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1
Introduction

1.1
What is a Field Theory?

Field theory deals with objects which form a medium, for example objects like water,
air, solids, magnets, electromagnetic fields, or even our universe. A common feature
of these objects is that they are all composed of a large number of microscopic
constituents. The goal of field theory is to study the thermodynamics and dynamical
properties of these media.

1.1.1
Mathematical Description

To describe these objects, we have to introduce variables that are functions of space
and time. These variables can be real or complex scalars, vectors, tensors, and so on.
For example, to describe the motion of air (or fluid), we have to introduce the variables
p(%,t) and j(¥, ), which are the mass and current density of air (or fluid) molecules,
respectively. To describe magnets, we introduce the magnetization density M (X, t),
which is a vector variable describing the magnitude and direction of magnetization at
point ¥ inside the magnet at time ¢.

Question
How about vacuum (or our universe)? Can you think of any continuous physical
quantities that can describe different states of the vacuum?

Answer

Yes, electromagnetic and gravitational fields, density of stars (galaxies), and so on.
In physics, the properties of the media are characterized by two important

ingredients, the thermodynamic and dynamical properties of the media. Examples

of thermodynamic properties include

— How density and pressure of air change with temperature, volume, and so on.
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— How magnetization of a magnet changes with temperature, external magnetic
field, and so on.

Animportant concept coming from thermodynamics is phases and phase transitions
—that the same physical medium can behave in qualitatively different ways (different
phases) under different conditions, and that the medium can evolve from one phase
to another when some thermodynamic parameters change. For example, water can
evolve from the solid to the liquid phase when the temperature rises, and the physical
properties of the two phases are qualitatively different. We shall see later that we can
ask similar questions even for our vacuum. For example, how will the dynamics of
an electromagnetic field change if our vacuum evolves to a different phase?

In studying dynamics we typically ask the question of how the variables describing
a medium will evolve with time with an initial condition or under external, time-
dependent force. These are the situations we encounter when we want to investigate
a medium with our experimental probes.

Question
What do we need to study the thermodynamics of a field theory?

According to Gibbs, the (equilibrium) thermodynamics of any physical system is
determined by the partition function

_HioJ
Z = Je ksT Do,

where H is the Hamiltonian (energy) function, T'is the temperature, and ¢; ; (¥)
are the variables characterizing the medium. The integral sign [ ... D¢ is a short-
hand notation meaning that we have to sum over all configurations of the field ¢.
Note that to evaluate the partition function we need to know how the energy of the
system depends on the field configurations H[¢(X)]. In quantum systems the
situation is complicated by the fact that different variables may not commute with
each other. The simplest way to get out of this trouble is to replace the sum over all
configurations ¢ by a sum over all eigenstates ¢,. We shall discuss concrete
examples later in the book.

Question
Can you give us some examples of H[d(¥)]?

Ising model for magnet: H[S;] = f]Z SiS; (Si==£1).
(i)

(Classical) Heisenberg model: H[S;] = —]Z S;- §j (S = unit vector).
(i)
Can you think of other examples?
The computation of the partition function of a classical field system is in general
a very complicated problem. We shall look into this subject more carefully in the
second part of this chapter. Let us discuss the question of dynamics first.
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Question
What is required to understand the dynamics of a field theory?

In classical field theory we need to solve equations of motion of the fields typically
of the form 2¢(%,t) = F[¢(¥,¢)],..., and so on. A wellknown example of
equations of motion of a classical field theory are the Maxwell equations

- - - -~ 10E - OB
V-E:%, V-BE=0, VxB=pJ+5=, VxE+o =0

Another well-known example is the Navier-Stokes equation. We also have
equations for elastic waves in solids, surface waves in water, and so on. Equations
of motion in quantum field theories have a different meaning because the field
variables become operators. We shall explore the quantum situation in later chapters.

Summarizing, for classical field theory we need mathematical tools to (i) evaluate
the partition function and (ii) solve the equations of motion. Both of these tasks
can be achieved rigorously only if the system is linear. In general it is impossible to
accomplish these two tasks and approximate methods have to be used. We shall
review the basic mathematical techniques needed for the above problems in the
following.

