
Preface

From May 8 to May 19th of 2006, the Department of Mathematics at the
University of Utah hosted a minicourse on some modern topics in stochas-
tic partial differential equations [SPDEs]. The participants included graduate
students and recent PhDs from across North America, as well as research
mathematicians at diverse stages of their careers. Intensive courses were given
by Robert C. Dalang, Davar Khoshnevisan, An Le, Carl Mueller, David
Nualart, Boris Rozovsky, and Yimin Xiao. The present book is comprised
of most of those lectures.

For nearly three decades, the topic of SPDEs has been an area of active
research in pure and applied mathematics, fluid mechanics, geophysics, and
theoretical physics. The theory of SPDEs has a similar flavor as PDEs and
interacting particle systems in the sense that most of the interesting devel-
opments generally evolve in two directions: There is the general theory; and
then there are specific problem-areas that arise from concrete questions in
applied science. As such, it is unlikely that there ever will be a cohesive all-
encompassing theory of stochastic partial differential equations. With that in
mind, the present volume follows the style of the Utah minicourse in SPDEs
and attempts to present a selection of interesting themes within this interest-
ing area. The presentation, as well as the choice of the topics, were motivated
primarily by our desire to bring together a combination of methods and deep
ideas from SPDEs (Chapters 1, 2, and 4) and Gaussian analysis (Chapters 3
and 5), as well as potential theory and geometric measure theory (Chapter 5).
Ours is a quite novel viewpoint, and we believe that the interface of the men-
tioned theories is fertile ground that shows excellent potential for continued
future research.

We are aware of at least four books on SPDEs that have appeared since
we began to collect the material for this project [4; 8; 12; 14]. Although there
is little overlap between those books and the present volume, the rapidly-
growing number of books on different aspects of SPDEs represents continued,
as well as a growing, interest in both the theory as well as the applications of
the subject. The reader is encouraged to consult the references for examples
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in: (i) Random media [2; 4; 18] and filtering theory [15]; (ii) applications in
fluid dynamics and turbulence [1; 2; 17]; and (iii) in statistical physics of
disordered media [2; 6; 7; 10]. Further references are scattered throughout the
lectures that follow. The reader is invited to consult the references to this
preface, together with their voluminous bibliographies, for some of the other
viewpoints on this exciting topic.

The Utah Minicourse on SPDEs was funded by a generous VIGRE grant
by the National Science Foundation, to whom we are grateful. We thank
also the lecturers and participants of the minicourse for their efforts. Finally,
we extend our wholehearted thanks to the anonymous referee; their careful
reading and thoughtful remarks have led to a more effective book.

Salt Lake City, Utah Davar Khoshnevisan
July 1, 2008 Firas Rassoul-Agha
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[2] René A. Carmona and S. A. Molchanov (1994). Parabolic Anderson problem
and intermittency, Mem. Amer. Math. Soc. 108(518)

[3] Stochastic Partial Differential Equations: Six Perspectives (1999). Edited by
Rene A. Carmona and Boris Rozovskii, American Math. Society, Providence,
Rhode Island

[4] Pao-Liu Chow (2007). Stochastic Partial Differential Equations. Chapman &
Hall/CRC, Boca Raton, Florida

[5] Gopinath Kallianpur and Jie Xiong (1995). Stochastic Differential Equations
in Infinite Dimensional Spaces. Institute of Math. Statist. Lecture Notes—
Monograph Series, Hayward, California

[6] Mehran Kardar (1987). Replica Bethe ansatz studies of two-dimensional
interfaces with quenched random impurities. Nuclear Phys. B290 [FS20],
582–602

[7] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang (1986). Dynamic scaling
of growing interfaces, Phys. Rev. Lett. 56(9), 889–892

[8] Peter Kotelenez (2008). Stochastic Ordinary and Stochastic Partial Differential
Equations, Springer, New York

[9] Nicolai V. Krylov (2006). On the foundations of the Lp-theory of stochas-
tic partial differential equations. In: Stochastic Partial Differential Equations
and Applications—VII, 179–191, Lecture Notes Pure Appl. Math., Chapman
& Hall/CRC, Boca Raton, Florida

[10] Ernesto Medina, Terrence Hwa, and Mehran Kardar (1989). Burgers equa-
tion with correlated noise: Renormalization-group analysis and applications to
directed polymers and interface growth. Phys. Rev. A, 38(6), 3053–3075



Preface VII

[11] Pierre-Louis Lions and Panagiotis Souganidis (2000). Fully nonlinear stochastic
pde with semilinear stochastic dependence. C.R. Acad. Sci. Paris Sér. I Math.
331(8), 617–624

[12] S. Peszat and J. Zabczyk (2007). Stochastic Partial Differential Equations with
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The Stochastic Wave Equation

Robert C. Dalang

Summary. These notes give an overview of recent results concerning the non-linear
stochastic wave equation in spatial dimensions d ≥ 1, in the case where the driving
noise is Gaussian, spatially homogeneous and white in time. We mainly address
issues of existence, uniqueness and Hölder–Sobolev regularity. We also present an
extension of Walsh’s theory of stochastic integration with respect to martingale
measures that is useful for spatial dimensions d ≥ 3.

1 Introduction

The stochastic wave equation is one of the fundamental stochastic partial dif-
ferential equations (SPDEs) of hyperbolic type. The behavior of its solutions
is significantly different from those of solutions to other SPDEs, such as the
stochastic heat equation. In this introductory section, we present two real-
world examples that can motivate the study of this equation, even though in
neither case is the mathematical technology sufficiently developed to answer
the main questions of interest. It is however pleasant to have such examples
in order to motivate the development of rigorous mathematics.

Example 1.1 (The motion of a strand of DNA). A DNA molecule can be
viewed as a long elastic string, whose diameter is essentially infinitely small
compared to its length. We can describe the position of the string by using a
parameterization defined on R+ × [0 , 1] with values in R3:

u(t , x) =

⎛

⎝
u1(t , x)
u2(t , x)
u3(t , x)

⎞

⎠ . (1)

Here, u(t, x) is the position at time t of the point labelled x on the string,
where x ∈ [0, 1] represents the distance from this point to one extremity of
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40 R.C. Dalang

the string if the string were straightened out. The unit of length is chosen so
that the entire string has length 1.

A DNA molecule typically “floats” in a fluid, so it is constantly in motion,
just as a particle of pollen floating in a fluid moves according to Brownian
motion. The motion of the string can be described by Newton’s law of motion,
which equates the sum of forces acting on the string with the product of the
mass and the acceleration. Let µ = 1 be the mass of the string per unit length.
The acceleration at position x along the string, at time t, is

∂2u
∂t2

(t , x), (2)

and the forces acting on the string are mainly of three kinds: elastic forces
F1, which include torsion forces, friction due to viscosity of the fluid F2, and
random impulses F3 due the the impacts on the string of the fluid’s molecules.
Newton’s equation of motion can therefore be written

1 · ∂
2u
∂t2

= F1 − F2 + F3. (3)

This is a rather complicated system of three stochastic partial differential
equations, and it is not even clear how to write down the torsion forces or the
friction term. Elastic forces are generally related to the second derivative in
the spatial variable, and the molecular forces are reasonably modelled by a
stochastic noise term.

The simplest 1-dimensional equation related to this problem, in which one
only considers vertical displacement and forgets about torsion, is the following
one, in which u(t, x) is now scalar valued:

∂2u

∂t2
(t , x) =

∂2u

∂x2
(t , x) −

∫ 1

0

k(x , y)u(t , y) dy + Ḟ (t , x), (4)

where the first term on the right-hand side represents the elastic forces, the
second term is a (non-local) friction term, and the third term Ḟ (t, y) is a
Gaussian noise, with spatial correlation k(· , ·), that is,

E(Ḟ (t , x) Ḟ (s , y)) = δ0(t− s) k(x , y), (5)

where δ0 denotes the Dirac delta function. The function k(· , ·) is the same in
the friction term and in the correlation.

Why is the motion of a DNA strand of biological interest? When a DNA
strand moves around and two normally distant parts of the string get close
enough together, it can happen that a biological event occurs: for instance,
an enzyme may be released. Therefore, some biological events are related to
the motion of the DNA string. Some mathematical results for equation (4)
can be found in [20]. Some of the biological motivation for the specific form
of equation (4) can be found in [8].
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Example 1.2 (The internal structure of the sun). The study of the internal
structure of the sun is an active area of research. One important international
project is known as Project SOHO (Solar and Heliospheric Observatory) [9].
Its objective was to use measurements of the motion of the sun’s surface to
obtain information about the internal structure of the sun. Indeed, the sun’s
surface moves in a rather complex manner: at any given time, any point on the
surface is typically moving towards or away from the center. There are also
waves going around the surface, as well as shock waves propagating through
the sun itself, which cause the surface to pulsate.

