
Preface

A fundamental object of study in the theory of groups is the lower central
series of groups whose terms are defined for a group G inductively by setting

γ1(G) = G, γn+1(G) = [G, γn(G)] (n ≥ 1),

where, for subsets H, K of G, [H, K] denotes the subgroup of G generated
by the commutators [h, k] := h−1k−1hk for h ∈ H and k ∈ K. The lower
central series of free groups was first investigated by Magnus [Mag35]. To
recall Magnus’s work, let F be a free group with basis {xi}i∈I and A =
Z[[Xi | i ∈ I]] the ring of formal power series in the non-commuting variables
{Xi}i∈I over the ring Z of integers. Let U(A) be the group of units of A. The
map xi �→ 1 + Xi, i ∈ I, extends to a homomorphism

θ : F → U(A), (1)

since 1 + Xi is invertible in A with 1 − Xi + X2
i − · · · as its inverse. The

homomorphism θ is, in fact, a monomorphism (Theorem 5.6 in [Mag66]). For
a ∈ A, let an denote its homogeneous component of degree n, so that

a = a0 + a1 + · · ·+ an + · · · .

Define
Dn(F ) := {f ∈ F | θ(f)i = 0, 1 ≤ i < n}, n ≥ 1.

It is easy to see that Dn(F ) is a normal subgroup of F and the series
{Dn(F )}n≥1 is a central series in F , i.e., [F, Dn(F )] ⊆ Dn+1(F ) for all n ≥ 1.
Clearly, the intersection of the series {Dn(F )}n≥1 is trivial. Since {Dn(F )}n≥1
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is a central series, we have γn(F ) ⊆ Dn(F ) for all n ≥ 1. Thus, it follows that
the intersection

⋂
n≥1 γn(F ) is trivial, i.e., F is residually nilpotent.

Let G be an arbitrary group and R a commutative ring with identity. The
group ring of G over R, denoted by R[G], is the R-algebra whose elements
are the formal sums

∑
α(g)g, g ∈ G, α(g) ∈ R, with only finitely many

coefficients α(g) being non zero. The addition and multiplication in R[G] are
defined as follows:

∑

g∈G

α(g)g +
∑

g∈G

β(g)g =
∑

g∈G

(
α(g) + β(g)

)
g,

∑

g∈G

α(g)g
∑

h∈G

β(h)h =
∑

x∈G

( ∑

gh=x

α(g)β(h)
)

x.

The group G can be identified with a subgroup of the group of units of R[G],
by identifying g ∈ G with 1Rg, where 1R is the identity element of R, and it
then constitutes an R-basis for R[G]. The map

ε : R[G]→ R,
∑

α(g)g �→
∑

α(g),

is an algebra homomorphism and is called the augmentation map; its kernel
is called the augmentation ideal of R[G]; we denote it by ∆R(G). In the case
when R is the ring Z of integers, we refer to Z[G] as the integral group ring
of G and denote the augmentation ideal also by g, the corresponding Euler
fraktur lowercase letter.

The augmentation ideal ∆R(G) leads to the following filtration of R[G]:

R[G] ⊇ ∆R(G) ⊇ ∆2
R(G) ⊇ . . . ⊇ ∆n

R(G) ⊇ . . . . (2)

Note that the subset G∩
(
1+∆n

R(G)
)
, n ≥ 1, is a normal subgroup of G; this

subgroup is called the nth dimension subgroup of G over R and is denoted
by Dn, R(G). It is easy to see that {Dn, R(G)}n≥1 is a central series in G,
and therefore γn(G) ⊆ Dn, R(G) for all n ≥ 1. In the case when R is the
ring Z of integers, we drop the suffix Z and write Dn(G) for Dn, Z(G). The
quotients ∆n

R(G)/∆n+1
R (G), n ≥ 1, are R[G]-modules with trivial G-action.

There then naturally arise the following problems about dimension subgroups
and augmentation powers.

Problem 0.1 Identify the subgroups Dn, R(G) = G ∩
(
1 + ∆n

R(G)
)
, n ≥ 1.

Problem 0.2 Describe the structure of the quotients ∆n
R(G)/∆n+1

R (G), n ≥ 1.

Problem 0.3 Describe the intersection ∩n≥1∆n
R(G); in particular, charac-

terize the case when this intersection is trivial.

In the case when F is a free group, then, for all n ≥ 1, γn(F ) ⊆ Dn(F ) ⊆
Dn(F ). The homomorphism θ : F → A, defined in (1), extends by linearity
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to the integral group ring Z[F ] of the free group F ; we continue to denote
the extended map by θ:

θ : Z[F ]→ A.

Let f be the augmentation ideal of Z[F ]; then, for α ∈ fn, θ(α)i = 0, i ≤ n−1.
With the help of free differential calculus, it can be seen that the intersection
of the ideals fn, n ≥ 1, is zero and the homomorphism θ : Z[F ] → A is a
monomorphism (see Chap. 4 in [Gru70]). A fundamental result about free
groups ([Mag37], [Gru36], [Wit37]; see also [Röh85]) is that the inclusions
γn(F ) ⊆ Dn(F ) ⊆ Dn(F ) are equalities:

γn(F ) = Dn(F ) = Dn(F ), for all n ≥ 1. (3)

This result exhibits a close relationship among the lower central series, the
dimension series, and the powers of the augmentation ideal of the integral
group ring of a free group. Thus, for free groups, Problems 1 and 3 have a
definitive answer in the integral case. Problem 2 also has a simple answer in
this case: for every n ≥ 1, the quotient fn/fn+1 is a free abelian group with
the set of elements (xi1 − 1) . . . (xin

− 1)+ fn+1 as basis, where xij
range over

a basis of F (see p. 116 in [Pas79]).
The foregoing results about free groups naturally raise the problem of

investigation of the relationship among the lower central series {γn(G)}n≥1,
dimensionseries{Dn, R(G)}n≥1,andaugmentationquotients∆n

R(G)/∆n+1
R (G),

n ≥ 1, of an arbitrary group G over the commutative ring R. While these
series have been extensively studied by various authors over the last several
decades (see [Pas79], [Gup87c]), we are still far from a definitive theory. The
most challenging case here is that when R is the ring Z of integers, where a
striking feature is that, unlike the case of free groups, the lower central series
can differ from the dimension series, as first shown by Rips [Rip72].

Besides being purely of algebraic interest, lower central series and aug-
mentation powers occur naturally in several other contexts, notably in
algebraic K-theory, number theory, and topology. For example, the lower
central series is the main ingredient of the theory of Milnor’s µ̄-invariants
of classical links [Mil57]; the lower central series and augmentation powers
come naturally in [Cur71], [Gru80], [Qui69], and in the works of many other
authors.

The main object of this monograph is to present an exposition of different
methods related to the theory of the lower central series of groups, the di-
mension subgroups, and the augmentation powers. We will also be concerned
with another important related series, namely, the derived series whose terms
are defined, for a given group G, inductively by setting

δ0(G) = G, δn+1(G) = [δn(G), δn(G)] for n ≥ 0.

Our focus will be primarily on homological, homotopical, and combinatorial
methods for the study of group rings. Simplicial methods, in fact, provide
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new possibilities for the theory of groups, Lie algebras, and group rings. For
example, the derived functors of endofunctors on the category of groups come
into play. Thus, working with simplicial objects and homotopy theory sug-
gests new approaches for studying invariants of group presentations, a point
of view which may be termed as “homotopical group theory.” By homo-
logical group theory one normally means the study of properties of groups
based on the properties of projective resolutions over their group rings. In
contrast to this theory, by homotopical group theory we may understand
the study of groups with the help of simplicial resolutions. From this point
of view, homological group theory then appears as an abelianization of the
homotopical one.

We now briefly describe the contents of this monograph.
Chapter 1: Lower central series We discuss examples and methods for inves-
tigating the lower central series of groups with a view to examining resid-
ual nilpotence, i.e., the property that this series intersects in the identity
subgroup. We begin with Magnus’s theorem [Mag35] on residual nilpotence
of free groups and Gruenberg’s [Gru57] result on free polynilpotent groups.
Mal’cev’s observation [Mal68] on the adjoint group of an algebra provides a
method for constructing residually nilpotent groups. We consider next free
products and describe Lichtman’s characterization [Lic78] for the residual
nilpotence of a free product of groups. If a group G is such that the aug-
mentation ideal g of its integral group ring Z[G] is residually nilpotent, i.e.,⋂

n≥0 gn = 0, then it is easily seen that G is residually nilpotent. This prop-
erty, namely, the residual nilpotence of g, has been characterized by Lichtman
[Lic77]. Our next object is to discuss residual nilpotence of wreath products.
We give a detailed account of Hartley’s work, along with Shmelkin’s theo-
rem [Shm73] on verbal wreath products. For HNN-extensions we discuss a
method introduced by Raptis and Varsos [Rap89]. Turning to linear groups,
we give an exposition of recent work of Mikhailov and Bardakov [Bar07]. An
interesting class of groups arising from geometric considerations is that of
braid groups; we discuss the result of Falk and Randell [Fal88] on pure braid
groups.

If 1 → R → F → G → 1 is a free presentation of a group G, then the
quotient group R/[R, R] of R can be viewed as a G-module, called a “relation
module.” The relationship between the properties of F/[R, R] and those of
F/R has been investigated by many authors [Gru70], [Gru], [Gup87c]. We dis-
cuss a generalization of this notion. Let R and S be normal subgroups of the
free group F . Then the quotient group (R∩S)/[R, S] is abelian and it can be
viewed, in a natural way, as a module over F/RS. Clearly the relation mod-
ules, and more generally, the higher relation modules γn(R)/γn+1(R), n ≥ 2,
are all special cases of this construction. Such modules are related to the sec-
ond homotopy module π2(X) of the standard complex X associated to the free
presentation G 	 F/R. We discuss here the work in [Mik06b]. The main point
of investigation here is the faithfulness of the F/RS-module (R ∩ S)/[R, S].
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We next turn to k-central extensions, namely, the extensions

1→ N → G̃→ G→ 1,

where N is contained in the kth central subgroup ζk(G̃) of G̃. We examine
the connection between residual nilpotence of G and that of G̃. In general,
neither implies the other.

The construction of the lower central series {γn(G)}n≥1 of a group G
can be extended in an obvious way to define the transfinite terms γτ (G)
of the lower central series for infinite ordinals τ . Let ω denote the first
non-finite ordinal. The groups G whose lower central series has the prop-
erty that γω(G) 
= γω+1(G), called groups with long lower central series, are
of topological interest. We discuss methods for constructing such groups.

It has long been known that the Schur multiplicator is related to the
study of the lower central series. We explore a similar relationship with
generalized multiplicators, better known as Baer invariants of free presen-
tations of groups. In particular, we discuss generalized Dwyer filtration of
Baer invariants and its relation with the residual nilpotence of groups. Using
a generalization of the Magnus embedding, we shall see that every 2-central
extension of a one-relator residually nilpotent group is itself residually nilpo-
tent [Mik07a].

The residually nilpotent groups with the same lower central quotients as
some free group are known as para-free groups. Non-free para-free groups
were first discovered by Baumslag [Bau67]. We make some remarks related
to the para-free conjecture, namely, the statement that a finitely generated
para-free group has trivial Schur multiplicator.

Next we study the nilpotent completion Z∞(G), which is the inverse limit
of the system of epimorphisms G→ G/γn(G), n ≥ 1, and certain subgroups
of this completion. We study the Bousfield–Kan completion R∞X of a sim-
plicial set X over a commutative ring R, and homological localization (called
HZ-localization) functor L : G �→ L(G) on the category of groups, due to
Bousfield, in particular, the uncountability of the Schur multiplicator of the
free nilpotent completion of a non abelian free group. After discussing the
homology of the nilpotent completion, we go on to study transfinite para-free
groups. Given an ordinal number τ , a group G is defined to be τ -para-free if
there exists a homomorphism F → G, with F free, such that

L(F )/γτ

(
L(F )

)
	 L(G)/γτ

(
L(G)

)
.

Our final topic of discussion in this chapter is the study of the lower
central series and the homology of crossed modules. These modules were first
defined by Whitehead [Whi41]. With added structure to take into account,
the computations naturally become rather more complicated. It has recently
been shown that the cokernel of a non aspherical projective crossed module
with a free base group acts faithfully on its kernel [Mik06a]; we give an
exposition of this and some other related results.
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Chapter 2: Dimension subgroups In this chapter we study various problems
concerning the dimension subgroups. The relationship between the lower cen-
tral and the dimension series of groups is highly intriguing.

For every group G and integer n ≥ 1, we have

γn(G) ⊆ Dn(G) := G ∩ (1 + gn).

As first shown by Rips [Rip72], equality does not hold in general. We pur-
sue the counter example of Rips and the subsequent counterexamples con-
structed by N. Gupta, and construct several further examples of groups
without the dimension property, i.e., groups where the lower central se-
ries does not coincide with the integral dimension series. We construct a
4-generator and 3-relator example of a group G with D4(G) 
= γ4(G) and
show further that, in a sense, this is a minimal counter example by prov-
ing that every 2-relator group G has the property that D4(G) = γ4(G). At
the moment it seems to be an intractable problem to compute the length
of the dimension series of a finite 2-group of class 3. However, we show
that for the group without the dimension property considered by Gupta and
Passi (see p. 76 in [Gup87c]), the fifth dimension subgroup is trivial.
Examples of groups with Dn(G) 
= γn(G) with n ≥ 5 were first constructed by
Gupta [Gup90]. In this direction, for each n ≥ 5, we construct a 5-generator
5-relator group Gn such that Dn(Gn) 
= γn(Gn). We also construct a nilpo-
tent group of class 4 with non trivial sixth dimension subgroup. We hope
that these examples will lead to a closer understanding of groups without the
dimension property.

For each n ≥ 4, in view of the existence of groups with γn(G) 
= Dn(G),
the class Dn of groups with trivial nth dimension subgroup is not a variety.
This class is, however, a quasi-variety [Plo71]. We present an account of our
work [Mik06c] showing that the quasi-variety D4 is not finitely based, thus
answering a problem of Plotkin.

We next review the progress on the identification of integral dimension
subgroups and on Plotkin’s problems about the length of the dimension series
of nilpotent groups.

