X2 . . . Xn〉〉 =
n−1∑
p=0

(−1)p p!Cp(X1, X2, . . . , Xn) . (2.7.9)

A derivation of this formula was given by Meeron [2.6]. The particular procedure
is due to van Kampen [2.7].

vi) Cumulants in which there is one or more repeated element:
For example 〈〈X2

1 X3X2〉〉—simply evaluate 〈〈X1X2X3X4〉〉 and set X4 = X1 in the
resulting expression.

2.7.1 Example: Cumulant of Order 4: 〈〈X1X2X3X4〉〉

a) p = 0

Only term is 〈X1X2X3X4〉 = C0(X1X2X3X4).

b) p = 1

Partition 〈.〉〈. . . 〉
Term {〈X1〉〈X2X3X4〉 + 〈X2〉〈X3X4X1〉 + 〈X3〉〈X4X1X2〉

+〈X4〉〈X1X2X3〉} ≡ D1

partition 〈. .〉〈. .〉
Term 〈X1X2〉〈X3X4〉 + 〈X1X3〉〈X2X4〉 + 〈X1X4〉〈X2X3〉 ≡ D2 .

Hence,

D1 + D2 = C1(X1X2X3X4) . (2.7.10)

c) p = 2

Partition 〈.〉〈.〉〈. .〉
Term 〈X1〉〈X2〉〈X3X4〉 + 〈X1〉〈X3〉〈X2X4〉 + 〈X1〉〈X4〉〈X2X3〉

+〈X2〉〈X3〉〈X1X4〉 + 〈X2〉〈X4〉〈X1X3〉 + 〈X3〉〈X4〉〈X1X2〉
= C2(X1X2X3X4).

d) p = 3

Partition 〈.〉〈.〉〈.〉〈.〉
Term 〈X1〉〈X2〉〈X3〉〈X4〉 = C3(X1X2X3X4) .

Hence,

〈〈X1X2X3X4〉〉 = C0 −C1 + 2C2 − 6C3 . (2.7.11)

2.7.2 Significance of Cumulants

From (2.7.4, 2.7.5) we see that the first two cumulants are the means 〈Xi〉 and co-
variances 〈Xi, Xj〉. Higher-order cumulants contain information of decreasing signifi-
cance, unlike higher-order moments. We cannot set all moments higher than a certain
order equal to zero since 〈X2n〉 � 〈Xn〉2 and thus, all moments contain information
about lower moments.

For cumulants, however, we can consistently set
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〈〈X〉〉 = a ,

〈〈X2〉〉 = σ2 ,

〈〈Xn〉〉 = 0 , (n > 2) ,

and we can easily deduce by using the inversion formula for the characteristic func-
tion that

p(x) =
1

σ
√

2π
exp

(
− (x − a)2

2σ2

)
, (2.7.12)

that is, a Gaussian probability distribution. It does not, however, seem possible to
give more than this intuitive justification. Indeed, the theorem of Marcinkiewicz [2.8,
2.9] shows that the cumulant generating function cannot be a polynomial of degree
greater than 2, that is, either all but the first 2 cumulants vanish or there are an infinite
number of nonvanishing cumulants. The greatest significance of cumulants lies in
the definition of the correlation functions of different variables in terms of them; this
leads further to important approximation methods.

2.8 Gaussian and Poissonian Probability Distributions

2.8.1 The Gaussian Distribution

By far the most important probability distribution is the Gaussian, or normal distri-
bution. Here we collect together the most important facts about it.

If X is a vector of n Gaussian random variables, the corresponding multivariate
probability density function can be written

p(x) =
1

√
(2π)n det(σ)

exp
[
− 1

2 (x − x̄)Tσ−1(x − x̄)
]
, (2.8.1)

so that

〈X〉 = ∫ dx x p(x) = x̄, (2.8.2)

〈XXT〉 = ∫ dx xxT p(x) = x̄x̄T + σ, (2.8.3)

and the characteristic function is given by

φ(s) = 〈exp(isTX)〉 = exp
(
isT x̄ − 1

2 sTσs
)
. (2.8.4)

This particularly simple characteristic function implies that all cumulants of higher
order than 2 vanish, and hence means that all moments of order higher than 2 are
expressible in terms of those of order 1 and 2. The relationship (2.8.3) means that σ
is the covariance matrix (as defined in Sect. 2.5.1), i.e., the matrix whose elements
are the second-order correlation functions. Of course, σ is symmetric.