A question of interest to solar geophysicists is to determine the origin of
these shock waves. One school of thought is that they are due to turbulence,
but the location and intensities of the shocks are unknown, so a probabilistic
model can be considered.

A model that was proposed by P. Stark of U.C. Berkeley is that the main
source of shocks is located in a spherical zone inside the sun, which is assumed
to be a ball of radius R. Assuming that the shocks are randomly located on
this sphere, the equation (known as the Navier equation) for the dilatation
(see [6, Section 8.3]) throughout the sun would be

∂2u

∂t2
(t , x) = c2(x) ρ0(x)

(

∇ ·
(

1
ρ0(x)

∇u

)

+ ∇ · F(t , x)
)

, (6)

where x ∈ B(0 , R), the ball centered at the origin with radius R, c2(x) is the
speed of wave propagation at position x, ρ0(x) is the density at position x and
the vector F(t , x) models the shock that originates at time t and position x.

A model for F that corresponds to the description of the situation would
be 3-dimensional Gaussian noise concentrated on the sphere ∂B(0 , r), where
0 < r < R. A possible choice of the spatial correlation for the components of
F would be

δ(t− s) f(x · y), (7)

where x · y denotes the Euclidean inner product. A problem of interest is
to estimate r from the available observations of the sun’s surface. Some
mathematical results relevant to this problem are developed in [3].

2 The Stochastic Wave Equation

Equation (6) is a wave equation for a medium with non-constant density.
The (simpler) constant coefficient stochastic wave equation with real-valued
noise that we will be studying in these notes reads as follows: For all (t , x) ∈
[0 , T ]×Rd,
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂2u

∂t2
− ∆u

)

(t , x) = σ(t , x , u(t , x)) Ḟ (t , x) + b(t , x , u(t , x)),

u(0 , x) = v0(x),
∂u

∂t
(0 , x) = ṽ0(x),

(8)

where Ḟ (t , x) is a (real-valued) Gaussian noise, which we take to be space-
time white noise for the moment, and σ, b : R+ ×Rd ×R → R are functions
that satisfy standard properties, such as being Lipschitz in the third variable.
The term ∆u denotes the Laplacian of u in the x-variables.

Mild Solutions of the Stochastic Wave Equation

It is necessary to specify the notion of solution to (8) that we are considering.
We will mainly be interested in the notion of mild solution, which is the
following integral form of (8):

u(t , x)

=
∫

[0,t]×Rd

G(t− s , x− y) [σ(s , y , u(s , y)) Ḟ (s , y) + b(s , y , u(s , y))] ds dy

+
(
d

dt
G(t) ∗ v0

)

(x) + (G(t) ∗ ṽ0)(x). (9)

In this equation, G(t − s , x− y) is Green’s function of (8), which we discuss
next, and ∗ denotes convolution in the x-variables. For the term involving
Ḟ (s , y), a notion of stochastic integral is needed, that we will discuss later on.

Green’s Function of a PDE

We consider first the case of an equation with constant coefficients. Let L be
a partial differential operator with constant coefficients. A basic example is
the wave operator

Lf =
∂2f

∂t2
− ∆f. (10)

Then there is a (Schwartz) distribution G ∈ S ′(R+ × Rd) such that the
solution of the PDE

Lu = ϕ, ϕ ∈ S (Rd), (11)

is
u = G ∗(t,x)ϕ (12)

where ∗
(t,x) denotes convolution in the (t , x)-variables. We recall that S (Rd)

denotes the space of smooth test functions with rapid decrease, and S ′(R+×
Rd) denotes the space of tempered distributions [15].



The Stochastic Wave Equation 43

When G is a function, this convolution can be written

u(t , x) =
∫

R+×Rd

G(t− s , x− y)ϕ(s , y) ds dy. (13)

We note that this is the solution with vanishing initial conditions.
In the case of an operator with non-constant coefficients, such as

Lf =
∂2f

∂t2
+ 2c(t , x)

∂f

∂t
+
∂2f

∂x2
(d = 1), (14)

Green’s function has the form G(t, x ; s, y) and the solution of

Lu = ϕ (15)

is given by the expression

u(t , x) =
∫

R+×Rd

G(t, x ; s, y)ϕ(s, y) ds dy. (16)

Example 2.1 (The heat equation). The partial differential operator L is

Lu =
∂u

∂t
− ∆u, d ≥ 1, (17)

and Green’s function is

G(t , x) = (2πt)−d/2 exp
(

−|x|2
2t

)

. (18)

This function is smooth except for a singularity at (0 , 0).

Example 2.2 (The wave equation). The partial differential operator L is

Lu =
∂2u

∂t2
− ∆u. (19)

The form of Green’s function depends on the dimension d. We refer to [18]
for d ∈ {1, 2, 3} and to [7] for d > 3. For d = 1, it is

G(t , x) =
1
2

1{|x|<t}, (20)

which is a bounded but discontinuous function. For d = 2, it is

G(t , x) =
1√
2π

1
√
t2 − |x|2 1{|x|<t}. (21)

This function is unbounded and discontinuous. For d = 3, the “Green’s
function” is
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G(t , dx) =
1
4π

σt(dx)
t

, (22)

where σt is uniform measure on ∂B(0 , t), with total mass 4πt2. In particular,
G(t ,R3) = t. This Green’s function is in fact not a function, but a measure.
Its convolution with a test function ϕ is given by

(G ∗ ϕ)(t , x) =
1
4π

∫ t

0

ds

∫

∂B(0,s)

ϕ(t− s , x− y)
σs(dy)
s

=
1
4π

∫ t

0

ds s

∫

∂B(0,1)

ϕ(t− s , x− sy)σ1(dy).
(23)

Of course, the meaning of an expression such as
∫

[0,t]×Rd

G(t− s , x− y)F (ds , dy) (24)

where G is a measure and F is a Gaussian noise, is now unclear: it is certainly
outside of Walsh’s theory of stochastic integration [10].

In dimensions greater than 3, Green’s function of the wave equation
becomes even more irregular. For d ≥ 4, set

N(d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d− 3
2

if d is odd,

d− 2
2

if d is even.

(25)

For d even, set

σdt (dx) =
1

√
t2 − |x|2 1{|x|<t} dx, (26)

and for d odd, let σdt (dx) be the uniform surface measure on ∂B(0, t) with
total mass td−1. Then for d odd, G(t, x) can formally be written

G(t , x) = cd

(
1
s

∂

∂s

)N(d) (
σds
s

)

ds, (27)

that is, for d odd,

(G ∗ ϕ)(t , x)

= cd

∫ t

0

ds

(
1
r

∂

∂r

)N(d)(∫

Rd

ϕ(t− s , x− y)
σdr (dy)
r

) ∣
∣
∣
∣
r=s

,
(28)

while for d even,

(G ∗ ϕ)(t , x)

= cd

∫ t

0

ds

(
1
r

∂

∂r

)N(d)
(∫

B(0,r)

ϕ(t− s , x− y)
dy

√
r2 − |y|2

)∣
∣
∣
∣
r=s

.
(29)
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The meaning of
∫
[0,t]×Rd G(t − s , x− y) F (ds , dy) is even less clear in these

cases!

The Case of Spatial Dimension One

Existence and uniqueness of the solution to the stochastic wave equation in
spatial dimension 1 is covered in [19, Exercise 3.7 p. 323]. It is a good exercise
that we leave to the reader.

Exercise 2.3. Establish existence and uniqueness of the solution to the
non-linear wave equation on [0 , T ]×R, driven by space-time white noise:

∂2u

∂t2
− ∂2u

∂x2
= σ(u(t , x)) Ẇ (t , x), (30)

with initial conditions
u(0 , ·) =

∂u

∂t
(0 , ·) ≡ 0. (31)

The solution uses the following standard steps, which also appear in the study
of the semilinear stochastic heat equation (see [19] and [10]):

– define the Picard iteration scheme;
– establish L2-convergence using Gronwall’s lemma;
– show existence of higher moments of the solution, using Burkholder’s

inequality
E(|Mt|p) ≤ cp E

(
〈M〉p/2t

)
; (32)

– establish ρ-Hölder continuity of the solution, for ρ ∈ ]0, 1
2 [.

