Preface

A fundamental object of study in the theory of groups is the lower central
series of groups whose terms are defined for a group G inductively by setting

WI(G) =G, 'YnJrl(G) = [G’ ’YH(G)] (n > 1))

where, for subsets H, K of G, [H, K] denotes the subgroup of G generated
by the commutators [h, k| := h™'k~'hk for h € H and k € K. The lower
central series of free groups was first investigated by Magnus [Mag35]. To
recall Magnus’s work, let F' be a free group with basis {z;}ic; and A =
Z[[X; | i € I]] the ring of formal power series in the non-commuting variables
{X,}ier over the ring Z of integers. Let U(.A) be the group of units of .A. The
map z; — 1+ X;, @ € I, extends to a homomorphism

0:F—UA), (1)

since 1 + X; is invertible in A with 1 — X; + X? — .-+ as its inverse. The
homomorphism 6 is, in fact, a monomorphism (Theorem 5.6 in [Mag66]). For
a € A, let a, denote its homogeneous component of degree n, so that

a=ap+a,+--+a,+---.

Define
Do(F):={feF|0(f);=0,1<i<n}, n>1

It is easy to see that D, (F) is a normal subgroup of F and the series
{Dp(F)},>1 is a central series in F, i.e., [F, D, (F)] C Dy, 1(F) for all n > 1.
Clearly, the intersection of the series {D,, (F)},>1 is trivial. Since {D,,(F)}n>1
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is a central series, we have v, (F) C D,,(F) for all n > 1. Thus, it follows that
the intersection (), vn(F) is trivial, i.e., F' is residually nilpotent.

Let G be an arbitrary group and R a commutative ring with identity. The
group ring of G over R, denoted by R[G], is the R-algebra whose elements
are the formal sums Y a(g)g, g € G, a(g) € R, with only finitely many
coefficients a(g) being non zero. The addition and multiplication in R[G] are
defined as follows:

> alg)g+ Y Blog=>_ (alg) +8(9)g.

geG geG geqG
S algg Y AmE=Y" < 3 a(g)ﬁ(h))x.
geG heG zeG N gh=x

The group G can be identified with a subgroup of the group of units of R[G],
by identifying g € G with 1rg, where 1g is the identity element of R, and it
then constitutes an R-basis for R[G]. The map

€: R|G] — R, Za(g)g = Za(g)a

is an algebra homomorphism and is called the augmentation map; its kernel
is called the augmentation ideal of R[G]; we denote it by Ag(G). In the case
when R is the ring Z of integers, we refer to Z[G] as the integral group ring
of G and denote the augmentation ideal also by g, the corresponding Euler
fraktur lowercase letter.

The augmentation ideal Ar(G) leads to the following filtration of R[G]:

RIG] 2 Ar(G) D AL(G)D...DALG) D ... . 2)

Note that the subset GN (1+A%(G)), n > 1, is a normal subgroup of G; this
subgroup is called the nth dimension subgroup of G over R and is denoted
by D, r(G). It is easy to see that {D,, r(G)},>1 is a central series in G,
and therefore 7, (G) C D, r(G) for all n > 1. In the case when R is the
ring Z of integers, we drop the suffix Z and write D,,(G) for D,, z(G). The
quotients A%(G)/AL™(G), n > 1, are R[G]-modules with trivial G-action.
There then naturally arise the following problems about dimension subgroups
and augmentation powers.

Problem 0.1 Identify the subgroups D, r(G) =GN (1 + A%(G)), n> 1.
Problem 0.2 Describe the structure of the quotients A% (G)/ALHG),n > 1.

Problem 0.3 Describe the intersection Np>1A%(G); in particular, charac-
terize the case when this intersection is trivial.

In the case when F' is a free group, then, for all n > 1, v, (F) C D,,(F) C
D, (F). The homomorphism 6 : F' — A, defined in (1), extends by linearity
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to the integral group ring Z[F] of the free group F; we continue to denote
the extended map by 6:
0:7Z[F] — A.

Let f be the augmentation ideal of Z[F7]; then, for o € f*, (a); =0, i < n—1.
With the help of free differential calculus, it can be seen that the intersection
of the ideals §*, n > 1, is zero and the homomorphism 6 : Z[F] — A is a
monomorphism (see Chap.4 in [Gru70]). A fundamental result about free
groups ([Mag37], [Gru36], [Wit37]; see also [R6h85]) is that the inclusions
Y (F) C D, (F) C D, (F) are equalities:

W (F) = D, (F) =D, (F), for all n > 1. (3)

This result exhibits a close relationship among the lower central series, the
dimension series, and the powers of the augmentation ideal of the integral
group ring of a free group. Thus, for free groups, Problems 1 and 3 have a
definitive answer in the integral case. Problem 2 also has a simple answer in
this case: for every n > 1, the quotient {*/{"*! is a free abelian group with
the set of elements (z;, —1) ... (x;, — 1)+ "™ as basis, where z;, range over
a basis of F' (see p. 116 in [Pas79]).

The foregoing results about free groups naturally raise the problem of
investigation of the relationship among the lower central series {v,(G)}n>1,
dimensionseries { D, g(G)}n>1,and augmentation quotients A% (G)/A%L™H(G),
n > 1, of an arbitrary group G over the commutative ring R. While these
series have been extensively studied by various authors over the last several
decades (see [Pas79], [Gup87c]), we are still far from a definitive theory. The
most challenging case here is that when R is the ring Z of integers, where a
striking feature is that, unlike the case of free groups, the lower central series
can differ from the dimension series, as first shown by Rips [Rip72].