Related to the dimension subgroups are the Lie dimension subgroups
D[n](G) and D(n)(G), n ≥ 1, with D[n](G) ⊆ D(n)(G) ⊆ Dn(G) (see Sect. 2.10
for definitions). We show that, for every natural number s, there exists a group
of class n such that D[n+s](G) 
= γn+s(G) 
= 1. In contrast with the integral
case, many more definitive results are known about the dimension subgroups
and the Lie dimension subgroups over fields. We review these results and
their applications, in particular, to the study of Lie nilpotency indices of the
augmentation ideals.
Chapter 3: Derived series We study the derived series of free nilpotent groups.
Combinatorial methods developed for the study of the dimension subgroups
can be employed for this purpose. We give an exposition of the work of Gupta
and Passi [Gup07].
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Homological methods were first effectively applied by Strebel [Str74] for
the investigation of the derived series of groups. We give an exposition of
Strebel’s work and then apply it to study properties analogous to those stud-
ied in Chap. 1 for the lower central series of groups; in particular, we study
the behaviour of the transfinite terms of the derived series. We show that
this study has an impact on Whitehead’s asphericity question which asks
whether every sub complex of an aspherical two-dimensional complex is itself
aspherical.
Chapter 4: Augmentation powers The structure of the augmentation powers
gn and the quotients gn/gn+1 for the group G is of algebraic and number-
theoretic interest. While the augmentation powers have been investigated by
several authors, a solution to this problem, when G is torsion free or torsion
abelian group, has recently been given by Bak and Tang [Bak04]. We give
an account of the main features of this work. We then discuss transfinite
augmentation powers gτ , where τ is any ordinal number. We next give an
exposition of some of Hartley’s work on the augmentation powers.

A filtration {PnH2(G, T)}n≥0 of the Schur multiplicator H2(G, T) arising
from the notion of the polynomial 2-cocycles is a useful tool for the inves-
tigation of the dimension subgroups. This approach to dimension subgroups
naturally leads to relative dimension subgroups Dn(E, N) := E∩(1+en+ne),
where N is a normal subgroup of the group E. The relative dimension
subgroups provide a generalization of dimension subgroups, and have been
extensively studied by Hartl [Har08]. Using the above-mentioned filtration
of the Schur multiplicator, Passi and Stammbach [Pas74] have given a
characterization of para-free groups. These ideas were further developed in
[Mik04, Mik05b]. We give here an account of this (co)homological approach
for the study of subgroups determined by two-sided ideals in group rings.

In analogy with the notion of HZ-localization of groups, we study the
Bousfield HZ localization of modules. Given a group G, a G-module homo-
morphism f : M → N is said to be an HZ-map if the maps f0 : H0(G, M)→
H0(G, N) and f1 : H1(G, M)→ H1(G, N) induced on the homology groups
are such that f0 is an epimorphism and f1 is an isomorphism. In the category
of G-modules, we examine the localization of G-modules with respect to the
class HZ of HZ maps. We discuss the work of Brown and Dror [Bro75] and of
Dwyer [Dwy75] where the relation between the HZ localization of a module
M and its g-adic completion lim←− M/gnM has been investigated.
Chapter 5: Homotopical aspects After recalling the construction of certain
functors, we give an exposition of the work of Curtis [Cur63] on the lower
central series of simplicial groups. Of particular interest to us are his two
spectral sequences of homotopy exact couples arising from the application of
the lower central and the augmentation power functors, γn and ∆n, respec-
tively, to a simplicial group. Our study is motivated by the work Stallings
[Sta75] where he suggested a program and pointed out the main problem in
its pursuit:
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Finally, Rips has shown that there is a difference between the “dimension subgroups”
and the terms of the lower central series ... . The problem would be, how to compute
with the Curtis spectral sequence, at least to the point of going through the Rips
example in detail?

To some extent, this program was realized by Sjögren [Sjo79]. However, in
general, it is an open question whether there exists any homotopical role of
the groups without the dimension property. The simplicial approach for the
investigation of the relationship between the lower central series and the aug-
mentation powers of a group has been studied by Gruenenfelder [Gru80]. We
compute certain initial terms of the Curtis spectral sequences and, following
[Har08], discuss applications to the identification of dimension subgroups.
We show that it is possible to place some of the known results on the di-
mension subgroups in a categorical setting, and thus hope that this point of
view might lead to a deeper insight. One of the interesting features of the
simplicial approach is the connection that it provides to the derived functors
of non-additive functors in the sense of Dold and Puppe [Dol61]. Finally, we
present a number of homotopical applications; in particular, we give an al-
gebraic proof of the computation of the low-dimensional homotopy groups of
the 2-sphere. Another application that we give is an algebraic proof of the
well-known theorem, due to Serre [Ser51], about the p-torsion of the homo-
topy groups of the 2-sphere.
Chapter 6: Miscellanea In this concluding chapter we present some applica-
tions of the group ring construction in different, rather unexpected, contexts.
As examples, we may mention here (1) the solution, due to Lam and Leung
[Lam00], of a problem in number theory which asks, for a given natural num-
ber m, the computation of the set W (m) of all possible integers n for which
there exist mth roots of unity α1, . . . , αn in the field C of complex numbers
such that α1 + · · ·+ αn = 0, and (2) application of dimension subgroups by
Massuyeau [Mas07] in low-dimensional topology.
Appendix At several places in the text we need results about simplicial
objects. Rather than interrupt the discussion at each such point, we have
preferred to collect the results needed in an appendix to which the reader
may refer as and when necessary. The material in the appendix is mainly
that which is needed for the group-theoretic problems in hand. For a more
detailed exposition of simplicial methods, the reader is referred to the books
of Goerss and Jardine [Goe99] and May [May67].

To conclude, we may mention that a crucial point that emerges from the
study of the various series carried out in this monograph is that the least
transfinite step in all cases is the one which at the moment deserves most to
be understood from the point of view of applications.



Chapter 2

Dimension Subgroups

Let Z[G] be the integral group ring of a group G and let g be its augmentation ideal.
For each natural number n ≥ 1, Dn(G) = G ∩ (1 + gn) is a normal subgroup of G
called the nth integral dimension subgroup of G. It is easy to see that the decreasing
series

G = D1(G) ⊇ D2(G) ⊇ . . . ⊇ Dn(G) ⊇ . . .

is a central series in G, i.e., [G, Dn(G)] ⊆ Dn+1(G) for all n ≥ 1. Therefore,
γn(G) ⊆ Dn(G) for all n ≥ 1, where γn(G) is the nth term in the lower central
series of G. The identification of dimension subgroups, and, in particular, whether
γn(G) = Dn(G), has been a subject of intensive investigation for the last over fifty
years. It is now known that, whereas Dn(G) = γn(G) for n = 1, 2, 3 for every
group G (see [Pas79]), there exist groups G whose series {Dn(G)}n≥1 of dimen-
sion subgroups differs from the lower central series {γn(G)}n≥1 ([Rip72], [Tah77b],
[Tah78b], [Gup90]). The various developments in this area have been reported in
[Pas79] and [Gup87c]. In the present exposition, we will primarily concentrate on
the results that have appeared since the publication of [Gup87c]. We particularly
focus attention on the fourth and the fifth dimension subgroups. We recall the de-
scription of the fifth dimension subgroup due to Tahara (Theorem 2.29) and give a
proof of one of his theorems which states that, for every group G, D5(G)6 ⊆ γ5(G)
(see Theorem 2.27). The proof here is, hopefully, shorter than the original one.

2.1 Groups Without Dimension Property

Given a group G, we call the quotient Dn(G)/γn(G), n ≥ 1, the nth dimen-
sion quotient of G. In case all dimension quotients are trivial, we say that
the group G has the dimension property. We begin with examples of groups
which do not have the dimension property.

Example 2.1 (Rips [Rip72]).

The first example of a group without dimension property was given by
E. Rips. Following the notation from [Rip72], consider the group G with
generators

R. Mikhailov, I.B.S. Passi, Lower Central and Dimension Series of Groups, 101
Lecture Notes in Mathematics 1952,
c© Springer-Verlag Berlin Heidelberg 2009
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a0, a1, a2, a3, b1, b2, b3, c

and defining relations

b64
1 = b16

2 = b4
3 = c256 = 1,

[b2, b1] = [b3, b1] = [b3, b2] = [c, b1] = [c, b2] = [c, b3] = 1,

[a64
0 = b32

1 , a64
1 = b−4

2 b−2
3 , a16

2 = b4
1b
−1
3 , a4

3 = b2
1b2,

[a1, a0] = b1c
2, [a2, a0] = b2c

8, [a3, a0] = b3c
32,

[a2, a1] = c, [a3, a1] = c2, [a3, a2] = c4,

[b1, a1] = c4, [b2, a2] = c16, [b3, a3] = c64,

[bi, aj ] = 1 if i 
= j, [c, ai] = 1 for i = 0, 1, 2, 3.

Then γ4(G) = 1 while the element

[a1, a2]128[a1, a3]64[a2, a3]32 = c128

is a non-identity element in D4(G).

Example 2.2 (Tahara [Tah78a]).

The above example was generalized by Ken-Ichi Tahara as follows:
Let Gk, l (k ≥ 2, l ≥ 0) be a group with generators x1, x2, x3, x4 and

defining relations

x2k+l+4
1 = [x2, x3]−2k+l+4

[x2, x1]−2k+l+3
,

x2k+4
2 = [x1, x3]2

k
[x1, x4]−2k−1

[x2, x3]3·2
k+3

,

x2k+2
3 = [x1, x2]2

k
[x1, x4]2

k−2
[x3, x2]5·2

k+1
,

x2k

4 = [x1, x2]2
k−1

[x2, x3]2
k
[x1, x3]2

k−2
,

[x3, x2]4 = [x1, x2, x2], [x2, x3]16 = [x1, x3, x3], [x3, x2]64 = [x1, x4, x4],

[x2, x3, x1] = [x2, x3, x2] = [x2, x3, x3] = [x2, x3, x4] = 1,

[x1, x2, x1] = [x1, x2, x3] = [x1, x2, x4] = 1,

[x1, x3, x1] = [x1, x3, x2] = [x1, x3, x4] = 1,

[x1, x4, x1] = [x1, x4, x2] = [x1, x4, x3] = 1.

Then
w = [x2, x3]2

k+5 ∈ D4(Gk, l) \ γ4(Gk, l).

The case k = 2, l = 0 is exactly the example due to Rips.

We continue the above constructions of groups without dimension prop-
erty by constructing a 4-generator and 3-relator example of a group G with
D4(G) 
= γ4(G) and, for each n ≥ 5, a 5-generator 5-relator example of
a group G with Dn(G) 
= γn(G). Our motivation for constructing these
examples is to develop a closer understanding of groups without dimension
property and also to look for simpler, and in a sense minimal, examples of
such groups.
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Example 2.3 Let G be the group defined by the presentation

〈x1, x2, x3, x4 | x4
1[x4, x3]2[x4, x2] = 1,

x16
2 [x4, x3]4[x4, x1]−1 = 1, x64

3 [x4, x2]−4[x4, x1]−2 = 1〉. (2.1)

Then w = [x1, x32
2 ][x1, x64

3 ][x2, x128
3 ] ∈ D4(G) \ γ4(G).

To prove the above statement, we need the following lemma:

Lemma 2.4 Let Π be a group. If x1, x2, x3 ∈ Π and there exist ξj ∈ γ2(Π),
j = 1, . . . , 6 and ηi ∈ γ3(Π), such that

x4
1 = ξ1, x16

2 = ξ2, x32
2 x64

3 = ξ4
4η1, x−32

1 x128
3 = ξ16

5 η2, x−64
1 x−128

2 = ξ64
6 η3

then
w = [x1, x32

2 ][x1, x64
3 ][x2, x128

3 ] ∈ D4(Π).

Proof. Since γ2(Π) ⊆ 1 + ∆2(Π), we have

1− w ≡ α1 + α2 + α3 mod ∆4(Π),

where α1 = (1 − [x1, x32
2 ]), α2 = (1 − [x1, x64

3 ]), α3 = (1 − [x2, x128
3 ]). Now,

working modulo ∆4(Π), we have

α1 ≡ (1− x32
2 )(1− x1)− (1− x1)(1− x32

2 )

≡ (1− x32
2 )(1− x1)− 32(1− x1)(1− x2) +

(
32
2

)

(1− x1)(1− x2)2

≡ (1− x32
2 )(1− x1)− (1− x32

1 )(1− x2) (since x4
1 ∈ γ2(Π)).

Similarly, we have

α2 ≡ (1− x64
3 )(1− x1)− (1− x64

1 )(1− x3),

α3 ≡ (1− x128
3 )(1− x2)− (1− x128

2 )(1− x3).

Therefore,

α1 + α2 + α3 ≡ (2− x32
2 − x64

3 )(1− x1) + (x32
1 − x128

3 )(1− x2)+

(x64
1 +x128

2 −2)(1−x3)≡(1−ξ4
4η1)(1−x1)+(1−ξ16

5 η2)(1−x2)+(1−ξ64
6 η2)(1−x3)≡

(1− η1)(1− x1) + (1− η2)(1− x2) + (1− η3)(1− x3)+

(1− ξ4)(1− ξ1) + (1− ξ5)(1− ξ2) + (1− ξ6)(1− ξ−2
2 ξ4

4) ≡ 0,

and hence w ∈ D4(Π). �
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Proof of Example 2.3. Modulo γ4(G), we have

x32
2 x64

3 = [x4, x1]2[x3, x4]8[x4, x1]2[x4, x2]4 = [x3, x4]8[x4, x1]4[x4, x2]4 = ξ4
4η1,

with ξ4 = [x3, x4]2[x4, x2] ∈ γ2(G), η1 = [x4, x1]4 ∈ γ3(G);

x−32
1 x128

3 = [x4, x3]16[x4, x2]8[x4, x1]4[x4, x2]8 =

[x4, x3]16[x4, x2]16[x4, x1]4 = ξ16
5 η2,

with ξ5 = [x4, x3] ∈ γ2(G), η2 = [x4, x2]16[x4, x1]4 ∈ γ3(G);

x−64
1 x−128

2 = [x4, x2]16[x4, x3]32[x4, x1]−8[x4, x3]32 =

[x4, x2]16[x4, x3]64[x4, x1]−8 = η3 ∈ γ3(G).

By Lemma 2.4, w ∈ D4(G). It remains to show that w /∈ γ4(G). We shall
construct a nilpotent group H of class 3, which is an epimorphic image of G
with nontrivial image of w.

The construction of H is a slight simplification of the construction of
Passi and Gupta (see [Gup87c], Example 2.1, p. 76). Let F be a free group
with generators 〈x1, x2, x3, x4〉. Define R1 to be the fourth term of the lower
central series of F , i.e., R1 = γ4(F ). Define

R2 = 〈R1, [xi, xj , xk] /∈ 〈α, β, γ〉R1 for all i, j, k, α4β−1, β4γ−1, γ4〉,

where α = [x4, x3, x3], β = [x4, x2, x2], γ = [x4, x1, x1];

R3 = 〈R2, [x4, x3]64α32, [x4, x2]16β8, [x4, x1]4γ2,

[x3, x2]16β−1, [x3, x1]4α−2, [x2, x1]4β−1〉,

R4 = 〈R3, c1, c2, c3〉,
where

c1 = x4
1[x4, x3]2[x4, x2],

c2 = x16
2 [x4, x3]4[x4, x1]−1,

c3 = x64
3 [x4, x2]−4[x4, x1]−2.

