
Preface

This book has grown out of lectures and courses given at Linköping University,
Sweden, over a period of 15 years. It gives an introductory treatment of problems
and methods of structural optimization. The three basic classes of geometrical op-
timization problems of mechanical structures, i.e., size, shape and topology opti-
mization, are treated. The focus is on concrete numerical solution methods for dis-
crete and (finite element) discretized linear elastic structures. The style is explicit
and practical: mathematical proofs are provided when arguments can be kept ele-
mentary but are otherwise only cited, while implementation details are frequently
provided. Moreover, since the text has an emphasis on geometrical design problems,
where the design is represented by continuously varying—frequently very many—
variables, so-called first order methods are central to the treatment. These methods
are based on sensitivity analysis, i.e., on establishing first order derivatives for ob-
jectives and constraints. The classical first order methods that we emphasize are
CONLIN and MMA, which are based on explicit, convex and separable approxi-
mations. It should be remarked that the classical and frequently used so-called opti-
mality criteria method is also of this kind. It may also be noted in this context that
zero order methods such as response surface methods, surrogate models, neural net-
works, genetic algorithms, etc., essentially apply to different types of problems than
the ones treated here and should be presented elsewhere. The numerical solutions
that are presented are all obtained using in-house programs, some of which can be
downloaded from the book’s homepage at www.mechanics.iei.liu.se/edu_ug/strop/.
These programs should also be used for solving some of the more extensive exer-
cises provided.

The text is written for students with a background in solid and structural mechan-
ics with a basic knowledge of the finite element method, although in our experience
such knowledge could be replaced by a certain mathematical maturity. Previous
exposure to basic optimization theory and convex programming is helpful but not
strictly necessary.

The first three chapters of the book represent an introductory and preparatory
part. In Chap. 1 we introduce the basic idea of mathematical design optimization
and indicate its place in the broader frame of product realization, as well as define
basic concepts and terminology. Chapter 2 is devoted to a series of small-scale prob-
lems that, on the one hand, give familiarity with the type of problems encountered
in structural optimization and, on the other hand, are used as model problems in
upcoming chapters. Chapter 3 reviews basic concepts of convex analysis, and exem-
plifies these by means of concepts from structural mechanics. Chapter 4 is, from an
algorithmic point of view, the core chapter of the book. It introduces the basic idea of
sequential explicit convex approximations, and CONLIN and MMA are presented.
In Chap. 5 the latter is applied to stiffness optimization of a truss. This is a classical

v

http://www.mechanics.iei.liu.se/edu_ug/strop/


vi Preface

model problem of structural optimization which we investigate thoroughly. Chap-
ter 6 concerns sensitivity analysis for finite element discretized structures. Sensitiv-
ities for shape changes are combined with two-dimensional shape representations
such as Bézier and B-splines in Chap. 7, and this closes the treatment of shape opti-
mization. Chapter 8 is essentially a preparation for the formulation of the problem of
stiffness topology optimization. We review some classical results of the calculus of
variations, and derive optimality conditions for stiffness optimization of distributed
parameter systems. In Chap. 9 this problem is slightly extended and discretized,
and it provides a gateway into the problem of topology optimization for continuous
structures. We derive the optimality criteria method as a special case of the general
explicit convex approximation method, discuss well-posedness and different types
of regularization methods.

This being an introductory treatment, we have not made an effort to give a com-
plete set of references, nor an historical account of structural optimization. For that
we refer to existing monographs such as Haftka and Gürdal [18], Kirsch [22] and
Bendsøe and Sigmund [4].

As mentioned, this book has its roots in several series of lectures at Linköping
University, where the first one was given by the second author of this book in 1992.
Following these, in the year 2000, a separate course in structural optimization was
established, and Joakim Petersson was made responsible and defined its basic con-
tents. After having taught the course on two occasions, Joakim very unexpectedly
and sadly passed away in September 2002, [3]. The authors of this book then took
over and shared responsibility for the course, initially teaching it in a way that was
very close to the lecture notes of Joakim. Out of appreciation, we have continued to
teach the course, and eventually written this book, closely following the spirit and
style of Joakim, as we remember and understand it.

We like to extend a special thanks to Bo Torstenfelt and Thomas Borrvall for
having provided some of the numerical solutions presented in the book. Torstenfelt’s
easy-to-use finite element program TRINITAS may be downloaded from the book’s
homepage, and should be used for two computer exercises on shape and topology
optimization. A Java applet by Borrvall for performing topology optimization is
also available on the homepage. For the permission to use their programs we are
sincerely grateful.

Linköping, Peter W. Christensen
July 2008 Anders Klarbring



Chapter 2
Examples of Optimization of Discrete Parameter
Systems

The following chapter gives some examples of the general optimization problem
(SO) introduced in the previous chapter. They all concern the problem of finding
the cross-sectional areas of bars or beams, i.e. they are sizing problems. The list of
such examples is the following:

1. Minimization of the weight of a two-bar truss subject to stress constraints.
2. Minimization of the weight of a two-bar truss subject to stress and instability

constraints.
3. Minimization of the weight of a two-bar truss subject to stress and displacement

constraints.
4. Minimization of the weight of a two-beam cantilever subject to a displacement

constraint.
5. Minimization of the weight of a three-bar truss subject to stress constraints.
6. Minimization of the weight of a three-bar truss subject to a stiffness constraint.