It is also a good exercise to do the following calculation.

Exercise 2.4. Let G be Green’s function of the wave equation, as defined in
Example 2.2. For d = 1 and d = 2, check that for ϕ ∈ C2([0,∞[×Rd),

u(t , x) =
∫ t

0

ds

∫

Rd

dy G(t− s , x− y)ϕ(s , y) (33)

satisfies
∂2u

∂t2
(t , x) − ∆u(t , x) = ϕ(t , x). (34)
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Space-Time White Noise in Dimension d = 2

Having solved the non-linear stochastic wave equation driven by space-time
white noise in dimension d = 1, it is tempting to attempt the same thing in
dimension d = 2. We are going to show that there is a fundamental obstacle
to doing this.

To this end, consider the linear case, that is, σ ≡ 1 and b ≡ 0. The mild
solution given in (9) is not an equation in this case, but a formula:

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y) W (ds , dy)

=
∫

[0,t]×R2

1√
2π

1
√

(t− s)2 − |y − x|2 1{|y−x|<t−s} W (ds , dy),
(35)

where W (ds , dy) is space-time white noise.
The first issue is whether this stochastic integral well-defined. For this, we

would need (see [10, Exercise 5.5]) to have

∫ t

0

ds

∫

R2
dy G2(t− s , x− y) < +∞. (36)

The integral is equal to
∫ t

0

ds

∫

|y−x|<t−s

dy

(t− s)2 + |y − x|2 =
∫ t

0

dr

∫

|z|<r

dz

r2 − |z|2

=
∫ t

0

dr

∫ r

0

dρ
2πρ

r2 − ρ2

= π

∫ t

0

dr ln(r2 − ρ2)
∣
∣0
r

= +∞.

(37)

In particular, when d = 2, there is no mild solution to the wave equation (9)
driven by space-time white noise.

There have been some attempts at overcoming this problem (see [12], for
instance), but as yet, there is no satisfactory approach to studying non-linear
forms of the stochastic wave or heat equations driven by space-time white
noise in dimensions d ≥ 2.

A different tack is to consider spatially homogeneous noise with some con-
ditions on the spatial covariance. We introduce these notions in the next
section.
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3 Spatially Homogeneous Gaussian Noise

Let Γ be a non-negative and non-negative definite tempered measure on Rd,
so that Γ(dx) ≥ 0,

∫

Rd

Γ(dx) (ϕ ∗ ϕ̃)(x) ≥ 0, for all ϕ ∈ S (Rd), (38)

where ϕ̃(x) def= ϕ(−x), and there exists r > 0 such that
∫

Rd

Γ(dx)
1

(1 + |x|2)r <∞. (39)

According to the Bochner–Schwartz theorem [15], there is a nonnega-
tive measure µ on Rd whose Fourier transform is Γ: we write Γ = Fµ. By
definition, this means that for all ϕ ∈ S (Rd),

∫

Rd

Γ(dx)ϕ(x) =
∫

Rd

µ(dη) Fϕ(η) . (40)

We recall that the Fourier transform of ϕ ∈ S (Rd) is

Fϕ(η) =
∫

Rd

exp(−i η · x) ϕ(x) dx, (41)

where η · x denotes the Euclidean inner product. The measure µ is called the
spectral measure.

Definition 3.1. A spatially homogeneous Gaussian noise that is white in time
is an L2(Ω ,F ,P)−valued mean zero Gaussian process

(
F (ϕ), ϕ ∈ C∞

0 (R1+d)
)
, (42)

such that
E(F (ϕ)F (ψ)) = J(ϕ ,ψ), (43)

where
J(ϕ ,ψ)

def
=
∫

R+

ds

∫

Rd

Γ(dx) (ϕ(s , ·) ∗ ψ̃(s , ·))(x). (44)

In the case where the covariance measure Γ has a density, so that Γ(dx) =
f(x) dx, then it is immediate to check that J(ϕ ,ψ) can be written as follows:

J(ϕ ,ψ) =
∫

R+

ds

∫

Rd

dx

∫

Rd

dy ϕ(s , x) f(x − y)ψ(s , y). (45)

Using the fact that the Fourier transform of a convolution is the product of
the Fourier transforms, this can also be written
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J(ϕ ,ψ) =
∫

R+

ds

∫

Rd

µ(dη)Fϕ(s)(η)Fψ(s)(η). (46)

Informally, one often writes

E
(
Ḟ (t , x)Ḟ (s , y)

)
= δ0(t− s) f(x− y), (47)

as though F (ϕ) were equal to
∫
R+×Rd ϕ(s, x)Ḟ (s, x) dsdx.

Example 3.2. (a) If Γ(dx) = δ0(x), where δ0 denotes the Dirac delta function,
then the associated spatially homogeneous Gaussian noise is simply space-time
white noise.

(b) Fix 0 < β < d and let

Γβ(dx) =
dx

|x|β . (48)

One can check [17, Chapter 5] that Γβ = Fµβ , with

µβ(dη) = cd,β
dη

|η|d−β . (49)

Exercise 3.3. Show that if β ↑ d, then the spatially homogeneous Gaussian
noise Fβ with the covariance measure Γβ converges weakly to space-time white
noise. (Hint. Find the weak limit of the spectral measure µβ and notice that
F (dη) = δ0.)

Extension of F (ϕ) to a Worthy Martingale Measure

From the spatially homogenenous Gaussian noise, we are going to construct
a worthy martingale measure M = (Mt(A) , t ≥ 0 , A ∈ Bb(Rd)), where
Bb(Rd) denotes the family of bounded Borel subsets of Rd. For this, if A ∈
Bb(Rd), we set

Mt(A) def= lim
n→∞ F (ϕn), (50)

where the limit is in L2(Ω ,F ,P), ϕn ∈ C∞
0 (Rd+1) and ϕn ↓ 1[0,t]×A.

Exercise 3.4. ([2]) Show that (Mt(A) , t ≥ 0 , A ∈ Bb(Rd)) is a worthy
martingale measure in the sense of Walsh; its covariation measureQ is given by

Q(A×B×]s , t]) = (t− s)
∫

Rd

dx

∫

Rd

dy 1A(x) f(x − y) 1B(y), (51)

and its dominating measure is K ≡ Q.
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The key relationship between F and M is that

F (ϕ) =
∫

R+×Rd

ϕ(t , x)M(dt , dx), (52)

where the stochastic integral on the right-hand side is Walsh’s martingale
measure stochastic integral.

The underlying filtration (F t , t ≥ 0) associated with this martingale
measure is given by

F t = σ
(
Ms(A), s ≤ t, A ∈ Bb(Rd)

) ∨ N , t ≥ 0, (53)

where N is the σ-field generated by all P -null sets.

4 The Wave Equation in Spatial Dimension 2

We shall consider the following form of the stochastic wave equation in spatial
dimension d = 2:

(
∂2u

∂t2
− ∆u

)

(t , x) = σ(u(t , x)) Ḟ (t , x), (t , x) ∈ ]0 , T ]×R2, (54)

with vanishing initial conditions. By a solution to (54), we mean a jointly mea-
surable adapted process (u(t, x)) that satisfies the associated integral equation

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y)σ(u(s , y)) M(ds , dy), (55)

where M is the worthy martingale measure associated with Ḟ .

The Linear Equation

A first step is to examine the linear equation, which corresponds to the case
where σ ≡ 1: (

∂2u

∂t2
− ∆u

)

(t , x) = Ḟ (t , x), (56)

with vanishing initial conditions. The mild solution should be

u(t , x) =
∫

[0,t]×R2
G(t− s , x− y) M(ds , dy). (57)

We know that the stochastic integral on the right-hand side is not defined for
space-time white noise, so let us determine for which spatially homogeneous
Gaussian noises it is well defined. This is the case if
∫ t

0

ds

∫

R2
dy

∫

R2
dz G(t− s , x− y) f(y − z) G(t− s , x− z) < +∞, (58)

or, equivalently, if
∫ t

0

ds

∫

R2
µ(dη) |FG(s)(η)|2 < +∞. (59)
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Calculation of FG

In principle, Green’s function of a PDE solves the same PDE with δ(0,0)(t , x) =
δ0(t) δ0(x) as right-hand side:

∂2G

∂t2
− ∆G = δ0(t) δ0(x). (60)

For fixed t 
= 0, the right-hand side vanishes. We shall take the Fourier
transform in x on both sides of this equation, but first, we observe that since

FG(t)(ξ) = Ĝ(t)(ξ) =
∫

R2
ei ξ·x G(t , x) dx, (61)

it is clear that

F

(
∂2G(t)
∂t

)

(ξ) =
∂2Ĝ(t)
∂t2

(ξ), (62)

and, using integration by parts, that

F (∆G(t))(ξ) =
∫

R2
ei ξ·x∆G(t , x) dx

=
∫

R2
∆(ei ξ·x)G(t , x) dx

= −|ξ|2 FG(t) (ξ).