We set H = F/R4.
Clearly, the group H is a natural epimorphic image of G. Hence it remains

to show that the element

w0 = [x1, x32
2 ][x1, x64

3 ][x2, x128
3 ]

is nontrivial in H.
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We claim that [Ri+1, F ] ⊆ Ri, i = 1, 2, 3. This is obvious for i = 1, 2. We
show it for i = 3. Working modulo R3, we have:

[c1, x1] = 1,

[c1, x2] = [x1, x2]4[x4, x2, x2] = [x1, x2]4β = 1,

[c1, x3] = [x1, x3]4[x4, x3, x3]2 = [x1, x3]4α2 = 1,

[c1, x4] = [x1, x4]4[x1, x4, x1]2 = [x1, x4]4γ−2 = 1,

[c2, x1] = [x2, x1]16[x4, x1, x1]−1 = β4γ−1 = 1,

[c2, x2] = 1,

[c2, x3] = [x2, x3]16[x4, x3, x3]4 = β−1α4 = 1,

[c2, x4] = [x2, x4]16[x2, x4, x2]8 = [x2, x4]16β−8 = 1,

[c3, x1] = [x3, x1]64[x4, x1, x1]−2 = α32γ−2 = 1,

[c3, x2] = [x3, x2]64[x4, x2, x2]−4 = [x3, x2]64β−4 = 1,

[c3, x3] = 1,

[c3, x4] = [x3, x4]64[x3, x4, x3]32 = [x3, x4]64α−32 = 1.

Clearly, R2/R1 is cyclic of order 64, generated by the element α. We claim
that the element α has order exactly 64 in H. Suppose αs ∈ R4, s > 0 and s
is not divisible by 64. Then R4/R2 has a torsion element αs, since α64 ∈ R2.
We have the following group extension:

1→ R3/R2 → R4/R2 → R4/R3 → 1.

Hence at least one of two groups: R3/R2 or R4/R3 has a torsion. Since
[R4, F ] ⊆ R3, every element of R4/R3 can be written as ch1

1 ch2
2 ch3

3 for
some integers h1, h2, h3. Clearly it is a free abelian group of rank 3, since
R4/R4 ∩ γ2(F ) is free abelian, which is an epimorphic image of R4/R3. The
same argument works for the quotient R3/R2, since all commutators which
we added to R2 to get R3 are of the form [xi, xj ]hij qij , qij ∈ γ3(F ), hij ∈ Z,
but commutators [xi, xj ] are basic commutators in F , i.e., they are linearly
independent modulo γ3(F ). Hence both R4/R3 and R3/R2 are free abelian
and the element α has order exactly 64 in H.

Finally, note that w0 = α32 is nontrivial in H; hence the element w does
not lie in γ4(G). �

Example 2.5 Let G be the group defined by the presentation

〈x1, x2, x3, x4 | x4
1 = ξ1, x16

2 = ξ2,

x32
2 x64

3 = ξ4
4 , x−32

1 x128
3 = ξ16

5 , ξ16
1 ξ8

2 = 1〉, (2.2)

where
ξ1 = [x2, x4][x3, x4]2, ξ2 = [x4, x1][x3, x4]4,

ξ4 = [x3, x4]2[x4, x2][x4, x1], ξ5 = [x4, x3].

Then w = [x1, x32
2 ][x1, x64

3 ][x2, x128
3 ] ∈ D4(G) \ γ4(G).
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Proof. By Lemma 2.4, w ∈ D4(G). Note that the group H occurring in the
proof of Example 2.3 is a natural epimorphic image of G. Indeed, the first
two relations of G are also among the defining relations of H (due to relators
c1, c2), and therefore we only need to check the other three. In H,

x32
2 x64

3 = [x4, x1]2[x3, x4]8[x4, x1]2[x4, x2]4 = [x3, x4]8[x4, x1]4[x4, x2]4 = ξ4
4 ;

x−32
1 x128

3 = [x4, x3]16[x4, x2]8[x4, x1]4[x4, x2]8 =

[x4, x3]16[x4, x2, x2]−8[x4, x1, x1]−2 = [x4, x3]16[x4, x1, x1]−4 =

[x4, x3]16 = ξ16
5 ;

ξ16
1 ξ8

2 = [x2, x4]16[x3, x4]32[x4, x1]8[x3, x4]32 =

[x4, x2, x2]8[x4, x1, x1]4[x4, x3, x3]32 = [x4, x3, x3]64 = 1.

Thus we have an epimorphism θ : G → H, xi �→ xi, 1 ≤ i ≤ 4. It is shown
in the proof of Example 2.3, that w0 = θ(w) is nontrivial in H, which is
nilpotent of class 3. Hence w /∈ γ4(G). �

Example 2.6 Let

Π = 〈x1, x2, x3, y1 . . . , y26 | x4
1 =

2∏

i=0

[y2i+1, y2i+2], x16
2 =

7∏

i=3

[y2i+1, y2i+2],

x32
2 x64

3 =

(
11∏

i=8

[y2i+1, y2i+2]

)4

, x−32
1 x128

3 = [y25, y26]16, x−64
1 x−128

2 = 1〉. (2.3)

Then w = [x1, x
32
2 ][x1, x

64
3 ][x2, x

128
3 ] ∈ D4(Π) \ γ4(Π).

Proof. By Lemma 2.4, w ∈ D4(Π). Consider the group Π′ = Π ∗ Z, where
Z is an infinite cyclic group with generator x, say. It is easy to see that
there exists an epimorphism θ : Π′ → G, where G is the group considered
in Example 2.5 and θ maps xi �→ xi, i = 1, 2, 3, x �→ x4. Clearly, for such an
epimorphism θ, θ(w) /∈ γ4(G) by Example 2.5, and therefore w /∈ γ4(Π). �

Example 2.7 For n ≥ 5, let

G(n) = 〈x1, x2, x3, y1, . . . , y10n | x4
1 = ξ1,(n), x

16
2 = ξ2,(n),

x32
2 x64

3 = ξ4
3,(n), x

−32
1 x128

3 = ξ16
4,(n), x

−64
1 x−128

2 = ξ64
5,(n)〉, (2.4)
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where

ξi,(n) = [y(2i−2)n+1, y(2i−2)n+2] . . . [y2in−1, y2in], 1 ≤ i ≤ 5.

Then w = [x1, x
32
2 ][x1, x

64
3 ][x2, x

128
3 ] ∈ D4(G(n)) \ γ4(G(n)).

Proof. Observe that there exists an epimorphism G(n) → Π, Π being the
group considered in Example 2.6, which maps xi �→ xi, i = 1, 2, 3. The asser-
tion thus follows from Lemma 2.4. �

The same principle can be used to construct more examples of groups
without dimension property. The following example is a base for a later con-
struction in Theorem 2.14.

Example 2.8 Let k ≥ 9, and G the group given by the following presenta-
tion:

〈x1, x2, x3, x4 | x8
1[x4, x3]4[x4, x2],

x64
2 [x4, x3]−16[x4, x1]−1, x2k

3 [x4, x2]16[x4, x1]−4〉. (2.5)

Then [x1, x
256
2 ][x1, x

2k

3 ][x2, x
2k+1

3 ] ∈ D4(G) \ γ4(G).

Example 2.9 Let

r ≥ t ≥ 2, k ≥ q + r,

s ≥ l + 3, q ≥ s + r + 2

and G the group with generators x1, x2, x3, x4, x5 and relators

x2l

1 = [x4, x2]−2l−r−2
[x4, x3]2

l−1
[x4, x5]−2l−t

;

x2s

2 = [x4, x1]2
l−r−2

[x4, x3]−2s−3
[x4, x5]2

s−t−1
;

x2k

3 = [x4, x1]−2l−1
[x4, x2]2

s−3
[x4, x5]2

q−5
;

x2q

5 = [x4, x1]2
l−t

[x4, x2]−2s−t−1
[x4, x3]−2q−5

.

Then, for

w = [x1, x
2s+r

2 ][x1, x
2k

3 ][x1, x
2q+t−2

5 ][x2, x
2k+1

3 ][x2, x
2q+t

5 ][x5, x
2k+3

3 ],

we have
w ∈ D4(G) \ γ4(G).

Proof. Since x2l

1 , x2s

2 , x2k

3 , x2q

5 ∈ γ3(G), we have

1− w ≡
6∑

i=1

(1− αi) mod g6,
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where

α1 = [x1, x
2s+r

2 ], α2 = [x1, x
2k

3 ], α3 = [x1, x
2q+t−2

5 ],

α4 = [x2, x
2k+1

3 ], α5 = [x2, x
2q+t

5 ], α6 = [x5, x
2k+3

3 ].

Clearly, we have

1− α1 ≡ (1− x2s+r

2 )(1− x1)− (1− x1)(1− xs+r
2 )

≡ (1−x2s+r

2 )(1−x1)−2s+r(1−x1)(1−x2)+
(

2s+r

2

)

(1−x1)(1− x2)2

≡ (1− x2s+r

2 )(1− x1)− (1− x2s+r

1 )(1− x2) mod g4;

1− α2 ≡ (1− x2k

3 )(1− x1)− (1− x2k

1 )(1− x3) mod g4;

1− α3 ≡ (1− x2q+t−2

5 )(1− x1)− (1− x2q+t−2

1 )(1− x5) mod g4;

1− α4 ≡ (1− x2k+1

3 )(1− x2)− (1− x2k+1

2 )(1− x3) mod g4;

1− α5 ≡ (1− x2q+t

5 )(1− x2)− (1− x2q+t

2 )(1− x5) mod g4;

1− α6 ≡ (1− x2k+3

3 )(1− x5)− (1− x2k+3

5 )(1− x3) mod g4.

Hence

1−w ≡(1− x2s+r

2 x2k

3 x2q+t−2

5 )(1− x1) + (1− x−2s+r

1 x2k+1

3 x2q+t

5 )(1− x2)+

(1− x−2k

1 x−2k+1

2 x−2k+3

5 )(1− x3) + (1− x−2q+t−2

1 x−2q+t

2 x2k+3

3 )(1− x5) mod g4

In the group G, we have:

x2s+r

2 x2k

3 x2q+t−2

5 = [x4, x1]2
l−2

[x4, x3]−2s+r−3
[x4, x5]2

s−t−1+r

[x4, x1]−2l−1
[x4, x2]2

s−3
[x4, x5]2

q−5
[x4, x1]2

l−2
[x4, x2]−2s−3

[x4, x3]−2q+t−7
=

[x4, x2]2
s−t−1+r

[x4, x2]−2s−3
[x4, x3]−2s+r−3

[x4, x3]−2q+t−7
[x4, x5]2

q−5
[x4, x5]2

s−t−1+r
.

x−2s+r

1 x2k+1

3 x2q+t

5 = [x4, x2]2
s−2

[x4, x3]−2s+r−1
[x4, x5]2

s+r−t

[x4, x1]−2l

[x4, x2]2
s−2

[x4, x5]2
q−4

[x4, x1]2
l

[x4, x2]−2s−1
[x4, x3]−2q−5+t

=

[x4, x3]−2s+r−1
[x4, x3]−2q+t−5

[x4, x5]2
s+r−t

[x4, x5]2
q−4

.

x−2k

1 x−2k+1

2 x−2k+3

5 = [x4, x2]2
k−r−2

[x4, x3]−2k−1
[x4, x5]2

k−t

[x4, x1]−2l−r−1+k−s

[x4, x3]2
k−2

[x4, x5]−2k−t

[x4, x1]−2l−t+k−q+3
[x4, x2]2

s−t+k−q+2
[x4, x3]2

k−2
=

[x4, x1]−2l−r+k−s

[x4, x1]−2l−t+k−q+3
[x4, x2]2

k−r−2
[x4, x2]2

s−t+k−q+2
.
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x−2q+t−2

1 x−2q+t

2 x2k+3

3 = [x4, x2]2
q+t−r−4

[x4, x3]−2q+t−3
[x4, x5]2

q−2

[x4,x1]−2l−r−2+q+t−s

[x4,x3]2
q+t−3

[x4, x5]−2q−1
[x4,x1]2

l+2
[x4,x2]2

s

[x4,x5]2
q−2

=

[x4, x2]2
q+t−r−4

[x4, x2]2
s

[x4, x1]q+l+t−s−r−2[x4, x1]2
l+2

.

Hence,

1− w ≡(1− η2l

1 )(1− x1) + (1− η2s

2 )(1− x2)+

(1− η3)(1− x3) + (1− η5)(1− x5) mod g4,

where

η1 = [x4, x2]2
s−t−1+r−l

[x4, x2]−2s−3−l

[x4, x3]−2s+r−l−3
[x4, x3]−2q+t−l−7

[x4, x5]2
q−l−5

[x4, x5]2
s−t−1+r−l

,

η2 = [x4, x3]−2r−1
[x4, x3]−2q+t−s−5

[x4, x5]2
r−t

[x4, x5]2
q−s−4

,

η3 = [x4,x1]−2l−r+k−s
[x4,x1]−2l−t+k−q+3

[x4,x2]2
k−r−2

[x4, x2]2
s−t+k−q+2∈γ3(G),

η4 = [x4, x2]2
q+t−r−4

[x4, x2]2
s

[x4, x1]q+l+t−s−r−2[x4, x1]2
l+2 ∈ γ3(G).

Therefore,

1− w ≡ (1− η1)(1− x2l

1 ) + (1− η2)(1− x2s

2 ) ≡ 0 mod g4.

The proof that w /∈ γ4(G) is by the same principle as that in the proof of
Example 2.3.

Let F be a free group with generators x1, x2, x3, x4, x5. Define R1 to be the
fourth term of the lower central series of F , i.e., R1 = γ4(F ). Define

R2 = 〈R1, [xi, xj , xk] /∈ 〈α, β, γ, δ〉R1 for all i, j, k,

α2k−q

β−1, β2q−s

γ−1, γ2s−l

δ−1, δ2l〉,

where α = [x4, x3, x3], β = [x4, x5, x5], γ = [x4, x2, x2], δ = [x4, x1, x1];

R3 = 〈R2,[x4, x3]2
k

α2k−1
, [x4, x5]2

q

β2q

, [x4, x2]2
s

γ2s−1
,

[x4, x1]2
l

δ2l−1
, [x3, x5]−2q

α2q−5
, [x3, x2]−2s

α2s−3
,

[x3,x1]2
l

α2l−1
, [x5,x2]2

s

β2s−t−1
, [x5,x1]−2l

β−2l−t

, [x2,x1]−2l

γ2l−r−2〉,

R4 = 〈R3, c1, c2, c3, c4〉,
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where

c1 = x−2l

1 [x4, x2]−2l−r−2
[x4, x3]2

l−1
[x4, x5]−2l−t

;

c2 = x−2s

2 [x4, x1]2
l−r−2

[x4, x3]−2s−3
[x4, x5]2

s−t−1
;

c3 = x−2k

3 [x4, x1]−2l−1
[x4, x2]2

s−3
[x4, x5]2

q−5
;

c4 = x−2q

5 [x4, x1]2
l−t

[x4, x2]−2s−t−1
[x4, x3]−2q−5

.

