
Preface

How to solve partial differential systems by completing the square. This could well
have been the title of this monograph as it grew into a project to develop a sys-
tematic approach for associating suitable nonnegative energy functionals to a large
class of partial differential equations (PDEs) and evolutionary systems. The minima
of these functionals are to be the solutions we seek, not because they are critical
points (i.e., from the corresponding Euler-Lagrange equations) but from also be-
ing zeros of these functionals. The approach can be traced back to Bogomolnyi’s
trick of “completing squares” in the basic equations of quantum field theory (e.g.,
Yang-Mills, Seiberg-Witten, Ginzburg-Landau, etc.,), which allows for the deriva-
tion of the so-called self (or antiself) dual version of these equations. In reality,
the “self-dual Lagrangians” we consider here were inspired by a variational ap-
proach proposed – over 30 years ago – by Brézis and Ekeland for the heat equation
and other gradient flows of convex energies. It is based on Fenchel-Legendre du-
ality and can be used on any convex functional – not just quadratic ones – making
them applicable in a wide range of problems. In retrospect, we realized that the “en-
ergy identities” satisfied by Leray’s solutions for the Navier-Stokes equations are
also another manifestation of the concept of self-duality in the context of evolution
equations.

The book could have also been entitled How to solve nonlinear PDEs via convex
analysis on phase space. Indeed, the self-dual vector fields we introduce and study
here are natural extensions of gradients of convex energies – and hence of self-
adjoint positive operators – which usually drive dissipative systems but also provide
representations for the superposition of such gradients with skew-symmetric opera-
tors, which normally generate conservative flows. Most remarkable is the fact that
self-dual vector fields turned out to coincide with maximal monotone operators,
themselves being far-reaching extensions of subdifferentials of convex potentials.
This means that we have a one-to-one correspondence between three fundamental
notions of modern nonlinear analysis: maximal monotone operators, semigroups of
contractions, and self-dual Lagrangians. As such, a large part of nonlinear analy-
sis can now be reduced to classical convex analysis on phase space, with self-dual
Lagrangians playing the role of potentials for monotone vector fields according to
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a suitable calculus that we develop herein. This then leads to variational formula-
tions and resolutions of a large class of differential systems that cannot otherwise be
Euler-Lagrange equations of action functionals.

A note of caution, however, is in order about our chosen terminology. Unlike
its use in quantum field theory, our concept of self-duality refers to an invariance
under the Legendre transform – up to an automorphism of phase space – of the
Lagrangians we consider. It also reflects the fact that many of the functionals we
consider here are self-dual in the sense of convex optimization, meaning that the
value of the infimum in the primal minimization problem is exactly the negative of
the value of the supremum in the corresponding dual problem and therefore must be
zero whenever there is no duality gap.

Another note, of a more speculative nature, is also in order, as our notion of
self-duality turned out to be also remarkably omnipresent outside the framework
of quantum field theory. Indeed, the class of self-dual partial differential systems –
as presented here – becomes quite encompassing, as it now also contains many of
the classical PDEs, albeit stationary or evolutionary, from gradient flows of convex
potentials (such as the heat and porous media equations), Hamiltonian systems, and
nonlinear transport equations to Cauchy-Riemann systems, Navier-Stokes evolu-
tions, Schrödinger equations, and many others. As such, many of these basic PDEs
can now be perceived as the “self-dual representatives” of families of equations that
are still missing from current physical models. They are the absolute minima of
newly devised self-dual energy functionals that may have other critical points that
correspond – via Euler-Lagrange theory – to a more complex and still uncharted
hierarchy of equations.

The prospect of exhibiting a unifying framework for the existence theory of such
a disparate set of equations was the main motivating factor for writing this book.
The approach is surprising because it suggests that basic convex analysis – prop-
erly formulated on phase space – can handle a large variety of PDEs that are nor-
mally perceived to be inherently nonlinear. It is also surprisingly simple because
it essentially builds on a single variational principle that applies to a deceivingly
restrictive-looking class of self-dual energy functionals. The challenges then shift
from the analytical issues connected with the classical calculus of variations to-
wards more algebraic/functional analytic methods for identifying and constructing
self-dual functionals as well as ways to combine them without destroying their self-
dual features.

With this in mind, the book is meant to offer material for an advanced graduate
course on convexity methods for PDEs. The generality we chose for our statements
definitely puts it under the “functional analysis” classification. The examples –
deliberately chosen to be among the simplest of those that illustrate the proposed
general principles – require, however, a fair knowledge of classical analysis and
PDEs, which is needed to make – among other things – judicious choices of function
spaces where the self-dual variational principles need to be applied. These choices
necessarily require an apriori knowledge of the expected regularity of the (weak)
solutions. We are therefore well aware that this project runs the risk of being per-
ceived as “too much PDEs for functional analysts, and too much functional analysis
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for PDErs.” This is a price that may need to be paid whenever one ventures into any
attempt at a unification or classification scheme within PDE theory.

At this stage, I would like to thank Ivar Ekeland for pointing me toward his 1976
conjecture with Haı̈m Brézis, that triggered my initial interest and eventually led to
the development of this program. Most of the results in this book have been obtained
in close collaboration with my postdoctoral fellow Abbas Moameni and my former
MSc student Leo Tzou. I can certainly say that without their defining contributions –
both conceptual and technical – this material would never have reached its present
state of readiness.

I would also like to express my gratitude to Yann Brenier, David Brydges, Ivar
Ekeland, Craig Evans, Richard Froese, Stephen Gustafson, Helmut Höfer, Robert
McCann, Michael Struwe, Louis Nirenberg, Eric Séré, and Tai-peng Tsai for the
numerous and fruitful discussions about this project, especially during the foggi-
est periods of its development. I am also thankful to Ulisse Stefanelli, who made
me aware of the large number of related works on evolution equations. Much of
this research was done during my visits – in the last five years– to the Centre de
Recherches Mathématiques in Montréal, the CEREMADE at l’Université Paris-
Dauphine, l’Université Aix-Marseille III, l’Université de Nice-Sophie Antipolis,
and the Università di Roma-Sapienza. My gratitude goes to Jacques Hurtubise,
Francois Lalonde, Maria Esteban, Jean Dolbeault, Eric Séré, Yann Brenier, Philippe
Maisonobe, Michel Rascle, Frédéric Robert, Francois Hamel, PierPaolo Esposito,
Filomena Pacella, Italo Capuzzo-Dolcetta, and Gabriella Tarantello, for their friend-
ship and hospitality during these visits. The technical support of my ever reliable
assistant Danny Fan has been tremendously helpful. I thank her for it.

Last but not least, “Un Grand Merci” to Louise, Mireille, Michelle, and Joseph
for all the times they tried – though often with limited success – to keep me off this
project.
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Chapter 2
Legendre-Fenchel Duality on Phase Space

We start by recalling the basic concepts and relevant tools of convex analysis that
will be used throughout the book. In particular, we review the Fenchel-Legendre
duality and its relationship with subdifferentiability. The material of the first four
sections is quite standard and does not include proofs, which we leave and recom-
mend to the interested reader. They can actually be found in most books on convex
analysis, such as those of Brézis [26], Ekeland and Temam [47], Ekeland [46], and
Phelps [130].

Our approach to evolution equations and partial differential systems, however,
is based on convex calculus on “phase space” X ×X∗, where X is a reflexive Ba-
nach space and X∗ is its dual. We shall therefore consider Lagrangians on X ×X∗

that are convex and lower semicontinuous in both variables. All elements of convex
analysis will apply, but the calculus on state space becomes much richer for many
reasons, not the least of which is the possibility of introducing associated Hamilto-
nians, which are themselves Legendre conjugates but in only one variable.

Another reason for the rich structure will become more evident in the next chap-
ter where the abundance of natural automorphisms on phase space and their inter-
play with the Legendre transform becomes an essential ingredient of our self-dual
variational approach.

2.1 Basic notions of convex analysis

Definition 2.1. A function ϕ : X → R∪{+∞} on a Banach space X is said to be:

1. lower semicontinuous (weakly lower semicontinuous) if, for every r ∈ R, its epi-
graph Epi(ϕ) := {(x,r) ∈ X × R;ϕ(x) ≤ r} is closed for the norm topology
(resp., weak topology) of X ×R, which is equivalent to saying that whenever
(xα) is a net in X that converges strongly (resp., weakly) to x, then f (x) ≤
liminfα f (xα).