Besides being purely of algebraic interest, lower central series and aug-
mentation powers occur naturally in several other contexts, notably in
algebraic K-theory, number theory, and topology. For example, the lower
central series is the main ingredient of the theory of Milnor’s fi-invariants
of classical links [Mil57]; the lower central series and augmentation powers
come naturally in [Cur71], [Gru80], [Qui69], and in the works of many other
authors.

The main object of this monograph is to present an exposition of different
methods related to the theory of the lower central series of groups, the di-
mension subgroups, and the augmentation powers. We will also be concerned
with another important related series, namely, the derived series whose terms
are defined, for a given group G, inductively by setting

50(G) =G, 601 (G) = [6,(G), 6,(G)] for n > 0.

Our focus will be primarily on homological, homotopical, and combinatorial
methods for the study of group rings. Simplicial methods, in fact, provide
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new possibilities for the theory of groups, Lie algebras, and group rings. For
example, the derived functors of endofunctors on the category of groups come
into play. Thus, working with simplicial objects and homotopy theory sug-
gests new approaches for studying invariants of group presentations, a point
of view which may be termed as “homotopical group theory.” By homo-
logical group theory one normally means the study of properties of groups
based on the properties of projective resolutions over their group rings. In
contrast to this theory, by homotopical group theory we may understand
the study of groups with the help of simplicial resolutions. From this point
of view, homological group theory then appears as an abelianization of the
homotopical one.

We now briefly describe the contents of this monograph.

Chapter 1: Lower central series We discuss examples and methods for inves-
tigating the lower central series of groups with a view to examining resid-
ual nilpotence, i.e., the property that this series intersects in the identity
subgroup. We begin with Magnus’s theorem [Mag35] on residual nilpotence
of free groups and Gruenberg’s [Gru57] result on free polynilpotent groups.
Mal’cev’s observation [Mal68] on the adjoint group of an algebra provides a
method for constructing residually nilpotent groups. We consider next free
products and describe Lichtman’s characterization [Lic78] for the residual
nilpotence of a free product of groups. If a group G is such that the aug-
mentation ideal g of its integral group ring Z[G] is residually nilpotent, i.e.,
N,>0 8" = 0, then it is easily seen that G is residually nilpotent. This prop-
erty, namely, the residual nilpotence of g, has been characterized by Lichtman
[Lic77]. Our next object is to discuss residual nilpotence of wreath products.
We give a detailed account of Hartley’s work, along with Shmelkin’s theo-
rem [Shm73] on verbal wreath products. For HNN-extensions we discuss a
method introduced by Raptis and Varsos [Rap89]. Turning to linear groups,
we give an exposition of recent work of Mikhailov and Bardakov [Bar07]. An
interesting class of groups arising from geometric considerations is that of
braid groups; we discuss the result of Falk and Randell [Fal88] on pure braid
groups.

Ifl1 = R— F — G — 1 is a free presentation of a group G, then the
quotient group R/[R, R] of R can be viewed as a G-module, called a “relation
module.” The relationship between the properties of F/[R, R] and those of
F'/R has been investigated by many authors [Gru70], [Gru], [Gup87c]. We dis-
cuss a generalization of this notion. Let R and S be normal subgroups of the
free group F. Then the quotient group (RN S)/[R, S] is abelian and it can be
viewed, in a natural way, as a module over F//RS. Clearly the relation mod-
ules, and more generally, the higher relation modules 7, (R)/vn+1(R), n > 2,
are all special cases of this construction. Such modules are related to the sec-
ond homotopy module 79 (X) of the standard complex X associated to the free
presentation G ~ F/R. We discuss here the work in [Mik06b]. The main point
of investigation here is the faithfulness of the F//RS-module (RN S)/[R, S].
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We next turn to k-central extensions, namely, the extensions
1-N—->G—-G—1,

where N is contained in the kth central subgroup (x(G) of G. We examine
the connection between residual nilpotence of G and that of G. In general,
neither implies the other.

The construction of the lower central series {v,(G)},>1 of a group G
can be extended in an obvious way to define the transfinite terms 7. (G)
of the lower central series for infinite ordinals 7. Let w denote the first
non-finite ordinal. The groups G whose lower central series has the prop-
erty that v,(G) # Yu+1(G), called groups with long lower central series, are
of topological interest. We discuss methods for constructing such groups.

It has long been known that the Schur multiplicator is related to the
study of the lower central series. We explore a similar relationship with
generalized multiplicators, better known as Baer invariants of free presen-
tations of groups. In particular, we discuss generalized Dwyer filtration of
Baer invariants and its relation with the residual nilpotence of groups. Using
a generalization of the Magnus embedding, we shall see that every 2-central
extension of a one-relator residually nilpotent group is itself residually nilpo-
tent [Mik07al.

The residually nilpotent groups with the same lower central quotients as
some free group are known as para-free groups. Non-free para-free groups
were first discovered by Baumslag [Bau67]. We make some remarks related
to the para-free conjecture, namely, the statement that a finitely generated
para-free group has trivial Schur multiplicator.

Next we study the nilpotent completion Z.(G), which is the inverse limit
of the system of epimorphisms G — G/v,(G), n > 1, and certain subgroups
of this completion. We study the Bousfield-Kan completion R, X of a sim-
plicial set X over a commutative ring R, and homological localization (called
HZ-localization) functor L : G — L(G) on the category of groups, due to
Bousfield, in particular, the uncountability of the Schur multiplicator of the
free nilpotent completion of a non abelian free group. After discussing the
homology of the nilpotent completion, we go on to study transfinite para-free
groups. Given an ordinal number 7, a group G is defined to be 7-para-free if
there exists a homomorphism F' — G, with F free, such that

L(F) /7= (L(F)) ~ L(G) 7+ (L(G)).