We set H = F/R4.
Clearly, the group H is a natural epimorphic image of G. Hence it remains

to show that the element

w0 = [x1, x
2s+r

2 ][x1, x
2k

3 ][x1, x
2q+t−2

5 ][x2, x
2k+1

3 ][x2, x
2q+t

5 ][x5, x
2k+3

3 ]

is nontrivial in H. We claim that [Ri+1, F ] ⊆ Ri, i = 1, 2, 3. The proof is
straightforward. In analogy with Example 2.3, one can show that γ3(G) is
cyclic of order 2k with generator α, but w0 = α2k−1

. Therefore, w0 
= 1 and
w /∈ γ4(G). �

We next discuss examples of groups without dimension property in ar-
bitrary dimension. First examples of groups without dimension property in
higher dimensions were constructed by N. Gupta [Gup90].

Example 2.10 (Gupta [Gup90], [Gup91a]). Let n ≥ 4 be fixed and let F be a
free group of rank 4 with basis {r, a, b, c}. Set x0 = y0 = z0 = r, and define
commutators xi = [xi−1, a], yi = [yi−1, b], zi = [zi−1, c], i = 1, 2, . . . . Let
Gn be the quotient of F with the following defining relations:

(i) r22n−1
= 1, a2n+2

= y4
n−3z

2
n−3, b2n

= x−4
n−3zn−3, c2n−2

= x−2
n−3y

−1
n−3;

(ii) zn−2 = y4
n−2, yn−2 = x4

n−2;

(iii) xn−1 = 1, yn−1 = 1, zn−1 = 1;

(iv) [a, b, g] = 1, [b, c, g] = 1, [a, c, g] = 1, for all g ∈ F ;

(v) [xi, b] = 1, [xi, c] = 1, [yi, a] = 1, [yi, c] = 1, [zi, a] = 1, [zi, b] = 1,
i ≥ 1;

(vi) [xi, xj ]=1, [xi, yj ]=1, [xi, zj ]=1, [yi, yj ]=1, [yi, zj ]=1, [zi, zj ] = 1,
i, j ≥ 0.

Let
g = [a, b]2

2n−1
[a, c]2

2n−2
[b, c]2

2n−3
.

Then g ∈ Dn(Gn)\γn(Gn).
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Example 2.11 For every integer n ≥ 0, there exist integers k > l, such that
for the group Gn defined by the presentation

〈x1, x2, x3, x4, x5 | x4
1ξ1 = 1, x2l

2 ξ2 = 1, x2k

3 ξ3 = 1,

[[x5, nx4], x1]4[[x5, nx4], x3, x3]2
k−1

= 1, ξ2k−2

1 ξ2k−l+1

2 = 1〉,

where

ξ1 = [[x5, nx4], x3]2[[x5, nx4], x2][x5, n+1x4]2,

ξ2 = [[x5, nx4], x3]2
l−2

[[x5, nx4], x1]−1[x5, n+1x4]2,

ξ3 = [[x5, nx4], x2]−2l−2
[[x5, nx4], x1]−2,

the element wn = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ] ∈ D4+n(Gn) \ γ4+n(Gn).

To prove the above assertion we need some technical lemmas. The
following lemma is a generalization of Lemma 2.4.

Lemma 2.12 Let Π be a group and n ≥ 4 an integer. If x1, x2, x3 ∈ Π are
such that there exist ξi ∈ γn−2(Π), i = 1, . . . , 4, satisfying

x4
1 = ξ1, x2l

2 = ξ2, x2l+1

2 x2k

3 = ξ4
3 , x−2l+1

1 x2k+1

3 = ξ2l

4 , x2k

1 x2k+1

2 = 1

then
w = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ] ∈ Dn(Π),

provided k, l are sufficiently large integers.

Proof. Since 1− x ∈ ∆n−2(Π) for x ∈ γn−2(Π), we have

1− w ≡ α1 + α2 + α3 mod ∆n(Π),

where α1 = (1− [x1, x2l+1

2 ]), α2 = (1− [x1, x2k

3 ]), α3 = (1− [x2, x2k+1

3 ]). Now,
working modulo ∆n(Π), we have

α1 ≡ (1− x2l+1

2 )(1− x1)− (1− x1)(1− x2l+1

2 )

≡ (1− x2l+1

2 )(1− x1)− 2l+1(1− x1)(1− x2)+
n−1∑

i=2

(−1)i

(
2l+1

i

)

(1− x1)(1− x2)i.

Note that, for sufficiently large l and i ≤ n, the integer
(2l+1

i

)
is divisible

by 4n. Hence, for such an integer l, we have
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n−1∑

i=2

(−1)i

(
2l+1

i

)

(1− x1)(1− x2)i ∈ ∆n(Π),

and
2l+1(1− x1)(1− x2) ≡ (1− x2l+1

1 )(1− x2) mod ∆n(Π).

Therefore,

α1 ≡ (1− x2l+1

2 )(1− x1)− (1− x2l+1

1 )(1− x2) mod ∆n(Π).

Assuming k to be large enough so that
(2k+1

i

)
is divisible by 2ln for i ≤ n, we

have

α2 ≡ (1− x2k

3 )(1− x1)− (1− x2k

1 )(1− x3),

α3 ≡ (1− x2k+1

3 )(1− x2)− (1− x2k+1

2 )(1− x3).

Therefore, mod ∆n(Π),
α1 + α2 + α3

≡ (2− x2l+1

2 − x2k

3 )(1− x1) + (x2l+1

1 − x2k+1

3 )(1− x2)+

(x2k

1 + x2k+1

2 − 2)(1− x3)

≡ (1− ξ4
3)(1− x1) + (1− ξ2l

4 )(1− x2) + (1− x2k

1 x2k+1

2 )(1− x3)

≡ (1− ξ3)(1− ξ1) + (1− ξ4)(1− ξ2)

≡ 0,

and hence w ∈ Dn(Π). �

Lemma 2.13 Let k ≥ l + 2, l ≥ 4, be integers and G the group defined by
the presentation

〈x1, x2, x3, x4, x5 | x4
1ξ1 = 1, x2l

2 ξ2 = 1, x2k

3 ξ3 = 1

[x4, x1]4[x4, x3, x3]2
k−1

= 1, ξ2k−2

1 ξ2k−l+1

2 = 1,

[x4, xi, x4] = 1, i = 1, . . . , 4〉,

where

ξ1 = [x4, x3]2[x4, x2][x4, x5]2,

ξ2 = [x4, x3]2
l−2

[x4, x1]−1[x4, x5]2,

ξ3 = [x4, x2]−2l−2
[x4, x1]−2.

Then the element w = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ] does not lie in γ4(G).
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Proof. We shall construct a nilpotent group of class 3 which is an epimorphic
image of the given group G and is such that the image of the element w is
nontrivial.

Let F be a free group with basis {x1, . . . , x5}. Consider the following four
types of relations:

R1 = γ4(F ),

R2 = 〈R1 ∪ {[xi, xj , xk] : (i, j, k) 
= (4, 1, 1), (4, 2, 2), (4, 3, 3)}, α2k−l
β−1,

β2l−2
γ−1, γ4〉, where α = [x4, x3, x3], β = [x4, x2, x2], γ = [x4, x1, x1]. Now

define R3 to be the product of R2 and the normal closure in F of the following
words:

[x4, x3]2
k

α2k−1
, [x4, x2]2

l

β2l−1
,

[x4, x1]4γ2, [x3, x2]2
l

α−2l−2
,

[x3, x1]4α−2, [x2, x1]4β−1,

[x4, x5]2
k−l+2

α−2k−1

[x5, xi], i 
= 1.

Finally, let R4 be the product of R3 and the normal closure in F of the
following words:

c1 = x4
1[x4, x3]2[x4, x2][x4, x5]2,

c2 = x2l

2 [x4, x3]2
l−2

[x4, x1]−1[x4, x5]2,

c3 = x2k

3 [x4, x2]−2l−2
[x4, x1]−2.

We claim that
[Ri+1, F ] ⊆ Ri, for i = 1, 2, 3.

This is obvious for i = 1, and 2 and it remains only to check for i = 3.
We note that, modulo R3, we have:

[c1, x1] = 1,

[c1, x2] = [x1, x2]4[x4, x3, x3] = [x1, x2]4β = 1,

[c1, x3] = [x1, x3]4[x4, x3, x3]2 = [x1, x3]4α2 = 1,

[c1, x4] = [x1, x4]4[x1, x4, x1]2 = [x1, x4]4γ2 = 1,

[c1, x5] = 1,

[c2, x1] = [x2, x1]2
l
[x4, x1, x1]−1 = β2l−2

γ−1 = 1,

[c2, x2] = 1,

[c2, x3] = [x2, x3]2
l
[x4, x3, x3]2

l−2
= [x2, x3]2

l
α2l−2

= 1,

[c2, x4] = [x2, x4]2
l
[x2, x4, x2]2

l−1
= [x2, x4]2

l
β−2l−1

= 1,

[c2, x5] = 1,

[c3, x1] = [x3, x1]2
k
[x4, x1, x1]−2 = α2k−1

γ−2 = 1,
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[c3, x2] = [x3, x2]2
k
[x4, x2, x2]−2l−2

= α2k−2
β−2l−2

= 1,

[c3, x3] = 1,

[c3, x4] = [x3, x4]2
k
[x3, x4, x3]2

k−1
= [x3, x4]2

k
α2k−1

= 1,

[c3, x5] = 1.

Clearly, γ3(F )/R2 is a cyclic group of order 2k generated by the element α.
To see that α has order exactly 2k in the group F/R4, as in the case of the
proof of Theorem 2.5, we note that the groups R3/R2 and R4/R3 are free
abelian. Hence, the relation αs ∈ R4, s > 0 implies that s is divisible by 2k.
As a consequence we get that α has order exactly 2k in F/R4. Hence, modulo
R4, the word w = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ] ≡ α2k−1 ≡ β8 ≡ γ2 
≡ 1.
We claim that F/R4 is a natural epimorphic image of the given group G.

The first three relations of G hold in F/R4 by construction. The relation
[x4, x1]4[x4, x3, x3]2

k−1
= [x4, x1]4γ2 holds modulo R3. Now, modulo R4, we

have

ξ2k−2

1 ξ2k−l+1

2

= [x4, x3]2
k−1

[x4, x2]2
k−2

[x4, x5]2
k−1

[x4, x3]2
k−1

[x4, x1]−2k−l+1
[x4, x5]2

k−l+2

= [x4, x3]2
k
α2k−1

α2k+l−4
[x4, x1]−2k−l+1

[x4, x2]2
k−2

= α2k+l−4
β−2k−3

γ2k−l−2
= 1.

The relations [x4, xi, x4], i ∈ {1, 2, 3, 4}, clearly lie in R2. Hence F/R4 is
a natural epimorphic image of G and the image of w is nontrivial in F/R4.
Therefore, w /∈ γ4(G). �

Proof of Example 2.11. The case n = 0 is exactly Lemma 2.13. Assume
that the result holds for some n ≥ 0, i.e., wn /∈ γ4+n(Gn). We shall prove it
for n + 1, i.e., that wn+1 /∈ γ5+n(Gn+1).

Consider the quotient G′n = Gn/γ4+n(Gn)Nn, where Nn is the normal
subgroup in Gn, generated by all left-normed commutators [y1, . . . , ys],
s ≥ 3, such that there are at least two entries with yi = x4. The auto-
morphism of the free group of rank 5, given by

x1 �→ x1,

x2 �→ x2,

x3 �→ x3,

x4 �→ x4,

x5 �→ x5x4

can be extended to an automorphism of G′n; this follows from the fact that this
automorphism preserves all relations. This automorphism defines a semidirect
product Hn = G′n�〈x〉, where x acts as the described automorphism. Clearly,
we have [x, xi] = 1, i = 1, 2, 3, 4 and [x5, x] = x4 in Hn and Hn is nilpotent:
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γ5+n(Hn) = 1. Evidently the natural map f : G′n → Hn is a monomorphism.
However, it is easy to see that Hn is an epimorphic image of Gn+1, which
sends wn+1 to f(wn). Hence, wn+1 can not lie in γ5+n(Gn+1). �

We next make somewhat more complicated constructions, working on the
same principles as above, and show that there exists a nilpotent group of
class 4 with nontrivial sixth dimension subgroup.

Theorem 2.14 There exists a nilpotent group G of class 3 with

G ∩ (1 + ∆(γ2(G))2
Z[G] + g5) 
= 1.

Proof. Let F be a free group with basis {x1, x2, x3, x4, x5}. Let R1 := γ4(F ).
Define

R2 =〈R1, [xi, xj , xk] /∈〈α, β, γ, δ〉R1 for all i, j, k, δ16β, α2k−10
δ, β8γ−1, γ8〉,

where δ = [x4, x5, x5], α = [x4, x3, x3], β = [x4, x2, x2], γ = [x4, x1, x1]; Let
R3 be R2 together with the following set of words:

[x1, x2]8[x4, x2, x2],

[x1, x3]8[x4, x3, x3]4,

[x2, x3]64[x4, x3, x3]−16,

[x1, x4]8[x4, x1, x1]4,

[x2, x4]64[x4, x2, x2]32,

[x3, x4]2
k

[x4, x3, x3]2
k−1

,

[x2, x5]64[x4, x5, x5]16,

[x5, x4]1024[x4, x5, x5]512,

[x1, x5]8, [x3, x5]1024.