The precise relationship between the higher moments and the covariance matrix
σ can be written down straightforwardly by using the relationship between the mo-
ments and the characteristic function [Sect. 2.6 iv)]. The formula is only simple if
x̄ = 0, in which case the odd moments vanish and the even moments satisfy
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〈XiXjXk . . . 〉 =
(2N)!
N!2N

{σi jσklσmn . . . }sym , (2.8.5)

where the subscript “sym” means the symmetrised form of the product of σ’s, and
2N is the order of the moment. For example,

〈X1X2X3X4〉 =
4!

4.2!

{
1
3

[σ12σ34 + σ41σ23 + σ13σ24]

}
,

= σ12σ34 + σ41σ23 + σ13σ24 , (2.8.6)

〈X4
1〉 =

4!
4.2!

{
σ2

11

}
= 3σ2

11 . (2.8.7)

2.8.2 Central Limit Theorem

The Gaussian distribution is important for a variety of reasons. Many variables are, in
practice, empirically well approximated by Gaussians and the reason for this arises
from the central limit theorem, which, roughly speaking, asserts that a random vari-
able composed of the sum of many parts, each independent but arbitrarily distributed,
is Gaussian. More precisely, let X1, X2, X3, . . . , Xn be independent random variables
such that

〈Xi〉 = 0, var[Xi] = b2
i , (2.8.8)

and let the distribution function of Xi be pi(xi).
Define

Sn =
n∑

i=1
Xi , (2.8.9)

and

σ2
n = var[S n] =

n∑
i=1

b2
i . (2.8.10)

We require further the fulfilment of the Lindeberg condition:

lim
n→∞

[
1
σ2

n

n∑
i=1

∫
|x|>tσn

dx x2 pi(x)

]
= 0, (2.8.11)

for any fixed t > 0. Then, under these conditions, the distribution of the normalised
sums S n/σn tends to the Gaussian with zero mean and unit variance.

The proof of the theorem can be found in [2.1]. It is worthwhile commenting
on the hypotheses, however. We first note that the summands Xi are required to be
independent. This condition is not absolutely necessary; for example, choose

Xi =
i+ j∑
r=i

Yr, (2.8.12)

where the Yj are independent. Since the sum of the X’s can be rewritten as a sum of
Y’s (with certain finite coefficients), the theorem is still true.

Roughly speaking, as long as the correlation between Xi and Xj goes to zero suffi-
ciently rapidly as |i− j| → ∞, a central limit theorem will be expected. The Lindeberg
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condition (2.8.11) is not an obviously understandable condition but is the weakest
condition which expresses the requirement that the probability for |Xi| to be large is
very small. For example, if all the bi are infinite or greater than some constant C,
it is clear that σ2

n diverges as n → ∞. The sum of integrals in (2.8.11) is the sum
of contributions to variances for all |Xi| > tσn, and it is clear that as n → ∞, each
contribution goes to zero. The Lindeberg condition requires the sum of all the con-
tributions not to diverge as fast as σ2

n. In practice, it is a rather weak requirement;
satisfied if |Xi| < C for all Xi, or if pi(x) go to zero sufficiently rapidly as x → ±∞.
An exception is

pi(x) =
ai

π(x2 + a2
i )
, (2.8.13)

the Cauchy, or Lorentzian distribution. The variance of this distribution is infinite
and, in fact, the sum of all the Xi has a distribution of the same form as (2.8.13) with

ai replaced by
n∑

i=1
ai. Obviously, the Lindeberg condition is not satisfied.

A related condition, also called the Lindeberg condition, will arise in Sect. 3.3.1,
where we discuss the replacement of a discrete process by one with continuous steps.