(63)

Therefore, we deduce from (60) that for t > 0,

∂2Ĝ(t)
∂t2

(ξ) + |ξ|2 Ĝ(t) (ξ) = δ0(t). (64)

For fixed ξ, the solution to the associated homogeneous ordinary differential
equation in t is

Ĝ(t)(ξ) = a(ξ)
sin(t|ξ|)

|ξ| + b(ξ)
cos(t|ξ|)

|ξ| . (65)

The solution that we seek (see [18, Chapter I, Section 4] for an explanation)
is the one such that Ĝ(0)(ξ) = 0 and dĜ(0)

dt (ξ) = 1, so we conclude that for
t ≥ 0 and ξ ∈ R2,

FG(t) (ξ) =
sin(t|ξ|)

|ξ| . (66)

This formula is in fact valid in all dimensions d ≥ 1.
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Condition on the Spectral Measure

Condition (59) for existence of a mild solution on [0 , T ] to the linear wave
equation (56) becomes

∫ T

0

ds

∫

R2
µ(dη)

sin2(s|η|)
|η|2 < +∞. (67)

Using Fubini’s theorem, one can evaluate the ds-integral explicitly, or simply
check that

c1
1 + |η|2 ≤

∫ T

0

ds
sin2(s|η|)

|η|2 ≤ c2
1 + |η|2 , (68)

so condition (59) on the spectral measure becomes
∫

R2
µ(dη)

1
1 + |η|2 < +∞. (69)

Exercise 4.1. Let d ≥ 1. Consider the case where f(x) = |x|−β , 0 < β < d.
In this case, µ(dη) = cd,β|η|β−d dη (see Example 3.2). Check that condition
(69) holds (even when R2 is replaced by Rd) if and only if β < 2. In particular,
the spatially homogeneous Gaussian noise with the covariance function f is
defined for 0 < β < d, but a mild solution of the linear stochastic wave
equation (56) exists if and only if 0 < β < 2.

Reformulating (69) in Terms of the Covariance Measure

Condition (69) on the spectral measure can be reformulated as a condition on
the covariance measure Γ.

Exercise 4.2. ([11]) Show that in dimension d = 2, (69) is equivalent to
∫

|x|≤1

Γ(dx) ln
(

1
|x|
)

< +∞, (70)

while in dimensions d ≥ 3, (69) is equivalent to
∫

|x| ≤1

Γ(dx)
1

|x|d−2
< +∞. (71)

In dimension d = 1, condition (69) is satisfied for any non-negative measure
µ such that Γ = Fµ is also a non-negative measure.
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The Non-Linear Wave Equation in Dimension d = 2

We consider equation (54). The following theorem is the main result on
existence and uniqueness.

Theorem 4.3. Assume d = 2. Suppose that σ is a Lipschitz continuous
function and that condition (69) holds. Then there exists a unique solution
(u(t , x), t ≥ 0, x ∈ R2) of (54) and for all p ≥ 1, this solution satisfies

sup
0≤t≤T

sup
x∈Rd

E (|u(t , x)|p) <∞. (72)

Proof. This proof follows a classical Picard iteration scheme. We set u0(t , x) =
0, and, by induction, for n ≥ 0,

un+1(t , x) =
∫

[0,t]×R2
G(t− s , x− y) σ(un(s , y)) M(ds , dy). (73)

Before establishing convergence of this scheme, we first check that for p ≥ 2,

sup
n≥0

sup
0≤s≤T

sup
x∈R2

E (|un(s , x)|p) < +∞. (74)

We apply Burkholder’s inequality (32) and use the explicit form of the
quadratic variation of the stochastic integral [10, Theorem 5.26] to see that

E (|un+1(t , x)|p) ≤ cE

[(∫ t

0

ds

∫

R2
dy

∫

R2
dz G(t− s , x− y) σ(un(s , y))

× f(y − z) G(t− s , x− z) σ(un(s , z))

)p/2]

. (75)

Since G ≥ 0 and f ≥ 0, we apply Hölder’s inequality in the form

∣
∣
∣
∣

∫

f dµ

∣
∣
∣
∣

p

≤
(∫

1 dµ
)p/q (∫

|f |p dµ
)

, where
p

q
= p− 1 (76)

and µ is a non-negative measure, to see that E (|un+1(t , x)|p) is bounded
above by

c

(∫ t

0

ds

∫

R2
dy

∫

R2
dz G(t− s , x− y) f(y − z) G(t− s , x− z)

) p
2−1

×
∫ t

0

ds

∫

R2
dy

∫

R2
dz G(t− s , x− y) f(y − z)G(t− s , x− z)

× E
(
|σ(un(s , y))σ(un(s , z))|

p
2

)
. (77)



The Stochastic Wave Equation 53

We apply the Cauchy–Schwarz inequality to the expectation and use the
Lipschitz property of σ to bound this by

C

(∫ t

0

ds

∫

R2
µ(dη) |FG(t− s)(η)|2

) p
2−1

×
∫ t

0

ds

∫

R2
dy

∫

R2
dz G(t− s , x− y) f(y − z)G(t− s , x− z) (78)

× (E (1 + |un(s , y)|p))1/2 (E (1 + |un(s , z)|p))1/2 .
Let

J(t) =
∫ t

0

ds

∫

R2
µ(dη) |FG(t− s)(η)|2 ≤ C

∫

R2
µ(dη)

1
1 + |η|2 . (79)

Then

E (|un+1(t , x)|p)

≤ C (J(t))
p
2−1

∫ t

0

ds

(

1 + sup
y∈R2

E (|un(s , y)|p)
)

×
∫

R2
µ(dη) |FG(t− s)(η)|2

≤ C̃

∫ t

0

ds

(

1 + sup
y∈R2

E(|un(s , y)|p)
)

. (80)

Therefore, if we set
Mn(t) = sup

x∈R2
E (|un(t , x)|p) , (81)

then

Mn+1(t) ≤ C̃

∫ t

0

ds (1 +Mn(s)) . (82)

Using Gronwall’s lemma, we conclude that

sup
n∈N

sup
0≤t≤T

Mn(t) < +∞. (83)

We now check L2-convergence of the Picard iteration scheme. By the same
reasoning as above, we show that

sup
x∈R2

E (|un+1(t , x) − un(t , x)|p)

≤ C

∫ t

0

ds sup
y∈R2

E (|un(s , y)− un−1(s , y)|p) .
(84)

Gronwall’s lemma shows that (un(t , x), n ≥ 1) converges in L2(Ω ,F ,P),
uniformly in x ∈ R2.

Uniqueness of the solution follows in a standard way: see [10, Proof of
Theorem 6.4]. �
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Hölder-Continuity (d = 2)

In order to establish Hölder continuity of the solution to the stochastic wave
equation in spatial dimension 2, we first recall the Kolmogorov continuity
theorem. It is a good idea to compare this statement with the equivalent one
in [10, Theorem 4.3].

Theorem 4.4 (The Kolmogorov Continuity Theorem). Suppose that
there is q > 0, ρ ∈ ]d

q , 1[ and C > 0 such that for all x, y ∈ Rd,

E (|u(t , x) − u(t , y)|q) ≤ C |x− y|ρq. (85)

Then x �→ u(t , x) has a ρ̃-Hölder continuous version, for any ρ̃ ∈ ]0 , ρ− d
q [.

In order to use the statement of this theorem to establish (ρ − ε)-Hölder
continuity, for any ε > 0, it is necessary to obtain estimates on arbitrarily
high moments of increments, that is, to establish (85) for arbitrarily large q.