2. convex if, for every r ∈ R, its epigraph Epi(ϕ) is a convex subset of X × R,
which is equivalent to saying that f (λx + (1− λy) ≤ λ f (x) + (1− λ ) f (y) for
any x,y ∈ X and 0 ≤ λ ≤ 1.
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26 2 Legendre-Fenchel Duality on Phase Space

3. proper if its effective domain ( i.e., the set Dom(ϕ) = {x ∈ X ;ϕ(x) < +∞}) is
nonempty, the effective domain being convex whenever ϕ is convex.

We shall denote by C (X) the class of convex lower semicontinuous functions on a
Banach space X .

Operations on convex lower semicontinuous functions

Consider ϕ and ψ to be two functions in C (X). Then,

1. The functions ϕ +ψ and λϕ when λ ≥ 0 are also in C (X).
2. The function x → max{ϕ(x),ψ(x)} is in C (X).
3. The inf-convolution x → ϕ �ψ(x) := inf{ϕ(y)+ψ(x−y);y ∈ X} is convex. If ϕ

and ψ are bounded below, then ϕ �ψ is in C (X) and Dom(ϕ �ψ) = Dom(ϕ)+
Dom(ψ). Moreover, ϕ � ψ is continuous at a point x ∈ X if either ϕ or ψ is
continuous at x.

4. If ρ ∈ C (R), then x → ρ(‖x‖X ) is in C (X).

Convex functions enjoy various remarkable properties that make them agreeable to
use in variational problems. We now summarize some of them.

Proposition 2.1. If ϕ : X → R∪{+∞} is a convex function on a Banach space X,
then:

1. ϕ is lower semicontinuous if and only if it is weakly lower semicontinuous, in
which case it is the supremum of all continuous affine functions below it.

2. If ϕ is a proper convex lower semicontinuous function on X, then it is continuous
on the interior D of its effective domain, provided it is nonempty.

We shall often use the immediate implication stating that any convex lower semi-
continuous function that is finite on the unit ball of X is necessarily continuous.
However, one should keep in mind that there exist continuous and convex functions
on Hilbert space that are not bounded on the unit ball [130].

2.2 Subdifferentiability of convex functions

Definition 2.2. Let ϕ : X → R∪{+∞} be a convex lower semicontinuous function
on a Banach space X . Define the subdifferential ∂ϕ of ϕ to be the following set-
valued function: If x ∈ Dom(ϕ), set

∂ϕ(x) = {p ∈ X∗;〈p,y− x〉 ≤ ϕ(y)−ϕ(x) for all y ∈ X}, (2.1)

and if x /∈ Dom(ϕ), set ∂ϕ(x) = /0.

The subdifferential ∂ϕ(x) is a closed convex subset of the dual space X∗. It can,
however, be empty even though x ∈ Dom(ϕ), and we shall write
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Dom(∂ϕ) = {x ∈ X ;∂ϕ(x) �= /0}. (2.2)

An application of the celebrated Bishop-Phelps theorem due to Brondsted and Rock-
afellar (see [130]) however yields the following useful result.

Proposition 2.2. Let ϕ be a proper convex lower semicontinuous function on X.
Then,

1. Dom(∂ϕ) is dense in Dom(ϕ).
2. Moreover, ∂ϕ(x) �= /0 at any point x in the interior of Dom(ϕ) where ϕ is contin-

uous.

If x ∈ Dom(ϕ), we define the more classical notion d+ϕ(x) of a “right-derivative”
at x as

〈d+ϕ(x),y〉 := limt→0+
1
t

(
ϕ(x+ ty)−ϕ(x)

)
for any y ∈ X . (2.3)

The relationship between the two types of derivatives is given by

p ∈ ∂ϕ(x) if and only if 〈p,y〉 ≤ 〈d+ϕ(x),y〉 for any y ∈ X . (2.4)

Now ϕ is said to be Gâteaux-differentiable at a point x ∈ Dom(ϕ) if there exists
p ∈ X∗, which will be denoted by DGϕ(x) such that

〈p,y〉 = limt→0
1
t

(
ϕ(x+ ty)−ϕ(x)

)
for any y ∈ X . (2.5)

It is then easy to see the following relationship between the two notions.

Proposition 2.3. Let ϕ be a convex function on X.

1. If ϕ is Gâteaux-differentiable at a point x ∈ Dom(ϕ), then ∂ϕ(x) = {DGϕ(x)}.
2. Conversely, if ϕ is continuous at x ∈ Dom(ϕ), and if the subdifferential of ϕ at x

is single valued, then ∂ϕ(x) = {DGϕ(x)}.

Subdifferentials satisfy the following calculus.

Proposition 2.4. Let ϕ and ψ be in C (X) and λ ≥ 0. We then have the following
properties:

1. ∂ (λϕ)(x) = λ∂ϕ(x) and ∂ϕ(x)+∂ψ(x) ⊂ ∂ (ϕ +ψ)(x) for any x ∈ X.
2. Moreover, equality ∂ϕ(x)+∂ψ(x) = ∂ (ϕ +ψ)(x) holds at a point x∈Dom(ϕ)∩

Dom(ψ), provided either ϕ or ψ is continuous at x.
3. If A : Y → X is a bounded linear operator from a Banach space Y into X, and if

ϕ is continuous at some point in R(A)∩Dom(ϕ), then ∂ (ϕ ◦A)(y) = A∗∂ϕ(Ay)
for every point y ∈ Y .

As a set-valued map, the subdifferential has the following useful properties.

Definition 2.3. A subset G of X ×X∗ is said to be

1. monotone, provided

〈x− y, p−q〉 ≥ 0 for every (x, p) and (y, p) in G. (2.6)
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2. maximal monotone if it is maximal in the family of monotone subsets of X ×X∗

ordered by set inclusion, and
3. cyclically monotone, provided that for any finite number of points (xi, pi)n

i=0 in
G with x0 = xn, we have

n
∑

k=1
〈pk,xk − xk−1〉 ≥ 0. (2.7)

A set-valued map T : X → 2X∗
is then said to be monotone (resp., maximal mono-

tone) (resp., cyclically monotone), provided its graph G(T ) = {(x, p) ∈ X ×X∗; p ∈
T (x)} is monotone (resp., maximal monotone) (resp., cyclically monotone).

The following result was established by Rockafellar. See for example [130].

Theorem 2.1. Let ϕ : X → R∪{+∞} be a proper convex and lower semicontinuous
functional on a Banach space X. Then, its differential map x → ∂ϕ(x) is a maximal
cyclically monotone map.

Conversely, if T : X → 2X∗
is a maximal cyclically monotone map with a

nonempty domain, then there exists a proper convex and lower semicontinuous func-
tional on X such that T = ∂ϕ .

2.3 Legendre duality for convex functions

Let ϕ : X → R∪{+∞} be any function. Its Fenchel-Legendre dual is the function
ϕ∗ on X∗ given by

ϕ∗(p) = sup{〈x, p〉−ϕ(x);x ∈ X}. (2.8)

Proposition 2.5. Let ϕ : X → R∪{+∞} be a proper function on a reflexive Banach
space. The following properties then hold:

1. ϕ∗ is a proper convex lower semicontinuous function from X∗ to R∪{+∞}.
2. ϕ∗∗ := (ϕ∗)∗ : X → R∪{+∞} is the largest convex lower semicontinuous func-

tion below ϕ . Moreover, ϕ = ϕ∗∗ if and only if ϕ is convex and lower semicon-
tinuous on X.

3. For every (x, p) ∈ X ×X∗, we have ϕ(x)+ϕ∗(p) ≥ 〈x, p〉, and the following are
equivalent:

i) ϕ(x)+ϕ∗(p) = 〈x, p〉,
ii) p ∈ ∂ϕ(x),
iii) x ∈ ∂ϕ∗(p).

Proposition 2.6. Legendre duality satisfies the following rules:

1. ϕ∗(0) = − inf
x∈X

ϕ(x).

2. If ϕ ≤ ψ , then ϕ∗ ≥ ψ∗.
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3. We have (inf
i∈I

ϕi)∗ = sup
i∈I

ϕ∗
i and (sup

i∈I
ϕi)∗ ≤ inf

i∈I
ϕ∗

i whenever (ϕi)i∈I is a family of

functions on X.
4. For every λ > 0, (λϕ)∗(p) = λϕ∗( 1

λ p).
5. For every α ∈ R, (ϕ +α)∗ = ϕ∗ −α .
6. For a fixed a ∈ X, we have, for every p ∈ X∗, ϕ∗

a (p) = ϕ∗(p) + 〈a, p〉, where
ϕa(x) := ϕ(x−a).