1.2
Basic Mathematical Tools in (Classical) Field Theory

1.2.1
Solution of Field Equations of Motion

First, we shall consider linear systems where the above mathematical tasks can be
solved exactly in principle.
For linear equations of motion, we can write the equations in a general form

f(%,v>\|l(5é,t) =0, (1.1a)

where L isin generalan N x N Hermitian matrix operator and y is an N-dimensional
vector function. An example is the Maxwell equation where \y — E, B are field vectors
each with three components. Many equations of motion involving vectorial fields
can be written in matrix form.
Examples of T :
-, . ~ .0 . :
L= T V* (wave equation), L = i H (Schrodinger equation).
Note that the above equations can be viewed as eigenvalue equations with zero
eigenvalue, that is

£(§7)wiEn =0 vtz (1.1b)
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Very often, we also need to solve the equations with an external driving force. In this
case we have equations of the form

f(%,V)\u(o?,t) = f(#,1), (1.2)

where f(¥,1) is a vector function with the same dimension as .

A general strategy to solve this kind of problem is the eigenfunction expansion
method plus Green’s functions. We shall treat space and time on equal footings in the
following general discussion.

1.2.1.1 Eigenfunction Expansion Method
In the theory of differential equations a very important and useful result is the
completeness and orthonormality of the set of eigenfunctions that satisfies an
eigenvalue equation Hy, = A,y,, where H is any Hermitian differential operator
operating in space and time and the A, are the corresponding eigenvalues.

It can be proved that the eigenstates y,, form a complete set, that is any (continu-
ous, differentiable) function which is defined in the (Hilbert) space where H operates
can be written as

fGE) = any,(31), (1.3a)

where a,, are complex, numerical coefficients that can be determined from another
important property of the y: the orthonormality of eigenstates with different
eigenvalues, that is

Jw’;(v?t)wm(%t)d"’x dt = 8- (1.3b)
v

With Equation (1.3a) it can be shown easily that
4 = J FEOE(E)d . (1.3¢)

\%

Degeneracy Inmany cases the eigenstates are degenerate, that is there is more than
one eigenstate with the same eigenvalue. In this case let {{y’ ﬁ: )3} be a complete set of
eigenstates with eigenvalue A,,; then, a result from linear algebra tells us that we can
always construct a set of orthonormal states {\yE,',l )} from {\JI;E,")} and from complete-
ness any function g, (¥t) that satisfies L g, (¥t) = Ang,(¥t) can be written as

g (%) =Y alwil (%), (1.4a)
where

J\v,&?* @)y (t)d x dt = 8y and
v (1.4b)

m

an — Jgn(m)wgp‘(ft)ddx dt.
14
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One should keep in mind that the set {w(nf>} is not unique. A different set can be
constructed if a different procedure is used to construct the orthonormal set. However,
Equatlon (1.4(a), Sb)) remains correct; the only difference is that the coefficients
) = [y f(%) \pm (3t)d?x dt will become different when the set {\um> } changes.

Homework Q1
Consider the solutions of the free-particle Schrodinger equation in three dimensions,

hZ
- _VZ(PE = €Q,,

with elgenvalue €> 0. Construct two different orthonormal sets of ei enstates {(pm 1
{(pm } with the same eigenvalue €. Expand the function cos(k x) 5

hzk ) in the

two sets of eigenstates and evaluate the corresponding coefficients aly =

[y cos(k.R)ol (%)dx.

The above result can be applied readily to Equation (1.1b) and the general solution
of the equation can be written as
Yo (%t) Z a,, wm (%t),
where {\um } is a chosen orthonormal set of solutions. Note that the aly) are
completely arbitrary and an infinite number of possible solutions exists in general.
The coefficients a,&? are fixed by initial and boundary conditions, which determine
the solution uniquely.

1.2.1.2 Eigenfunction Expansions for Green’s Functions
For any linear differential operator L, we can introduce a corresponding Green’s
function through

LGELRY) =83 —#)(t—)T, (1.52)

where T is an N x N-dimensional identity matrix.
With the Green’s function determined, the solution of the equation
L(Z,V)y(%,t) = f(¥,t) can be written as

WD =Wy, + [d G Y1), (1.5)

as can be seen by direct substitution.

Note that, in the language of linear algebra, the Green’s function is nothing but
the inverse operator of I, thatis G =T and LG =T. A formal solution of the
Green’s function can be found using a general method based on completeness and
orthogonality.