A simple example of combined shape and sizing optimization of a two-bar truss
is given in Exercise 2.5. Despite their simplicity, it turns out that these problems
display several general features of structural optimization problems.

The solution methods we will use in this chapter are of a very simple nature,
and are applicable only when solving optimization problems with one or two design
variables. Later, in Chaps. 3–5, we will study solution methods that are suitable for
larger problems, and resolve some of the problems presented in this chapter.

2.1 Weight Minimization of a Two-Bar Truss Subject to Stress
Constraints

Consider the two-bar truss shown in Fig. 2.1. The bars have the same length L and
Young’s modulus E. The force F > 0, and for the angle α we assume 0 ≤ α ≤ 90◦.
We are to minimize the weight under stress constraints. The design variables are the
cross-sectional areas A1 and A2. The objective function, i.e., the total weight of the
truss, becomes

f (A1,A2) = (A1 + A2)ρL, (2.1)

where ρ is the density of the material. It may be noted that this particular objective
function does not depend on any state variables. As design constraints we pre-
scribe that the cross-sectional areas must, for obvious physical reasons, be non-
negative, i.e.,

A1 ≥ 0, A2 ≥ 0. (2.2)
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10 2 Examples of Optimization of Discrete Parameter Systems

Fig. 2.1 Two-bar truss. Find
the cross-sectional areas that
minimize weight under stress
constraints

Fig. 2.2 Forces on the
cut-out free node

In a truss problem of this type, the general approach would be to take the dis-
placement vector u of the free node as state variable and then establish a state
constraint of the form K(A1,A2)u = F by making use of all three basic condi-
tions of small displacement elasticity theory, i.e. equilibrium in terms of forces and
stresses, geometric conditions relating the bars’ elongations to the displacement vec-
tor, and a linear constitutive law. However, in this particular problem the number of
bars equals the number of degrees-of-freedom, which implies that the bar forces, or
stresses, may be obtained directly from the equilibrium equations. We say that the
truss is statically determinate. Furthermore, the displacement is not present in the
constraints nor in the objective function. Therefore, we do not need to formulate any
constitutive or geometric relations in order to write down the optimization problem.
The equilibrium equations are found from the free-body diagram of the free node as
shown in Fig. 2.2. Equilibrium in the x- and y-directions gives

F cosα − σ1A1 = 0, F sinα − σ2A2 = 0, (2.3)

where we have opted to write the equations in terms of the bar stresses σ1 and σ2
directly, rather than first writing them in terms of the bar forces.

The state constraint involving stresses reads

|σi | ≤ σ0, i = 1,2, (2.4)

where σ0 is a maximum allowed stress level, the same in both tension and compres-
sion.

In summary, the particular version of the general (SO) problem that is at hand
here is to find A1, A2, σ1 and σ2 such that (2.1) is minimized under the constraints
(2.2), (2.3) and (2.4). In a nested version of this problem we eliminate σ1 and σ2 by
using (2.3) in (2.4) to find

−σ0A1 ≤ F cosα ≤ σ0A1,
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−σ0A2 ≤ F sinα ≤ σ0A2.

Since F, cosα, sinα,A1,A2 ≥ 0 it is clear that the left-hand inequalities in these
expressions are always satisfied, i.e., they are redundant and can be left out of the
problem. Furthermore, the right-hand inequalities are

A1 ≥ F cosα

σ0
, A2 ≥ F sinα

σ0
,

which shows that the design constraints (2.2) are also redundant. We arrive at

(SO)1
nf

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
A1,A2

A1 + A2

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

A1 ≥ F cosα

σ0

A2 ≥ F sinα

σ0
,

where the constant factor ρL has been left out of the objective function since it does
not affect the optimum values of A1 and A2.

The problem (SO)1
nf is a Linear Program (LP) in two variables and it is easily

solved graphically as shown below. It should be noted that it is very unusual for a
structural optimization problem to have a linear structure. In fact, it is even unusual
for these problems to be convex. The fact that we find the LP structure in this case
hinges on the simplicity of the constraints and objective function as well as on the
statically determinate property.

In Fig. 2.3 a graphical solution of (SO)1
nf is shown. In the A1-A2-plane we

plot the lines defining the admissible domain. Next, we plot the line A1 + A2 =
f̂ (A1,A2) = constant, representing the objective function. The solution is found
when f̂ (A1,A2) is given the smallest possible value that maintains part of the line
in the admissible region. It is given by

A∗
1 = F cosα

σ0
, A∗

2 = F sinα

σ0
.

Fig. 2.3 Graphical solution
of the problem
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That is, both of the bars are fully used in tension: the stress is on the maximum level.
It should be intuitively clear that this is a “good” structure from the point of view of
using the least material.

Note that this problem, which is at the outset a sizing problem, is set so that
topology may change: when α = 0 or 90◦ one of the bars in the optimal solution
“disappears.”