Let R4 be R3 together with the following set of words:

c1 = x8
1[x4, x3]4[x4, x2];

c2 = x64
2 [x4, x3]−16[x4, x1]−1[x4, x5]16;

c3 = x2k

3 [x4, x2]16[x4, x1]−4

c4 = x1024
5 [x4, x2]16;

For any i = 1, 2, 3, [F, Ri+1] ⊆ Ri and k ≥ 12. The case i = 1 is obvious.
The case i = 2 easily can be checked. We shall consider the most difficult
case i = 3. Working modulo R3, we shall show that [ci, xj ] = 1 for all i, j:

[c1, x1] = 1;

[c1, x2] = [x1, x2]8[x4, x2, x2] = 1;

[c1, x3] = [x1, x3]8[x4, x3, x3]4 = 1;
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[c1, x4] = [x1, x4]8[x4, x1, x1]4 = 1, since γ8 ∈ R3;

[c1, x5] = [x1, x5]8 = 1;

[c2, x1] = [x2, x1]64[x4, x1, x1]−1 = [x4, x2, x2]8[x4, x1, x1]−1 = 1;

[c2, x2] = 1;

[c2, x3] = [x2, x3]64[x4, x3, x3]−16;

[c2, x4] = [x2, x4]64[x4, x2, x2]32 = 1;

[c2, x5] = [x2, x5]64[x4, x5, x5]16 = 1;

[c3, x1] = [x3, x1]2
k
[x4, x1, x1]−4 = [x4, x3, x3]2

k−1
[x4, x1, x1]−1 = 1;

[c3, x2] = [x3, x2]2
k
[x4, x2, x2]16 = [x4, x3, x3]−2k−2

[x4, x2, x2]16 = 1;

[c3, x3] = 1;

[c3, x4] = [x3, x4]2
k
[x4, x3, x3]2

k−1
= 1;

[c3, x5] = [x3, x5]2
k

= 1, since k > 10;

[c4, x1] = [x5, x1]1024 = 1;

[c4, x2] = [x5, x2]1024[x4, x2, x2]16 = [x4, x5, x5]256[x4, x2, x2]16 = 1;

[c4, x3] = [x5, x3]1024 = 1;

[c4, x4] = [x5, x4]1024[x4, x5, x5]512 = 1;

[c4, x5] = 1;

Clearly, γ3(F/R2) is a cyclic group of order 2k generated by element α.
To see that α has order exactly 2k in the group F/R4, as in the case of the
proof of Theorem 2.3, we note that the groups R3/R2 and R4/R3 are free
abelian. Hence, the relation αs ∈ R4, s > 0 implies that s divides 2k. As
a consequence we get the fact that α has order exactly 2k in F/R4. And
therefore, our element

w = [x1, x256
2 ][x1, x2k

3 ][x2, x2k+1

3 ]

is equal to α2k−1
= δ512 = β32 = γ4 
= 1.

Since x8
1, x64

2 , x2k

3 ∈ γ2(G), modulo g6, we have the following equivalences:

1− w ≡ (1− [x1, x256
2 ]) + (1− [x1, x2k

3 ]) + (1− [x2, x2k+1

3 ]).

Since 64(1− x1)2, 2k(1− x1)2, 2k+1(1− x2)2 ∈ g4, 64(1− x2) ∈ g2, modulo g5

we have

1− [x1, x256
2 ]

≡ (1− x256
2 )(1− x1)− (1− x1)(1− x256

2 )

≡ (1− x256
2 )(1− x1)− (1− x256

1 )(1− x2) +
(

256
2

)

(1− x1)(1− x2)2

≡ (1− x256
2 )(1− x1)− (1− x256

1 )(1− x2) + (1− x128
1 )(1− x2)2.
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Note that modulo g5:

(1− x128
1 )(1− x2)2

≡ (1− [x4, x3]−64[x4, x2]−16)(1− x2)2

≡ (1− x2) + (1− x1024
5 )(1− x2)2

≡ 1024(1− x5)(1− x2)2

≡ (1− x5)(1− x2)(1− x1024
2 )

≡ (1− x5)(1− x2)(1− [x4, x3]256[x4, x1]16[x4, x5]−256)
≡ 0,

therefore, modulo g5,

1− [x1, x256
2 ] ≡ (1− x256

2 )(1− x1)− (1− x256
1 )(1− x2). (2.6)

Analogically, it is easy to show that modulo g5,

1− [x1, x2k

3 ] ≡ (1−x2k

3 )(1−x1)−(1−x2k

1 )(1−x3)+(1−x2k−1

1 )(1−x3)2, (2.7)

1−[x2, x2k+1

3 ] ≡ (1−x2k+1

3 )(1−x2)−(1−x2k+1

2 )(1−x3)+(1−x2k

2 )(1−x3)2. (2.8)

Note that

x2k−1

1 x2k

2 = [x4, x3]−2k−2
[x4, x2]−2k−4

[x4, x3]2
k−2

[x4, x1]2
k−6

[x4, x5]−2k−2
=

[x4, x2]−2k−4
[x4, x1]2

k−6
[x4, x5]−2k−2

.

Hence, for k ≥ 13, we have x2k−1

1 x2k

2 = 1; therefore, modulo g5, we have

(1−x2k

1 )(1−x3)+(1−x2k−1

1 )(1−x3)2+(1−x2k+1

2 )(1−x3)+(1−x2k

2 )(1−x3)2 ≡
(1− x2k

1 x2k+1

2 )(1− x3) + (1− x2k−1

1 x2k

2 )(1− x3)2 ≡ 0. (2.9)

Equivalences (2.6) - (2.9) imply that, modulo g5,

1− w ≡(1− x256
2 )(1− x1)− (1− x256

1 )(1− x2)+

(1− x2k+1

3 )(1− x2) + (1− x2k

3 )(1− x1)

≡ (1− x256
2 x2k

3 )(1− x1) + (1− x−256
1 x2k+1

3 )(1− x2)

≡ (1− ζ16
1 )(1− x1) + (1− ζ128

2 )(1− x2),

where

ζ1 = [x4, x3]4[x4, x5]−4[x4, x2]−1[x4, x2, x2]2,

ζ2 = [x4, x3][x4, x5, x5]−4.
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Hence, modulo g5,

1− w ≡ 16(1− ζ1)(1− x1) + 128(1− ζ2)(1− x2)

≡ (1− ζ1)(1− x16
1 )− 8(1− ζ1)(1− x1)2 + (1− ζ2)(1− x128

2 )

− 64(1− ζ2)(1− x2)2

≡ (1− ζ1)(1− x16
1 ) + (1− ζ2)(1− x128

2 ).

Since x8
1, x64

2 ∈ γ2(G), we conclude

1− w ∈ ∆(γ2(G))2
Z[G] + g5.

Furthermore, the detailed analysis of the above construction shows that

1− w ∈ ∆([〈x4〉G, G])2
Z[G] + ∆([〈x4〉G, 4G])Z[G], (2.10)

since all commutators used in the words ci, i = 1, . . . , 4, have a nontrivial
entry of the generator x4. �

Theorem 2.15 There exists a nilpotent group Π of class 4 with D6(Π) 
= 1.

Proof. Consider the 5-generated group G of Theorem 2.14 which is nilpotent
of class 3. Let G1 = G ∗ 〈t〉/γ4(G ∗ 〈t〉), the quotient of the free product of
G with infinite cyclic group with generator t modulo its fourth lower central
subgroup. Clearly (2.10) implies that, for the image in G1 of the element w
(we retain the notation of elements of G when naturally viewed as elements
of G1), we have

1− w ∈ ∆([〈x4〉G1 , G1])2
Z[G1] + ∆([〈x4〉G1 , 4G1])Z[G1]. (2.11)

Clearly, w /∈ 〈t〉G1 . Define the quotient G2 = G1/〈[x4, t, x4]〉G1 . Let f be an
automorphism of the free group with basis {x1, x2, x3, x4, x5, t} defined by

xi �→ xi, i = 1, . . . , 5
t �→ tx4.

It is easy to see that f can be extended to an automorphism of the group
G2. Thus we can consider the semi-direct product Π = G2 � 〈x〉. We have
the following relations in the group Π:

[xi, x] = 1, i = 1, . . . , 5, [t, x] = x4.

Since, in G2, we have the relations [x4, xi, x4] = [x4, t, x4] = 1 for all i, the
group Π is nilpotent of class 4. The natural map G2 → Π is a monomorphism;
hence the image of the element

w = [x1, x256
2 ][x1, x2k

3 ][x2, x2k+1

3 ]
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is nontrivial in Π. However, (2.11) implies that

1− w ∈ ∆([〈[t, x]〉Π, Π])2
Z[Π] + ∆([〈[t, x]〉Π, 4Π])Z[Π] ⊆ ∆6(Π).

Therefore, 1 
= w ∈ D6(Π). �

Example 2.16

The reader can check that the constructions given in the proofs of Theorems
2.14 and 2.15 show that for the group Γ given by the following presentation:

〈x1, x2, x3, x4, x5, x6 | x8
1[x4, x6, x3]4[x4, x6, x2],

x64
2 [x4, x6, x3]−16[x4, x6, x1]−1[x4, x6, x5]16,

x2k

3 [x4, x7, x2]16[x4, x6, x1]−4, x1024
5 [x4, x6, x2]16,

[x4, x6, x5]2048, [x4, x6, x1]16, [x4, x6, x2]128,

[x4, x6, x1, x1][x4, x6, x2, x2]−8,

[x4, x6, x2, x2]−8[x4, x6, x3, x3]2
k−3〉,

for k ≥ 13,
D6(Γ) � γ5(Γ).

The arguments from the proof of Theorem 2.14 imply that the relations of Γ
are enough for the element

w = [x1, x256
2 ][x1, x2k

3 ][x2, x2k+1

3 ]

to lie in D6(Γ). However, the group Π, constructed in Theorem 2.15 is the
natural epimorphic image of Γ, and consequently w /∈ γ5(Γ).

2.2 Sjögren’s Theorem

For every natural number k, let

b(k) = the least common multiple of 1, 2, . . . , k,

and let

c(1) = c(2) = 1, c(n) = b(1)(
n−2

1 ) . . . b(n− 2)(
n−2
n−2), n ≥ 3.

The most general result known about dimension quotients is the following:

Theorem 2.17 (Sjögren [Sjo79]). For every group G,

Dn(G)c(n) ⊆ γn(G), n ≥ 1.
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Alternate proofs of Sjögren’s theorem have been given by Gupta [Gup87c]
and Cliff-Hartley [Cli87]. In case G is a metabelian group, Gupta [Gup87d]
has given the following sharper bound for the exponents of dimension
quotients:

Theorem 2.18 (Gupta [Gup87d]). If G is a metabelian group, then

Dn(G)2b(1) ... b(n−2) ⊆ γn(G), n ≥ 3.

Let F be a free group and R a normal subgroup of F . For k ≥ 1, let

R(k) = [. . . [[R, F, F ], . . . , F
︸ ︷︷ ︸

k−1

],

and
r(k) =

∑
Z[F ]r1r2 . . . rk,

where Ri ∈ {R, F} and exactly one Ri = R.
The following two lemmas are the key results in the proof of Sjögren’s

theorem.

Lemma 2.19 Let w ∈ γn(F ), n ≥ 2, be such that w − 1 ∈ fn+1 + r(k) for
some k, 1 ≤ k ≤ n. Then wb(k) − 1 ≡ fk − 1 mod fn+1 + r(k + 1) for some
fi ∈ R(k).

Lemma 2.20 For n ≥ 1, F ∩ (1 + fn+1 + r(n)) = γn+1(F )R(n).

From Lemmas 2.19 and 2.20 Sjögren’s theorem follows by using a process
of descent:

Let H1 ⊇ H2 ⊇ . . . and K1 ⊇ K2 ⊇ . . . be two series, and {Nm, l : 1 ≤ m ≤
l} a family of normal subgroups of a group G satisfying

Nm, m+1 = HmKm+1,

HmKl ⊆ Nm, l,

Nm, l+1 ⊆ Nm, l for all m < l.

⎫
⎪⎬

⎪⎭
(2.12)

Lemma 2.21 ([Gup87c], [Har82a]). If n is a positive integer and there exist
positive integers a(l) such that

(Kl+m ∩Nl, l+m+1)a(l) ⊆ Nl+1, l+m+1Hl, l + m ≤ n + 1,

then
N

a(1, n+2)
1, n+2 ⊆ H1Kn+2,

where

a(1, n + 2) =
n∏

i=1

a(i)(
n
i).
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2.3 Fourth Dimension Subgroup

An identification of the fourth dimension subgroup is known.

Theorem 2.22 (see [Gup87c], [Tah77b]).
Let G be a nilpotent group of class 3 given by its pre-abelian presentation:

〈x1, . . . , xm | xd(1)
1 ξ1, . . . , x

d(k)
k ξk, ξk+1, . . . , γ4(〈x1, . . . , xm〉)〉

with k ≤ m , d(i) > 0, d(k)| . . . |d(2)|d(1) and ξi ∈ γ2(〈x1, . . . , xm〉). Then,
the group D4(G) consists of all elements

w =
∏

1≤i<j≤k

[xd(i)
i , xj ]aij , aij ∈ Z, (2.13)

such that

d(j)|
(

d(i)
2

)

aij (1 ≤ i < j ≤ m), (2.14)

and

yl =
∏

1≤i<l

x
−d(i)ail

i

∏

l<j≤k

x
d(l)alj

j ∈ γ2(G)d(l)γ3(G) for 1 ≤ l ≤ k. (2.15)

Theorem 2.23 (Losey [Los74], Tahara [Tah77a], Sjögren [Sjo79], Passi
([Pas68a], [Pas79])). For any group G, D4(G)/γ4(G) has exponent 2.

In may be noted that every 3-generator group G has the property that
D4(G) = γ4(G) (see [Gup87c]). In Example 2.3 we have a 4-generator group
G with 3 relators such that D4(G) 
= γ4(G). We now show that every 2-relator
group G has the property that D4(G) = γ4(G). Thus, in a sense, Example
2.3 is a minimal example of a group G with D4(G) 
= γ4(G).

Theorem 2.24 Let G = 〈X | r1, r2〉 be a 2-relator group. Then D4(G) =
γ4(G).

Proof. Observe that G has a pre-abelian presentation of the form

G = 〈x1, . . . , xn, . . . | xd(1)
1 ξ1, x

d(2)
2 ξ2, ξ3, . . . 〉

with ξi ∈ γ2〈x1, . . . 〉 and d(2)|d(1). Then, modulo γ4(G), the group D4(G)
consists of the elements

w = [xd(1)
1 , x2]a12 ,

such that
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d(2)|
(

d(1)
2

)

a12,

and
y2 = x

−d(1)a12
1 ∈ γ2(G)d(2)γ3(G).

Therefore, modulo γ4(G), for some z ∈ γ2(G), we have

w = [xd(1)a12
1 , x2] = [y2, x2] = [zd(2), x2] = [z, x

d(2)
2 ] = 1.

�

Theorem 2.25 [Gup92] For any group G, [D4(G), G] = γ5(G).

Proof. In view of Theorem 2.23, it suffices to prove the statement for finite
2-groups. Let G be a finite 2-group, generated by elements x1, . . . , xk such
that x

d(i)
i ∈ γ2(G) for some d(i) = 2αi , with ordering α1 ≥ α2 ≥ · · · ≥ αk ≥ 1.