Let y,(¥t) be the complete set of eigenstates for the linear operator L, that is
Ly, (¥t) = Ay, (¥t). To obtain the Green’s function defined by

f(% vx) G(F,%'Y) = 8(F—%)d(t—1),
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we expand G(¥t, 't') =", a,(¥'t )y, (¥t) and, from completeness, § (¥ —%")3(t—t') =
> Wi (X' )y, (Xt). Therefore,

~(0
L<a,vx) Z?» an (X't )y, (% anxt W, (%t),

which leads to a,(¥'t) = %’W)

n

or
/
Z\Ifn *'t)w, xt). (1.6)

Therefore, the Green’s function can be determined if we can evaluate the above sum
over all eigenstates. This is in general a very difficult task and alternative methods
are often used when we want to evaluate the Green’s function explicitly. However, the
expansion form (1.6) for the Green'’s function is very useful for formal manipulations,
as we shall see later.

Homework Q2
Determine the Green’s function of the differential operator a2 —|—D% in one
dimension. D is a real number and a can be either real or imaginary. Consider
both situations.

(Hint: you have to fix the boundary condition to determine the Green’s function
uniquely. There are different possible boundary conditions. Choose one which you
think is physically meaningful.)

1.2.1.3 A Variant of the Above Method: Initial Condition Problem
Note that time and space are treated on equal footings in the above general
discussion. However, in facing real problems we often have to treat space and time
separately. This is often reflected in the initial condition problem: whatis y (%, t) if we
know y(%,0) (plus some time-derivative terms)?

To illustrate this, we shall first consider the Schrodinger equation

~ .0 S
L= l&—H(x) (1.7a)

The key feature of the Schrodinger equation is that the operator I can be written
in a separable form L = Lo(t)+ H(X¥) where the time and space coordinates
enter in different pieces in L. For this particular form the eigenstates can be
written as

Y, (%1) = 0,(X)% (1), (1.7b)

where

H, (%) = 2y (%), Lodn(t) = —0nin(2), (1.7¢)
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and
Ly, (%1) = (M — 0 )W, (32). (1.7d)

Moreover, the eigenstates ¢, and Y, form complete and orthonormal sets by
themselves, that is

fx) = Z and, (%) for any function f (¥) and [¢;(£)¢m(5ét)ddx = Oum

\%

and
g(t) = Z buy,(t) for any function g(t) and Jx;(t)xm(t)dt = Sum.

Therefore, any solution of the equation

Ly(3t) = (0)w,(¥1)

can be written as

D B0, Gum ko (00, (%)

a0 W(E0) = 3" B 00t (0)0,5) e
Using the orthonormality condition, we obtain

5 Bran 8ot (0) = [ &5t} (Pwiz.0), (1.8)

Note that, if a,,,,, can be uniquely determined from the above equation, then y(%t)
will be uniquely determined at all times. This becomes possible if there exists only
one eigenstate y,, with eigenvalue m,, =A\,. This is the case for the Schrodinger
operator Ly = i<, which involves only the first time derivative. In this case
X, (t) = e7n! is uniquely determined once ®,, =2, is fixed.

Homework Q3

Show that in the case Ly = — % the solution (¥, t) is uniquely determined if we

N dy(#,1)
know both y(%,0) and <7 L:o'

Homework Q4

In the case of the Schrédinger equation, the eigenstates ,, (£) = e7*®* are known
and the sum over Y, can be performed explicitly when evaluating the Green’s
function using the expansion method. In this case the Green’s function can be
written in terms of the eigenvalues A, and eigenstates ¢, only. Show that in this

case the solution of the initial value problem can be represented as y(¥t) =
[d%x' G(%t, %' 0)y(F',0).
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1.2.1.4 Comment on Non-Linear Equations of Motion

In general, non-linear equations are unsolvable, in the sense that there is no
systematic procedure to obtain all the solutions of the equations. Physicists usually
approach non-linear equations from a perturbative picture — we assume that the
non-linear term in the equation of motion is ‘small’ and treat it as a correction to the
solution of the linear equation. An order by order expansion of the non-linear term
can be obtained if the approach works (converges).

Adiabaticity and Counting Problem An implicit assumption of this approach is that
there is a one-to-one correspondence between the solution of the non-linear equation
and the solution of the linear equation. This assumption is called the adiabaticity
assumption. Physically, the adiabaticity assumption can be viewed in the following
way: assume that we start with a solution of the linear equation ¢ which is changing
into a different function ¢ when the non-linear term is turning up gradually. If the
change is always continuous as a function of the magnitude of the non-linear
term A (when A is either increasing or decreasing), that is ¢ = ¢(A) and o(A = 0) = ¢,
then there exists always a one-to-one correspondence between ¢, and ¢ and
adiabaticity is obeyed.