2.2 Weight Minimization of a Two-Bar Truss Subject to Stress
and Instability Constraints

Consider a two-bar truss consisting of bars of length L and Young’s modulus E,
placed at right angle according to Fig. 2.4. The force F > 0 is applied at an angle
α = 45◦. The problem is to find the circular cross-sectional areas A1 and A2 such
that the weight of the truss is minimized under constraints on stresses and Euler
buckling. The weight of the truss is

f (A1,A2) = ρL(A1 + A2),

where ρ is the density of the material. The stress constraints are as usual

|σi | ≤ σ0, i = 1,2, (2.5)

where σ0 > 0 is the stress bound. Equilibrium for the free node gives the stresses in
the bars as

σ1 = F√
2A1

, σ2 = − F√
2A2

,

so the stress constraints to be imposed in the optimization problem are

A1 ≥ F√
2σ0

, A2 ≥ F√
2σ0

. (2.6)

Clearly, these constraints imply that cross-sectional areas will be nonnegative so we
do not need to impose such restrictions explicitly.

Concerning instability, we want to obtain a safety factor of 4 against Euler buck-
ling. Such buckling can occur only in the second bar, since there is tensile stress in

Fig. 2.4 A two-bar truss to
be optimized under an
instability constraint
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the first bar. The buckling load for a hinged-hinged column is

Pc = π2 EI

L2
,

where for a circular cross section

I = A2
2

4π
.

Thus, the constraint

Pc

4
≥ σ2A2 = F√

2

becomes

A2
2 ≥ 16FL2

√
2πE

. (2.7)

The optimization problem to be solved can, thus, be summarized as follows:

(SO)2
nf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
A1,A2

A1 + A2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A1 ≥ F√
2σ0

A2 ≥ F√
2σ0

A2
2 ≥ 16FL2

√
2πE

.

Depending on the values of the coefficients, the second or the third constraint
will be active. Consider, for instance, the special case

σ0 = E

100
,

√
F

σ0
= L

4
.

Then, the constraints of (SO)2
nf become

A1 ≥ L2

16
√

2
, A2 ≥ L2

16
√

2
, A2 ≥ L2

10
√√

2π

and since

1.6

√√
2 >

√
π ⇔ L2

10
√√

2π
>

L2

16
√

2
,
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it can be concluded that the optimum occurs when both the first and the third con-
straints are active, i.e., when

A∗
1 = L2

16
√

2
≈ 0.044L2, A∗

2 = L2

10
√√

2π
≈ 0.047L2.

2.3 Weight Minimization of a Two-Bar Truss Subject to Stress
and Displacement Constraints

Consider the truss in Fig. 2.5. The bars have lengths according to the figure, and
consist of a material with Young’s modulus E and density ρ. The force F > 0 and
the angle α = 30◦. We want to find the cross-sectional areas A1 and A2 such that
the weight is minimized subject to stress constraints and a constraint on the tip
displacement δ. The weight can be written

f (A1,A2) = ρL

(
2√
3
A1 + A2

)

. (2.8)

The stress constraints are

|σi | ≤ σ0, i = 1,2,3, (2.9)

for a given stress bound σ0 > 0. The displacement constraint is

δ ≤ δ0, (2.10)

where

δ0 = σ0L

E
,

is a given bound on the tip displacement. The design constraints are

A1 ≥ 0, A2 ≥ 0. (2.11)

We are aiming at a nested formulation, and need to rewrite (2.9) and (2.10) in
terms of cross-sectional areas. Equilibrium equations are obtained from Fig. 2.6.

Fig. 2.5 Two bar truss
subject to stress and
displacement constraints
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Fig. 2.6 Forces on the
cut-out free node

The equations for the x- and y-directions become

−s1 cosα − s2 + Fx = 0, s1 sinα + Fy = 0,

where s1 and s2 are the bar forces, Fx = 0 and Fy = −F . These equations may be
written in matrix form as

[
Fx

Fy

]

=
[ √

3
2 1

− 1
2 0

][
s1

s2

]

. (2.12)

In symbolic matrix form this is written F = BT s. Here, superscript T denotes the
transpose of a matrix; it will soon become apparent why we write (2.12) symboli-
cally by use of the transpose of a matrix.

Since the number of bars equals the number of degrees-of-freedom, the truss is
statically determinate, and we may obtain the bar forces s by simply solving the
equilibrium equations. From (2.12) we get

s =
[

s1

s2

]

= B−T F =
[

2F

−√
3F

]

. (2.13)

In order to rewrite the displacement constraint (2.10) in terms of cross-sectional
areas, we need to include geometric and constitutive conditions. In a small displace-
ment theory, the elongations of the bars, δ1 and δ2, are obtained by projecting the
displacement vector u = [(ux uy)]T of the free node on the unit vectors directed
along the bars and pointing towards the free node:

e1 =
[ √

3
2

− 1
2

]

, e2 =
[

1

0

]

.

The elongations thus become

δ1 = eT
1 u =

√
3

2
ux − 1

2
uy, δ2 = eT

2 u = ux.

In matrix form this reads
[

δ1

δ2

]

=
[ √

3
2 − 1

2
1 0

][
ux

uy

]

. (2.14)
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The—perhaps surprising—fact that occurs here is that the matrix of this equation
is B , i.e., the transpose of the matrix occurring in (2.12), so (2.14) can in symbolic
matrix form be written as δ = Bu. That BT and B appear in this way in the equilib-
rium and geometric equations is not a coincidence: the same property holds in any
truss problem and, in fact, given the right interpretation, in any small displacement
structural problem. It is related to the validity of the work equation δT s = uT F , and
it is a very economical fact since, given equilibrium, we can directly write down the
geometric equations and vice versa.