7. If ρ is an even function in C (R), then the Legendre transform of ϕ(x) = ρ(‖u‖X )
is ϕ∗(p) = ρ∗(‖p‖X∗). In particular, if ϕ(x) = 1

α ‖x‖α
X , then ϕ∗(p) = 1

β ‖p‖β
X∗ ,

where 1
α + 1

β = 1.

8. If ϕ and ψ are proper functions, then (ϕ �ψ)∗ = ϕ∗ +ψ∗.
9. Conversely, if Dom(ϕ)−Dom(ψ) contains a neighborhood of the origin, then

(ϕ +ψ)∗ = ϕ∗ �ψ∗.
10. Let A : D(A) ⊂ X → Y be a linear operator with a closed graph, and let ϕ : Y →

R∪{+∞} be a proper function in C (Y ). Then, the dual of the function ϕA defined
on X as ϕA(x) = ϕ(Ax) if x ∈ D(A) and +∞ otherwise, is

ϕ∗
A(p) = inf{ϕ∗(q); A∗q = p}.

11. Let h(x) := inf
{

F(x1,x2); x1,x2 ∈ X , x = 1
2 (x1 + x2)

}
, where F is a function on

X ×X. Then, h∗(p) = F∗( p
2 , p

2 ) for every p ∈ X∗.
12. Let g be the function on X×X defined by g(x1,x2)= ‖x1−x2‖2. Then, g∗(p1, p2)=

1
4‖p1‖2 if p1 + p2 = 0 and +∞ otherwise.

The following lemma will be useful in Chapter 5. It can be used to interpolate be-
tween convex functions, and is sometimes called the proximal average.

Lemma 2.1. Let f1, f2 : X → R∪{+∞} be two convex lower semicontinuous func-
tions on a reflexive Banach space X. The Legendre dual of the function h defined for
X ∈ X by

h(x) := inf

{
1
2

f1(x1)+
1
2

f2(x2)+
1
8
‖x1 − x2‖2; x1,x2 ∈ X , x =

1
2
(x1 + x2)

}

is given by the function h∗ defined for p ∈ X∗ by

h∗(p) = inf

{
1
2

f ∗1 (p1)+
1
2

f ∗2 (p2)+
1
8
‖p1 − p2‖2; p1, p2 ∈ X∗, p =

1
2
(p1 + p2)

}

.

Proof. Note that

h(x) := inf

{

F(x1,x2); x1,x2 ∈ X , x =
1
2
(x1 + x2)

}

,

where F is the function on X ×X defined as F(x1,x2) = g1(x1,x2)+g2(x1,x2) with

g1(x1,x2) = 1
2 f1(x1)+ 1

2 f2(x2) and g2(x1,x2) = 1
8‖x1 − x2‖2.
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It follows from rules (10) and (7) in Proposition 2.6 that

h∗(p) = F∗
( p

2
,

p
2

)
= (g1 +g2)∗

( p
2
,

p
2

)
= g∗1 �g∗2

( p
2
,

p
2

)
.

It is easy to see that

g∗1(p1, p2) =
1
2

f ∗1
( p1

2

)
+

1
2

f ∗2
( p2

2

)
,

while rule (11) of Proposition 2.6 gives that

g∗2(p1, p2) = 2‖p1‖2 if p1 + p2 = 0 and +∞ otherwise.

It follows that

h∗(p) = g∗1 �g∗2(
p
2
,

p
2
)

= inf

{
1
2

f ∗1 (
p1

2
)+

1
2

f ∗2 (
p2

2
)+2

∥
∥
∥

p
2
− p1

4

∥
∥
∥

2
; p1, p2 ∈ X∗, p = p1 + p2

}

= inf

{
1
2

f ∗1 (q1)+
1
2

f ∗2 (q2)+2
∥
∥
∥

p
2
− q1

2

∥
∥
∥

2
; q1,q2 ∈ X∗, p =

1
2
(q1 +q2)

}

= inf

{
1
2

f ∗1 (q1)+
1
2

f ∗2 (q2)+
1
8
‖q2 −q1‖2; q1,q2 ∈ X∗, p =

1
2
(q1 +q2)

}

.

The following theorem can be used to prove rule (8) in Proposition 2.6. It will also
be needed in what follows.

Theorem 2.2 (Fenchel and Rockafellar). Let ϕ and ψ be two convex functions on
a Banach space X such that ϕ is continuous at some point x0 ∈ Dom(ϕ)∩Dom(ψ).
Then,

inf
x∈X

{ϕ(x)+ψ(x)} = max
p∈X∗

{−ϕ∗(−p)−ψ∗(p)} . (2.9)

The theorem above holds, for example, whenever Dom(ϕ)−Dom(ψ) contains a
neighborhood of the origin or more generally if the set IntDom(ϕ)∩Dom(ψ) is
nonempty.

The following simple lemma will be used often throughout this text. Its proof is
left as an exercise.

Lemma 2.2. If ϕ : X �→ R∪{+∞} is a proper convex and lower semicontinuous
functional on a Banach space X such that −A ≤ ϕ(y) ≤ B

α ‖y‖α
Y +C with A ≥ 0,

C ≥ 0, B > 0, and α > 1, then for every p ∈ ∂ϕ(y)

‖p‖X∗ ≤
{

αB
β
α (‖y‖X +A+C)+1

}α−1
. (2.10)
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2.4 Legendre transforms of integral functionals

Let Ω be a Borel subset of Rn with finite Lebesgue measure, and let X be a separable
reflexive Banach space. Consider a bounded below function ϕ : Ω ×X → R∪{+∞}
that is measurable with respect to the σ -field generated by the products of Lebesgue
sets in Ω and Borel sets in X . We can associate to ϕ a functional Φ defined on
Lα(Ω ,X) (1 ≤ α ≤ +∞) via the formula

Φ(x) =
∫

Ω
ϕ(ω,x(ω))dω,

where x ∈ Lα(Ω ,X). We now relate the Legendre transform and subdifferential of
ϕ as a function of its second variable on X to the Legendre transform and subdiffer-
ential of Φ as a function on Lα(Ω ,X). We shall use the following obvious notation.
For ω ∈ Ω , x ∈ X , and p ∈ X∗,

ϕ∗(ω, p) = ϕ(ω, ·)∗(p) and ∂ϕ(ω,x) = ∂ϕ(ω, ·)(x).

The following proposition summarizes the relations between the function ϕ and “its
integral” Φ . A proof can be found in [46].

Proposition 2.7. Assume X is a reflexive and separable Banach space, that 1 ≤ α ≤
+∞, 1

α + 1
β = 1, and that ϕ : Ω ×X → R∪{+∞} is jointly measurable such that

∫
Ω |ϕ∗(ω, p̄(ω))|dω < ∞ for some p̄ ∈ Lβ (Ω ,X), which holds in particular if ϕ is

bounded below on Ω ×X.

1. If the function ϕ(ω, ·) is lower semicontinuous on X for almost every ω ∈ Ω ,
then Φ is lower semicontinuous on Lα(Ω ,X).

2. If ϕ(ω, ·) is convex on X for almost every ω ∈ Ω , then Φ is convex on Lα(Ω ,X).
3. If ϕ(ω, ·) is convex and lower semicontinuous on X for almost every ω ∈ Ω ,

and if Φ(x̄) < +∞ for some x̄ ∈ L∞(Ω ,X), then the Legendre transform of Φ on
Lβ (Ω ,X) is given by

Φ∗(p) =
∫

Ω ϕ∗(ω, p(ω))dω for all p ∈ Lβ (Ω ,X). (2.11)

4. If
∫

Ω |ϕ(ω, x̄(ω))|dω < ∞ and
∫

Ω |ϕ∗(ω, p̄(ω))|dω < ∞ for some x̄ and p̄ in
L∞(Ω ,X), then for every x ∈ Lα(Ω ,X) we have

∂Φ(x) =
{

p ∈ Lβ (Ω ,X); p(ω) ∈ ∂ϕ(ω,x(ω)) a.e.
}

. (2.12)

Exercises 2.A. Legendre transforms of energy functionals

1. Review and prove all the statements in Sections 2.1 to 2.4.
2. Let Ω be a bounded smooth domain in Rn, and define on L2(Ω) the convex lower semicontin-

uous functional
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ϕ(u) =
{

1
2

∫
Ω |∇u|2 on H1

0 (Ω)
+∞ elsewhere.

(2.13)

Show that its Legendre-Fenchel conjugate for the L2-duality is ϕ∗(v) = 1
2

∫
Ω |∇(−∆)−1v|2dx

and that its subdifferential ∂ϕ = −∆ with domain H1
0 (Ω)∩H2(Ω).