2.8.3 The Poisson Distribution

A distribution which plays a central role in the study of random variables which take
on positive integer values is the Poisson distribution. If X is the relevant variable the
Poisson distribution is defined by

P(X = x) ≡ P(x) =
e−ααx

x!
, (2.8.14)

and clearly, the factorial moments, defined by

〈Xr〉f = 〈x(x − 1) . . . (x − r + 1)〉 , (2.8.15)

are given by

〈Xr〉f = αr . (2.8.16)

For variables whose range is nonnegative integral, we can very naturally define the
generating function

G(s) =
∞∑

x=0
sxP(x) = 〈sx〉, (2.8.17)

which is related to the characteristic function by

G(s) = φ(−i log s) . (2.8.18)

The generating function has the useful property that

〈Xr〉f =

[(
∂

∂s

)r

G(s)

]

s=1

. (2.8.19)

For the Poisson distribution we have
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G(s) =
∞∑

x=0

e−α(sα)x

x!
= exp[α(s − 1)] . (2.8.20)

We may also define the factorial cumulant generating function g(s) by

g(s) = log G(s) (2.8.21)

and the factorial cumulants 〈〈Xr〉〉f by

g(s) =
∞∑

x=1
〈〈Xr〉〉f

(s − 1)r

r!
. (2.8.22)

We see that the Poisson distribution has all but the first factorial cumulant zero.
The Poisson distribution arises naturally in very many contexts, for example, we

have already met it in Sect. 1.5.1 as the solution of a simple master equation. It plays
a similar central role in the study of random variables which take on integer values to
that occupied by the Gaussian distribution in the study of variables with a continuous
range. However, the only simple multivariate generalisation of the Poisson is simply
a product of Poissons, i.e., of the form

P(x1, x2, x3, . . . ) =
n∏

i=1

e−αi (αi)xi

xi!
. (2.8.23)

There is no logical concept of a correlated multipoissonian distribution, similar to
that of a correlated multivariate Gaussian distribution.

2.9 Limits of Sequences of Random Variables

Much of computational work consists of determining approximations to random vari-
ables, in which the concept of a limit of a sequence of random variables naturally
arises. However, there is no unique way of defining such a limit.

For, suppose we have a probability space Ω, and a sequence of random variables
Xn defined on Ω. Then by the limit of the sequence as n→ ∞

X = lim
n→∞

Xn , (2.9.1)

we mean a random variable X which, in some sense, is approached by the sequence
of random variables Xn. The various possibilities arise when one considers that the
probability space Ω has elements ω which have a probability density p(ω). Then we
can choose the following definitions.

2.9.1 Almost Certain Limit

Xn converges almost certainly to X if, for all ω except a set of probability zero

lim
n→∞

Xn(ω) = X(ω) . (2.9.2)

Thus each realisation of Xn converges to X and we write

ac-lim
n→∞

Xn = X. (2.9.3)
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2.9.2 Mean Square Limit (Limit in the Mean)

Another possibility is to regard the Xn(ω) as functions of ω, and look for the mean
square deviation of Xn(ω) from X(ω). Thus, we say that Xn converges to X in the
mean square if

lim
n→∞ ∫ dω p(ω)[Xn(ω) − X(ω)]2 ≡ lim

n→∞
〈(Xn − X)2〉 = 0. (2.9.4)

This is the kind of limit which is well known in Hilbert space theory. We write

ms-lim
n→∞

Xn = X . (2.9.5)

2.9.3 Stochastic Limit, or Limit in Probability

We can consider the possibility that Xn(ω) approaches X because the probability of
deviation from X approaches zero: precisely, this means that if for any ε > 0

lim
n→∞

P(|Xn − X| > ε) = 0 , (2.9.6)

then the stochastic limit of Xn is X.
In this case, we write

st-lim
n→∞

Xn = X . (2.9.7)

2.9.4 Limit in Distribution

An even weaker form of convergence occurs if, for any continuous bounded function
f (x)

lim
n→∞
〈 f (Xn)〉 = 〈 f (X)〉 . (2.9.8)

In this case the convergence of the limit is said to be in distribution. In particular,
using exp(ixs) for f (x), we find that the characteristic functions approach each other,
and hence the probability density of Xn approaches that of X.

2.9.5 Relationship Between Limits

The following relations can be shown.

1) Almost certain convergence =⇒ stochastic convergence.

2) Convergence in mean square =⇒ stochastic convergence.

3) Stochastic convergence =⇒ convergence in distribution.

All of these limits have uses in applications.