Next, we need the constitutive equations. Hooke’s law reads σi = Eεi , where

σi = si/Ai, εi = δi/ li ,

are the stress and strain in bar i of length li . Combining these equations gives us the
elongations in terms of the bar forces as

δi = lisi

AiE
. (2.15)

From (2.13), and since l1 = 2L/
√

3 and l2 = L, we get

δ =
[

δ1

δ2

]

=

⎡

⎢
⎢
⎣

4FL√
3A1E

−
√

3FL

A2E

⎤

⎥
⎥
⎦ .

The displacements of the free node are thus given by

u = B−1δ = FL

E

⎡

⎢
⎢
⎣

−
√

3

A2

− 8√
3A1

− 3

A2

⎤

⎥
⎥
⎦ .

The tip displacement may now be written in terms of the cross-sectional areas as

δ = −eT
y u = FL

E

(
8√
3A1

+ 3

A2

)

,

where ey is the unit vector in the y-direction, so that (2.10) can be written

8√
3A1

+ 3

A2
≤ Eδ0

FL
= σ0

F
. (2.16)

Regarding the stress constraints, we note from (2.13) and F > 0 that bar 1 is in
tension and bar 2 in compression, so we need to consider only the stress constraints
s1/A1 ≤ σ0 and −s2/A2 ≤ σ0, which with (2.13) lead to

A1 ≥ 2F

σ0
, A2 ≥

√
3F

σ0
. (2.17)
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Since F > 0 and σ0 > 0, we conclude that (2.11) are redundant: the optimal cross-
sectional areas are strictly positive.

In summary, our problem is to minimize f (A1,A2), according to (2.8), under
constraints given by (2.16) and (2.17). Now, we will not treat this problem directly,
but instead rewrite the problem by means of a change of variables. We do this to
demonstrate the use of such ideas, since they will play an essential role in upcoming
sections, and one may consider that the problem is also easier to solve in the new
variables. These new, dimensionless variables are

x1 = 2F

σ0A1
> 0, x2 =

√
3F

σ0A2
> 0,

and the essential thing with these new variables is that they make the constraint
(2.16) linear. Moreover, the new variables are scaled such that (2.17) becomes

1 ≥ x1, 1 ≥ x2. (2.18)

The displacement constraint (2.16) now becomes

4√
3
x1 + √

3x2 ≤ 1, (2.19)

and the objective function (2.8) is written as

f (A1(x1),A2(x2)) =
√

3ρLF

σ0

(
4

3x1
+ 1

x2

)

. (2.20)

The constraint (2.19) gives the following estimates

1 ≥ 4√
3
x1 + √

3x2 ≥ √
3x2, 1 ≥ 4√

3
x1 + √

3x2 ≥ 4√
3
x1,

from which it is clear that (2.18) is redundant.
We have arrived at the following optimization problem

(SO)3
nf

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x1,x2

f̂ (x1, x2) = 4

3x1
+ 1

x2

s.t.

⎧
⎨

⎩

4√
3
x1 + √

3x2 ≤ 1

x1 > 0, x2 > 0.

This problem is illustrated in Fig. 2.7, from which we conclude that constraint (2.19)
is active. We write (2.19) as an equality and solve for x2 to obtain

x2 = 1√
3

− 4

3
x1.
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Fig. 2.7 Geometric
illustration of (SO)3

nf

This is then substituted into f̂ (x1, x2), which becomes a function of x1 for which
we seek a stationary value. Such a stationary value is realized whenever

x1 = ±
(

1√
3

− 4

3
x1

)

.

The minus sign gives x1 = √
3 which is greater than 1 and, thus, not in the admissi-

ble domain. The plus sign gives the solution

x∗
1 =

√
3

7
, x∗

2 =
√

3

7
,

which, going back to the original variables, gives

A∗
1 = 14F√

3σ0
≈ 8.1F

σ0
, A∗

2 = 7F

σ0
.

2.4 Weight Minimization of a Two-Beam Cantilever Subject
to a Displacement Constraint

Consider a cantilever beam, fixed at the left end and subject to a vertical force F > 0
at the right end. The beam consists of N segments, each of length L, so the total
length of the cantilever is NL. Segment number N is to the left, at the built-in end,
and segment 1 is at the free end. Each segment cross section has a hollow square
form, see Fig. 2.8. The thickness of the material is t for all segments, and the length
of the side of the square is xA for segment A = 1, . . . ,N . The bending moment of
inertia, IA can be calculated from classical formulas. If it is assumed that t 	 xA,
for all A, one finds:

IA = x4
A

12
− (xA − 2t)4

12
= 2tx3

A

3
.
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Fig. 2.8 The cantilever for 5 segments and the hollow square cross section

