
Preface

The concern of this book is the use of emergent computing and self-organization
modelling within various applications of complex systems. We focus our atten-
tion both on the innovative concepts and implementations in order to model
self-organizations, but also on the relevant applicative domains in which they
can be used efficiently.

First part deals with general modelling and methodology as conceptual ap-
proaches for complex systems description. An introductive chapter by Michel
Cotsaftis entitled “A Passage to Complex Systems”, treats the notion of
“Complex Systems” in opposition to that of a “Complicated System”. This
can be, he claims, comprehended immediately from the latin roots as “Com-
plex” comes from “cum plexus” (tied up with) whereas “complicated” origi-
nates from “cum pliare” (piled up with). The paper is a wide and rich disserta-
tion with elements of history (of the technical developement of mankind) with
its recents steps : mechanist, quantum and relativistic points of view. Then,
the need for a “passage” is illustrated by the discussion, with tools borrowed
from functional analysis, of a typical parametric differential system. The last
and conclusive parts give tracks for the study of Complex Systems, in particu-
lar one can hope to pass to quantitative study and control of complex systems
even if one has to consent a “larger intelligence delegation” to them (as an-
nounced in the introduction) by using and developing tools already present in
dissipative Physics and in Mathematical functional analysis and fixed point
theorems, for instance. This “passage” is followed by a wide bibliography of
more than 90 entries. The (non hasty) reader is invited to read this deep and
far reaching account before browsing through the book.

The chapter, “Holistic Metrics, a Trial on Interpreting Complex Systems” by
J. M. Feliz-Teixeira et al., proposes a simple and original method for estimat-
ing or characterize the behaviour of complex systems, in particular when these
are being studied throughout simulation. The originality of the chapter lies
in the fact that the time/observable space is replaced by the corresponding
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variable/observable space (as one does for Wavelet Transforms and in Quan-
tum Mechanics). Next chapter, “Different Goals in Multiscale Simulations and
How to Reach Them” by P. Tranouez et al., summarizes the works of the au-
thors on multiscale programs, mainly simulations. They present methods for
handling the different scales, with maintaining a summary, using an environ-
mental marker introducing a history in the data and finally using knowledge
on the behaviour of the different scales to handle them at the same time. “In-
variant Manifolds in Complex Systems” by J.-M. Ginoux et al. shows how to
locate, in a general dynamical system (on a 2,3 dimensional variety) remark-
able subsets which are flow-invariant. Part I ends with a chapter by Z. Odibat
et al. entitled “Application of Homotopy Perturbation Method for Ecosys-
tems Modelling” (HPM). HPM is one of the new methods belonging ranking
as one of the perturbation methods. The attention of the reader is focused on
the generation of the decomposition steps to build a solver using the HPM
method. Concrete solvers for prey-predator systems involving 2 or 3 popula-
tions are computed and a special attention is paid on implementation aspects.

Second part deals with swarm intelligence and neuronal learning. We focus our
attention here on how implement self-organization processes linked to applica-
tive problems. Both swarm intelligence and neuronal learning give some ways
to drive the whole system, respecting its complex structure. F. Ghezail et al.
use one of the most efficient swarm intelligence processes, ant colonies method,
to solve a multi-objective optimization problem. J. Franzolini et al. present a
very promising new approach based on swarm intelligence, immune network
systems. They give detailed explanation on the biological metaphor and accu-
rate simulation results. The last chapter of this part, by D.A. El-Kebbe et al.,
deals with the modelling of complex clustering tasks involved in cellular man-
ufacturing, using neural networks. On the basis of Kohonen’s self-organizing
maps, they introduce Fuzzy Adaptive Resonance Theory (ART) networks to
claim on their efficiency to obtain consistent clustering results.

Third part entitled “Socio-Environmental Complex Modelling and Territorial
Intelligence”, deals with the complexity of systems where space is fundamen-
tally the center of the interaction network. This space interacts on the one
hand, with human themselves or their pre-defined or emergent organizations
and on the other hand within natural processes, based on living entities in-
side ecosystems or also on physical features (like in the complex multi-scale
phenomena leading to cliff collapse hazards described by Anne Duperret et
al.). In the first case, we focus on geographical information systems (GIS)
where humans are now able to notify, with an accuracy of location, the ma-
terial based on their own organization. Even if these GIS contitute an im-
pressive database in static way at a fixed time, they are still not able to
restitute the complexity of the human organization dynamics and we pro-
pose in this book some research developments to lead their evolution toward
their inherent complexity. H. Kadri-Dahmani et al. study the emergent prop-
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erties from the GIS updating propagation process over an interactive network;
R. Ghnemat et al. focus on the necessity of mixing GIS with active processes
called agents which are able to generate emergent organization from basic
simple rules like in Schelling’s segregation model; D. Provitolo proposes a
methodology deeply inspired from the complexity concepts, for modelling risk
and catastrophe systems within dynamical systems; G. Prevost et al. propose
an effective methodology, based on adaptative processes, to mix the two ma-
jors classes of simulation: differential approach and individual-based approach.
Through the unavoidable expression of the complexity expressed in these dif-
ferent contributions, we can feel how the Complexity Science renovates the
modelling approaches, respecting and highlighting the fundamental and clas-
sical methods by the “cum-plexus” combination of them to express the whole
system complexity, more than by the addition of a long list of complicated
scattered sub-systems.