Our final topic of discussion in this chapter is the study of the lower
central series and the homology of crossed modules. These modules were first
defined by Whitehead [Whi41]. With added structure to take into account,
the computations naturally become rather more complicated. It has recently
been shown that the cokernel of a non aspherical projective crossed module
with a free base group acts faithfully on its kernel [Mik06a]; we give an
exposition of this and some other related results.
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Chapter 2: Dimension subgroups In this chapter we study various problems
concerning the dimension subgroups. The relationship between the lower cen-
tral and the dimension series of groups is highly intriguing.

For every group G and integer n > 1, we have

As first shown by Rips [Rip72], equality does not hold in general. We pur-
sue the counter example of Rips and the subsequent counterexamples con-
structed by N. Gupta, and construct several further examples of groups
without the dimension property, i.e., groups where the lower central se-
ries does not coincide with the integral dimension series. We construct a
4-generator and 3-relator example of a group G with Dy(G) # 74(G) and
show further that, in a sense, this is a minimal counter example by prov-
ing that every 2-relator group G has the property that Dy(G) = v4(G). At
the moment it seems to be an intractable problem to compute the length
of the dimension series of a finite 2-group of class 3. However, we show
that for the group without the dimension property considered by Gupta and
Passi (see p.76 in [Gup8T7c|), the fifth dimension subgroup is trivial.
Examples of groups with D,,(G) # v, (G) with n > 5 were first constructed by
Gupta [Gup90]. In this direction, for each n > 5, we construct a 5-generator
5-relator group &,, such that D, (8,,) # v,(8,,). We also construct a nilpo-
tent group of class 4 with non trivial sixth dimension subgroup. We hope
that these examples will lead to a closer understanding of groups without the
dimension property.

For each n > 4, in view of the existence of groups with v, (G) # D,(G),
the class D,, of groups with trivial nth dimension subgroup is not a variety.
This class is, however, a quasi-variety [Plo71]. We present an account of our
work [Mik06¢] showing that the quasi-variety Dy is not finitely based, thus
answering a problem of Plotkin.

We next review the progress on the identification of integral dimension
subgroups and on Plotkin’s problems about the length of the dimension series
of nilpotent groups.

Related to the dimension subgroups are the Lie dimension subgroups

Dy (G) and D) (G), n > 1, with Dy, (G) € D,y (G) € Dy (G) (see Sect. 2.10
for definitions). We show that, for every natural number s, there exists a group
of class n such that Dy, 4(G) # Ynis(G) # 1. In contrast with the integral
case, many more definitive results are known about the dimension subgroups
and the Lie dimension subgroups over fields. We review these results and
their applications, in particular, to the study of Lie nilpotency indices of the
augmentation ideals.
Chapter 3: Derived series  We study the derived series of free nilpotent groups.
Combinatorial methods developed for the study of the dimension subgroups
can be employed for this purpose. We give an exposition of the work of Gupta
and Passi [Gup07].
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Homological methods were first effectively applied by Strebel [Str74] for

the investigation of the derived series of groups. We give an exposition of
Strebel’s work and then apply it to study properties analogous to those stud-
ied in Chap.1 for the lower central series of groups; in particular, we study
the behaviour of the transfinite terms of the derived series. We show that
this study has an impact on Whitehead’s asphericity question which asks
whether every sub complex of an aspherical two-dimensional complex is itself
aspherical.
Chapter 4: Augmentation powers The structure of the augmentation powers
g" and the quotients g"/g"*! for the group G is of algebraic and number-
theoretic interest. While the augmentation powers have been investigated by
several authors, a solution to this problem, when G is torsion free or torsion
abelian group, has recently been given by Bak and Tang [Bak04]. We give
an account of the main features of this work. We then discuss transfinite
augmentation powers g7, where 7 is any ordinal number. We next give an
exposition of some of Hartley’s work on the augmentation powers.

A filtration { P, H*(G, T)}n>0 of the Schur multiplicator H?(G, T) arising
from the notion of the polynomial 2-cocycles is a useful tool for the inves-
tigation of the dimension subgroups. This approach to dimension subgroups
naturally leads to relative dimension subgroups D, (E, N) := EN(1+e¢"+ne),
where N is a normal subgroup of the group E. The relative dimension
subgroups provide a generalization of dimension subgroups, and have been
extensively studied by Hartl [Har08]. Using the above-mentioned filtration
of the Schur multiplicator, Passi and Stammbach [Pas74] have given a
characterization of para-free groups. These ideas were further developed in
[Mik04, Mik05b]. We give here an account of this (co)homological approach
for the study of subgroups determined by two-sided ideals in group rings.

In analogy with the notion of HZ-localization of groups, we study the

Bousfield HZ localization of modules. Given a group G, a G-module homo-
morphism f : M — N is said to be an HZ-map if the maps fy : Hy(G, M) —
Hy(G, N) and f; : Hi(G, M) — Hy(G, N) induced on the homology groups
are such that fj is an epimorphism and f; is an isomorphism. In the category
of G-modules, we examine the localization of G-modules with respect to the
class HZ of HZ maps. We discuss the work of Brown and Dror [Bro75] and of
Dwyer [Dwy75] where the relation between the HZ localization of a module
M and its g-adic completion lim M /8""M has been investigated.
Chapter 5: Homotopical aspects After recalling the construction of certain
functors, we give an exposition of the work of Curtis [Cur63] on the lower
central series of simplicial groups. Of particular interest to us are his two
spectral sequences of homotopy exact couples arising from the application of
the lower central and the augmentation power functors, 7, and A", respec-
tively, to a simplicial group. Our study is motivated by the work Stallings
[Sta75] where he suggested a program and pointed out the main problem in
its pursuit:
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Finally, Rips has shown that there is a difference between the “dimension subgroups”
and the terms of the lower central series .... The problem would be, how to compute
with the Curtis spectral sequence, at least to the point of going through the Rips
example in detail?