Let w ∈ D4(G). Theorem 2.22 implies that modulo γ4(G), w can be expressed
in the form (2.13), such that the conditions (2.14) and (2.15) are satisfied.
Let h be arbitrary element of G. Then we have the following equivalences
modulo γ5(G):

[w, h] = [
∏

1≤i<j≤k

[xd(i)
i , xj ]aij , h] ≡

∏

1≤i<j≤k

[xd(i)
i , xj , h]aij ≡

∏

1≤i<j≤k

[xd(i)
i , h, xj ]aij

∏

1≤i<j≤k

[xj , h, x
d(i)
i ]−aij mod γ5(G). (2.16)

Condition (2.14) implies that
∏

1≤i<j≤k

[xd(i)
i , h, xj ]aij ≡

∏

1≤i<j≤k

[xi, h, x
d(i)
j ]aij ≡

∏

1≤i<j≤k

[xi, h, x
d(i)aij

j ] mod γ5(G);

∏

1≤i<j≤k

[xj , h, x
d(i)
i ]−aij ≡

∏

1≤i<j≤k

[xj , h, x
−d(i)aij

i ] mod γ5(G).

Therefore, by condition (2.15), we have

[w, h] ≡
∏

1≤i<j≤k

[xi, h, x
d(i)aij

j ]
∏

1≤i<j≤k

[xj , h, x
−d(i)aij

i ] ≡

∏

1≤t≤k

[xt, h,
∏

1≤s<t

x−d(s)ast
s

∏

t<r≤k

x−d(t)atr
r ] ≡

∏

1≤t≤k

[xt, h, yt] ≡ 1 mod γ5(G). �

An extensive analysis of the counter-examples to the equality of the fourth
dimension subgroup with the fourth lower central subgroup has been carried
out by M. Hartl [Har].
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Theorem 2.26 (Hartl [Har]; see also [Har98, Theorem 7.2.6, p. 72]). Let A =
Z2β1 ⊕Z2β2 ⊕Z2β3 ⊕Z2β4 with β1 ≤ β2 ≤ β3 ≤ β4 and n ≥ 1. Then there exists
a finite nilpotent group G of class 3 with Gab 	 A, such that D4(G) 
= 1 and
[v, x] = 1 for every v ∈ γ2(G), x ∈ G, such that xγ2(G) is a generator of the
summand Z2β4 in Gab if and only if the following conditions hold:

(i) β1, β2 − β1, β3 − β2 ≥ 2,

(ii) β3 > n > max{β2, β3 − β1}.

Moreover, under conditions (i) and (ii), the group G can be chosen to be of
order 24β1+3β2+2β3+β4+n+1.

2.4 Fifth Dimension Subgroup

The structure of the fifth dimension subgroup has been described by Tahara
[Tah81], and it has been further shown that D6

5(G) ⊆ γ5(G):

Theorem 2.27 (Tahara [Tah81]). For every group G, D5(G)6 ⊆ γ5(G).

Analysis of Tahara’s description of the fifth dimension subgroup leads us
to the following result.

Theorem 2.28 For every group G, D5(G)2 ⊆ δ2(G)γ5(G).

Let G be a finite group of class 4. Choose the elements

{x1i ∈ G \ γ2(G)}i=1,...,s,

{x2i ∈ γ2(G) \ γ3(G)}i=1,...,t,

{x3i ∈ γ3(G) \ γ4(G)}i=1,...,u,

{x4i ∈ γ4(G)}i=1,...,v

to be such that {xliγl+1(G)} forms a basis of γl(G)/γl+1(G). Let d(i) be the
order of x1iγ2(G) in G/γ2(G), e(i) the order of x2iγ3(G) in γ2(G)/γ3(G), f(i)
the order of x3iγ4(G) in γ3(G)/γ4(G). We then have

x
d(i)
1i =

∏

1≤j≤t

x
bij

2j

∏

1≤j≤u

x
cij

3j y4i, y4i ∈ γ4(G), 1 ≤ i ≤ s;

x
e(i)
2i =

∏

1≤j≤t

x
dij

3i y′4i, y′4i ∈ γ4(G), 1 ≤ i ≤ t;

x
f(i)
3i =

∏

1≤j≤v

x
fij

4j , 1 ≤ i ≤ u;

[xd(i)
1i , x1j ] =

∏

1≤k≤u

x
α

(ij)
k

3k y′′ij , y′′ij ∈ γ4(G), 1 ≤ i < j ≤ s.
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We choose the element xij in such a way that d(i)|d(i + 1), e(i)|e(i + 1),
f(i)|f(i + 1).

Theorem 2.29 (Tahara [Tah81]). With the above notations, the subgroup
D5(G) is equal to the subgroup generated by the elements
∏

1≤i≤j≤s

[xuijd(j)
1i , x1j ]

∏

1≤i≤s, 1≤k≤t

∏

k<l

[x2l, x2k]bilvik

∏

1≤i≤j≤k≤s

[xd(i)
1i , x1j , x1k]wijk ,

(2.17)
where

uij , 1 ≤ i < j ≤ s,

vik, 1 ≤ i ≤ s, 1 ≤ k ≤ t,

v′ik, 1 ≤ i ≤ s, 1 ≤ k ≤ t,

wijk, 1 ≤ i ≤ j ≤ k ≤ s,

w′ijk, 1 ≤ i < j ≤ k ≤ s,

w′′ijk, 1 ≤ i ≤ j < k ≤ s,

are integers satisfying the following conditions:

wiii = 0, 1 ≤ i ≤ s; (2.18)

uij
d(j)
d(i)

(
d(i)
2

)

+ wiijd(i) + w′′iijd(j) = 0, 1 ≤ i < j ≤ s; (2.19)

− uij

(
d(j)
2

)

+ wijjd(i) + w′ijjd(j) = 0, 1 ≤ i < j ≤ s; (2.20)

wijkd(i) + w′ijkd(j) + w′′ijkd(k) = 0, 1 ≤ i < j < k ≤ s; (2.21)

∑

i<h

uihbhk −
∑

h<i

uhi
d(i)
d(h)

bhk + vikd(i) + v′ike(k) = 0, 1 ≤ i ≤ s, 1 ≤ k ≤ t;

(2.22)

uij
d(j)
d(i)

(
d(i)
3

)

+ wiij

(
d(i)
2

)

≡ 0 mod d(i), 1 ≤ i < j ≤ s; (2.23)

wiij

(
d(i)
2

)

+ w′′iij

(
d(j)
2

)

≡ 0 mod d(i), 1 ≤ i < j ≤ s; (2.24)

− uij

(
d(j)
3

)

+ w′ijj

(
d(j)
2

)

≡ 0 mod d(i), 1 ≤ i < j ≤ s; (2.25)

wijk

(
d(i)
2

)

, w′ijk

(
d(j)
2

)

, w′′ijk

(
d(k)

2

)

≡ 0 mod d(i), 1 ≤ i < j < k ≤ t;

(2.26)
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vik

(
d(i)
2

)

−
∑

h≤i

whiibhk −
∑

i<h

w′′iihbhk ≡ 0 mod (d(i), e(k)),

1 ≤ i ≤ s, 1 ≤ k ≤ t; (2.27)

∑

h≤i

whijbhk +
∑

i<h≤j

w′ihjbhk +
∑

j<h

w′′ijhbhk ≡ 0 mod (d(i), e(k)),

1 ≤ i < j ≤ s, 1 ≤ k ≤ t; (2.28)

−
∑

h<i

uhi
d(i)
d(h)

α
(hi)
l +

∑

i<h

uihchl −
∑

h<i

uhi
d(i)
d(h)

chl −
∑

k

v′ikdkl−

∑

g≤i≤h

wgihα
(gh)
l −

∑

g≤h≤i

wghiα
(gh)
l −

∑

i<g≤h

w′ighα
(gh)
l ≡ 0 mod (d(i), f(l)),

1 ≤ i ≤ s, 1 ≤ l ≤ s; (2.29)

∑

i

vikbik ≡ 0 mod e(k), 1 ≤ k ≤ t; (2.30)

∑

i

vikbil +
∑

i

vilbik ≡ 0 mod e(k), 1 ≤ k < l ≤ t. (2.31)

Proof of Theorem 2.28. Standard reduction argument shows that it is
enough to consider finite groups. Commutator identities (see Chapter 1, 1.1)
and condition (2.25) imply

[xuijd(j)
1i , x1j ] = [x1i, x

uijd(j)
1j ][x1i, x1j , x1j ]−uij(d(j)

2 )[x1j , x1i, x1i]−uij(d(j)
2 )·

[x1i, x1j , x1j , x1j ]−uij(d(j)
3 )[x1j , x1i, x1i, x1i]−uij(d(j)

3 ) =

[x1i, x
uijd(j)
1j ][x1i, x1j , x1j ]−uij(d(j)

2 )[x1j , x1i, x1i]−uij(d(j)
2 )·

[x1i, x1j , x1j , x1j ]−w′ijj(d(j)
2 )[x1j , x1i, x1i, x1i]−w′ijj(d(j)

2 ). (2.32)

Observe that

[x1j , x1i, x1i, x1i]−2w′ijj(d(j)
2 ) = 1,

[x1j , x1i, x1i, x1i]−3w′ijj(d(j)
2 ) = [x1j , x1i, x1i, x1i]−3uij(d(j)

3 )

= [x1j , x1i, x1i, x1i]−uijd(j) (d(j)−1)(d(j)−2)
2 = 1

Therefore,
[x1j , x1i, x1i, x1i]w

′
ijj(d(j)

2 ) = 1.

Analogically,
[x1i, x1j , x1j , x1j ]w

′
ijj(d(j)

2 ) = 1.
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∏

i<j

[xuijd(j)
1i , x1j ]2 =

∏

j

(
∏

i<j

[xuijd(j)
1i , x1j ]

∏

j<k

[xujkd(k)
1j , x1k]) =

∏

j

([
∏

i<j

x
uijd(j)
1i

∏

j<k

x
−ujkd(k)
1k , x1j ]) ·B, (2.33)

where

B :=
∏

j<k

([x1j , x1k, x1k]−ujk(d(k)
2 )[x1k, x1j , x1j ]−ujk(d(k)

2 )).

Also we have

[
∏

i<j

x
uijd(j)
1i

∏

j<k

x
−ujkd(k)
1k , x1j ] =

[
∏

l

x
∑

i<j uij
d(j)
d(i) bil−

∑
j<k ujkbkl

2l

∏

q

x
∑

i<j uij
d(j)
d(i) ciq−

∑
j<k ujkckq

3q , x1j ] =

[
∏

l

x
vjld(j)+v′jle(l)
2l , x1j ][

∏

q

x
Aqj

3q , x1j ] = (2.34)

∏

l

[x2l, x1j , x1j ]−vjl(d(j)
2 )[
∏

l

x
vjl

2l , x
d(j)
1j ][

∏

l

x
v′jle(l)
2l , x1j ][

∏

q

x
Aqj

3q , x1j ],

where Aqj =
∑

i<j uij
d(j)
d(i) ciq −

∑
j<k ujkckq.

The condition (2.27) implies that
∏

l

[x2l, x1j , x1j ]−vjl(d(j)
2 ) =

∏

l

[x2l, x1j , x1j ]−
∑

i≤j wijjbil−
∑

j≤k w′′jjkbkl = (2.35)

∏

i≤j

[x1i, x1j , x1j ]−wijjd(i)[x1j , x1i, x1i]−w′′iijd(j)

The condition (2.31) implies that

C :=
∏

j

[
∏

l

x
vjl

2l , x
d(j)
1j ] =

∏

j

(
∏

l′>l

[x2l, x2l′ ]vjlbjl′
∏

l′<l

[x2l, x2l′ ]vjlbjl′ ) = (2.36)

∏

l′>l

[x2l, x2l′ ]
∑

j vjlbjl′
∏

l>l′

[x2l, x2l′ ]
∑

j vjlbjl′ =

∏

l′>l

[x2l, x2l′ ]
∑

j vjlbjl′
∏

l>l′

[x2l, x2l′ ]−
∑

j vjl′bjk =
∏

l′>l

[x2l, x2l′ ]2
∑

j vjlbjl′ .
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The condition (2.29) implies that

D :=
∏

j

[
∏

l

x
v′jle(l)
2l , x1j ][

∏

q

x
Aqj

3q , x1j ] =
∏

1≤q≤u, 1≤j≤s

[x3q, x1j ]
∑

l v′jldlq+Aqj =

∏

1≤j≤s,
1≤q≤u

[x3q, x1j ]
−
∑

h<j

uhj
d(j)
d(h) α

(hj)
q −

∑

g≤j≤h

wgjhα
(gh)
q −

∑

g≤h≤j

wghjα
(gh)
q −

∑

j<g≤h

w′jghα
(gh)
q

=

∏

h<j

[xd(j)
1h , x1j , x1j ]−uhj

∏

g≤j≤h

[xd(g)
1g , x1h, x1j ]−wgjh · (2.37)

∏

g<h≤j

[xd(g)
1g , x1h, x1j ]−wghj

∏

j<g≤h

[xd(g)
1g , x1h, x1j ]−w′jgh .

Since [xd(i)
1i , x1k, x1j ][x1k, x1j , x

d(i)
1i ][x1j , x

d(i)
1i , x1k] = 1, we have

∏

i≤j≤k

[xd(i)
1i , x1k, x1j ]−wijk =

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk

∏

i≤j≤k

[xd(i)
1i , x1j , x1k]−wijk .

We change the subscripts g, h in (2.37) by appropriate subscripts i, j, k. The
conditions (2.20) and (2.26) then imply

D =
∏

i<j

[x1i, x1j , x1j ]−uijd(j)
∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk ·

∏

i≤j≤k

[xd(i)
1i , x1j , x1k]−2wijk

∏

j<i≤k

[xd(i)
1i , x1k, x1j ]−w′jik = (2.38)

∏

i<j

[x1i, x1j , x
d(j)
1j ]−uij

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk ·

∏

i≤j≤k

[xd(i)
1i , x1j , x1k]−2wijk

∏

j<i≤k

[x1k, x1i, x
d(i)
1j ]w

′
jik .

Hence

g2 = B · C ·D ·
∏

i≤j

[x1i, x1j , x1j ]−wijjd(i)[x1j , x1i, x1i]−w′′iijd(j)·
∏

1≤i≤s, 1≤k≤t

∏

k<l

[x2l, x2k]2bilvik

∏

1≤i≤j≤k≤s

[xd(i)
1i , x1j , x1k]2wijk

=
∏

j<k

([x1j , x1k, x1k]−ujk(d(k)
2 )[x1k, x1j , x1j ]−ujk(d(k)

2 ))·

∏

i≤j

[x1i, x1j , x1j ]−wijjd(i)[x1j , x1i, x1i]−w′′iijd(j)·

∏

i<j

[x1i, x1j , x
d(j)
1j ]−uij

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk

∏

i<j≤k

[x1k, x1j , x
d(j)
1i ]w

′
ijk

(2.39)
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=
∏

j<k

([x1j , x1k, x1k]w
′
jkkd(k)[x1k, x1j , x1j ]wjjkd(j))·

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk

∏

i<j≤k

[x1k, x1j , x
d(j)
1i ]w

′
ijk

=
∏

j<k

([x1j , x1k, x
d(k)
1k ]w

′
jkk [x1k, x1j , x

d(j)
1j ]wjjk [x1k, x1j , x1j , x1j ]−wjjk(d(j)

2 ))·

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk

∏

i<j≤k

[x1k, x1j , x
d(j)
1i ]w

′
ijk

=
∏

j<k

([x1j , x1k, x
d(k)
1k ]w

′
jkk [x1k, x1j , x

d(j)
1j ]wjjk)

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk .

∏

i<j≤k

[x1k, x1j , x
d(j)
1i ]w

′
ijk ,

since [x1k, x1j , x1j , x1j ]2wjjk(d(j)
2 ) = 1, and

[x1k, x1j , x1j , x1j ]3wjjk(d(j)
2 ) = [x1k, x1j , x1j , x1j ]

−3ujk
d(k)
d(j) (d(j)

3 ) = 1

by (2.23). Consequently, g2 ∈ δ2(G), and the proof is complete. �

Proof of Theorem 2.27. Multiplying [x1i, x1j , x2k] by left hand side of
(2.28) and taking the product over all i < j and k, we obtain the following:

1=
∏

i≤j<k

[x1j , x1k, x
d(i)
1i ]wijk

∏

i<j≤k

[x1i, x1k, x
d(j)
1j ]w

′
ijk

∏

i<j<k

[x1i, x1j , x
d(k)
1k ]w

′′
ijk

= (
∏

i<j

[x1i, x1j , x1i]wiijd(i)[x1i, x1j , x1j ]w
′
ijjd(j))·

∏

i<j<k

[x1j , x1k, x1i]wijkd(i)
∏

i<j<k

[x1i, x1k, x
d(j)
1j ]w

′
ijk .

∏

i<j<k

[x1j , x1i, x1k]w
′
ijkd(j)+wijkd(i)

= (
∏

i<j

[x1i, x1j , x1i]wiijd(i)[x1i, x1j , x1j ]w
′
ijjd(j))·

∏

i<j<k

[x1j , x1k, x1i]wijkd(i)
∏

i<j<k

[x1j , x1i, x1k]wijkd(i)
∏

i<j<k

[x1j , x1k, x1i]w
′
ijkd(j).
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Therefore,
∏

i<j<k

[x1k, x1j , x1i]w
′
ijkd(j)

= (
∏

i<j

[x1i, x1j , x1i]wiijd(i)[x1i, x1j , x1j ]w
′
ijjd(j))

∏

i<j<k

[x1j , x1k, x1i]wijkd(i).

∏

i<j<k

[x1j , x1i, x1k]wijkd(i)

Now consider the element g2 given in (2.39):

g2 =
∏

j<k

([x1j , x1k, x
d(k)
1k ]w

′
jkk [x1k, x1j , x

d(j)
1j ]wjjk)·

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk

∏

i<j≤k

[x1k, x1j , x
d(j)
1i ]w

′
ijk

=
∏

j<k

([x1j , x1k, x
d(k)
1k ]w

′
jkk [x1k, x1j , x

d(j)
1j ]wjjk)

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]wijk ·

(
∏

i<j

[x1i, x1j , x1i]wiijd(i)[x1i, x1j , x1j ]w
′
ijjd(j))· (2.40)

∏

i<j<k

[x1j , x1k, x1i]wijkd(i)
∏

i<j<k

[x1j , x1i, x1k]wijkd(i)

= (
∏

i<j

[x1j , x1i, x1i]wiijd(i)[x1i, x1j , x1j ]2w′ijjd(j))
∏

i<j<k

[x1j , x1i, x1k]wijkd(i)

Analogously, multiplying [x2k, x1j , x1i] by left hand side of (2.28) and
taking the product over all i < j and k, we obtain the following:

1=
∏

i≤j<k

[xd(i)
1i , x1k, x1j ]wijk

∏

i<j<k

[xd(j)
1j , x1k, x1i]w

′
ijk

∏

i<j<k

[xd(k)
1k , x1j , x1i]w

′′
ijk

=
∏

i≤j<k

[xd(i)
1i , x1k, x1j ]wijk

∏

i<j<k

[x1j , x1k, x1i]w
′
ijkd(j).

∏

i<j<k

[x1j , x1k, x1i]wijkd(i)+w′ijkd(j)

=
∏

i<j

[xd(i)
1i , x1j , x1i]wiij

∏

i<j<k

[x1i, x1k, x1j ]wijkd(i)·

∏

i<j<k

[x1j , x1k, x1i]wijkd(i)
∏

i<j<k

[x1j , x1k, x1i]2w′ijkd(j)
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Hence
∏

i<j<k

[x1k, x1j , x1i]2w′ijkd(j)

=
∏

i<j

[xd(i)
1i , x1j , x1i]wiij

∏

i<j<k

[x1i, x1k, x1j ]wijkd(i)
∏

i<j<k

[x1j , x1k, x1i]wijkd(i).

Now consider the element g4 obtained by squaring the element given in (2.39):

g4 =
∏

j<k

([x1j , x1k, x
d(k)
1k ]2w′jkk [x1k, x1j , x

d(j)
1j ]2wjjk)·

∏

i≤j≤k

[x1k, x1j , x
d(i)
1i ]2wijk

∏

i<j<k

[x1k, x1j , x
d(j)
1i ]2w′ijk

=
∏

j<k

([x1j , x1k, x
d(k)
1k ]2w′jkk [x1k, x1j , x

d(j)
1j ]4wjjk)

∏

i<j<k

[x1k, x1j , x
d(i)
1i ]2wijk ·

∏

i<j

[xd(i)
1i , x1j , x1i]wiij

∏

i<j<k

[x1i, x1k, x1j ]wijkd(i)
∏

i<j<k

[x1j , x1k, x1i]wijkd(i)

=
∏

i<j

([x1i, x1j , x
d(j)
1j ]2w′ijj [x1j , x1i, x

d(i)
1i ]3wiij )

∏

i<j<k

[x1i, x1j , x1k]wijkd(i).

(2.41)

Multiplying (2.40) and (2.41), we obtain

g6 =
∏

i<j

([x1i, x1j , x
d(j)
1j ]4w′ijj [x1j , x1i, x

d(i)
1i ]4wiij ).

The condition (2.27) implies that
∏

i<j

[xd(i)
1i , x1j , x1j ]wijj [xd(j)

1j , x1i, x1i]w
′′
iij =

∏

i, k

vik

(
d(i)
2

)

[x2k, x1i, x1i].

Conditions (2.19), (2.20), (2.22) imply that

1 =
∏

i<j

[x1i, x1j , x1j ]2wijjd(i)[x1j , x1i, x1i]2w′′iijd(j)

=
∏

i<j

[x1i, x1j , x1j ]−2w′ijjd(j)−uijd(j)[x1j , x1i, x1i]−2wiijd(i)+uijd(j)

= (
∏

i<j

[x1i, x1j , x1j ]−2w′ijjd(j)[x1j , x1i, x1i]−2wiijd(i))·

∏

i<j

[x1i, x1j , x1j ]−uijd(j)[x1i, x1j , x1i]−uijd(j)

=
∏

i<j

[x1i, x1j , x1j ]−2w′ijjd(j)[x1j , x1i, x1i]−2wiijd(i).

Hence g6 = 1. �
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Problem 2.30 If G is a nilpotent group of class three, then must D5(G) be
trivial?

We illustrate the complexity of the above problem by verifying it for a
group, without dimension property, considered by Gupta-Passi ([Gup87c],
p. 76). Let us recall the construction of this group.

Let F be the free group with basis x1, x2, x3, x4 and let R be the normal
subgroup generated by

r1 = x64
4 [x4, x3]32, r2 = x64

3 [x4, x2]−4[x4, x1]−2, r3 = x16
2 [x4, x3]4[x4, x1]−1,

r4 = x4
1[x4, x3]2[x4, x2], r5 = [x4, x3]64[x4, x3, x3]32,

r6 = [x4, x2]16[x4, x2, x2]8, r7 = [x4, x1]4[x4, x1, x1]2,

r8 = [x3, x2]16[x4, x2, x2]−1, r9 = [x3, x1]4[x4, x3, x3]−2,

r10 = [x2, x1]4[x4, x2, x2]−1, r11 = [x4, x3, x3]4[x4, x2, x2]−1,

r12 = [x4, x2, x2]4[x4, x1, x1]−1, r13 = [x4, x1, x1]4,

γ4(F ), and all commutators [xi, xj , xk](1 ≤ i, j, k ≤ 4) which do not belong
to

〈[x4, x1, x1], [x4, x2, x2], [x4, x3, x3]〉γ4(F ).

Then the group
G := F/R (2.42)

is a finite 2-group of class 3 with the non-identity element

w0 = [x64
3 , x2]2[x64

3 , x1][x16
2 , x1]2R

in D4(G).
With the notations of Theorem 2.29, we choose

x11 = x1, x12 = x2, x13 = x3, x14 = x4,

x21 = [x1, x2], x22 = [x1, x3], x23 = [x1, x4],

x24 = [x2, x3], x25 = [x2, x4], x26 = [x3, x4],

x31 = [x4, x3, x3].
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For this group we have the following constants:

d(1) = 4, d(2) = 16, d(3) = 64, d(4) = 64,

e(1) = 4, e(2) = 4, e(3) = 4, e(4) = 16, e(5) = 16, e(6) = 64,

b15 = 1, b16 = 2, b23 = −1, b26 = 4,

b33 = 2, b35 = −4, b46 = 32, all other bij are zero,

d11 = −4, d21 = −2, d31 = 32, d41 = −4, d51 = 32, d61 = 32,

all other dij are zero,

α
(12)
1 = −4, α

(23)
1 = −4, α

(13)
1 = −2, all other α

(ij)
1 are zero,

f(1) = 64.

Theorem 2.31 For the group G defined by the presentation (2.42),

D5(G) = 1.

Proof. With the constants d(i), e(i), f(i), dij , described above, let

uij , vik, v′ik, wijk, w′ijk, w′′ijk,

be constants satisfying the conditions (2.18)-(2.31), and let g be the corre-
sponding element, defined by (2.17). Since the group G is nilpotent of class
3, the element g can be written as

g =
∏

1≤i≤j≤s

[xuijd(j)
1i , x1j ];

by Theorem 2.29, the fifth dimension subgroup D5(G) is generated by
such elements. From the defining relations of the group G, it follows that
[xd(i)

i , x4] = 1, i = 1, 2, 3; therefore,

g = [x1, x2]16u12 [x1, x3]64u13 [x2, x3]64u23 .

Consider the condition (2.22) for the case i = 1, k = 6:

u12b26 + u14b46 + v16d(1) + v′16e(6) = 4u12 + 32u14 + 4v16 + 64v′16 = 0.
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It follows that
u12 + v16 ≡ 0 mod 4. (2.43)

Next, consider the condition (2.30) for the case k = 6, we have:

2v16 + 4v26 + 32v46 ≡ 0 mod 64,

and we have
v16 + 2v26 ≡ 0 mod 16. (2.44)

From the condition (2.31) for the case k = 3, l = 6, we have:

2v13 + 4v23 + 32v43 − v26 + 2v36 ≡ 0 mod 4,

and thus we conclude that

v26 ≡ 0 mod 2. (2.45)

The conditions (2.43), (2.44), (2.45) then imply that

u12 ≡ 0 mod 4. (2.46)

It is clear from the defining relations of the group G that

[x1, x2]64 = [x4, x3, x3]64 = 1.

Therefore,

g = [x1, x3]64u13 [x2, x3]64u23 = [x64u13
1 x64u23

2 , x3] =

[x4, x3, x3]−32u13−16u23 = x−32u13−16u23
31 .

Now consider the condition (2.22) for the case i = 3, k = 6. We have

32u34 − 32u13 − 16u23 + 64v36 + 64v′36 = 0.

Hence,
32u34 − 32u13 − 16u23 ≡ 0 mod 64. (2.47)

Note that the condition (2.20) for the case i = 3, j = 4, implies that

u34

(
64
2

)

≡ 0 mod 64;

hence
u34 ≡ 0 mod 2. (2.48)

Congruences (2.47) and (2.48) imply that

32u13 + 16u23 ≡ 0 mod 64.
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Therefore, we have

g = [x4, x3, x3]−32u13−16u23 = 1. �

Problem 2.32 Is it true that [D5(G), G,G] = γ7(G) for every group G?

2.5 Quasi-varieties of Groups

Our discussion in this and the next section follows [Mik06c].
Recall that a variety V of groups is a class of groups defined by a set

of identities. Let Dn (n ≥ 2) denote the class of groups with trivial nth
dimension subgroup. The existence of groups without dimension property
shows that Dn is not a variety of groups for n ≥ 4, since a variety of groups is
always quotient closed. The classes Dn, however, are quasi-varieties (Theorem
2.35). We recall in this section some of the basic notions about quasi-varieties.

Let F∞ be a free group of countable rank with basis {x1, x2, . . . } and
w1, . . . , wk, v some words in F∞. A quasi-identity is a formal implication:

(w1 = 1 & . . . & wn = 1) =⇒ (v = 1). (2.49)

A quasi-identity (2.49) is said to hold in a given group G if it is a true
implication for every substitution xi = gi, gi ∈ G.

A quasi-variety VS is a class of groups defined by a set S of quasi-identities,
i.e., VS is the class of all groups in which every quasi-identity from S holds.

Example 2.33

The class T0 of all torsion-free groups is a quasi-variety; it is defined by the
infinite set of quasi-identities

xp = 1 =⇒ x = 1,

where p runs over the set of all primes. Trivially, T0 is not a variety.

Recall that a non-empty class F of subsets of a given set I is called a filter
on I if the following conditions are satisfied:

(i) ∅ /∈ F ;

(ii) A ∈ F , B ∈ F =⇒ A ∩B ∈ F ;

(iii) A ∈ F , A ⊆ B =⇒ B ∈ F .

Let {Ai}i∈I be a family of groups indexed by the elements of a set I, and
F a filter on I. Let A be the Cartesian product
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A =
∏

i∈I

Ai.

For a given a ∈ A, denote by ai the ith component of a in A. Consider the
relation ∼F on A defined by setting

a ∼F b if and only if {i | ai = bi} ∈ F , a, b ∈ A.

It follows directly from the properties of a filter that this relation is, in fact,
an equivalence relation. The filtered product of the family {Ai}i∈I of groups,
with respect to the filter F , is, by definition, the quotient group

∏

F
Ai := A/ ∼F .

The following result of A. I. Mal’cev gives a characterization of quasi-
varieties of groups.