Fourth part deals with emotion modelling within the cognitive processes as
the result of complex processes. The general purpose here is to try to give
some formal description to better understand the complex features involved
in the essential emotion–cognition–action interaction. Decision making is one
of the result of this interaction: K. Mahboub et al. study and propose a model
to mix in a complex way the emotional aspects in some player choices. In a
second paper, S. Baudic et al. propose a relevant approach leading to confront
theory and clinical practice to better improve the knowledge of emotion and
its interaction with memory (with practical illustration based on Alzheimer’s
disease) and with cognition (through the fear behaviour). Therapeutic appli-
cations can then be implemented from this methodology.

Fifth part deals with simulation and production systems. In that field, Com-
plexity Science gives a new way to model the engineering process involved in
some productions systems dealing with the management of a great number of
components and dimensions in multi-representation and multi-scale descrip-
tion. The contribution of B. Kausch et al. deals with this complex process,
applied to chemical engineering, using Petri nets modelling. The contribution
of G. Giulioni claims that self-organization phenomena and complexity theory
is a relevant way to model economic reality. This study proposes a model based
on the economic result of a large number of firms based on the evolution of
capital and the dynamics of productivity. The discussion from output results
enlights the emergence of attractors on the aspects of limit cycles and possible
transition to equilibrium. The contribution of A. Dumbuya et al. deals with
the complexity of traffic interaction and the development of a driver model
based on neural networks. The goal is to improve the behavioural intelligence
and realism in driving simulation scenarios.
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Summary. In this text is proposed a simple method for estimating or character-
ize the behaviour of complex systems, in particular when these are being studied
throughout simulation. Usual ways of treating the complex output data obtained
from the activity (real or simulated) of such a kind of systems, which in many cases
people classify and analyse along the time domain, usually the most complex per-
spective, is herein substituted by the idea of representing such data in the frequency
domain, somehow like what is commonly done in Fourier Analysis and in Quantum
Mechanics. This is expected to give the analyst a more holistic perspective on the
system’s behaviour, as well as letting him/her choose almost freely the complex
states in which such behaviour is to be projected. We hope this will lead to simpler
processes in characterizing complex systems.

1 Introduction

There are presently very few notes on the kind of metrics that could be reliable
and of practical relevance when applied to the interpretation of complex sys-
tems behaviour. These systems are often based on intricate structures where
a high number of entities interact with each other. Metrics are there for ap-
propriately characterizing the nodes or individual parts of such structures, or
small groups of them, but when the intent is a measure for the complete struc-
ture either they fail or appear to be too simplistic. That is certainly a good
reason for modelling those cases using a strategic point of view, removing the
time variable from the process, as in doing so the complexity is reduced a
priori.

But when a dynamic and detailed representation is essential, the interpreta-
tion of the results and the characterization of the system frequently fail. This
issue seems sometimes also related to a certain tendency impregnated in the
minds to look at the systems from a pre-established perspective. At this point,
however, perhaps this may be considered a conflict between different scientific
approaches: the classical western reductionism, of anglo-saxonic inspiration,
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which believes the best approach is to break the system into small parts and
understand, model or control those parts separately and then join them to-
gether, therefore looking at the world in an individualist way; and a more
holistic approach, a vision slowly spreading and largely inspired by oriental
cultures, which considers that each part of the system must be seen together
with the whole and not in isolation, and therefore locates the tone in how the
interactions between such parts contribute to the whole behaviour. Hopp and
Spearman [Hopp et al. 2001], for instance, comment about this saying that
”too much emphasis on individual components can lead to a loss of perspec-
tive for the overall system”.