To some extent, this program was realized by Sjogren [Sjo79]. However, in
general, it is an open question whether there exists any homotopical role of
the groups without the dimension property. The simplicial approach for the
investigation of the relationship between the lower central series and the aug-
mentation powers of a group has been studied by Gruenenfelder [Gru80]. We
compute certain initial terms of the Curtis spectral sequences and, following
[Har08], discuss applications to the identification of dimension subgroups.
We show that it is possible to place some of the known results on the di-
mension subgroups in a categorical setting, and thus hope that this point of
view might lead to a deeper insight. One of the interesting features of the
simplicial approach is the connection that it provides to the derived functors
of non-additive functors in the sense of Dold and Puppe [Dol61]. Finally, we
present a number of homotopical applications; in particular, we give an al-
gebraic proof of the computation of the low-dimensional homotopy groups of
the 2-sphere. Another application that we give is an algebraic proof of the
well-known theorem, due to Serre [Ser51], about the p-torsion of the homo-
topy groups of the 2-sphere.

Chapter 6: Miscellanea In this concluding chapter we present some applica-
tions of the group ring construction in different, rather unexpected, contexts.
As examples, we may mention here (1) the solution, due to Lam and Leung
[Lam00], of a problem in number theory which asks, for a given natural num-
ber m, the computation of the set W (m) of all possible integers n for which
there exist mth roots of unity aq, ..., ay, in the field C of complex numbers
such that a; + -+ + a,, = 0, and (2) application of dimension subgroups by
Massuyeau [Mas07] in low-dimensional topology.

Appendix At several places in the text we need results about simplicial
objects. Rather than interrupt the discussion at each such point, we have
preferred to collect the results needed in an appendix to which the reader
may refer as and when necessary. The material in the appendix is mainly
that which is needed for the group-theoretic problems in hand. For a more
detailed exposition of simplicial methods, the reader is referred to the books
of Goerss and Jardine [Goe99] and May [May67].

To conclude, we may mention that a crucial point that emerges from the
study of the various series carried out in this monograph is that the least
transfinite step in all cases is the one which at the moment deserves most to
be understood from the point of view of applications.



Chapter 2
Dimension Subgroups

Let Z[G] be the integral group ring of a group G and let g be its augmentation ideal.
For each natural number n > 1, D,,(G) = GN (1 + g") is a normal subgroup of G
called the nth integral dimension subgroup of G. It is easy to see that the decreasing
series

G=Di(G)DDy(G)D ... 2D,(G) D ...

is a central series in G, ie., [G, D,(G)] C D,1(G) for all n > 1. Therefore,
Yn(G) C D, (G) for all n > 1, where 7, (G) is the nth term in the lower central
series of G. The identification of dimension subgroups, and, in particular, whether
Yn(G) = Dy, (Q), has been a subject of intensive investigation for the last over fifty
years. It is now known that, whereas D,,(G) = v, (G) for n = 1, 2, 3 for every
group G (see [Pas79]), there exist groups G whose series {D,(G)}n>1 of dimen-
sion subgroups differs from the lower central series {v,,(G)}n>1 ([Rip72], [Tah77b],
[Tah78b], [Gup90]). The various developments in this area have been reported in
[Pas79] and [Gup87c|. In the present exposition, we will primarily concentrate on
the results that have appeared since the publication of [Gup87c]. We particularly
focus attention on the fourth and the fifth dimension subgroups. We recall the de-
scription of the fifth dimension subgroup due to Tahara (Theorem 2.29) and give a
proof of one of his theorems which states that, for every group G, D5(G)% C v5(G)
(see Theorem 2.27). The proof here is, hopefully, shorter than the original one.

2.1 Groups Without Dimension Property

Given a group G, we call the quotient D, (G)/7,(G), n > 1, the nth dimen-
sion quotient of G. In case all dimension quotients are trivial, we say that
the group G has the dimension property. We begin with examples of groups
which do not have the dimension property.

Example 2.1 (Rips [Rip72]).

The first example of a group without dimension property was given by
E. Rips. Following the notation from [Rip72], consider the group G with
generators

R. Mikhailov, I.B.S. Passi, Lower Central and Dimension Series of Groups, 101
Lecture Notes in Mathematics 1952,
(© Springer-Verlag Berlin Heidelberg 2009
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ap, ap, az, Aas, bla b?a b37 &

and defining relations

b64,b16,b4, 256,1

[ba, b1] = [b3, bi] = [b3, bo] = [c, bi] = [¢, bo] = [c, b3] =

[ ,bzz )‘ 7b2 1b32, 6,b4b31’ aé be27

la1, ag] = b1C laz, ag] = bac®, [as, ao] = bsc™,

laz, a1] = ¢, [az, a1] = 2, [as, as] = ',

(b, ai] = ', [bo, as] = ', [bs, ag] =™,

[bl,aj]—llfz;éj, e, a,]—lforz-(] 1, 2, 3.

Then ~4(G) = 1 while the element

[a17 a2]128[a1, a3]64[a2, a3]32 — 0128

is a non-identity element in Dy(G).

Example 2.2 (Tahara [Tah78a]).

The above example was generalized by Ken-Ichi Tahara as follows:
Let Gi,; (k > 2, 1 > 0) be a group with generators xy, xa, o3, 4 and
defining relations

x%HM — [, xs}_2k+l+4 (2, xl]_2k+l+37
m%kM - o, mg]zk [, m4]72k—1 (s, x3}3,2k’+37
x§k+2 _ ["l’l’ x2]2k [Il, 14]21672 [xj, x2]5_2k+1’
23" = [y, @ [a, @) [, 23],
[3, 2] = [x1, T2, Ta], [m2, 3])'0 = [z, T3, 23], [3, 2] = [21, 24, 4],
(2, x3, 1] = [72, T3, T2| = [T2, T3, T3] = [T2, T3, 4] =1,
(1, T2, 1] = [71, T2, 23] = [T1, T2, 4] = 1,
(1, z3, 1] = [71, T3, T2] = [71, T3, 4] = 1,
(1, x4, 1] = [71, T4, T2] = [T1, T4, 23] = 1.
Then

w = [wa, 23] € Da(Gr1) \ 1a(Gi,1).
The case k = 2, [ = 0 is exactly the example due to Rips.