From a counting point of view this seems reasonable — if the total number of
solutions of the linear equation (= size of Hilbert space where the differential
operators are defined) is the same as the total number of solutions of the non-linear
equation. Unfortunately, this is not always true and the problem is more subtle than
this naive picture. Non-perturbative solutions which have no simple connection
to solutions in the corresponding linear equation do exist in non-linear equations.
Some of these solutions are particularly stable (usually because of topological reasons)
and are physically important. They are often called soliton solutions. For later
purposes let us also introduce the term instanton — it is a non-perturbative solution
of the non-linear equation of motion if you go to imaginary time — meaning that you
replace t — it in your equation of motion. We shall study some of the important
examples of solitions and instantons in Chapter 8.

1.2.2
Evaluation of Partition Function for Quadratic Field Theories

In this section we discuss the general method of evaluating the partition function
. _Hl
Z = [e¢ =T D¢. Before we proceed to the general formulation, we first consider

a simple toy model so that we can have a better feeling for the mathematical meaning
of the integral.

We consider a field ¢ defined on a lattice (like the Ising model) with Nindependent
sites. The energy of the system is

Hlol = > hlo]= > ao;+Dbo +coi. (1.92)

i=1,..N i=1,..N
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The partition function is therefore

_ Hll _hle]
z— [ dodg, - doye BT —11 [dge BT =2, (1.9)
where
_a¢+h¢z+c¢)4
z= | doe BT . (1.9¢)

—oo

Note that in this toy model the partition function is just a product of partition
functions of individual sites and the evaluation of the partition function becomes a
much simpler problem of evaluating a single integral. Our remaining question is
thus: can this integral be performed analytically?

The answer is ‘yes’ only if b>0 and ¢=0 (quadratic or linear field theories).

oo _ [b(¢+a/2b)2 @ } R
In this case we can write z = J doe kT WkaT] — eabksT /TB

and the free energy is given by

_ o a2 kBT kBT

Note that in this case the problem is like evaluating the partition function of
N decoupled classical harmonic oscillators. ., ab-+ b7 1 co*

When ¢ is non-zero, the integral z=| doe kT cannot be evaluated
analytically in general. When c¢ is small, we can expand z in a power series of ¢ and
evaluate the series term-by-term. This is the spirit of perturbation theory. In the above
example, we obtain

z(c) = 2(0) + ¢z + 2" + ..., (1.11)
where
T avtbe? 1 7 a0+ bo?
Z(O) = J d(be kT 2 :ﬁ J ¢4d¢e kBT | etc. (1‘12)
B

—oco —oo

Homework Q5
Treating cas a perturbation, evaluate the first- and second-order corrections in powers
of ¢ to the above free energy F.

Question
What is F if the coefficients a and b are site dependent, thatis @ — a;, b — b;?

Answer

2
F=—kTn(Z)=-)_ [ZT; + kBTTlnC‘ZT)}

i




12

1 Introduction

Next, we make the problem more realistic by considering a more complicated
energy function where different sites are coupled,

H[o] = ) byoi0;, where by = b(F;—7)). (1.13a)
ij=

1,...,N

To evaluate the above partition function we try to transform the energy function into
the form of independent harmonic oscillators, that is H[§] = 3, A407, where we
already know how to evaluate the partition function.

The transformation can be readily obtained if we note that the coefficients b;;can be
viewed as elements of a matrix B and

H[6] = ¢'Bo, (1.13b)
o
where ¢ = | . | isavectorin the Hilbert space spanned by the matrix B. The matrix
On
B can in general be diagonalized by a unitary transformation U,
HI[o] = ¢'Bp = (¢'U" )(UBU " )(U9), (1.142)
where
(UBU+)kl = MOy (1.14Db)
o
B o,
is a diagonal matrix, and Up = ¢ =
Oy
Therefore, H[¢] = >, kkq_)i, and the partition function is now given by the

H
N-dimensional integral Z = [d¢,d¢, --- doye %

There is one more thing we have to be careful of. Note that the energy function
is diagonalized in the ¢ variables but the integral is performed over the ¢ variables.
We need a change of integration variables from ¢ to ¢ to evaluate the integral. For
linear transformations, we have

HIg]

z= jd¢1d¢2 - doge BT = jdéldéz - dbyldet(U™)e

H[g
BT (1.15)

However, since U is a unitary transformation, |det U] =1.