We want to minimize the weight of the beam under the constraint that the dis-
placement at the tip, δ, is less than some prescribed value δ0. The design variables
are the cross-sectional sizes xA, A = 1, . . . ,N . The weight when t 	 xA becomes

f (x1, . . . , xN) = Lρ

N∑

A=1

(
x2
A − (xA − 2t)2

)
= 4Lρt

N∑

A=1

xA,

where ρ is the density. The displacement at the tip of the beam can be seen as the
sum of contributions from each segment, when other segments are considered as
rigid, i.e.,

δ =
N∑

A=1

δ(A), (2.21)

where δ(A) is the displacement at the tip of the cantilever for a system where only
segment A is elastic. Next, one concludes by simple geometry for small displace-
ments, such that sin θA ≈ θA, that

δ(A) = δA + (A − 1)LθA, (2.22)

where δA and θA are the displacement and the rotation at the right-hand side of
segment A when only this segment is elastic, see Fig. 2.9. One calculates δA and θA

by means of elementary beam theory as follows:

δA = MAL2

2EIA

+ FAL3

3EIA

, (2.23)

θA = MAL

EIA

+ FAL2

2EIA

, (2.24)

where E is Young’s modulus, and

MA = (A − 1)LF, FA = F,
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Fig. 2.9 The cantilever when only segment A is elastic

are the bending moment and the shear force at the right end of segment A. Putting
(2.23) and (2.24) into (2.22), the result into (2.21) and using the above expression
for IA gives

δ = 3FL3

2Et

N∑

A=1

(

A2 − A + 1

3

)
1

x3
A

. (2.25)

The present cantilever problem was originally formulated and solved analytically
as well as numerically in Svanberg [34] for the case N = 5. Here we will be content
with N = 2, which is easily solved analytically. For this case we have the following
optimization problem:

(SO)4
nf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x1,x2

f (x1, x2) = C1(x1 + x2)

s.t.

⎧
⎨

⎩

1

x3
1

+ 7

x3
2

≤ C2

x1 > 0, x2 > 0,

where

C1 = 4ρLt, C2 = 2δ0Et

FL3
.

Assuming equality in the nonstrict inequality constraint we solve this for x2. The re-
sult is put into f (x1, x2), which becomes a function of x1 only. Seeking a stationary
value of this function gives the solution

x∗
1 =

(
1 + 71/4

C2

)1/3

, x∗
2 = 71/4

(
1 + 71/4

C2

)1/3

.

Now, one may ask the question, what happens if we reverse the order of the
structural measures in a problem of this kind, i.e., what if we minimize the tip dis-
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placement under a constraint on the weight? We then have the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x1,x2

1

x3
1

+ 7

x3
2

s.t.

{
C1(x1 + x2) ≤ W

x1 > 0, x2 > 0,

where W is some given allowable weight. This problem can be solved in the same
way as (SO)4

nf. One finds the solution

x∗∗
1 = W

C1

(
1

1 + 71/4

)

, x∗∗
2 = W

C1

(
71/4

1 + 71/4

)

,

and it can be concluded that the reversed problem gives a solution different from
(SO)4

nf. However, it holds that

x∗
2

x∗
1

= x∗∗
2

x∗∗
1

= 71/4 ≈ 1.63.

Thus, the solution of (SO)4
nf can be obtained by a scaling of the solution of the

reversed problem and vice versa. This is a general property which will be discussed
more thoroughly in Sect. 5.2.3.

2.5 Weight Minimization of a Three-Bar Truss Subject to Stress
Constraints

Consider the three-bar truss shown in Fig. 2.10. The bars have Young’s modulus
E and the lengths are l1 = L, l2 = L, l3 = L/β , where β > 0. In this example
β = 1, but in the next section the same truss will be studied with β = 1/10. We will
therefore perform all derivations for a general β > 0. The force F > 0. As for the
two-bar truss in Sect. 2.1 we are to minimize the weight under stress constraints.
The design variables are the cross-sectional areas A1, A2 and A3, but for simplicity

Fig. 2.10 Three-bar truss.
Find the cross-sectional areas
that minimize weight under
stress constraints
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we assume that

A1 = A3.

The objective function, which is the total weight of the truss, becomes

f (A1,A2) = ρ1LA1 + ρ2LA2 + ρ3
L

β
A3 = L

(

ρ1 + ρ3

β

)

A1 + Lρ2A2, (2.26)

where ρ1, ρ2 and ρ3 are the densities of the bars. The design constraints are

A1 ≥ 0, A2 ≥ 0. (2.27)

Concerning designs with A1 or A2 equal to zero, it is clearly impossible to have
A1 = A3 = 0 since then there is no equilibrium possible as it would imply collapse
of the structure under the given external load. On the other hand, A2 = 0 is a valid
design.

The state constraints are that the maximum absolute value of the stress in bar i

must not exceed the values σmax
i , i.e.

|σi | ≤ σ max
i , i = 1, 2, 3. (2.28)

The equilibrium equation is found by cutting out the free node as shown in
Fig. 2.11. The equilibrium equations in the x- and y-directions become

−s1 − s2√
2

+ F = 0, s3 + s2√
2

= 0.

In matrix form these equations read

[
F

0

]

=
[

1 1√
2

0

0 − 1√
2

−1

]⎡

⎣

s1

s2

s3

⎤

⎦ ⇐⇒ F = BT s. (2.29)

Note that in contrast to the two-bar truss in Sect. 2.3, we cannot obtain the bar forces
from the equilibrium equations alone since the number of bars exceeds the number
of degrees-of-freedom. We say that the truss is statically indeterminate. In order to
find the bar forces, or, rather, the stresses, that appear in the constraints, we need to
make use of Hooke’s law and the geometry conditions.