We continue the above constructions of groups without dimension prop-
erty by constructing a 4-generator and 3-relator example of a group G with
D4y(G) # v(G) and, for each n > 5, a 5-generator 5-relator example of
a group G with D, (G) # v,(G). Our motivation for constructing these
examples is to develop a closer understanding of groups without dimension
property and also to look for simpler, and in a sense minimal, examples of
such groups.
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Example 2.3 Let G be the group defined by the presentation
<$1, T, T3, T4 ‘ 'r-/lll[x47 $3]2[$4, x?] - 17
230wy, 3] [, 217t =1, 2§ ay, zo] Hay, 1] P =1). (2.1)

3, 23] € Dy(G) \ 1(G).

To prove the above statement, we need the following lemma:

Then w = [x7, IFSQ] [z1, 5524][

Lemma 2.4 Let II be a group. If x1, s, x3 € II and there exist &; € yo(II),
j=1,...,6 andn; € y3(II), such that

32 64 32 128 16 —128 64
Ty = 617 2 - f?u 547717 Zy 6 T2, T ) = 56 Ui

then
w = [x1, 231, 2§ [we, 23%°] € Dy(T0).

Proof. Since y(IT) C 1+ A?(II), we have
l—w=o; +ay+a3 mod A*(II),

where a; = (1 — [z1, 23%]), a0 = (1 — [z, 2§Y]), a3 = (1 — [22, 2*]). Now,

working modulo A(II), we have
=1 —23) (1 —zy) — (1 —a2)(1 — 23%)
=(1—23)(1—21) —32(1 —21)(1 — 22) + (322) (1 —21)(1 — m9)?
=1 -2 (1—a1) — (1 —2i)(1 —32) (since ] € yo(II)).
Similarly, we have

as = (1— 64)(1 —x) — (1 - 9:64)(1 — x3),
a3 = (1—28)(1 —29) — (1 — 23%)(1 — a3).

Therefore,
s Faz=(2—a3 — 2§ —21) + (@ — 23%)(1 — z0)+
(27" + 2y =2) (1=a5) = (1-&im) (1-21)+(1-&n2) (1—22) + (1€ 2) (1—3) =
(1 =m)(L = 21) + (1 =m) (1 —@2) + (1 —m3)(1 — @3)+
1-&)1-&)+(1-&)(1-&)+(1-&)(1 - &%) =0
and hence w € Dy(IT). O
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Proof of Example 2.3. Modulo v4(G), we have

23225 = [y, 21) (23, 2a)* 2, 21]P (24, 2]t =[5, 24P [0y 1] 24, 2] =1,
with & = [x3, 4)*[24, 2] € 1(G), m = [z4, 21]* € 3(G);

fﬂfg?ﬂ?;lggs = [z, 333]16[96‘4, $2]8[$47 331]4[934, 552]8 =

(4, @3] x4, 2] 'O [m4, 21]" = €0,
with & = [z, 23] € 1(G), 2 = [24, 22]"%[z4, 21]* € 13(G);

x;64x5128 _ [1,4’ xz]lﬁ[le7 1’3]32[.24, 1’1]78[%4, .’E3]32 _

(24, @2) [, 23] [24, 1] 7% = 15 € 93(G).
By Lemma 2.4, w € Dy(G). It remains to show that w ¢ ~v4(G). We shall
construct a nilpotent group H of class 3, which is an epimorphic image of G
with nontrivial image of w.
The construction of H is a slight simplification of the construction of
Passi and Gupta (see [Gup87c], Example 2.1, p.76). Let F' be a free group

with generators (x1, @9, o3, 24). Define R; to be the fourth term of the lower
central series of F, i.e., Ry = 4(F). Define

Ry = (Ry, [;, xj, 7] ¢ (o, B, V)R for all 4, 4, k, o*B7, Byt 4%,
where a = [z4, x3, @3], B = [T4, T2, 2], ¥ = [T4, T1, 21];
Ry = (Ry, [z4, 3]"0™, [z4, 2)"°8°, [24, 11]"7,
(23, 2287, a5, @] 'a™®, [xa, 21]'67Y),
Ry = (R3, c1, c2, ¢3),

where
C1 = xﬂm, 333]2[3347 372]7
co = 230[xy, 3] 24, 1] 7Y,
c3 = zg4[x4, z2]74[x4, x1]72.
We set H = F/R,.

Clearly, the group H is a natural epimorphic image of G. Hence it remains
to show that the element

wo = [1, 23] [21, 2§'][22, 2]

is nontrivial in H.
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We claim that [R; 11, F] C R;, i =1, 2, 3. This is obvious for ¢ = 1, 2. We
show it for ¢ = 3. Working modulo Rj3, we have:

[e1, 7] =1,

[e1, 2] = [z1, o] [y, T2, o] = [z, 2o]*B = 1,

[e1, 23] = [z1, 3] 4, w3, 23] = [21, 23]*Q® = 1,

[e1, z4] = [z1, 2] 1, B4, 1] = [21, 2g]*y 2 =1,
[e2, 1] = [w2, @1]"[2a, @1, 1] ' = B4y =1,

[co, 20] =1,

[c2, 23] = [z9, 23]'0[y, w3, 23]* = Blat =1,

[c2, 4] = [z9, 4]'0[ma, T4, T2]® = [mQ )38 =1,
[e3, 1] = [x3, 1] [z4, 21, 21] 2 = P2y 2 =1,

[c3, @o] = [x3, @2] 4, 2, 2] =[5, 22]M BT =1,
[es, z3] =1,

[c3, 4] = [x3, 4] |23, 24, 23]%? = [23, 4] = 1.