Lq-Moments of Increments

From the integral equation (55), we see that

u(t , x) − u(s , y)

=
∫∫

(G(t− r , x− z)−G(s− r , y − z)) σ(u(r , z))M(dr , dz),
(86)

and so, by Burkholder’s inequality (32),

E (|u(t , x) − u(s , y)|p)

≤ CE
(∣
∣
∣
∣

∫ t

0

dr

∫

R2
dz

∫

R2
dv (G(t− r , x− z)−G(s− r , y − z)) f(z − v)

× (G(t− r , x− v) −G(s− r , y − v))σ(u(r , z))σ(u(r, v))
∣
∣
∣
∣

p/2)

≤ C

(∫

dr

∫

dz

∫

dv |G( ) −G( )| f( ) |G( )−G( )|
) p

2−1

(87)

×
∫

dr

∫

dz

∫

dv |G( ) −G( )| f( ) |G( )−G( )|

× E
(
|σ(u(r , z))|p/2 |σ(u(r , v))|p/2

)
,

where the omitted variables are easily filled in. The Lipschitz property of σ
implies a bound of the type “linear growth,” and so, using also the Cauchy–
Schwarz inequality, we see that the expectation is bounded by

C sup
r≤T, z∈R2

(1 + E(|u(r , z)|p)) . (88)
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Define

J(t , x ; s, y)

=
∫ t

0

dr

∫

R2
dz

∫

R2
dv |G(t− r , x− z)−G(s− r , y − z)| f(z − v)

× |G(t− r , x− v) −G(s− r , y − v)|.

(89)

We have shown that

E (|u(t , x)− u(s , y)|p) ≤ (J(t , x ; s, y))p/2 . (90)

Therefore, we will get Hölder-continuity provided that we can establish an
estimate of the following type for some γ > 0 and ρ > 0:

J(t , x ; s, y) ≤ c(|t− s|γ + |x− y|ρ). (91)

Indeed, this will establish γ1
2 -Hölder continuity in time, and ρ1

2 -Hölder conti-
nuity in space, for all γ1 ∈ ]0 , γ[ and ρ1 ∈ ]0 , ρ[.

Analysis of J(t , x ; s , y)

If there were no absolute values around the increments of G, then we could
use the Fourier transform to rewrite J(t , x ; s , y), in the case x = y and s > t,
for instance, as

J(t , x ; s , x) =
∫ s

0

dr

∫

R2
µ(dη) |FG(t− r)(η) −FG(s− r)(η)|2

+
∫ t

s

dr

∫

R2
µ(dη) |FG(t− r)(η)|2.

(92)

We could then analyse this using the specific form of FG in (66). However,
the presence of the absolute values makes this approach inoperable. By a
direct analysis of J(t , x ; s , x), Sanz-Solé and Sarrá [14] have established the
following results. If

∫

R2
µ(dη)

1
(1 + |η|2)a <∞, for some a ∈ ]0 , 1[, (93)

then t �→ u(t , x) is γ1-Hölder continuous, for

γ1 ∈
]

0 ,
1
2

∧ (1 − a)
[

, (94)

and x �→ u(t , x) is γ2-Hölder continuous, for γ2 ∈ ]0 , 1 − a[.
When µ(dη) = |η|−β dη, these intervals become

γ1 ∈
]

0 ,
1
2

∧ 2 − β

2

[

and γ2 ∈
]

0 ,
2 − β

2

[

. (95)

The best possible interval for γ1 is in fact ]0 , 2−β
2 [ ; see [5, Chapter 5].
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5 A Function-Valued Stochastic Integral

Because Green’s function in spatial dimension 3 is a measure and not a
function, the study of the wave equation in this dimension requires differ-
ent methods than those used in dimensions 1 and 2. In particular, we will use
a function-valued stochastic integral, developed in [4].

Our first objective is to define a stochastic integral of the form
∫

[0,t]×Rd

G(s , x− y) Z(s , y) M(ds , dy), (96)

where G(s , ·) is Green’s function of the wave equation (see Example 2.2) and
Z(s , y) is a random field that plays the role of σ(u(s , y)).

We shall assume for the moment that d ≥ 1 and that the following con-
ditions are satisfied.

Hypotheses

(H1) For 0 ≤ s ≤ T, Z(s , ·) ∈ L2(Rd) a.s., Z(s , ·) is F s−measurable, and
s �→ Z(s , ·) from R+ → L2(Rd) is continuous.

(H2) For all s ≥ 0,

∫ T

0

ds sup
ξ∈Rd

∫

Rd

µ(dη) |FG(s)(ξ − η)|2 < +∞.

We note that FG(s)(ξ− η) is given in (66), so that (H2) is a condition on
the spectral measure µ, while (H1) is a condition on Z. In general, condition
(H2) is stronger than (59): see [13].

Fix ψ ∈ C∞
0 (Rd) such that ψ ≥ 0, supp ψ ⊂ B(0, 1) and

∫

Rd

ψ(x) dx = 1. (97)

For n ≥ 1, set
ψn(x) = nd ψ(nx). (98)

In particular, ψn → δ0 in S ′(Rd), and F ψn(ξ) = F ψ(ξ/n), so that
|F ψn(ξ)| ≤ 1. Define

Gn(s , ·) = G(s) ∗ ψn, (99)

so that Gn is a C∞
0 -function. Then,

vGn,Z(t , x) def=
∫

[0,t]×Rd

Gn(s , x− y) Z(s , y) M(ds , dy) (100)

is well-defined as a Walsh-stochastic integral, and
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E
(
‖vGn,Z(t , ·)‖2

L2(Rd)

)
= IGn ,Z , (101)

where

IGn,Z =
∫

Rd

dxE
(
(vGn,Z(t , x))2

)

=
∫

Rd

dx

∫ t

0

ds

∫

Rd

dy

∫

Rd

dz Gn(s , x− y)Z(s , y) f(y − z)

× Gn(s , x− z) Z(s , z).

(102)

Using the fact that the Fourier transform of a convolution (respectively prod-
uct) is the product (resp. convolution) of the Fourier transforms, one easily
checks that

IGn,Z

=
∫ t

0

ds

∫

Rd

dξ E
(|FZ(s , ·)(ξ)|2)

∫

Rd

µ(dη) |FGn(s , ·) (ξ − η)|2. (103)

We note that:

(a) the following inequality holds:

IGn,Z ≤ ĨGn,Z , (104)

where

ĨGn,Z

def=
∫ t

0

ds E
(
‖Z(s , ·)‖2

L2(Rd)

)
sup
ξ∈Rd

∫

Rd

µ(dη) |FGn(s , ·)(ξ − η)|2;
(105)

(b) the equality (101) plays the role of an isometry property;
(c) by elementary properties of convolution and Fourier transform,

ĨGn,Z ≤ ĨG,Z < +∞, (106)

by (H2) and (H1).

In addition, one checks that the stochastic integral

vG,Z(t) def= lim
n→∞ vGn,Z (107)

exists, in the sense that

E
(
‖vG,Z (t) − vGn,Z(t , ·)‖2

L2(Rd)

)
−→ 0, (108)
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and
E
(
‖vG,Z(t)‖2

L2(Rd)

)
= IG,Z ≤ ĨG,Z . (109)

We use the following notation for the stochastic integral that we have just
defined:

vG,Z(t) =
∫

[0,t]×Rd

G(s , · − y) Z(s , y) M(ds , dy). (110)

For t fixed, vG,Z(t) ∈ L2(Rd) is a square-integrable function that is defined
almost-everywhere.

The definition of the stochastic integral requires in particular that hypoth-
esis (H2) be satisfied. In the case where

Γ(dx) = kβ(x) dx, with kβ(x) = |x|−β , β > 0, (111)

this condition becomes
∫ T

0

ds sup
ξ∈Rd

∫

Rd

dη |η|β−d sin2(s|ξ − η|)
|ξ − η|2 < +∞. (112)

Exercise 5.1. ([4]) Show that (112) holds if and only if 0 < β < 2.

6 The Wave Equation in Spatial Dimension d ≥ 1

We consider the following stochastic wave equation in spatial dimension
d ≥ 1, driven by spatially homogeneous Gaussian noise Ḟ (t , x) as defined
in Section 3:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂2u

∂t2
− ∆u

)

(t , x) = σ(x , u(t , x)) Ḟ (t , x), t ∈ ]0 , T ], x ∈ Rd,

u(0 , x) = v0(x),
∂u

∂t
(0 , x) = ṽ0(x),

(113)

where v0 ∈ L2(Rd) and ṽ0 ∈ H−1(Rd). By definition, H−1(Rd) is the set of
square-integrable functions ṽ0 such that

‖ṽ0‖2
H−1(Rd)

def=
∫

Rd

dξ
1

1 + |ξ|2 |F ṽ0(ξ)|2 < +∞. (114)

We shall restrict ourselves, though this is not really necessary (see [4]) to
the case where Γ(dx) is as in (111). In this case, Exercise 4.1 shows that the
further restriction 0 < β < 2 is needed.
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The Past-Light Cone Property

Consider a bounded domain D ⊂ Rd. A fundamental property of the wave
equation (see [18, Theorem 14.1]) is that u(T , x), x ∈ D, only depends on
v0|KD and ṽ0|KD , where

KD = { y ∈ Rd : d(y ,D) ≤ T } (115)

and d(y ,D) denotes the distance from y to the set D, and on the noise Ḟ (s , y)
for y ∈ KD(s), 0 ≤ s ≤ T , where

KD(s) =
{
y ∈ Rd : d(y ,D) ≤ T − s

}
. (116)

Therefore, the solution u(t , x) in D is unchanged if we take the SPDE
(
∂2u

∂t2
− ∆u

)

(t , x) = 1KD(t)(x) σ(x , u(t , x)) Ḟ (t , x). (117)

We shall make the following linear growth and Lipschitz continuity assump-
tions on the function σ.