3. Consider the Hilbert space H−1(Ω) equipped with the norm induced by the scalar product
〈u,v〉H−1(Ω) =

∫
Ω u(−∆)−1vdx. For m ≥ n−2

n+2 , we have Lm+1(Ω) ⊂ H−1, and so we may con-
sider the functional

ϕ(u) =
{

1
m+1

∫
Ω |u|m+1 on Lm+1(Ω)

+∞ elsewhere.
(2.14)

Show that its Legendre-Fenchel conjugate is ϕ∗(v) = m
m+1

∫
Ω |(−∆)−1v| m+1

m dx with subdiffer-
ential ∂ϕ(u) = −∆(um) on D(∂ϕ) = {u ∈ Lm+1(Ω);um ∈ H1

0 (Ω)}.

4. If 0 < m < 1, then (−∆)−1u does not necessarily map Lm+1(Ω) into L
m+1

m , and so we consider
the space X defined as

X = {u ∈ Lm+1(Ω); (−∆)−1u ∈ L
m+1

m (Ω)}

equipped with the norm ‖u‖X = ‖u‖m+1 + ‖(−∆)−1u‖ m+1
m

. Show that the functional ϕ(u) =
1

m+1

∫
Ω |u|m+1 is convex and lower semicontinuous on X with Legendre-Fenchel transform

equal to

ϕ∗(v) =
{

m
m+1

∫
Ω |(−∆)−1v| m+1

m dx if (−∆)−1v ∈ L
m+1

m (Ω)
+∞ otherwise.

(2.15)

2.5 Legendre transforms on phase space

Let X be a reflexive Banach space. Functions L : X×X∗ →R∪{+∞} on phase space
X ×X∗ will be called Lagrangians, and we shall consider the class L (X) of those
Lagrangians that are proper convex and lower semicontinuous (in both variables).
The Legendre-Fenchel dual (in both variables) of L is defined at (q,y) ∈ X∗ ×X by

L∗(q,y) = sup{〈q,x〉+ 〈y, p〉−L(x, p); x ∈ X , p ∈ X∗}.

The (partial) domains of a Lagrangian L are defined as

Dom1(L) = {x ∈ X ;L(x, p) < +∞ for some p ∈ X∗}

and
Dom2(L) = {p ∈ X∗;L(x, p) < +∞ for some x ∈ X}.

To each Lagrangian L on X × X∗, we can define its corresponding Hamiltonian
HL : X ×X → R̄ (resp., co-Hamiltonian H̃L : X∗ ×X∗ → R) by

HL(x,y) = sup{〈y, p〉−L(x, p); p ∈ X∗} and H̃L(p,q) = sup{〈y, p〉−L(y,q);y ∈ X},

which is the Legendre transform in the second variable (resp., first variable). Their
domains are
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Dom1(HL) : = {x ∈ X ;HL(x,y) > −∞ for all y ∈ X}
= {x ∈ X ;HL(x,y) > −∞ for some y ∈ X}

and

Dom2(H̃L) : = {q ∈ X∗; H̃L(p,q) > −∞ for all p ∈ X∗}
= {q ∈ X∗; H̃L(p,q) > −∞ for some p ∈ X∗}.

It is clear that Dom1(L) = Dom1(HL) and Dom2(L) = Dom2H̃L.

Remark 2.1. To any pair of proper convex lower semicontinuous functions ϕ and ψ
on a Banach space X , one can associate a Lagrangian on state space X ×X∗ via the
formula L(x, p) = ϕ(x)+ ψ∗(p). Its Legendre transform is then L∗(p,x) = ψ(x)+
ϕ∗(p). Its Hamiltonian is HL(x,y) = ψ(y)−ϕ(x) if x ∈ Dom(ϕ) and −∞ otherwise,
while its co-Hamiltonian is H̃L(p,q) = ϕ∗(p)− ψ∗(q) if q ∈ Dom(ψ∗) and −∞
otherwise. The domains are then Dom1HL := Dom(ϕ) and Dom2(H̃L) := Dom(ψ∗).
These Lagrangians will be the building blocks of the variational approach developed
in this book.

Operations on Lagrangians

We define on the class of Lagrangians L (X) the following operations:

Scalar multiplication: If λ > 0 and L ∈ L (X), define the Lagrangian λ ·L on
X ×X∗ by

(λ ·L)(x, p) = λ 2L
( x

λ
,

p
λ

)
.

Addition: If L,M ∈ L (X), define the sum L⊕M on X ×X∗ by:

(L⊕M)(x, p) = inf{L(x,r)+M(x, p− r);r ∈ X∗}.

Convolution: If L,M ∈ L (X), define the convolution L�M on X ×X∗ by

(L�M)(x, p) = inf{L(z, p)+M(x− z, p);z ∈ X}.

Right operator shift: If L ∈L (X) and Γ : X → X∗ is a bounded linear operator,
define the Lagrangian LΓ on X ×X∗ by

LΓ (x, p) := L(x,−Γ x+ p).

Left operator shift: If L ∈ L (X) and if Γ : X → X∗ is an invertible operator,
define the Lagrangian Γ L on X ×X∗ by

Γ L(x, p) := L(x−Γ −1 p,Γ x).

Free product: If {Li; i ∈ I} is a finite family of Lagrangians on reflexive Banach
spaces {Xi; i ∈ I}, define the Lagrangian L := Σi∈ILi on (Πi∈IXi)× (Πi∈IX∗

i ) by
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L((xi)i,(pi)i) = Σi∈ILi(xi, pi).

Twisted product: If L ∈ L (X) and M ∈ L (Y ), where X and Y are two reflexive
spaces, then for any bounded linear operator A : X → Y ∗, define the Lagrangian
L⊕A M on (X ×Y )× (X∗ ×Y ∗) by

(L⊕A M)((x,y),(p.q)) := L(x,A∗y+ p)+M(y,−Ax+q).

Antidualization of convex functions: If ϕ,ψ are convex functions on X ×Y and
if A is any bounded linear operator A : X →Y ∗, define the Lagrangian ϕ ⊕A ψ on
(X ×Y )× (X∗ ×Y ∗) by

ϕ ⊕A ψ((x,y),(p,q)) = ϕ(x,y)+ψ∗(A∗y+ p,−Ax+q).

Remark 2.2. The convolution operation defined above should not be confused with
the standard convolution for L and M as convex functions in both variables. Indeed,
it is easy to see that in the case where L(x, p) = ϕ(x)+ϕ∗(p) and M(x, p) = ψ(x)+
ψ∗(p), addition corresponds to taking

(L⊕M)(x, p) = (ϕ +ψ)(x)+ϕ∗ �ψ∗(p),

while convolution reduces to

(L�M)(x, p) = (ϕ �ψ)(x)+(ϕ∗ +ψ∗)(p).

Proposition 2.8. Let X be a reflexive Banach space. Then,

1. (λ ·L)∗ = λ ·L∗ for any L ∈ L (X) and any λ > 0.
2. (L⊕M)∗ ≤ L∗ �M∗ and (L�M)∗ ≤ L∗ ⊕M∗ for any L,M ∈ L (X).
3. If M is a basic Lagrangian of the form ϕ(Ux)+ψ∗(V ∗p), where ψ is continuous

on X and U,V are two automorphisms of X, then (L � M)∗ = L∗ ⊕M∗ for any
L ∈ L (X).

4. If L,M ∈L (X) are such that Dom2(L∗)−Dom2(M∗) contains a neighborhood
of the origin, then (L�M)∗ = L∗ ⊕M∗.

5. If L,M ∈ L (X) are such that Dom1(L)−Dom1(M) contains a neighborhood
of the origin, then (L⊕M)∗ = L∗ �M∗.

6. If L ∈ L (X) and Γ : X → X∗ is a bounded linear operator, then (LΓ )∗(p,x) =
L∗(Γ ∗x+ p,x).

7. If L ∈ L (X) and if Γ : X → X∗ is an invertible operator, then (Γ L)∗(p,x) =
L∗(−Γ ∗x,(Γ −1)∗p+ x).

8. If {Li; i ∈ I} is a finite family of Lagrangians on reflexive Banach spaces {Xi; i ∈
I}, then

(Σi∈ILi)∗((pi)i,(xi)i) = Σi∈IL
∗
i (pi,xi).

9. If L ∈ L (X) and M ∈ L (Y ), where X and Y are two reflexive spaces, then for
any bounded linear operator A : X → Y ∗, we have

(L⊕A M)∗((p,q),(x,y)) = L∗(A∗y+ p,x)+M∗(−Ax+q,y).
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10. If ϕ and ψ are convex functions on X ×Y and A is any bounded linear op-
erator A : X → Y ∗, then the Lagrangian L defined on (X ×Y )× (X∗ ×Y ∗) by
L((x,y),(p,q)) = ϕ(x,y)+ψ∗(A∗y+ p,−Ax+q) has a Legendre transform

L∗((p,q),(x,y)) = ψ(x,y)+ϕ∗(A∗y+ p,−Ax+q).