Clearly, Ry/ Ry is cyclic of order 64, generated by the element a. We claim
that the element « has order exactly 64 in H. Suppose o® € Ry, s >0 and s
is not divisible by 64. Then R;/R» has a torsion element o, since ot e Ry.
We have the following group extension:

1— Rs/RQ — R4/R2 — R4/R3 — 1.

Hence at least one of two groups: Rs/Rs or R,/Rj; has a torsion. Since
[Ry, F] C Rs, every element of Ry/Rs can be written as c!ch2el® for
some integers hy, ho, hs. Clearly it is a free abelian group of rank 3, since
Ry/Ry Ny (F) is free abelian, which is an epimorphic image of R,/R3. The
same argument works for the quotient R3/Rs, since all commutators which
we added to Ry to get R3 are of the form [z;, xj]hifqij7 gij € 13(F), hij € Z,
but commutators [z;, x;] are basic commutators in F, i.e., they are linearly
independent modulo ~3(F'). Hence both Rs;/R3 and Rj3/Ry are free abelian
and the element « has order exactly 64 in H.

Finally, note that wy = a*? is nontrivial in H; hence the element w does
not lie in 1(G). O

Example 2.5 Let G be the group defined by the presentation

(x1, T2, 23, T4 | 2] = &, 23° = &,
2228 = €1, g1 — 16 (1668 _ 1) (2.9)
where
&1 = |29, @a][z3, 2a]%, & = |24, 21][23, 4],
&4 = [w3, m4]* w4, To][m4, 71], & = [24, 23]

Then w = [z1, x32|[x1, 25%|[x2, 23**] € D4(G) \ 74(G).
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Proof. By Lemma 2.4, w € D,(G). Note that the group H occurring in the
proof of Example 2.3 is a natural epimorphic image of G. Indeed, the first
two relations of G are also among the defining relations of H (due to relators
¢1,¢2), and therefore we only need to check the other three. In H,

23?25t = (g, 21 (23, 24)* [24, 1) (24, 22]* = [, 24]P w4, 21] 24, 20)* = €5
o722 = (w4, 23] 0 [mg, 2] (24, 21 24, 20)° =

(24, 23] [24, 2, 22] P[4, 1, 21] 2 = [24, 23] O[22, 70, 11] 7 =

[24, 23]"° = &

32[ }32 _

Ty, CE1]8[9€3, Ty

5%653 = [x% x4]16[x33 xﬁd
(24, T2, 2o)* (24, 21, 21) [0, 73, 23] = [24, 73, 23] = 1.

Thus we have an epimorphism 0 : G — H, x; — x;,1 < i < 4. It is shown
in the proof of Example 2.3, that wy = 6(w) is nontrivial in H, which is
nilpotent of class 3. Hence w ¢ 14(G). O

Example 2.6 Let

2 7

= (x1, 22, 23,41, Yos | ] = H[y2i+1a Yoival, 2y” = H[y2i+lay2i+2]a
i=0 i=3

11 4
zytay = (H[?hﬁh y2i+2]> sy ™ = [yos, yoo]'C, 2 My = 1), (23)
f

Then w = [x1, 23] [21, 2§ [0, 23%] € Dy(I1) \ 44 (11).

Proof. By Lemma 2.4, w € D,(II). Consider the group II' = II x Z, where
Z is an infinite cyclic group with generator z, say. It is easy to see that
there exists an epimorphism 6 : II' — G, where G is the group considered
in Example 2.5 and 6§ maps x; — z;,7 = 1,2,3,z — z4. Clearly, for such an
epimorphism 6, 6(w) ¢ v4(G) by Example 2.5, and therefore w ¢ ~,(II). O

Example 2.7 Forn > 5, let

G(n) = <.’171,(E2, T3, Y1s- -5 Yion | xil = 61,(n)7‘r%6 = 62,(77,)7

32,64 _ o4 —32_128 __ (16 —64_,—128 __ 64
Ty T3 *53,(71,),1’1 T3 = Qa1 T2 = 5,(n)>7 (2.4)



2.1 Groups Without Dimension Property 107

where

istn) = [Wi-2)ns1> Y@i-2ni2] - - - [Y2in-1,Y2in], 1 <0 <5.

Then w = [e1, 2] a1, e][ws, 23] € Dy(G(n)) \ 1(G(n)).

Proof. Observe that there exists an epimorphism G(n) — II, II being the
group considered in Example 2.6, which maps z; — z;,¢ = 1,2, 3. The asser-
tion thus follows from Lemma 2.4. [J

The same principle can be used to construct more examples of groups
without dimension property. The following example is a base for a later con-
struction in Theorem 2.14.

Example 2.8 Let k > 9, and G the group given by the following presenta-
tion:

(z1, 2, 23, 24 | T3[w4, 23] 24, 23],

a8y, wg) Oy, a1] 7 22 [ma, 0] O[wg, 1] Y. (25)

2k+1

Then [y, 23|21, 23 (22,23 "] € Da(G) \ 1(G).
Example 2.9 Let

r>t>2 k>q+r,
s>14+3, ¢g>s+r+2

and G the group with generators xi,xs, T3, x4, T5 and relators

]_Zl—T—Z [x4, 1‘3]2[71 [x47 xS]_Ql—t;

2l
] = [z, 29

I%S = [9347961]21472 [5’34,1’3]72573 [954@5]2”71;
2y =l m] ™ e wo o @)
22 = [wg,21)% e, 2a] 2 g ] Y
Then, for
w=loy, a3 o of oy, a3 s ad e af s, 3,
we have

w € Dy(G) \ 14(G).