Assumptions.

(a) |σ(x , u)| ≤ c(1 + |u|) 1KD(T )(x), for all x ∈ Rd and u ∈ R;
(b) |σ(x , u) − σ(x , v)| ≤ c |u− v|, for all x ∈ Rd and u, v ∈ R.

Definition 6.1. An adapted and mean-square continuous L2(Rd)-valued pro-
cess (u(t), 0 ≤ t ≤ T ) is a solution of (113) in D if for all t ∈ ]0 , T ],

u(t) 1KD(t) = 1KD(t) ·
(
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0 (118)

+
∫

[0,t]×Rd

G(t− s , · − y) σ(y , u(s , y)) M(ds , dy)
)

.

Theorem 6.2. Let d ≥ 1. Suppose 0 < β < 2 ∧ d and that the assumptions
above on σ are satisfied. Then (113) has a unique solution (u(t), 0 ≤ t ≤ T )
in D.

Proof. We use a Picard iteration scheme. Set

u0(t , x) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0. (119)

We first check that u0(t) ∈ L2(Rd). Indeed,
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∥
∥
∥
∥
d

dt
G(t) ∗ v0

∥
∥
∥
∥
L2(Rd)

=
∥
∥
∥
∥F

(
d

dt
G(t)

)

· Fv0

∥
∥
∥
∥
L2(Rd)

=
∫

Rd

dξ

∣
∣
∣
∣|ξ|

cos(t|ξ|)
|ξ| ·Fv0(ξ)

∣
∣
∣
∣

2

≤ ‖v0‖L2(Rd) ,

(120)

and, similarly,
‖G(t) ∗ ṽ0‖L2(Rd) ≤ ‖ṽ0‖H−1(Rd) . (121)

One checks in a similar way that t �→ u0(t) from [0 , T ] into L2(Rd) is
continuous.

We now define the Picard iteration scheme. For n ≥ 0, assume that
(un(t), 0 ≤ t ≤ T ) has been defined, and satisfies (H1). Set

un+1(t) = 1KD(t) · (u0(t) + vn+1(t)) , (122)

where

vn+1(t) =
∫

[0,t]×Rd

G(t− s , · − y) σ(y , un(s , y)) M(ds , dy). (123)

By induction, Zn(s , y) = σ(y , un(s , y)) satisfies (H1). Indeed, this process
is adapted, and since

‖σ(· , un(s , ·)) − σ(·, un(t , ·))‖L2(Rd) ≤ C‖un(s , ·)− un(t , ·)‖L2(Rd), (124)

it follows that s �→ un(s , ·) is mean-square continuous. One checks that un+1

also satisfies (H1): this uses assumption (a).
Therefore, the stochastic integral (123) is well-defined. Let

Mn(r) = sup
0≤t≤r

E
(
‖un+1(t) − un(t)‖2

L2(KD(t))

)
(125)

= sup
0≤t≤r

E
(
‖vn+1(t) − vn(t)‖2

L2(KD(t))

)

= sup
0≤t≤r

E
(∥
∥
∥

∫

[0,t]×Rd

G(t− s, · − y)

× (σ(y , un(s , y))− σ(y , un−1(s , y))) M(ds, dy)
∥
∥
∥

2

L2(KD(t))

)

≤ sup
0≤t≤r

∫ t

0

dsE
(
‖σ(· , un(s , ·)) − σ(·, un−1(s , ·))‖2

L2(KD(t))

)
J(t− s),

where

J(s) = sup
ξ∈Rd

∫

Rd

dη |η|β−d sin2(s|ξ − η|)
|ξ − η|2 . (126)

A direct calculation shows that
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sup
0≤s≤T

J(s) < +∞, (127)

since 0 < β < 2, so

Mn(r) ≤ C sup
0≤t≤r

∫ t

0

dsE
(
‖un(s , ·) − un−1(s , ·)‖2

L2(KD(t))

)
, (128)

that is,

Mn(r) ≤ C

∫ r

0

Mn−1(s) ds. (129)

Because M0(T ) < +∞, Gronwall’s lemma implies that

+∞∑

n=0

(Mn(r))1/2 < +∞. (130)

Therefore, (un(t , ·) , n ∈ N) converges in L2(Ω ×Rd , dP × dx), uniformly in
t ∈ [0 , T ], to a limit u(t , ·). Since un satisfies (H1) and un converges uniformly
in t to u(t , ·), it follows that u(t , ·) is a solution to (113): indeed, it suffices
to pass to the limit in (122) and (123).

Uniqueness of the solution follows by a standard argument. �


7 Spatial Regularity of the Stochastic Integral (d = 3)

We aim now to analyze spatial regularity of the solution to the 3-dimensional
stochastic wave equation (113) driven by spatially homogeneous Gaussian
noise, with covariance given by a Riesz kernel f(x) = |x|−β , where 0 < β < 2.
For this, we shall first examine the regularity in the x-variable of the function-
valued stochastic integral defined in Section 5 when d = 3.

We recall that studying regularity properties requires information on
higher moments. With these, one can use the Kolmogorov continuity theorem
(Theorem 4.4) or the Sobolev embedding theorem, which we now recall.

Theorem 7.1 (The Sobolev Embedding Theorem). Let O be an open
subset of Rd. Suppose that g ∈ W p,q(O). Then x �→ g(x) is ρ̃-Hölder
continuous, for all ρ̃ ∈ ]0 , ρ− d

q [ .

We recall [16] that the norm in the space W p,q(O) is defined by

‖g‖qWp,q(O) = ‖g‖qLq(O) + ‖g‖qp,q,O , (131)

where

‖g‖qLq(O) =
∫

O

|g(x)|q dx

‖g‖qp,q,O =
∫

O

dx

∫

O

dy
|g(x) − g(y)|q
|x− y|d+ρq .

(132)
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Our first objective is to determine conditions that ensure that

E
(
‖vG,Z‖qLq(O)

)
< +∞. (133)

For ε > 0, we let

Oε =
{
x ∈ R3 : ∃ z ∈ O with |x− z| < ε

}
(134)

denote the ε-enlargement of O, and use the notation

vtG,Z =
∫

[0,t]×R3
G(t− s , · − y) Z(s , y) M(ds , dy). (135)

An Estimate in Lp-Norm

Theorem 7.2. Suppose 0 < β < 2. Fix T > 0, q ∈ [2 ,+∞[ and let O ⊂ R3

be a bounded domain. There is a constant C <∞ with the following property.
Suppose that ∫ t

0

ds E
(
‖Z(s)‖qLq(Ot−s)

)
< +∞. (136)

Then

E
(
‖vtG,Z‖qLq(O)

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖qLq(Ot−s)

)
. (137)

Proof. We present the main ideas, omitting some technical issues that are han-
dled in [5, Proposition 3.4]. First, we check inequality (137) with G replaced
by Gn:

E
(
‖vtGn,Z‖qLq(O)

)

=
∫

O

dxE

(∣
∣
∣
∣
∣

∫

[0,t]×R3
Gn(t− s , x− y) Z(s , y) M(ds , dy)

∣
∣
∣
∣
∣

q)

≤
∫

O

dxE

(∣
∣
∣
∣
∣

∫ t

0

ds

∫

R3
dy

∫

R3
dz Gn (t− s , x− y) Z(s , y) f(y − z)

×Gn(t− s , x− z)Z(s , z)

∣
∣
∣
∣
∣

q/2)

. (138)

Let

µn(t, x)

=
∫ t

0

ds

∫

R3
dy

∫

R3
dz Gn(t− s , x− y) f(y − z) Gn(t− s , x− z).