From (2.15) we have

si = EAiδi

li
.

Fig. 2.11 Forces on the
cut-out free node
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We write these equations for all three bars in matrix form as

s = Dδ,

where

D = E

l

⎡

⎣

A1 0 0

0 A2 0

0 0 βA1

⎤

⎦ .

Since δ = Bu, cf. the discussion following (2.14), the bar forces are obtained as

s = DBu. (2.30)

The equilibrium equations (2.29) thus become

F = BT s = BT DBu = Ku, (2.31)

where K = BT DB is the global stiffness matrix of the truss, which is easily calcu-
lated as

K = E

l

⎡

⎣
A1 + A2

2
−A2

2

−A2

2

A2

2
+ βA1

⎤

⎦ .

From (2.31) we obtain the displacements of the free node as u = K−1F :

ux = FL

EA1

(
2βA1 + A2

2βA1 + (1 + β)A2

)

, (2.32)

uy = FL

EA1

(
A2

2βA1 + (1 + β)A2

)

. (2.33)

Using (2.30), the stresses may be written as

σ = As = ADBu,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

A1
0 0

0
1

A2
0

0 0
1

A1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Some straightforward calculations give us the bar stresses as

σ1 = F

2βA1 + (1 + β)A2

(

2β + A2

A1

)

, (2.34)

σ2 =
√

2Fβ

2βA1 + (1 + β)A2
, (2.35)
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σ3 = −
Fβ

A2

A1

2βA1 + (1 + β)A2
. (2.36)

Since F,A1,A2 > 0, we conclude that bars 1 and 2 are in tension and bar 3 is in
compression, so only the stress constraints σ1 ≤ σmax

1 , σ2 ≤ σmax
2 and −σ max

3 ≤ σ3

need to be considered. In what follows we will put β = 1, i.e. l3 = L. The stress
constraint σ1 ≤ σ max

1 then takes the form

F(2A1 + A2)

2A1(A1 + A2)
≤ σ max

1 . (2.37)

The constraint σ2 ≤ σ max
2 reads

F√
2(A1 + A2)

≤ σ max
2 . (2.38)

Naturally, this constraint should only be included if bar 2 is present, i.e. if A2 > 0.
Finally, the stress constraint −σ max

3 ≤ σ3 is written as

FA2

2A1(A1 + A2)
≤ σ max

3 . (2.39)

We have arrived at the following optimization problem

(SO)5
nf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
A1,A2

(ρ1A1 + ρ2A2 + ρ3A1)L

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(2A1 + A2)

2A1(A1 + A2)
− σmax

1 ≤ 0

F√
2(A1 + A2)

− σmax
2 ≤ 0 if A2 > 0

FA2

2A1(A1 + A2)
− σmax

3 ≤ 0

A1 > 0, A2 ≥ 0.

In order to illustrate that all bars may not be present in the optimal truss, and that
structural optimization problems may have more than one, and even an infinite num-
ber of solutions, we will solve this problem for five different cases by altering the
density and the yield stress of the bars.

CASE A)
ρ1 = 2ρ0, ρ2 = ρ3 = ρ0, σ max

1 = σ max
2 = σ max

3 = σ0.
By introducing the new dimensionless variables x1 and x2 as

x1 = A1σ0

F
, x2 = A2σ0

F
, (2.40)
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we may write the optimization problem as

(SO)5a
nf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x1,x2

3x1 + x2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + x2

2x1(x1 + x2)
− 1 ≤ 0 (σ1)

1√
2(x1 + x2)

− 1 ≤ 0 if x2 > 0 (σ2)

x2

2x1(x1 + x2)
− 1 ≤ 0 (σ3)

x1 > 0, x2 ≥ 0,

where, for simplicity, the objective function is the weight divided by the positive
scalar FLρ0/σ0. The problem is illustrated in Fig. 2.12. Note that the σ2-constraint
is linear. It is clear that the σ1-constraint (2.37) is active at the solution, and that all
other constraints are inactive. Thus

2x1 + x2 − 2x1(x1 + x2) = 0,

Fig. 2.12 Case a). A solid thick line with a dotted line alongside indicates a constraint; the region
on the same side of the thick line as the corresponding dotted line is not part of the design space.
The thin solid lines are iso-merit lines, i.e. all points on a thin line yield the same value of the
objective function. Point A is the solution
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which gives

x2 = 2x1(x1 − 1)

1 − 2x1
. (2.41)

Substituting this into the objective function we find that the problem is reduced to
minimizing

3x1 + 2x1(x1 − 1)

1 − 2x1
,

for x1 > 0. We find that this function has a stationary value for x1 satisfying the
second order equation

8x2
1 − 8x1 + 1 = 0.

The solution of this equation is

x∗
1 = 1

2
±

√
2

4
,

where the minus sign is not valid since upon substitution into (2.41) it gives a nega-
tive x∗

2 . Using the plus sign instead, gives

x∗
2 =

√
2

4
.