. 1 s k
Proof. Since 27 , 23", 23", 22" € ~3(G), we have

6

1—w= Z(l — ;) mod g’
i=1
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where
o) = [mhxgs”], g = [xl,xgk], g = [:El,xgw 2]7
k k
Qy = [$2,.’I}§ HL Q5 = [w%x%(”t]? Qg = [.’E57.'L'§ +3}'

Clearly, we have

l—ap=1—-22") 1 —21) — (1 —2)(1 — 25"
= (1—x§5”)(1—x1)—28+T(1—x1)(1—x2)+< ) )(1-:@(1 — 1y)?

9s+r

1—x25+r)(1—x1)—(1—x1 (1 — x9) mod g*;
1—23)(1—a) — (1 —a])(1 —23) mod g*;

= (

1—as=(
l—as=(1-22" 1 —2) - (1—2>"")1—-25) mod g

(

(

(

9k+1

l—ay=(1—a} )1 —2)—(1—23 )(1—25) modgh

l—as=(1—22")1—2) — (1—22")(1 —25) mod g*;

l—ag=(1-22""Y1 —25) — (1—22")(1 - 23) mod g
Hence

1—w E(l - x%s+rm§kx§q+t—2)(l - xl) + (1 - m;2‘5+r §k+1$§q+t)(1 - x2)+

ok _ok+l _ok+3 _9q+t=2 _9q+t ok+3

(I—a " x (1 —x3)+ (1 —a Z, z; )(1—x5) mod g’

In the group G, we have:

I%HTQE? wg(miz = [z4, $1}2H [z, a:s]fzswi3 [z4, :c5]257t71”
(g, 21] 2 (g, 0] [y w52 [y 20)? [ o) 2 [, ) 2 =
T ) e T I 00 e PR L P L
xf2s+rx§k+lx§q+t = [z4, 552]2572 (x4, aﬁ:s]*?ﬁri1 (@4, xﬂwﬂ
[x4, xl]_Ql [x4’ xQ]QH [554, $5]TH [$4, x1]21 [364, 3:2]_2571 [964, 333]_2‘175H =

72q+t—5 [ 2,1,4

(24, $3]725+T l (x4, 3] T4, xs]QSM ' (24, 5]

_ok _ok+l _ok+3 k—r—2 _gl-r—l+k=s
X

= (a4, $2]2 [z4, $3]72)H [z4, fs]Qkit (24, 21]

]_zl—t+k—q+3 [ }23—t+k,—q+2 [$47 x3]2k—2 _

k— _ok—
(24, 232" [, 5] 2 o, 3 4, Ty

]72l—T+k—s [ }72l—t+k—q+3[ k—r-2 ]2s—t+k—q+2.

[$47I1 Ty, T1 $47I2]2 [174,552
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95172“‘7295272”=’17;23M = [174,952]2”7M [$47I3]72W?3 [$4,I5]2Q72
[334,531]_2%“2““78 [3547963]%“73 [24, 355]_2(171 [3647361]21+2 [554@2]28 [$47$5]2H =
a2 [ ol g, ) T g P
Hence,
L—w=(L =7 )(L = a0) + (1= ) (1~ 2)+
(1 —m3)(1 —23) + (1 —n5)(1 —25) mod g,
where
m = [, 2a)? T g, wa) 2 g )T g, ) T
[9547975]2(1475 [964,%5]25%4”47
o = lwa ] 2] 2 g ) )
s = [wna] " ena] T @ e, 22 e (G,
e = [@1’352]2%5474 [934,552]23 (74, xl]Q+l+t_s_r_2[934,»Tl]zm € 13(G).
Therefore,

l-w=(1-m)(1 —x%l) +(1—m)(1—23)=0 mod g".

The proof that w ¢ ~4(G) is by the same principle as that in the proof of
Example 2.3.

Let F be a free group with generators 1, s, x3, 24, x5. Define Ry to be the
fourth term of the lower central series of F, i.e., Ry = v4(F). Define

R2 = <R17 [xiaxjvxk] ¢ <O‘767’Y76>R1 for all iaj7k7
k—q _ q—s _ s—1 .__ l
o BT B Ty e 67,
where o = [x4, 23, 23], 8 = |14, 5, T5], v = 24, T2, T2], 6 = [24, 21, 71];
25 25—I

[x47x5]2qﬂ2q7 [.734,332] Y 5
25042573

R3 = (R, [y, $3]2k o
1 ol-1 _ -5 _
[$4, $1]2 5 s [»T:s, 355] o ) [xa, 552}

b

1 1— s —t— _ ol _ol- _ 9l I
[23,21)% @ [ws,20)2 B s, ) 2 872 [, F A2,

R4 = <R3a Cy,C2,C3, C4>7
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where

-1 _9l-t

_ ol —2
c1 = o7 24,79 eg, x)? a2

]
_ a2
Co =Ty [Ty, 71]
k

l—r
s 1-r—2 _9s-3 s—t
2 [174,253} ? [$4,3€5} ' l;
_ 9l 53 -5
C3 29632 [334,301} 2 1[$4,$2}2 g[964,%]% ;
cr = a3 e, 2]? ea, 2] [y, ]2

We set H = F/Rj.
Clearly, the group H is a natural epimorphic image of G. Hence it remains
to show that the element

s+ k t—2 k+1 t k+3

wo = [*Tlvxg ][l‘h:];g Hmhxg(ﬁ ][3727‘%% i ][x%xgﬁ ][335537;23 i ]
is nontrivial in H. We claim that [R;11, F] € R;, ¢ = 1,2,3. The proof is
straightforward. In analogy with Example 2.3, one can show that ~v3(G) is
cyclic of order 2* with generator o, but wy = a2 Therefore, wy # 1 and

w ¢ v4(G). O

We next discuss examples of groups without dimension property in ar-
bitrary dimension. First examples of groups without dimension property in
higher dimensions were constructed by N. Gupta [Gup90].