Proof. (1) is obvious.
To prove (2) fix (q,y) ∈ X∗ ×X and use the formula (ϕ � ψ)∗ ≤ ϕ∗ + ψ∗ in one

variable on the functions ϕ(p) = L(z, p) and ψ(p) = M(v, p) to write

(L�M)∗(q,y) = sup{〈q,x〉+ 〈y, p〉−L(z, p)−M(x− z, p);(z,x, p) ∈ X ×X ×X∗}
= sup{〈q,v+ z〉+ 〈y, p〉−L(z, p)−M(v, p);(z,v, p) ∈ X ×X ×X∗}
≤ sup

(z,v)∈X×X
{〈q,v+ z〉+ sup{〈y, p〉−L(z, p)−M(v, p); p ∈ X∗}}

≤ sup
(z,v)∈X×X

{

〈q,v+ z〉+ inf
w∈X

{ sup
p1∈X∗

(〈w, p1〉−L(z, p1))

+ sup
p2∈X∗

(〈y−w, p2〉−M(v, p2))}
}

≤ inf
w∈X

{

sup
(z,p1)∈X×X∗

{〈q,z〉+ 〈w, p1〉−L(z, p1))}

+ sup
(v,p2)∈X×X∗

{〈q,v〉+ 〈y−w, p2〉−M(v, p2)

}

= inf
w∈X

{L∗(q,w)+M∗(q,y−w)}

= (L∗ ⊕M∗)(q,y).

For (3), assume that M(x, p) = ϕ(Ux) + ψ∗(V ∗p), where ϕ and ψ are convex
continuous functions and U and V are automorphisms of X . Fix (q,y) ∈ X∗ ×X and
write

(L�M)∗(q,y) = sup{〈q,x〉+ 〈y, p〉−L(z, p)−M(x− z, p);(z,x, p) ∈ X ×X ×X∗}
= sup{〈q,v+ z〉+ 〈y, p〉−L(z, p)−M(v, p);(z,v, p) ∈ X ×X ×X∗}

= sup
p∈X∗

{

〈y, p〉+ sup
(z,v)∈X2

{〈q,v+ z〉−L(z, p)−ϕ(Uv)}−ψ∗(V ∗p)

}

= sup
p∈X∗

{

〈y, p〉+ sup
z∈X

{〈q,z〉−L(z, p)}

+sup
v∈X

{〈q,v〉−ϕ(Uv)}−ψ∗(V ∗p)
}

= sup
p∈X∗

{

〈y, p〉+ sup
z∈X

{〈q,z〉−L(z, p)}+ϕ∗((U−1)∗q)−ψ∗(V ∗p)
}
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= sup
p∈X∗

sup
z∈X

{〈y, p〉+ 〈q,z〉−L(z, p)−ψ∗(V ∗p)}+ϕ∗((U−1)∗q)

= (L+T )∗(q,y)+ϕ∗((U−1)∗q),

where T (z, p) := ψ∗(V ∗p) for all (z, p) ∈ X ×X∗. Note now that

T ∗(q,y) = sup
z,p

{〈q,z〉+ 〈y, p〉−ψ∗(V ∗p)} =
{

+∞ if q �= 0,
ψ((V−1y) if q = 0,

in such a way that by using the duality between sums and convolutions in both
variables, we get

(L+T )∗(q,y) = conv(L∗,T ∗)(q,y)
= inf

r∈X∗,z∈X
{L∗(r,z)+T ∗(−r +q,−z+ y)}

= inf
z∈X

{
L∗(q,z)+ψ(V−1(−z+ y))

}
.

Finally,

(L�M)∗(q,y) = (L+T )∗(q,y)+ϕ∗((U−1)∗q)
= inf

z∈X

{
L∗(q,z)+ψ(V−1(−z+ y))

}
+ϕ∗((U−1)∗q)

= inf
z∈X

{L∗(q,z)+(ϕ ◦U)∗(q)+(ψ∗ ◦V ∗)∗(−z+ y)}

= (L∗ ⊕M∗)(q,y).

For (4), again fix (q,y) ∈ X∗ ×X , and write

(L�M)∗(q,y) = sup
(z,x,p)∈X×X×X∗

{〈q,x〉+ 〈y, p〉−L(z, p)−M(x− z, p)}

= sup
(z,v,p)∈X×X×X∗

{〈q,v+ z〉+ 〈y, p〉−L(z, p)−M(v, p)}

= sup
(z,v,p)∈X×X×X∗

{−ϕ∗(−z,−v,−p)−ψ∗(z,v, p)}

with ϕ∗(z,v, p) = 〈q,z〉+ L(−z,−p) and ψ∗(z,v, p) = −〈y, p〉 − 〈q,v〉+ M(v, p).
Note that now

ϕ(r,s,x) = sup
(z,v,p)∈X×X×X∗

{〈r,z〉+ 〈v,s〉+ 〈x, p〉−〈q,z〉−L(−z,−p)}

= sup
(z,v,p)∈X×X×X∗

{〈r−q,z〉+ 〈v,s〉+ 〈x, p〉−L(−z,−p)}

= sup
v∈X

{〈v,s〉+L∗(q− r,−x)},

which is equal to +∞ whenever s �= 0. Similarly, we have
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ψ(r,s,x) = sup
(z,v,p)∈X×X×X∗

{〈r,z〉+ 〈v,s〉+ 〈x, p〉+ 〈y, p〉+ 〈v,q〉−M(v, p)}

= sup
(z,v,p)∈X×X×X∗

{〈r,z〉+ 〈v,q+ s〉+ 〈x+ y, p〉−M(v, p)}

= sup
z∈X

{〈z,r〉+M∗(q+ s,x+ y)},

which is equal to +∞ whenever r �= 0. If now Dom2(L∗)−Dom2(M∗) contains a
neighborhood of the origin, then we apply the theorem of Fenchel and Rockafellar
to get

(L�M)∗(q,y) = sup{−ϕ∗(−z,−v,−p)−ψ∗(z,v, p); (z,v, p) ∈ X ×X ×X∗}
= inf{ϕ(r,s,x)+ψ(r,s,x);(r,s,x) ∈ X∗ ×X∗ ×X}

= inf
(r,s,x)∈X∗×X∗×X

{

sup
v∈X

{〈v,s〉+L∗(q− r,−x)}

+sup
z∈X

{〈z,r〉+M∗(q+ s,x+ y)}
}

= inf{L∗(q,−x)+M∗(q,x+ y);x ∈ X}
= (L∗ ⊕M∗)(q,y).

Assertion (5) can be proved in a similar fashion.
For (6), fix (q,y) ∈ X∗ ×X , set r = Γ x+ p and write

(LΓ )∗(q,y) = sup{〈q,x〉+ 〈y, p〉−L(x,−Γ x+ p);(x, p) ∈ X ×X∗}
= sup{〈q,x〉+ 〈y,r +Γ x〉−L(x,r);(x,r) ∈ X ×X∗}
= sup{〈q+Γ ∗y,x〉+ 〈y,r〉−L(x,r);(x,r) ∈ X ×X∗}
= L∗(q+Γ ∗y,y).

For (7), let r = x−Γ −1 p and s = Γ x and write

(Γ L)∗(q,y) = sup{〈q,x〉+ 〈y, p〉−L(x−Γ −1 p,Γ x);(x, p) ∈ X ×X∗}
= sup{〈q,Γ −1s〉+ 〈y,s−Γ r〉−L(r,s);(r,s) ∈ X ×X∗}
= sup{〈(Γ −1)∗q+ y,s〉−〈Γ ∗y,r〉−L(r,s);(r,s) ∈ X ×X∗}
= L∗(−Γ ∗y,(Γ −1)∗q+ y).

The proof of (8) is obvious, while for (9) notice that if (z̃, r̃) ∈ (X ×Y )× (X∗ ×
Y ∗), where z̃ = (x,y) and r̃ = (p,q), we can write

L⊕A M(z̃, r̃) = (L+M)(z̃, Ãz̃+ r̃),

where Ã : X×Y →X∗×Y ∗ is the skew-adjoint operator defined by Ã(z̃)= Ã((x,y))=
(−A∗y,Ax). Now apply (6) and (8) to L+M and Ã to obtain

(L⊕A M)∗((p,q),(x,y)) = (L+M)∗(r̃ + Ã∗z̃, z̃)
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= (L∗ +M∗)(r̃− Ãz̃, z̃)
= L∗(A∗y+ p,x)+M∗(−Ax+q,y).