Reverting to the original area variables A1 and A2, cf. (2.40), the optimal solution
is

A∗
1 = F

2σ0

(

1 + 1√
2

)

, A∗
2 = F

2
√

2σ0
,

and the corresponding optimum weight is

(3A∗
1 + A∗

2)ρ0L = FLρ0

σ0

(
3

2
+ √

2

)

.

CASE B)
ρ1 = ρ2 = ρ3 = ρ0, σ max

1 = σ max
3 = 2σ0, σ max

2 = σ0.
Using the same dimensionless variables as for the previous case, we may write the
problem as

(SO)5b
nf

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x1,x2

2x1 + x2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + x2

4x1(x1 + x2)
− 1 ≤ 0 (σ1)

1√
2(x1 + x2)

− 1 ≤ 0 if x2 > 0 (σ2)

x2

4x1(x1 + x2)
− 1 ≤ 0 (σ3)

x1 > 0, x2 ≥ 0,
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Fig. 2.13 Case b). Point B is the solution

see Fig. 2.13. It would appear that the solution is at the intersection A of the
σ1- and σ2-constraints. However, we must keep in mind that the σ2-constraint is
valid only for x2 > 0. By deleting this constraint, it is evident from the figure,
that the point B on the σ1-constraint curve, where x2 is zero, gives the lowest
weight that can be attained. This point is obtained by letting x2 = 0 in the active
σ1-constraint:

2x1 − 4x2
1 = 0,

which gives x∗
1 = 1/2 as x∗

1 = 0 is not a valid design. In the original variables, the
optimum solution becomes

A∗
1 = F

2σ0
, A∗

2 = 0,

with the optimal weight

FLρ0

σ0
.

CASE C)
ρ1 = (2

√
2 − 1)ρ0, ρ2 = ρ3 = ρ0, σ max

1 = σ max
3 = 2σ0, σ max

2 = σ0.
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The density of bar 1 is now increased somewhat as compared to case b). This will
alter the objective function but not the constraints:

(SO)5c
nf

⎧
⎨

⎩

min
x1,x2

2
√

2x1 + x2

s.t. the constraints in (SO)5b
nf ,

which is illustrated in Fig. 2.14. It is not evident from the figure whether the so-
lution is at the intersection A between the σ1- and σ2-constraints, or the point B

corresponding to a design without bar 2. Point A may be calculated by solving
the two equations obtained when equality is satisfied in the σ1- and σ2-constraints,
which leads to

x∗
1 = 4 + √

2

14
, x∗

2 = 6
√

2 − 4

14
.

Point B is x∗∗
1 = 1/2, x∗∗

2 = 0. It turns out that these two points yield the same value
of the objective function, and thus, there are two solutions to this problem! In the
original variables, the solutions are written

A∗
1 = F

σ0

(
4 + √

2

14

)

, A∗
2 = F

σ0

(
6
√

2 − 4

14

)

,

Fig. 2.14 Case c). Points A and B are the solutions
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A∗∗
1 = F

2σ0
, A∗∗

2 = 0,

with the optimum weight

√
2FLρ0

σ0
.

CASE D)
ρ1 = 3ρ0, ρ2 = ρ3 = ρ0, σ max

1 = σ max
3 = 2σ0, σ max

2 = σ0.
Again, the density of bar 1 is increased. The optimization problem becomes

(SO)5d
nf

{
min
x1,x2

4x1 + x2

s.t. the constraints in (SO)5b
nf .

In Fig. 2.15, we see that the σ1- and σ2-constraints are active at the solution. This
point has already been calculated for case c) as

A∗
1 = F

σ0

(
4 + √

2

14

)

, A∗
2 = F

σ0

(
6
√

2 − 4

14

)

,

Fig. 2.15 Case d). Point A is the solution
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which gives the optimal weight

FLρ0

σ0

(
6 + 5

√
2

7

)

.

CASE E)
ρ1 = ρ3 = ρ0, ρ2 = 2ρ0, σ max

1 = σ max
3 = 2σ0, σ max

2 = σ0.
Finally, we modify case b) by doubling the density of bar 2, which leads to the
problem

(SO)5e
nf

{
min
x1,x2

x1 + x2

s.t. the constraints in (SO)5b
nf ,

see Fig. 2.16. The solution point is point B , with the optimal truss lacking bar 2:

A∗
1 = F

2σ0
, A∗

2 = 0,

with the optimal weight

FLρ0

σ0
.

Fig. 2.16 Case e). Point B is the solution
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This is the same solution as for case b). The reason that we get the same solution
although we have doubled the density of bar 2 is of course that bar 2 is not present
in the optimal trusses.

Assume now that A2 is not allowed to become too small: A2 ≥ 0.1F/σ0, i.e.
x2 ≥ 0.1. Since the σ2-constraint curve is parallel to the iso-merit lines, we conclude
that in this case there will be an infinite number of solutions, namely all points on
the line between A and C in Fig. 2.16 for which x2 ≥ 0.1! Here, C is the point with
x1 = 1/

√
2 and x2 = 0.