A significant number of authors defend this opinion, pointing out the im-
portance of developing a more holistic point of view to interpret and study
systems behaviour, in a way that analyses maintain enough fidelity to the
system as a whole. As Tranouez et al. [Tranouez et al. 2003], who apply sim-
ulation to ecosystems, would say: a complex system is more than the simple
collection of its elements. In management science, for instance, the ”western”
approach frequently generates difficulties at the interfaces between elements,
typically of inventory or communication type. On the other hand, as just-in-
time (JIT) systems give better emphasis to the relations and interactions and
are continuously improving, the overall movements tend to be more harmo-
nious. JIT already looks at systems in a certain holistic way. The same seems
to be true in regard to other fields where simulation is applied, and mainly
when the number of states to simulate is high.

2 Holistic measuring (a proposal)

But, what concerning metrics? How can one measure such a high number of
states typically found in complex systems in order to effectively retrieve from
them some sort of useful information?

As a metric is a characterization, we could think that maybe the modern Data
Mining (DM) techniques could be extensively applied, for instance. These
techniques use decision trees and other algorithms to discover hidden patterns
in huge amounts of data, and are nowadays applied to almost any problem
based on extensive data records, for instance, in e-Commerce for customer pro-
file monitoring, in genetics research, in fraud detection, credit risk analysis,
etc., and even for suspected ”terrorist” detection (see Edelstein, [Edelstein
2001, Edelstein 2003]). However, they often imply the usage of high perfor-
mance computers, sometimes with parallel processors, as well as huge compu-
tational resources to analyse GBytes or even TBytes of data. They are useful
when any single record of data can be precious for the future result, and thus
when all data must be analysed.
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On the other hand, in many practical simulations a significant amount of data
is not significant for the final conclusions, the simulation process is in itself
a filter, and therefore such data may well be ignored in the outputs, even if
it could have been essential to ensure the detailed simulation process to run.
In the perspective of the author, maybe there is a way that could deserve
some attention: the idea is to filter such data during the simulation execution
and, at the same time, to turn the measures probabilistic by using an approach
somehow inspired by the Fourier Analysis and the Quantum Mechanics. That
is, to represent the overall system state (Ψ) in terms of certain base functions
(Ψi), and then to measure the probabilities (αi) associated with each of these
functions. The interesting aspect of this is that each base state function (Ψi)
could even be arbitrarily chosen by the analyst, and the probabilities (αi)
easily computed during the simulation process. Final results would then be
summarised in some expression of the form:

Ψ = α1Ψ1 + α2Ψ2 + ... + αiΨi + ... + αnΨn (1)

which could be interpreted as: there is a probability of α1 that the system will
be found in the state Ψ1, a probability of α2 that the system will be found
in the state Ψ2, etc. This would be the final measure of the system, in a sort
of characterization of expectations under certain conditions. This also corre-
sponds to projecting the system behaviour into the generalised vectors base
of state functions (Ψi). The amounts αi simply correspond to the values of
those projections.

In Fourier Analysis, for instance, the complex behaviour observed in the time
axis (see the example of figure 1) is substituted by the decomposition of such a
signal into sine and cosine mathematical functions, and that way transferred
to the frequency domain.

Fig. 1. Example of a general complex signal

The result is that the analyst is now much more able to visualize and to in-
terpret the complexity of the previous signal, since it is as if this signal would
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be now expressed in terms of patterns (see example of figure 2). What firstly
appeared as a confusing and almost randomly up-and-down behaviour may
now be simply understood as the summation of some sinusoidal patterns with
different amplitudes. Quantum Mechanics uses a similar formalism. We be-
lieve that the method proposed here will help generating such a clean view
also when applied to the behaviour of complex systems.

Fig. 2. Typical signal in the frequency domain

The present proposal may also be understood as an attempt to represent the
system’s behaviour in terms of a sort of generalised histogram, where the
categories are the functions Ψi, which may correspond to the frequencies fi

in the previous figure, and the probabilities αi are made to correspond to the
amplitudes aj in the same figure. In terms of this figure, the analyst would
recognize a probability of a1 that the system would be found in the state f1,
a probability of a2 that the system would be found in the state f2, etc.

3 An imaginary example

But, to help explain this, we can imagine a complex system like the Supply
Chain shown in figure 3, for example. This is an example inspired by the com-
pany ZARA, the trendy Spanish clothes manufacturer of La Coruna. This
company, from the INDITEX group, is worldwide known as a paradigm of
success, despite its owner, and major manager, Mr Ortega, the second rich-
est person in Spain, refusing several conventional practices claimed by most
schools of management. ZARA refuses, for instance, the idea of advertisement.
Forgive me if indirectly I am advertising it here. Returning to our subject,
how can we apply our concept of holistic metrics to retrieve some useful in-
formation from such a complex case 1? How can we specify the base functions
1 In this figure is represented less than perhaps 10% of the real ZARA global Supply

Chain structure.
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(or base states) in which the system’s behaviour will be projected? How will
we calculate and represent the respective projections?