Assertion (10) follows again from (6) since the Lagrangian M((x,y),(p,q)) =
ϕ(x,y) + ψ∗(−A∗y − p,Ax − q) is of the form L((x,y), Ã(x,y) + (p,q)), where
L((x,y),(p,q)) = ϕ(x,y) + ψ∗(p,q) and Ã : X ×Y → X∗ ×Y ∗ is again the skew-
adjoint operator defined by Ã((x,y)) = (−A∗y,Ax). The Legendre transform is then
equal to L∗((p,q),(x,y)) = ψ(x,y)+ϕ∗(A∗y+ p,−Ax+q).

2.6 Legendre transforms on various path spaces

Legendre transform on the path space Lα([0,T ],X)

For 1 < α < +∞, we consider the space Lα
X [0,T ] of Bochner integrable functions

from [0,T ] into X with norm

‖u‖Lα (X) =
(∫ T

0
‖u(t)‖α

X dt

) 1
α

.

Definition 2.4. Let [0,T ] be a time interval and let X be a reflexive Banach space.
A time-dependent convex function on [0,T ]× X (resp., a time-dependent convex
Lagrangian on [0,T ]× X × X∗) is a function ϕ : [0,T ]× X → R ∪ {+∞} (resp.,
L : [0,T ]×X ×X∗ → R∪{+∞}) such that :

1. ϕ (resp., L) is measurable with respect to the σ -field generated by the products
of Lebesgue sets in [0,T ] and Borel sets in X (resp., in X ×X∗).

2. For each t ∈ [0,T ], the function ϕ(t, ·) (resp., L(t, ·, ·)) is convex and lower semi-
continuous on X (resp., X ×X∗).

The Hamiltonian HL of L is the function defined on [0,T ]×X ×X∗ by

HL(t,x,y) = sup{〈y, p〉−L(t,x, p); p ∈ X∗}.

To each time-dependent Lagrangian L on [0,T ]× X × X∗, one can associate the

corresponding Lagrangian L on the path space Lα
X ×Lβ

X∗ , where 1
α + 1

β = 1 to be

L (u, p) :=
∫ T

0
L(t,u(t), p(t))dt,

as well as the associated Hamiltonian on Lα
X ×Lα

X ,

HL (u,v) = sup

{∫ T

0
(〈p(t),v(t)〉−L(t,u(t), p(t)))dt ; p ∈ Lβ

X∗

}
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The Fenchel-Legendre dual of L is defined for any (q,v) ∈ Lβ
X∗ ×Lα

X as

L ∗(q,v) = sup
(u,p)∈Lα

X×Lβ
X∗

∫ T

0
{〈q(t),u(t)〉+ 〈p(t),v(t)〉−L(t,u(t), p(t))}dt.

Proposition 2.7 immediately yields the following.

Proposition 2.9. Suppose that L is a Lagrangian on [0,T ]×X ×X∗, and let L be

the corresponding Lagrangian on the path space Lα
X ×Lβ

X∗ . Then,

1. L ∗(p,u) =
∫ T

0 L∗(t, p(t),u(t))dt.
2. HL (u,v) =

∫ T
0 HL(t,u(t),v(t))dt.

Suppose now that H is a Hilbert space, and consider the space A2
H of all functions

in L2
H such that u̇ ∈ L2

H equipped with the norm

‖u‖A2
H

= (‖u‖2
L2

H
+‖u̇‖2

L2
H
)1/2.

Theorem 2.3. Suppose � is a convex lower semicontinuous function on H ×H, and
let L be a time-dependent Lagrangian on [0,T ]×H ×H such that

For each p ∈ L2
H, the map u →

∫ T
0 L(t,u(t), p(t))dt is continuous on L2

H. (2.16)

The map u →
∫ T

0 L(t,u(t),0)dt is bounded on the unit ball of L2
H. (2.17)

−C ≤ �(a,b) ≤ 1
2 (1+‖a‖2

H +‖b‖2
H) for all (a,b) ∈ H ×H. (2.18)

Consider the following Lagrangian on L2
H ×L2

H:

L (u, p) =
{∫ T

0 L(t,u(t), p(t)− u̇(t))dt + �(u(0),u(T )) if u ∈ A2
H

+∞ otherwise.

The Legendre transform of L is then

L ∗(p,u) =
{∫ T

0 L∗(t, p(t)− u̇(t),u(t))dt + �∗(−u(0),u(T )) if u ∈ A2
H

+∞ otherwise.

Proof. For (q,v) ∈ L2
H ×A2

H , write

L ∗(q,v) = sup
u∈L2

H

sup
p∈L2

H

{∫ T

0
(〈u(t),q(t)〉+ 〈v(t), p(t)〉−L(t,u(t), p(t)− u̇(t)))dt

−�(u(0),u(T ))
}

= sup
u∈A2

H

sup
p∈L2

H

{∫ T

0
(〈u(t),q(t)〉+ 〈v(t), p(t)〉−L(t,u(t), p(t)− u̇(t)))dt

−�(u(0),u(T ))
}
.
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Make a substitution p(t)− u̇(t) = r(t) ∈ L2
H . Since u and v are both in A2

H , we have

∫ T

0
〈v, u̇〉 = −

∫ T

0
〈v̇,u〉+ 〈v(T ),u(T )〉−〈v(0),u(0)〉.

Since the subspace A2,0
H = {u ∈ A2

H ; u(0) = u(T ) = 0} is dense in L2
H , and since

u →
∫ T

0 L(t,u(t), p(t))dt is continuous on L2
H for each p, we obtain

L ∗(q,v) = sup
u∈A2

H

sup
r∈L2

H

{∫ T

0
{〈u(t),q(t)〉+ 〈v(t),r(t)+ u̇(t)〉−L(t,u(t),r(t))}dt

−�(u(0),u(T ))}

= sup
u∈A2

H

sup
r∈L2

H

{∫ T

0
{〈u(t),q(t)− v̇(t)〉+ 〈v(t),r(t)〉−L(t,u(t),r(t))}dt

+〈v(T ),u(T )〉−〈v(0),u(0)〉− �(u(0),u(T ))
}

= sup
u∈A2

H

sup
r∈L2

H

sup
u0∈A2,0

H

{∫ T

0
{〈u,q− v̇〉+ 〈v,r〉−L(t,u(t),r(t))}dt

+〈v(T ),(u+u0)(T )〉−〈v(0),(u+u0)(0)〉
}

−�((u+u0)(0),(u+u0)(T ))
}

= sup
w∈A2

H

sup
r∈L2

H

sup
u0∈A2,0

H

{∫ T

0
〈w(t)−u0(t),q(t)+ v̇(t)〉+ 〈v(t),r(t)〉dt

−
∫ T

0
L(t,w(t)−u0(t),r(t))dt

}

+〈v(T ),w(T )〉−〈v(0),w(0)〉− �(w(0),w(T ))
}

= sup
w∈A2

H

sup
r∈L2

H

sup
x∈L2

H

{∫ T

0
{〈x,q− v̇〉+ 〈v(t),r(t)〉−L(t,x(t),r(t))}dt

+〈v(T ),w(T )〉−〈v(0),w(0)〉− �(w(0),w(T ))
}

.

Now, for each (a,b) ∈ H ×H, there is w ∈ A2
H such that w(0) = a and w(T ) = b,

namely the linear path w(t) = (T−t)
T a + t

T b. Since � is continuous on H, we finally
obtain that

L ∗(q,v) = sup
(a,b)∈H×H

sup
(r,x)∈L2

H×L2
H

{∫ T

0
{〈x,q− v̇〉+ 〈v,r〉−L(t,x(t),r(t))}dt

+〈v(T ),b〉−〈v(0),a〉− �(a,b)
}

= sup
x∈L2

H

sup
r∈L2

H

{∫ T

0
{〈x(t),q(t)− v̇(t)〉+ 〈v(t),r(t)〉−L(t,x(t),r(t))}dt

}
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+ sup
a∈H

sup
b∈H

{〈v(T ),b〉−〈v(0),a〉− �(a,b)
}

=
∫ T

0
L∗(t,q(t)− v̇(t),v(t))dt + �∗(−v(0),v(T )).

If now (q,v) ∈ L2
H × L2

H \ A2
H , then we use the fact that u →

∫ T
0 L(t,u(t),0)dt is

bounded on the unit ball of A2
H and the growth condition on � to deduce that

L ∗(q,v) ≥ sup
u∈A2

H

sup
r∈A2

H

{∫ T

0
〈u(t),q(t)〉+ 〈v(t),r(t)〉+ 〈v(t), u̇(t)〉−L(t,u(t),r(t))dt

−�(u(0),u(T ))
}

≥ sup
u∈A2

H

sup
r∈A2

H

{

−‖u‖L2
H
‖q‖L2

H
−‖v‖L2

H
‖r‖L2

H
+
∫ T

0
〈v, u̇〉−L(t,u(t),r(t))dt

−�(u(0),u(T ))
}

≥ sup
‖u‖

A2
H
≤1

{

−‖q‖2 +
∫ T

0
{〈v(t), u̇(t)〉−L(t,u(t),0)}dt − �(u(0),u(T ))

}

≥ sup
‖u‖

A2
H
≤1

{

C +
∫ T

0
〈v(t), u̇(t)〉−L(t,u,0)dt − 1

2
(‖u(0)‖2 +‖u(T )‖2)

}

≥ sup
‖u‖

A2
H
≤1

{

D+
∫ T

0
〈v(t), u̇(t)〉dt − 1

2
(‖u(0)‖2

H +‖u(T )‖2
H)
}

.