S __H@ ke T
Therefore, Z = Jd(])ldc])2 <o doye kT = 1'k[ o (1.16a)
k
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and

F=—ksT In(Z kT 2:1( ) (1.16b)

Note that, equivalently, the result can be expressed as
kg T
F:%rmmamqm@wﬂw»

which is the form commonly used in the literature. 3

For the particular form of matrix b;; = b(|7;—F;|), the eigenvectors are ¢;(k) = ",
with eigenvalues given by the Fourier transform A, = >, e*7ib(;). Note that,
rigorously speaking, we need A, >0 for all k for the integrals to converge.

Exercise
Show that for b; = b(|F; — 7;|) the eigenvectors are ¢;(k) = ¢* ", with eigenvalues

Z elk r’b( )

1.2.2.1 Non-Linear Energy Functional

Energy functionals with terms of higher order than ¢” are called non-linear energy
functionals and their partition functions cannot be evaluated exactly. A frequently
used energy functional is the ¢* model given by

}: %¢%+c§:¢ (1.17)

For small ¢ we can evaluate Z[¢] approximately by expansion in powers of ¢ as in the
simple toy model. The evaluation of perturbation series is more complicated than
the toy model because we have to make the unitary transformation ¢ — ¢. There exist
at present very elaborate mathematical methods to do the perturbation expansion
systematically. We shall give a brief introduction to these techniques in Chapter 5.
However, you are encouraged to evaluate the first-and second-order corrections to Z[¢)]
using a straightforward expansion method to get a feeling of the perturbation series.

1.2.2.2 Continuum Limit
Having considered partition functions of a quadratic energy functional on a lattice,
we now go to the continuum limit and consider an energy functional of the form

0] = [d’x0* H ¢.

An explicit example is
HIg] = [@'x((eV9)* + m20?) = [ aira(-c2V2 4w, (1.18)

Again, we note that we can dlagonahze the Hamiltonian to obtain H[¢] = >, kkq_)i,
where 0,(k) = ¢* 7 and A, = c*k* + m? in this case and

F=—ksT In(Z }:1( > (1.19a)
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The difference between lattice models and the continuum case is that, in the lattice
models, the dimension of the Hilbert space is N (= number of lattice sites) and
we have precisely N eigenvalues and eigenvectors, whereas, in the continuum case,
we have an infinite number of eigenstates and the sum over k becomes a continuous
integral. In the example we considered, we have

kT V i ks T
. _T(zn)djd k m(m) (1.19b)
and we can define a free-energy density as
F kT 1 [ ks T

Note that the integrand diverges at k — o and the free-energy density is infinity!
This result is, of course, unphysical. We shall go back to this problem again later,
after we discuss the concept of effective field theory (Chapter 7). Note also that
the divergence problem is absent in lattice problems where the integral over k is
restricted to the first Brillouin zone.

1.2.2.3 Constraints

Nowadays we often encounter field theory with constraints. A very good example is
Ehe (classical) Heisenberg model: H[S;| = —] 3_ i) S;- §j where the field variables
S are unit vectors. How do we handle this situation? To have an idea of how we can
handle this kind of constraint let us consider a very simple model with just one spin,
H=—5,B, where B is an external magnetic field. The partition function is

S.B
Z= stxdsydsZS(si + 82+ S2—1)ekT. (1.20)

There are two ways to handle this situation; the first way is to solve the constraint
S-S =1 exactly by writing S, =cos ¢, S,=sin ¥ cos ¢, S,=sin ¥ sin ¢, and

costB cosiyB
Z— JdQe kT — Jd(])sim‘)‘d{)‘e keT

The second way is to use the identity 8(x) = . [ ¢**dA, and write

s~}

, S,
Z= stxdsydszdxewiﬂi 5 gkT, (1.21)

Note that the partition function now turns into a regular four-dimensional integral
and we can employ standard tricks in evaluating integrals to solve the partition
function. The first method is readily applicable for one spin but the second method is
often used when many spins are present and coupled together and the first method
becomes inconvenient. The introduction of A — called the Lagrange multiplier field —
is often more convenient in making systematic approximations. You will see a
number of examples of handling constraints later in this book.

A mathematical problem: how do we evaluate the integral J“dxei)"‘2 +hep

Physicist’s recipe:
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o b(o+a/2b)* g2 } !
- T _a_ InkgT . . .
Assume thatJ doe [ kT kaT] — eabksT y f TB svalid even for b — ib!

To summarize: in this section we have sketched some of the basic mathematical
techniques that are used in mathematical analysis of field theories. The techniques
we use in more complicated situations are often variants of the above basic
techniques. We shall see many examples in later chapters.