Fig. 3. Imaginary Supply Chain inspired by ZARA

First of all, we have to choose the Ψi functions into which the measures will be
projected. We may choose them in terms of some specific conditions related
to the information that must be obtained from the system. For example, if Mr
Ortega is concerned about the levels of stockouts, holdingcosts, servicelevel,
turnover, etc., which are typical measures of Supply Chain Management,
he may for example define some sort of base functions by using conditions of
the type:

Ψ1 - Stockouts above 7%;
Ψ2 - Holdingcosts above 5%;
Ψ3 - Servicelevel under 75%;
Ψ4 - Turnover under 2%.

Then, while the system is running, it must be projected into these set of
functions, that is, the occurrences of each of these conditions must be counted
up, whenever they are true. Thus, supposing nj the accumulated number of
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occurrences of the condition Ψj , and Nj the total number of its samples, an
estimation of αj can simply be computed as:

αj = nj/Nj (2)

And the overall system state will therefore be expressed as:

Ψ = (n1/N1)Ψ1 + (n2/N2)Ψ2 + (n3/N3)Ψ3 + (n4/N4)Ψ4 (3)

Notice that, in general, base functions are chosen to be orthogonal, or in-
dependent of each other, but in fact that is not a must for using this type
of representation. One can also project a system into non orthogonal axis.
As we said previously, such a measure may be seen as a characterization of
expectations under certain conditions. The overall system state is, in reality,
represented by the following weighted expression:

α1 × (Stockouts > 7) + α2 × (Holdingcosts > 5)
+α3 × (Servicelevel < 75) + α4 × (Turnover < 2) (4)

Now, if we build a histogram out of this data, we will characterize the system
by means of a probabilistic graphical format, obtaining something of the type
presented in the next figure (Fig.4), where the probabilities are the αi.

Fig. 4. Characterization of the system’s behaviour

So, once the base states are well defined by the analyst, the characterization
of the system is possible, no matters how complex the system is. We recall
that in many practical cases the analyst is mainly focused in being sure that
certain variables of the model do not cross some upper or lower limits, or, if
they do, with which probability it happens. In order to evaluate the system in
a wider range of modes of behaviour, several studies of this kind can be made
with the system operating in different conditions. That will make possible to
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improve the knowledge about the system, or its characterization.

The former example was taken from a typical Supply Chain problem (see
Feliz-Teixeira [Feliz-Teixeira 2006]), but this technique can be applied in gen-
eral to other complex systems. For example, in a traffic system of a town,
the complex states could be chosen to be the number of cars exceeding a
certain value in a certain region, the travel time exceeding a certain value in
another region, the number of public vehicles reaching a certain zone inferior
to the minimum required, etc. As we recommend that these base functions
(or complex base states) be well defined before simulation takes place, it im-
plies that the simulation objectives must be well known prior to the start of
the simulation process. Not always this is possible, of course, since simulation
can be used to detect anomalous situations not predictable by means of other
methods, for example.

This technique may, however, be also used as a method for analyse any sort of
results, by being directly applied to the raw outputs of the complex system.
In that case, the simulation will be a standard process and all the work is
done by data manipulation. The results, in principle, will be the same, but
that approach will in general be much more time consuming.

Finally, we would like to emphasise that we use the term ”holistic metric”
for distinguishing this kind of approach from those approaches which usually
characterize systems by means of averages and standard deviations taken over
a certain number of variables (usually a high number). These, as we know,
frequently confuse the analyst’s mind with the complexity of the results, in-
stead of allowing a useful interpretation of the system’s behaviour. Quantity
of information is not all, and sometimes it can even generate confusion instead
of clarity, if it is in excess. Besides, the method presented here goes on the
trend of the ”holistic” mind that seems to emerge in our days, as we defend.

4 Conclusions

Complex results generated by a complex system are very much dependent on
how the analyst looks at the system and on how such results are analysed.
We would say that any complex system can be minimally understood as long
as the analyst knows what to search for, that is, if the objectives of the study
are previously defined. This is because such objectives can in reality be used
to establish the base functions (vectors) of an imaginary space where the
complex behaviour will be projected, that way giving an automatic meaning
to the results. This may also be seen as an attempt to measure the outputs
of systems in the frequency domain (as in Fourier Analysis and in Quantum
Mechanics), instead of in the time domain where signals usually are more
difficult to interpret. Although no practical cases have yet been studied based
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on the idea presented in this article, we expect to use and test this approach
in our next studies of simulation. We would also be pleased with receiving
some feedback from anyone who decided to apply the same logic.
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