Since now v does not belong to A2
H , we have that

sup
‖u‖

A2
H
≤1

{∫ T

0
〈v(t), u̇(t)〉dt − 1

2
(‖u(0)‖2

H +‖u(T )‖2
H)
}

= +∞,

which means that L ∗(q,v) = +∞.

Legendre transform on spaces of absolutely continuous functions

Consider now the path space A2
H = {u : [0,T ]→ H; u̇ ∈ L2

H} equipped with the norm

‖u‖
A

2
H

=
(

‖u(0)‖2
H +
∫ T

0
‖u̇‖2dt

) 1
2

.

One way to represent the space A
2

H is to identify it with the product space H ×L2
H

in such a way that its dual (A2
H)∗ can also be identified with H ×L2

H via the formula
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〈u,(p1, p0)〉
A2

H ,H×L2
H

= 〈u(0), p1〉H +
∫ T

0
〈u̇(t), p0(t)〉dt, (2.19)

where u ∈ A2
H and (p1, p0) ∈ H ×L2

H . With this duality, we have the following the-
orem.

Theorem 2.4. Let L be a time-dependent convex Lagrangian on [0,T ]×H ×H and
let � be a proper convex lower semicontinuous function on H ×H. Consider the
Lagrangian on A2

H × (A2
H)∗ = A2

H × (H ×L2
H) defined by

N (u, p) =
∫ T

0
L(t,u(t)− p0(t),−u̇(t))dt + �(u(0)−a,u(T )), (2.20)

where u ∈ A2
H and (p0(t),a) ∈ L2

H ×H represents an element p in the dual of A2
H.

Then, for any (v,q) ∈ A2
H × (A2

H)∗ with q of the form (q0(t),0), we have

N ∗(q,v) =
∫ T

0
L∗(t,−v̇(t),v(t)−q0(t),)dt + �∗(−v(0),v(T )). (2.21)

Proof. For (v,q) ∈ A2
H × (A2

H)∗ with q represented by (q0(t),0), write

N ∗(q,v) = sup
p1∈H

sup
p0∈L2

H

sup
u∈A2

H

{

〈p1,v(0)〉+
∫ T

0
〈p0(t), v̇(t)〉+ 〈q0(t), u̇(t)〉dt

−
∫ T

0
L(t,u(t)− p0(t),−u̇(t))dt − �(u(0)− p1,u(T ))

}

.

Making a substitution u(0)− p1 = a ∈ H and u(t)− p0(t) = y(t) ∈ L2
H , we obtain

N ∗(q,v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{
〈u(0)−a,v(0)〉− �(a,u(T ))

+
∫ T

0
{〈u(t)− y(t), v̇(t)〉+ 〈q0(t), u̇(t)〉−L(t,y(t),−u̇(t))}dt

}

.

Since u̇ and v̇ ∈ L2
H , we have

∫ T

0
〈u, v̇〉 = −

∫ T

0
〈u̇,v〉+ 〈v(T ),u(T )〉−〈v(0),u(0)〉,

which implies

N ∗(q,v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{
〈−a,v(0)〉+ 〈v(T ),u(T )〉− �(a,u(T ))

∫ T

0
[−〈y(t), v̇(t)〉+ 〈v(t)−q0(t),−u̇(t)〉−L(t,y(t),−u̇(t))]dt

}

.

Now identify A
2

H with H ×L2
H via the correspondence
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(b,r) ∈ H ×L2
H �→ b+

∫ T

t
r(s)ds ∈ A

2

H ,

u ∈ A
2

H �→
(
u(T ),−u̇(t)

)
∈ H ×L2

H .

We finally obtain

N ∗(q,v) = sup
a∈H

sup
b∈H

{
〈a,−v(0)〉+ 〈v(T ),b〉− �(a,b)

}

+ sup
y∈L2

H

sup
r∈L2

H

{∫ T

0
−〈y(t), v̇(t)〉+ 〈v(t)−q0(t),r(t)〉−L(t,y(t),r(t))dt

}

=
∫ T

0
L∗(t,−v̇(t),v(t)−q0(t))dt + �∗(−v(0),v(T )).

Legendre transform for a symmetrized duality on spaces of
absolutely continuous functions

Consider again A2
H :=

{
u : [0,T ] → H; u̇ ∈ L2

H

}
equipped with the norm

‖u‖A2
H

=

{∥
∥
∥
∥

u(0)+u(T )
2

∥
∥
∥
∥

2

H
+
∫ T

0
‖u̇‖2

H dt

} 1
2

.

We can again identify the space A2
H with the product space H ×L2

H in such a way
that its dual (A2

H)∗ can also be identified with H ×L2
H via the formula

〈
u,(p1, p0)

〉

A2
H ,H×L2

H

=
〈u(0)+u(T )

2
, p1

〉
+
∫ T

0
〈u̇(t), p0(t)〉dt,

where u ∈ A2
H and (p1, p0(t)) ∈ H ×L2

H .

Theorem 2.5. Suppose L is a time-dependent Lagrangian on [0,T ]×H ×H and �
is a Lagrangian on H ×H. Consider the following Lagrangian defined on the space
A2

H × (A2
H)∗ = A2

H × (H ×L2
H) by

M (u, p) =
∫ T

0
L
(
t,u(t)+ p0(t),−u̇(t)

)
dt + �

(
u(T )−u(0)+ p1,

u(0)+u(T )
2

)
.

The Legendre transform of M on A2
H × (L2

H ×H) is given by

M ∗(p,u) =
∫ T

0
L∗(t,−u̇(t),u(t)+ p0(t)

)
dt + �∗

(u(0)+u(T )
2

,u(T )−u(0)+ p1

)
.

Proof. For (q,v) ∈ A2
H × (A2

H)∗ with q represented by (q0(t),q1), we have
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M ∗(q,v) = sup
p1∈H

sup
p0∈L2

H

sup
u∈A2

H

〈
p1,

v(0)+ v(T )
2

〉
+
〈

q1,
u(0)+u(T )

2

〉

−
∫ T

0

[
〈p0(t), v̇(t)〉+ 〈q0(t), u̇〉−L

(
t,u(t)+ p0(t),−u̇(t)

)]
dt

−�
(
u(T )−u(0)+ p1,

u(0)+u(T )
2

)
}

.

Making a substitution u(T )− u(0)+ p1 = a ∈ H and u(t)+ p0(t) = y(t) ∈ L2
H , we

obtain

M ∗(q,v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

〈
a−u(T )+u(0),

v(0)+ v(T )
2

〉
+
〈

q1,
u(0)+u(T )

2

〉

−
∫ T

0

[
〈y(t)−u(t), v̇〉+ 〈q0(t), u̇(t)〉−L

(
t,y(t),−u̇(t)

)]
dt

−�
(

a,
u(0)+u(T )

2

)
}

.

Again, since u̇ and v̇ ∈ L2
H , we have

∫ T

0
〈u(t), v̇(t)〉dt = −

∫ T

0
〈u̇(t),v(t)〉dt + 〈u(T ),v(T )〉−〈v(0),u(0)〉,

which implies

M ∗(q,v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{
〈

a,
v(0)+ v(T )

2

〉
−
〈

u(T ),
v(0)+ v(T )

2
− v(T )

〉

−
〈

u(0),v(0)− v(0)+ v(T )
2

〉
+
〈

q1,
u(0)+u(T )

2

〉

−
∫ T

0

[
〈y(t), v̇〉+ 〈u̇(t),v(t)+q0(t)〉−L

(
t,y(t),−u̇(t)

)]
dt

−�
(

a,
u(0)+u(T )

2

)
}

.