(139)
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Assume that
sup

n ,x, t≤T
µn(t , x) < +∞. (140)

By Hölder’s inequality, written in the form (76), we see, since Gn ≥ 0, that

E
(
‖vtGn,Z‖qLq(O)

)

≤
∫

O

dx (µn(t , x))
q
2−1E

(∫ t

0

ds

∫

R3
dy

∫

R3
dz Gn(t− s , x− y)

× f(y − z) Gn(t− s , x− z) |Z(s , y)|q/2 |Z(s , z)|q/2
)

= I
Gn,|Z 1

Ot−s+1/n |q/2 .

(141)

We apply (104), then (105), to bound this by

Ĩ
Gn,|Z 1

Ot−s+1/n |q/2 =
∫ t

0

dsE
(∥
∥
∥ |Z(s)|q/2 1Ot−s+1/n

∥
∥
∥

2

L2(R3)

)

× sup
ξ∈R3

∫

R3
µ(dη) |FGn(s , ·)(ξ − η)|2.

(142)

Since 0 < β < 2, the supremum over ξ is finite, therefore

E
(
‖vtGn,Z‖qLq(O)

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖q

Lq(Ot−s+1/n)

)
. (143)

By Fatou’s lemma,

E
(
‖vtG,Z‖qLq(O)

)
≤ lim inf

k→∞
E
(
‖vtGnk,Z

‖qLq(O)

)

≤ lim inf
k→∞

∫ t

0

dsE
(
‖Z(s)‖q

Lq(Ot−s+1/nk)

)

=
∫ t

0

dsE
(
‖Z(s)‖qLq(Ot−s)

)
.

(144)

It remains to check that (140) holds. Since

|FGn(t− s)(η)|2 ≤ |FG(t− s)(η)|2 =
sin2((t− s)|η|)

|η|2 , (145)

it follows that for t ∈ [0 , T ] and x ∈ R3,

µn(t , x) ≤
∫ t

0

ds

∫

R3
dη |η|β−3 sin2((t− s)|η|)

|η|2 ≤ C(T ), (146)

since 0 < β < 2. This completes the proof. �
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An Estimate in Sobolev Norm

We consider here a spatially homogeneous Gaussian noise Ḟ (t , x), with covari-
ance given by f(x) = |x|−β , where 0 < β < 2. We seek an estimate of the
Sobolev norm of the stochastic integral vtG,Z . We recall that the Sobolev norm
is defined in (131).

Theorem 7.3. Suppose 0 < β < 2. Fix T > 0, q ∈ ]3,+∞[, and let O ⊂ R3

be a bounded domain. Fix γ ∈ ]0, 1[, and suppose that
∫ t

0

dsE
(
‖Z(s)‖qWγ,q(Ot−s)

)
< +∞. (147)

Consider

ρ ∈
]

0 , γ ∧
(

2 − β

2
− 3
q

)[

. (148)

Then there exists C < +∞—depending on ρ but not on Z—such that

E
(
‖vtG,Z‖qρ,q,O

)
≤ C

∫ t

0

dsE
(
‖Z(s)‖qWρ,q(Ot−s)

)
. (149)

Remark 7.4. In the case of the heat equation, spatial regularity of the stochas-
tic integral process, that is, of x �→ vtG,Z(x), occurs because of regularity of
the heat kernel G, even if Z is merely integrable. Here, the spatial regularity
of vtG,Z is due to the regularity of Z.

Proof (Theorem 7.3). The key quantity that we need to estimate is

E

(∫

O

dx

∫

O

dy
|vtG,Z(x) − vtG,Z(y)|q

|x− y|3+ρq
)

. (150)

Let ρ̄ = ρ+ 3
q , so that 3+ρ q = ρ̄ q. If we replace G by Gn, then the numerator

above is equal to
∣
∣
∣

∫ t

0

ds

∫

R3
(Gn(t− s , x− u)−Gn(t− s , y − u)) Z(s , u) M(ds , du)

∣
∣
∣
q

,

so by Burkholder’s inequality (32),

E
(∣
∣vtGn,Z(x) − vtGn,Z(y)

∣
∣q
)

≤ C E

(∣
∣
∣
∣
∣

∫ t

0

ds

∫

R3
du

∫

R3
dv Z(s , u) f(u− v) Z(s , v)

× (Gn(t− s , x− u) −Gn(t− s , y − u))

× (Gn(t− s , x− v) −Gn(t− s , y − v))

∣
∣
∣
∣
∣

q/2)

.

(151)
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If we had G instead of Gn, and if G were ρ-Hölder continuous with exponent
ρ, for instance, then we would get a bound involving |x− y|ρq, even if Z were
merely integrable.

Here we use a different idea: we shall pass the increments on the Gn over
to the factors Z f Z by changing variables. For instance, if there were only
one factor involving increments of Gn, we could use the following calculation,
where Gn is generically denoted g and Z f Z is denoted ψ:

∫

R3
du (g(x− u)− g(y − u))ψ(u)

=
∫

R3
du g(x− u)ψ(u) −

∫

R3
du g(y − u)ψ(u)

=
∫

R3
dũ g(ũ)ψ(x− ũ)−

∫

R3
dũ g(ũ)ψ(y − ũ)

)

=
∫

R3
dũ g(ũ) (ψ(x− ũ) − ψ(y − ũ)).

(152)

Using this idea, it turns out that the integral on the right-hand side of (151)
is equal to

4∑

i=1

J ti,n (x , y), (153)

where

J ti,n(x , y)

=
∫ t

0

ds

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) hi(t , s , x , y , u , v),

(154)

and

h1(t , s , x , y , u , v) = f(y − x+ v − u) (Z(t− s , x− u)− Z(t− s , y − u))
× (Z(t− s , x− v) − Z(t− s, y − v)),

h2(t , s , x , y , u , v) = Df(v − u , x− y)Z(t− s , x− u)
× (Z(t− s , x− v) − Z(t− s , y − v)),

(155)
h3(t , s , x , y , u , v) = Df(v − u , y − x)Z(t − s , y − v)

× (Z(t− s , x− u) − Z(t− s , y − u)),

h4(t , s, x , y , u , v) = −D2f (v − u , x− y) Z(t− s , x− u) Z(t− s , x− u),

and we use the notation

Df(u , x) = f(u+ x) − f(u),

D2f(u , x) = f(u− x) − 2 f(u) + f(u+ x).
(156)
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We can now estimate separately each of the four terms

T in(t ,O) =
∫

O

dx

∫

O

dy
E(|J ti,n(x , y)|q/2)

|x− y|ρ̄ q , i = 1, . . . , 4. (157)

The term T 1
n(t ,O). Set

µn(x , y) = sup
s∈[0,T ]

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

= sup
s∈[0,T ]

∫

R3
µ(dη) ei η·(x−y)|FGn(s)(η)|2,

(158)

so that
sup
n,x,y

µn(x , y) < +∞, (159)

since β < 2. Therefore, since Gn(s , u) ≥ 0, by Hölder’s inequality,

E
(
|J t1,n(x, y)|q/2

)

≤ (T µn(x , y))
q
2−1

× E
(∫ t

0

ds

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

× |Z(t− s , x− u) − Z(t− s , y − u)|q/2

× |Z(t− s , x− v) − Z(t− s , y − v)|q/2
)

. (160)

Apply the Cauchy–Schwarz inequality with respect to the measure

dP dx dy ds du dv Gn(s , u)Gn(s , v) f(y − x+ v − u) (161)

to see that
T 1
n(t ,O) ≤ (

T 1,1
n (t ,O) T 1,2

n (t ,O)
)1/2

, (162)

where

T 1,1
n (t ,O)

=
∫ t

0

ds

∫

O

dx

∫

O

dy

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) f(y − x+ v − u)

× E (|Z(t− s , x− u)− Z(t− s , y − u)|q)
|x− y|ρ̄q , (163)

and there is an analogous expression for T 1,2
n (t ,O). We note that for x ∈ O,

when Gn(s , u) > 0 (resp. for y ∈ O, when Gn(s , v) > 0), x − u ∈ Os(1+1/n)

(resp. y − u ∈ Os(1+1/n)), so
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T 1,1
n (t ,O) ≤

∫ t

0

dsE
(
‖Z(t− s)‖q

ρ,q,Os(1+1/n)

)
sup
n,x,y

µn(x , y). (164)

The same bound arises for the term T 1,2
n (t ,O), so this gives the desired

estimate for this term.
We shall not discuss the terms T 2

n(t ,O) and T 3
n(t ,O) here: the interested

reader may consult [5, Chapter 3], but we consider the term T 4
n(t ,O).