2.6 Weight Minimization of a Three-Bar Truss Subject
to a Stiffness Constraint

In this section, the weight of the three-bar truss in the previous section will be min-
imized under a stiffness constraint; the two-norm of the displacement vector has to
be lower than a prescribed value δ0 > 0, i.e. uT u ≤ δ2

0 . The scalar β = 1/10, i.e.
bar 3 is 10 times longer than bars 1 and 2. The displacements of the free node are
given in (2.32)–(2.33). Inserting β = 1/10 into these expressions we get

u = FL

EA1(2A1 + 11A2)

(
2A1 + 10A2

10A2

)

,

so that the stiffness constraint may be written as

uT u = F 2L2(4A2
1 + 200A2

2 + 40A1A2)

E2A2
1(2A1 + 11A2)2

≤ δ2
0 .

The density of all bars is ρ0, which gives the objective function

W = ρ0L(11A1 + A2).

Dimensionless variables are introduced according to

xi = Eδ0

FL
Ai, i = 1, 2. (2.42)

Writing the optimization problem in terms of these variables leads to

(SO)6
nf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x1,x2

11x1 + x2

s.t.

⎧
⎨

⎩

4x2
1 + 200x2

2 + 40x1x2

x2
1(2x1 + 11x2)2

− 1 ≤ 0

x1 > 0, x2 ≥ 0,

where we have scaled the objective function by a factor Eδ0/(ρ0FL2). This prob-
lem is illustrated in Fig. 2.17. At first glance it would appear that the solution is
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Fig. 2.17 Illustration of problem (SO)6
nf

x1 = 1, x2 = 0. The zoom plots in Fig. 2.18 reveal, however, that this is not the case.
The solution may be obtained by first solving the active stiffness constraint equation
for x2 in terms of x1, and then solving the highly nonlinear one-dimensional opti-
mization problem in the variable x1 obtained by insertion of the expression for x2
into the objective function. The solution of the problem is x∗

1 = 0.995, x∗
2 = 0.0169.

By using (2.42), the corresponding optimal cross-sectional areas are obtained. As a
much simpler alternative solution procedure for the two-dimensional optimization
problem (SO)6

nf at hand, we can simply produce finer and finer zoom plots similar
to those in Fig. 2.18 and read off the solution.

Since the optimum thickness of bar 2 is very small, it is interesting to investigate
how much heavier the optimum structure would be if bar 2 were removed. With no
bar 2, the stiffness constraint reads

1

x2
1

− 1 ≤ 0,

whereas the objective function becomes 11x1. Thus, with bar 2 removed, the optimal
solution is x∗

1 = 1 and the corresponding (scaled) weight is 11. With bar 2 present,
the optimum weight is 10.965, i.e. only 0.3% less than with no bar 2. Since the
production cost of the truss would most certainly be significantly less with no bar 2
present, it would make little sense to manufacture the truss with bar 2 included.
This serves to illustrate that one should never uncritically accept a solution obtained
by performing structural optimization. Finally, we remark that it would have been



2.7 Exercises 33

Fig. 2.18 Point A is the solution of problem (SO)6
nf

possible to avoid an optimal solution with a very thin bar 2 if the minimization of
the manufacturing cost had, somehow, been included in the optimization problem.

2.7 Exercises

Exercise 2.1 What happens if F < 0 in the example of Sect. 2.1?

Exercise 2.2 If the length of the second bar in the example of Sect. 2.5 is changed,
the optimum topology of the truss changes: the optimum area of the second bar is
zero for l2 ≥ L given β = 1, ρi = ρ0, and σmax

i = σ0, i = 1, 2, 3. Verify this for a
special case, e.g., l2 = √

2L.

Exercise 2.3 How does the solution of the example of Sect. 2.5 change if the max-
imum allowable stress in compression is lower than that in tension?

Exercise 2.4 Verify the details leading to the solutions (x∗
1 , x∗

2 ) and (x∗∗
1 , x∗∗

2 ) in
Sect. 2.4.

Exercise 2.5 The stiffness of the two-bar truss subjected to the force P > 0 in
Fig. 2.19 should be maximized by minimizing the displacement u of the free node.
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Fig. 2.19 The
one-dimensional two-bar
truss of Exercise 2.5

Young’s modulus is E for both bars. The volume of the truss is not allowed to exceed
the value V0. The total length of the bars is h, and bar 1 has length αh, where α is a
scalar between αmin and αmax. The cross-sectional areas of the bars are A1 = A and
A2 = βA, where β is a scalar. The design variables are α and β . Since α determines
the “shape” of the truss, and β the cross-sectional area of bar 2, the problem to be
solved is a combined shape and sizing optimization problem.

a) Show that the problem may be formulated as the following mathematical pro-
gramming problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
α,β

α(1 − α)

1 − α + αβ

s.t.

{

g1 = α + (1 − α)β − V0

Ah
≤ 0

αmin ≤ α ≤ αmax, β ≥ 0.

Let V0/(Ah) = 1 and αmax = 1. Show that the set {(α, β) : g1 ≤ 0, αmin ≤
α ≤ 1, β ≥ 0} = {(α,β) : αmin ≤ α ≤ 1, 0 ≤ β ≤ 1}∪{α,β) : α = 1, β > 1}. Solve
the problem for arbitrary αmin.

b) Let V0/(Ah) = 1.2 and αmin = 0.2. Solve the problem for αmax = 0.6 and
αmax = 0.8.