Hence,

M ∗(q,v) = sup
a∈H,y∈L2

H ,u∈A2
H

〈
a,

v(0)+ v(T )
2

〉
+
〈

q1 + v(T )− v(0),
u(0)+u(T )

2

〉

−�
(

a,
u(0)+u(T )

2

)

−
∫ T

0

[
〈y(t), v̇(t)〉+ 〈u̇(t),v(t)+q0(t)〉−L

(
t,y(t),−u̇(t)

)]
dt

}

.
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Now identify A2
H with H ×L2

H via the correspondence:

(
b, f (t)

)
∈ H ×L2

H �−→ b+
1
2

(∫ T

t
f (s)ds−

∫ t

0
f (s)ds

)

∈ A2
H ,

u ∈ A2
H �−→

(u(0)+u(T )
2

,−u̇(t)
)
∈ H ×L2

H .

We finally obtain

M ∗(q,v) = sup
a∈H

sup
b∈H

{

〈a,
v(0)+ v(T )

2
〉+ 〈q1 + v(T )− v(0),b〉− �(a,b)

}

+ sup
y∈L2

H r∈L2
H

{∫ T

0
−〈y(t), v̇(t)〉+ 〈v(t)+q0(t),r(t)〉−L

(
t,y(t),r(t)

)
dt

}

= �∗
(v(0)+ v(T )

2
,q1 + v(T )− v(0)

)
+
∫ T

0
L∗(t,−v̇(t),v(t)+q0(t)

)
dt.

Exercises 2.B. Legendre transforms on path spaces

1. Prove Proposition 2.9.
2. Establish the identification between the Hilbert spaces A2

H [0,T ] and H × L2
H via the isomor-

phism u ∈ A
2

H �→
(
u(T ),−u̇(t)

)
∈ H ×L2

H .
3. Establish the identification between the Hilbert spaces A2

H [0,T ] and H × L2
H via the isomor-

phism u ∈ A
2

H �→
( u(0)+u(T )

2 ,−u̇(t)
)
∈ H ×L2

H .
4. Show that the Legendre transform of the Lagrangian on L2

H ×L2
H

L (u, p) =
{ ∫ T

0 L(t,u(t), p(t)− u̇(t))dt + �
(
u(T )−u(0), u(0)+u(T )

2

)
if u ∈ A2

H
+∞ otherwise

is

L ∗(p,u) =
{ ∫ T

0 L∗(t, p(t)− u̇(t),u(t))dt + �∗
( u(0)+u(T )

2 ,u(T )−u(0)
)

if u ∈ A2
H

+∞ otherwise,

provided the conditions of Theorem 2.3 are satisfied.

2.7 Primal and dual problems in convex optimization

Consider the problem of minimizing a convex lower semicontinuous function I that
is bounded below on a Banach space X . This is usually called the primal problem:

(P) inf
x∈X

I(x). (2.22)

One can sometimes associate to I a family of perturbed problems in the following
way. Let Y be another Banach space, and consider a convex lower semicontinuous
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Lagrangian L : X ×Y → R∪{+∞} such that the following holds:

I(x) = L(x,0) for all x ∈ X . (2.23)

For any p ∈ Y , one can consider the perturbed minimization problem

(Pp) inf
x∈X

L(x, p) (2.24)

in such a way that (P0) is clearly the initial primal problem. By considering the
Legendre transform L∗ of L on the dual space X∗ ×Y ∗, one can consider the so-
called dual problem

(P∗) sup
p∗∈Y ∗

−L∗(0, p∗). (2.25)

Consider the function h : Y → R∪{+∞} on the space of perturbations Y defined by

h(p) = inf
x∈X

L(x, p) for every p ∈ Y . (2.26)

The following proposition summarizes the relationship between the primal problem
and the behavior of the value function h.

Theorem 2.6. Assume L is a proper convex lower semicontinuous Lagrangian that
is bounded below on X ×Y . Then, the following assertions hold:

1. (Weak duality) −∞ < sup
p∗∈Y ∗

{−L∗(0, p∗)} ≤ inf
x∈X

L(x,0) < +∞.

2. h is a convex function on Y such that h∗(p∗) = L∗(0, p∗) for every p∗ ∈ Y ∗, and

h∗∗(0) = sup
p∗∈Y ∗

{−L∗(0, p∗)}.

3. h is lower semicontinuous at 0 (i.e., (P) is normal) if and only if there is no
duality gap, i.e., if

sup
p∗∈Y ∗

{−L∗(0, p∗)} = inf
x∈X

L(x,0).

4. h is subdifferentiable at 0 (i.e., (P) is stable) if and only if (P) is normal and
(P∗) has at least one solution. Moreover, the set of solutions for (P∗) is equal
to ∂h∗∗(0).

5. If for some x0 ∈ X the function p → L(x0, p) is bounded on a ball centered at 0
in Y , then (P) is stable and (P∗) has at least one solution.

Proof. (1) For each p∗ ∈ Y ∗, we have

L∗(0, p∗) = sup{〈p∗, p〉−L(x, p); x ∈ X , p ∈ Y}
≥ sup{〈p∗,0〉−L(x,0); x ∈ X}
= − inf{L(x,0); x ∈ X}.
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(2) To prove the convexity of h, consider λ ∈ (0,1) and elements p,q ∈ Y such
that h(p) and h(q) are finite. For every a > h(p) (resp., b > h(q)), find u ∈ X (resp.,
v ∈ X) such that

h(p) ≤ L(x, p) ≤ a and h(q) ≤ L(v,q) ≤ b.

Now use the convexity of L in both variables to write

h(λ p+(1−λ )q) = inf{L(x,λ p+(1−λ )q); x ∈ X}
≤ L(λu+(1−λ )v,λ p+(1−λ )q)
≤ λL(u, p)+(1−λ )L(v,q)
≤ λa+(1−λ )b,

from which the convexity of h follows.
(3) Note first that the Legendre dual of h can be written for p∗ ∈ Y ∗ as

h∗(p∗) = sup{〈p∗, p〉−h(p); p ∈ Y}
= sup

{
〈p∗, p〉− inf

x∈X
{L(x, p); p ∈ Y}

}

= sup{〈p∗, p〉−L(x, p); p ∈ Y,x ∈ X}
= L∗(0, p∗).

It follows that

sup
p∗∈Y ∗

{−L∗(0, p∗)} = sup
p∗∈Y ∗

−h∗(p∗) = h∗∗(0) ≤ h(0) = inf
x∈X

L(x,0). (2.27)

Our claim follows from the fact that h is lower semicontinuous at 0 if and only if
h(0) = h∗∗(0).

For claim 4), we start by establishing that the set of solutions for (P∗) is equal
to ∂h∗∗(0). Indeed, if p∗ ∈ Y ∗ is a solution of (P∗), then

−h∗(p∗) = −L∗(0, p∗)
= sup{−L∗(0,q∗); q∗ ∈ Y ∗}
= sup{−h∗(q∗); q∗ ∈ Y ∗}
= sup{〈0,q∗〉−h∗(q∗); q∗ ∈ Y ∗}
= h∗∗(0),

which is equivalent to p∗ ∈ ∂h∗∗(0).
Suppose now that ∂h(0) �= /0. Then, h(0) = h∗∗(0) (i.e., (P) is normal) and

∂h(0) = ∂h∗∗(0) �= /0, and hence (P∗) has at least one solution. Conversely, if h is
lower semicontinuous at 0, then h(0) = h∗∗(0), and if ∂h∗∗(0) �= /0, then ∂h(0) =
∂h∗∗(0) �= /0.
The condition in (5) readily implies that h is bounded above on a neighborhood of
zero in Y ∗, which implies that h is subdifferentiable at 0.



48 2 Legendre-Fenchel Duality on Phase Space

Further comments

The first four sections summarize the most basic concepts and relevant tools of
convex analysis that will be used throughout this text. Proofs are not included, as
they can be found in a multitude of books on convex analysis. We refer to the books
of Aubin and Ekeland [8], Brézis [26], Ekeland and Temam [47], Ekeland [46], and
Phelps [130].

The particularities of convex calculus on phase space were developed in Ghous-
soub [55]. Legendre transforms on path space for the basic action functionals of the
calculus of variations have already been dealt with by Rockafellar [137]. Theorem
2.4 is due to Ghoussoub and Tzou [68], while the new symmetrized duality for A2

H
and the corresponding Legendre transform were first discussed in Ghoussoub and
Moameni [63].