The term T 4
n(t ,O). In order to bound T 4

n(t ,O), we aim to bring the exponent
q/2 inside the ds du dv integral, in such a way that it only affects the Z factors
but not f .

Set

µn(x , y)

= sup
s∈[0,T ]

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v)

|D2f(v − u , x− y)|
|x− y|2ρ̄ .

(165)

We will show below that

sup
n≥1, x,y∈O

µn(x , y) ≤ C < +∞, (166)

which will turn out to require a quite interesting calculation. Assuming this
for the moment, let p = q/2. Then, by Hölder’s inequality,

E
(|J t4,n(x , y)|p

)

|x− y|2pρ̄

≤ sup
n,x,y

(µn(x , y))
p−1

∫ t

0

ds

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v)

× |D2f(v − u , x− y)|
|x− y|2ρ̄ E (|Z(t− s , x− u)|p |Z(t− s , x− v)|p) .

(167)

This quantity must be integrated over O ×O. We apply the Cauchy–Schwarz
inequality to the measure ds du dv( · · · )dP, and this leads to

T 4
n(t ,O) ≤ sup

n,x,y
(µn(x , y))

p
∫ t

0

dsE
(
‖Z(s)‖q

Lq(O(t−s)(1+1/n))

)
. (168)

This is the desired bound for this term.
It remains to check (166). The main difficulty is to bound the second-order

difference |D2f(v − u , x− y)|. We explain the main issues below.

Bounding Symmetric Differences

Let g : R → R. Suppose that we seek a bound on
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D2g(x , h) = g(x− h) − 2g(x) + g(x+ h). (169)

Notice that if g is differentiable only once (g ∈ C1), then the best that we can
do is essentially to write

|D2g(x , h)| ≤ |g(x− h)− g(x)| + |g(x+ h) − g(x)|
≤ c h.

(170)

On the other hand, if g is twice differentiable (g ∈ C2), then we can do better:

|D2g(x , h)| ≤ c h2. (171)

In the case of a Riesz kernel f(x) = |x|−β , x ∈ R3, we can write

|D2f(u , x)| =
∣
∣ |u− x|−β − 2|u|−β + |u+ x|−β ∣∣

≤ C |f ′′(u)| |x|2
= C |u|−β−2 |x|2 .

(172)

Taking into account the definition of µn(x , y) in (165), this inequality leads
to the bound

µn(x , y)

≤ sup
s∈[0,T ]

(∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) |u− v|−(β+2)

) |x− y|2
|x− y|2ρ̄ .

(173)

However, the double integral converges to +∞ as n→∞, since β + 2 > 2.
Since differentiating once does not necessarily give the best bound possible

and differentiating twice gives a better exponent but with an infinite constant,
it is natural to want to differentiate a fractional number of times, namely just
under 2 − β times. If we “differentiate α times” and all goes well, then this
should give a bound of the form µn(x , y) ≤ C|x − y|α, for α ∈ ]0 , 2 − β[. We
shall make this precise below.

Riesz Potentials, their Fractional Integrals and Laplacians

Let α def= 2ρ̄. We recall that

ρ <
2 − β

2
− 3
q

and ρ̄ = ρ+
3
q
, so α < 2 − β. (174)

The Riesz potential of a function ϕ : Rd → R is defined by

(Ia ϕ)(x) =
1

γ(a)

∫

Rd

ϕ(y)
|x− y|d−a dy, a ∈ ]0 , d[, (175)

where γ(a) = πd/22aΓ(a/2)/Γ(1
2 (d−a)). Riesz potentials have many interest-

ing properties (see [17]), of which we mention the following:
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(1) Ia+b(ϕ) = Ia(Ib ϕ) if a + b ∈ ]0 , d[. Further, Ia can be seen as a
“fractional integral of order a,” in the sense that

F (Ia ϕ)(ξ) = Fϕ(ξ)F

(
1

| · |d−a
)

(ξ) =
Fϕ(ξ)
|ξ|a . (176)

(2) Our covariance function kβ(x) = |x|−β is a Riesz kernel. These kernels
have the following property:

|x|−d+a+b =
∫

Rd

dz kd−b(x − z) |z|−d+a (177)

= Ib
(| · |−d+a) . (178)

This equality can be viewed as saying that |z|−d+a is “bth derivative (or
Laplacian)” of |z|−d+a+b, in the sense that

(−∆)b/2
(|z|−d+a+b) = |z|−d+a . (179)

Indeed, taking Fourier transforms, this equality becomes simply

|ξ|b |ξ|−a−b = |ξ|−a . (180)

Recall the notation

Df(u , y) = f(u+ y)− f(u). (181)

From (177), one can easily deduce (see [5, Lemma 2.6]) that

Dkd−a−b(u , cx) = |c|b
∫

Rd

dw kd−a(u− cw) Dkd−b(w , x), (182)

and

|D2kd−a−b(u , x)| ≤ |x|b
∫

Rd

dw kd−a(u− |x|w) D2kd−b

(

w ,
x

‖x‖
)

. (183)

Set b = α = 2ρ̄ and a = 3−α−β, where α+β ∈ ]0, 2[ . Looking back to (165),
these two relations lead to the following estimate:

µn(x , y)

≤ sup
s∈ [0,T ]

1
|x− y|α

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s, v) |x − y|α

×
∫

R3
dw kα+β(v − u− |y − x|w) ×

∣
∣
∣
∣D

2k3−α

(

w ,
x

|x|
)∣
∣
∣
∣

≤ sup
s∈ [0,T ]

(

sup
x,y,w

∫

R3
du

∫

R3
dv Gn(s , u) Gn(s , v) kα+β(v − u− |y − x|w)

)

× sup
x

∫

dw

∣
∣
∣
∣D

2k3−α

(

w ,
x

‖x‖
)∣
∣
∣
∣ . (184)



70 R.C. Dalang

The double integral above is finite since α + β < 2. Indeed, taking Fourier
transforms, the shift −|y − x|w introduces a factor eiη·|y−x|w, which is of no
consequence. The second integral is finite (and does not depend on x). For
this calculation, see [5, Lemma 2.6]. This proves Theorem 7.3. �


8 Hölder-Continuity in the 3-d Wave Equation

We consider the stochastic wave equation (113) for d = 3, driven by spatially
homogeneous Gaussian noise with covariance f(x) = |x|−β , where 0 < β < 2.

The main idea for checking Hölder continuity of the solution is to go back
to the Picard iteration scheme that was used to construct the solution, start-
ing with a smooth function u0(t , x) (whose smoothness depends only on the
regularity of the initial conditions), and then check that regularity is preserved
at each iteration step and passes to the limit. The details are carried out in
[5, Chapter 4]. The main result is the following.

Theorem 8.1. Assume the following three properties:

(a) the initial value v0 is such that v0 ∈ C2(R3) and ∆v0 is Hölder continuous
with exponent γ1;

(b) the initial velocity ṽ0 is Hölder continuous with exponent γ2;
(c) the nonlinearities σ, b : R → R are Lipschitz continuous.

Then, for any q ∈ [2 ,∞[ and

α ∈
]

0 , γ1 ∧ γ2 ∧ 2 − β

2

[

, (185)

there is C > 0 such that for all (t , x) , (s , y) ∈ [0 , T ]×D,

E (|u(t , x) − u(s , y)|q) ≤ C (|t− s|+ |x− y|)αq . (186)

In particular, (t , x) �→ u(t , x) has a Hölder continuous version with exponent
α.

We observe that the presence of γ1∧γ2 in (185) can be interpreted by saying
that the (ir)regularity of the initial conditions limits the possible regularity
of the solution: there is no smoothing effect in the wave equation, contrary to
the heat equation.

We note that this result is sharp. Indeed, if we consider the linear wave
equation, in which we take σ ≡ 1 and b ≡ 0 in (113), with vanishing initial
condition v0 ≡ ṽ0 ≡ 0, then it is possible to show (see [5, Chapter 5] that

E
(|u(t , x) − u(t , y)|2) ≥ c1 |x− y|2−β (187)

and
E
(|u(t , x) − u(s , x)|2) ≥ c2 |t− s|2−β . (188)

This implies in particular that t �→ u(t , x) and x �→ u(t , x) are not γ-Hölder
continuous, for γ > 2−β

2 (see [5, Chapter 5]).
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[14] M. Sanz-Solé, M. Sarrà: Hölder continuity for the stochastic heat equation with
spatially correlated noise. In: Stochastic analysis, random fields and applications
(R.C. Dalang, M. Dozzi & F. Russo, eds), pp. 259–268, Progress in Probability
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