Example 2.10 (Gupta [Gup90], [Gup9la]). Let n > 4 be fized and let F' be a
free group of rank 4 with basis {r, a, b, c}. Set xy = yo = zo = r, and define
commutators x; = [z;_1, a|, yi = [yi-1, b], zi = [zi-1, ], i =1,2,.... Let
&, be the quotient of F' with the following defining relations:

(@) " =1, @ =y gz 0 =, & =1
(i1) Zn—2 = Yp_9, Yn—2 = Tp_o;

(i4i) xpn1 =1, yp_1 =1, zp_1 = 1;

() [a, b, g =1, [b, ¢, 9] =1, [a, ¢, g] =1, for all g € F;

(v

7

N

[xia b} =1, [xia C} =1, [yiv a] =1, [yia C] =1, [Ziv a] =1, [zivb] =1,

)

vV

(UZ) [x'iv xj}:]w [xh yj}:]w ['T17 Z]]:lv [ylu yj]:17 [y’u Z]]:lv [Z“ Zj] :17
i,7>0.

Let 2 1 2: 2 2: 3
9= la, 0" [a, " b, P

Then g € Dy, (6,)\vn(6,,).
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Example 2.11 For every integer n > 0, there exist integers k > 1, such that
for the group &,, defined by the presentation

l k
<$1, T2, I3, T4, T5 | x%gl = 17 ;C% 62 = 17 :L'g 63 — 1
k-1 k— k-1
[['TE” an4], $1}4[[$57 n$4], T3, .133]2 - 1 52 ’ 2 ! = 1>a

where

[555, n$4] %F[[%, n$4], 552][%, n+1$4}2,

1-2

[
[[#5, n4], 3}2172[[555, w4, 1) @5, n1@al?,
[[5657 nl“4] 29) 7 [[s, nal, 3] 77,

the element w, = [x1, 23 |[z1, 23 [x2, 23] € Diyn(6,) \ Yarn(S).

To prove the above assertion we need some technical lemmas. The
following lemma is a generalization of Lemma 2.4.

Lemma 2.12 Let II be a group and n > 4 an integer. If x1, x9, x3 € 11 are

such that there exist & € yn—o(I1), i =1, ..., 4, satisfying
1 1+1 k _ol+1 k+1 1 k k+1
:£l7x% :527 IQ 2 *535 2 2 - Z,I% x% =1

then

ok+1

w = [, x%”l][ml, mg [x2, x5 ] € Dy(I1),
provided k, | are sufficiently large integers.
Proof. Since 1 —z € A" %(II) for z € v,,_2(II), we have
1—w=a;+ay+a; mod A™(II),

where a; = (1 — [z1, 22 ']), ag = (1 — [z1, 22°]), a3 = (1 — [0, 23"]). Now,
working modulo A™(II), we have

1—23 A —a)— (1 —z)1—-a3")
(1—22")(1 —2y) — 2" (1 — 21) (1 — @)+

J_U(yﬂ)ﬂ—xﬁﬂ—xg?

7

3

.
[

Note that, for sufficiently large [ and ¢ < n, the integer (zl;l) is divisible
by 4™. Hence, for such an integer [, we have
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2

n—1 I+1 '
S (%] )a-ma - et e ana,
=2

i=

and o
L — )1 =) = (1 — 22 )(1 —xy) mod A(II).
Therefore,
2l+1 2l+1

ap=1—-2; Y1—z9)— (1 —2a7 )(1—xz9) mod A™(II).

Assuming k to be large enough so that (Qki“) is divisible by 2! for i < n, we
have

a=1-23)1-a)— (1 —ai)1—a3),

9k+1

ag=(1—ad Y1 —2) — (1—22)(1 — a3).

Therefore, mod A™(II),
(6%] + a9 + (%]

=2-a3" —a] )1 —aw) + @ =2 )1 —w)+
(23" + 23" —2)(1 —a3)
= (11— —a)+ (1 =& )1 —m) + (1 —af a3 ") (1 — z3)
=1-&)1-&)+(1-&)1-&)
— 0,
and hence w € Dy(IT). O

Lemma 2.13 Let k > 1+ 2,1 > 4, be integers and G the group defined by
the presentation

1 k
<l’17 X2, T3, T4, Ts | ‘rzllgl - 17 ’I% 52 - 17 ZL'?;) 53 =1

k— k— k-1
(24, 21]*[24, T3, 23)° =1, & ’ 5 =1,

[l’4, mhxd:lv Z:L "'a4>,
where

& = [4, 3)% 34, To)[m4, 5]7,

& = [z, 133}2#2 (24, 21] H[zs, 25)%,
& = [14, 2272 [ag, ] 72

Then the element w =[xy, #3 ' |[a, 22 |[as, 23] does not lie in y4(G).
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Proof. We shall construct a nilpotent group of class 3 which is an epimorphic
image of the given group G and is such that the image of the element w is
nontrivial.

Let F be a free group with basis {x1, ..., x5}. Consider the following four
types of relations:

Rl = '74(F)7

Ry = <R1 U {[xla Zj, xk] : (i’ Js k) 7£ (4; 1, 1)7 (4a 2, 2)7 (47 3, 3)}7 a2k716717
521727’1, v, where a = [z4, 23, 3], B = [24, T2, 2], ¥ = [4, 71, 21]. Now

de