Theorem 2.34 (Mal’cev [Mal70]). A class X of groups is a quasi-variety if
and only if it contains the trivial group and is closed under subgroups and
filtered products.

Recall that Dn (n ≥ 2) denotes the class of groups with trivial nth dimen-
sion subgroup. For n = 2, and 3, the class Dn coincides with the variety Nn

of nilpotent groups of nilpotency class ≤ n. On the other hand, for all n ≥ 4,
as already mentioned, the existence of groups without dimension property
shows that the class Dn is not a variety of groups. However, there is the
following result:

Theorem 2.35 (Plotkin [Plo71]). For all n ≥ 1, the class Dn is a quasi-
variety of groups.

Proof. The fact that the class Dn, n ≥ 1, is nonempty and closed under
subgroups is obvious.

Let {Ai}i∈I be a family of groups in the class Dn, and let F be a filter
on I. Consider the Cartesian product A =

∏
i∈I Ai. Let N be the normal

subgroup of A consisting of elements (gi)i∈I with J := {i ∈ I | gi = 1} ∈ F .
If
∏
F Ai /∈ Dn, then there exists an element g ∈ A such that

g − 1 ∈ an +
∑

s∈S

(ys − 1)αs, (2.50)

where the sum is finite, αs ∈ Z[A], and ys ∈ N . Define

Js := {i ∈ I | the ith component of ys is 1}.



136 2 Dimension Subgroups

By definition, Js ∈ F . Since the set S in the sum (2.50) is finite, we have

J̄ =
⋂

s∈S

Js ∈ F .

For j ∈ J̄ , projecting g to the j-th component, we get gj ∈ Dn(Aj) and hence
gj = 1, j ∈ J . Consider the set

K := {i ∈ I | gi = 1}.

Since J̄ ⊆ K, we conclude that K ∈ F . Hence g ∈ N and therefore,
∏
F Ai ∈

Dn. Consequently, the class Dn is closed under filtered products. Hence, by
Mal’cev’s criterion (Theorem 2.34), the class Dn is a quasi-variety. �

In view of Theorem 2.22 the quasi-variety D4 is defined by the following
implications:

Given integers k, ci, dij (1 ≤ i, j ≤ k) and elements g1, . . . , gk of the
group G, if the following conditions hold

(1) 2cidij + 2cj dji = 0 (1 ≤ i, j ≤ k),

(2) if ci = cj , then dij is even,

(3) g2ci
i ∈ γ2(G) (1 ≤ i ≤ k),

(4)
∏k

i=1 g2ci
i dij ∈ γ2(G)2cj

γ3(G) (1 ≤ j ≤ k),

then
k∏

i=1

k∏

j=i+1

[gi, gj ]2
ci dij = 1.

Clearly, this set of implications is equivalent to a suitable set of quasi-
identities.

A quasi-variety Q is said to be finitely based if it can be defined by a finite
number of quasi-identities.

Let Q be a quasi-variety of groups. Then the rank rk(Q) of Q is the
minimal number n (which may be infinite) such that there exists a system of
quasi-identities

(wi
1 = 1 & . . . & wi

ni
= 1) =⇒ (vi = 1), i = 1, 2, . . . (2.51)

such that all words wj
i , vi are from a free group Fn of rank n.

Example 2.36

(i) For the quasi-variety T0 of torsion-free groups, rk(T0) = 1.
(ii) The quasi-variety defined by the quasi-identity

([x, y]2 = 1) =⇒ ([x, y] = 1)

clearly has rank 2.
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Proposition 2.37 Let Q be a quasi-variety and G a group. Then G ∈ Q if
and only if all rk(Q)-generated subgroups of G lie in Q.

Proof. One side is clear, due to the fact that quasi-varieties are closed under
the operation of taking subgroups.

Suppose G is a group such that all its rk(Q)-generated subgroups lie in Q.
Consider the quasi-identity system (2.51) which defines Q and the total num-
ber of variables entering in (2.51) is rk(Q), i.e., all words wj

i , vi in (2.51) are
from a free group of rank rk(Q). Then (2.51) holds for any choice of elements
g1, . . . , grk(Q) from G, since it holds for any elements from the subgroup
in G generated by g1, . . . , grk(Q) (which is at most rk(Q)-generated. Hence
(2.51) holds for all possible substitutions of elements from G and G ∈ Q by
definition. �

The following observation is immediate:

Proposition 2.38 If Q is finitely based, then rk(Q) is finite.

The next result provides a method for showing that a given quasi-variety
is not finitely based.

Proposition 2.39 Let Q be a quasi-variety such that there exists a sequence
of finitely-generated groups Gi, i = 1, 2, . . . , such that the following condi-
tions are satisfied:

(i) Gi /∈ Q.

(ii) For any i there exists f(i) such that all f(i)-generated subgroups of Gi lie in Q.

(iii) The function f(i) is not bounded, i.e., f(i)→∞ for i→∞.

Then rk(Q) =∞ and hence Q is not finitely based.

Proof. Suppose rk(Q) < ∞. Then, by (iii), there exists an integer i that
f(i) > rk(Q). Since every f(i)-generated subgroup of Gi lies in Q, every
rk(Q)-generated subgroup also lies in Q. Therefore, Gi ∈ Q by Proposition
2.37; but this contradicts (i). Hence rk(Q) =∞, and Q is not finitely based.

�

2.6 The Quasi-variety D4

For the study of the quasi-variety D4, recall that the precise structure of the
fourth dimension subgroup for finitely generated nilpotent groups of class 3 is
given by Theorem 2.22. It has been shown by Mikhailov-Passi [Mik06c] that
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the quasi-variety D4 is not finitely based, thus answering a problem of Plotkin
([Plo83], p. 144, Probelm 12.3.2). The proof requires a technical result about
certain finite groups of class 2.

Lemma 2.40 Let n, s be natural numbers,

G = 〈x1, . . . , x2n | xs
i = 1 (1 ≤ i ≤ 2n)〉

and Π = G/γ3(G). If

[x1, x2]k . . . [x2n−1, x2n]k = [h1, h2] . . . [h2l−1, h2l], (2.52)

with 0 < k < s, h1, . . . , h2l ∈ Π, then l ≥ n.
In particular, if H be an m-generator subgroup of Π and

[x1, x2]k . . . [x2n−1, x2n]k ∈ γ2(H),

then
(
m
2

)
≥ n.

Proof. Suppose
hi ≡ x

ai, 1
1 . . . x

ai, 2n

2n mod γ2(Π),

where 0 ≤ ai, j < s, 1 ≤ i ≤ 2l, 1 ≤ j ≤ 2n. Substituting in the equation
(2.52), we have the following equation in Π:

[x1, x2]k . . . [x2n−1, x2n]k =
∏

1≤i<j≤2n

[xi, xj ]bij , (2.53)

where

bij =
l∑

r=1

(a2r−1, ia2r, j − a2r−1, ja2r, i).

Observe that γ2(Π) =
∏

1≤i<j≤2n〈[xi, xj ]〉 and 〈[xi, xj ]〉 is a cyclic group of
order s. Therefore, from equation (2.53), comparing the exponents of the
generators [xi, xj ], 1 ≤ i < j ≤ 2n of the summands, we have:

b2t−1, 2t ≡ k mod s, 1 ≤ t ≤ n, (2.54)

bi, j ≡ 0 mod s, 1 ≤ i < j ≤ 2n, (i, j) 
= (2t− 1, 2t). (2.55)

Let Mp, q(Zs) denote the set of p × q matrices over the ring Zs of integers
mod s. Let A = (ai, j)1≤i≤2l, 1≤j≤2n ∈ M2l, 2n(Zs) and define a matrix D ∈
M2n, 2l(Zs) as follows:

D = (Dp, q)1≤p≤n, 1≤q≤l,
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where

Dp, q =
(

a2q, 2p −a2q−1, 2p

−a2q, 2p−1 a2q−1, 2p−1

)

∈M2, 2(Zs).

A straightforward verification shows that

DA = kI2n, 2n,

where I2n, 2n ∈M2n, 2n(Zs) is the identity matrix, and it follows that l ≥ n.
Next let H be an m-generator subgroup of Π. It is easy to see that every

element of γ2(H) can be expressed as a product of at most
(
m
2

)
commutators

of elements in H, since H is nilpotent of class 2. The second assertion in
Lemma thus follows from the preceding result. �

Theorem 2.41 The quasi-variety D4 is not finitely based.

Proof. For n ≥ 5, let Π = G(n)/γ4(G(n)) be the lower central quotient
of the group considered in Example 2.7. We assert that every m-generator
subgroup H of Π, with

(
m
2

)
< n, has the property that D4(H) = 1. Clearly

then rk(D4) = ∞ (by Proposition 2.39) and the assertion in Theorem 2.41
is an immediate consequence. We conitnue to denote by n xi, yi the set of
generators of Π.

Let H be an m-generator subgroup of Π and h1, . . . , hm a set of generators
of H. Assume that, modulo γ2(H), h1, . . . , hk (k ≤ m) are of finite order and
hk+1, . . . , hm are of infinite order.

For g ∈ Π, let ḡ denote the image of g in Π/γ2(Π) under the natural
projection. Observe from the structure of Π that the torsion subgroup of
Π/γ2(Π) is equal to

〈x̄1〉 ⊕ 〈x̄2〉 ⊕ 〈x̄3〉 	 Z4 ⊕ Z16 ⊕ Z64.

By suitably replacing h1, . . . , hk, if necessary, we can assume that

h1 = x
l1, 1
1 x

l1, 2
2 x

l1, 3
3 λ1, h2 = x

l2, 1
1 x

l2, 2
2 λ2, h3 = x

l3, 1
1 λ3,

hj = λj (4 ≤ j ≤ k),

where li, j ∈ Z, λi ∈ H ∩ γ2(Π) (1 ≤ i ≤ k).
Let d(i) be the order of hi modulo γ2(H). Then, in particular,

l3, 1d(3) ≡ 0 mod 4, (2.56)

l2, 2d(2) ≡ 0 mod 16. (2.57)

We can assume also that

d(k)|d(k − 1)| . . . |d(2)|d(1).
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Therefore, by Theorem 2.22, the group D4(H) consists of the following
elements:

w =
∏

1≤i<j≤k

[hd(i)
i , hj ]aij ,

where the integers aij satisfy the conditions (2.14) and (2.15).
We have, for j ≥ 4, [hd(i)

i , hj ] = [hd(i)
i , λj ] = 1; therefore,

w = [hd(1)
1 , h2]a12 [hd(1)

1 , h3]a13 [hd(2)
2 , h3]a23 =

[h1, h
d(1)a12
2 h

d(1)a13
3 ][hd(2)

2 , h3]a23 . (2.58)

Since
y1 =

∏

1<j≤k

h
d(1)a1j

j ∈ γ2(Π)d(1)γ3(Π) by (2.15),

we have,
w = [h1, y1][h

d(2)
2 , h3]a23 = [hd(2)

2 , h3]a23 .

We claim that [hd(2)
2 , h3]a23 = 1.

Consider the element h3 = x
l3, 1
1 λ3. We have

x
l3, 1d(3)
1 λ

d(3)
3 =

∏

1≤i<j≤m

[hi, hj ]uij γ, (2.59)

for some γ ∈ γ3(Π) and uij ∈ Z.
Let E be the normal subgroup in Π generated by x2, x3, Y2, Y3, [x1, Yj ] (j ∈

{1, 4, 5}), [Yi, Yj ] (i, j ∈ {1, 4, 5}, i 
= j) and γ3(Π), where

Yi = {y(2i−2)n+1, . . . , y2in}, i = 1, . . . , 5.

Let

S = 〈x1, Y1, Y4, Y5 | x4
1 = ξ1, (n), x−32

1 = ξ16
4, (n), x−64

1 = ξ64
5, (n),

[x1, Yi] = 1 (i ∈ {1, 4, 5}), [Yi, Yj ] = 1 (i, j ∈ {1, 4, 5}, i 
= j)〉, (2.60)

We note that
Π/E 	 S/γ3(S).

Let p : Π→ S/γ3(S) be the composition of the projections Π→ Π/E and
Π/E → S/γ3(S). Applying the projection p to the equation (2.59) in Π, we
have the following equation in S/γ3(S):

x
l3, 1d(3)
1 p(λ1)d(3) =

∏

i<j

[p1(hi), p1(hj)]uij , (2.61)
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Note that

S/γ3(S) = (〈x1〉 ⊕ Y1/γ3(Y1)⊕ Y4/γ3(Y4)⊕ Y5/γ3(Y3)) /N,

where Yi, 1 ≤ i ≤ 5 is a free group with basis Yi,

N = 〈x4
1, (n)ξ

−1
1, (n), ξ8

1, (n)ξ
16
4, (n), ξ16

1, (n)ξ
64
5, (n)〉.

Therefore (2.61) implies that in the direct product

Y := Y1/γ3(Y1)⊕ Y4/γ3(Y3)⊕ Y5/γ3(Y3).

We have
l3, 1d(3) ≡ 0 mod 4, (2.62)

and

ξ
l3, 1d(3)

4
1, (n) µ

d(3)
1 (ξ8

1, (n)ξ
16
4, (n))

k1 (ξ16
1, (n)ξ

64
5, (n))

k2 =
∏

1≤i<j≤m

[zi, zj ]uij , (2.63)

for some integers k1, k2 and elements µ1 ∈ γ2(Y), zi ∈ Y, 1 ≤ i ≤ m. Pro-
jecting (2.63) to each of the three summands of Y we have the following three
equations:

ξd1
1, (n)µ

d(3)
1, 1 =

∏

1≤i<j≤m

[zi, 1, zj, 1]uij , in Y1/γ3(Y1), d1 =
l3, 1d(3)

4
+ 8k1 + 16k2,

(2.64)
ξd4
4, (n)µ

d(3)
1, 4 =

∏

1≤i<j≤m

[zi, 4, zj, 4]uij , in Y4/γ3(Y4), d4 = 16k1, (2.65)

ξd5
5, (n)µ

d(3)
1, 5 =

∏

1≤i<j≤m

[zi, 5, zj, 5]uij , in Y5/γ3(Y5), d5 = 64k2, (2.66)

for some µ1, i ∈ γ2(Yi)/γ3(Yi), zi, l ∈ Yl/γ3(Yl), 1 ≤ i ≤ m, l ∈ {1, 4, 5}.

Case (a): l3, 1 is odd.
In view of (2.62), we have d(3) = 4s for some integer s. Let

Zi = 〈Yi | y4s
i = 1 (yi ∈ Yi), γ3(Y1)〉,

and pi : Yi/γ3(Yi) → Zi be the natural projection, i ∈ {1, 4, 5}.
Projecting the equations (2.64), (2.65) and (2.66) into Z1, Z4, Z5 respectively,
we conclude, by an application of Lemma 2.40, that

di ≡ 0 mod 4s (i ∈ {1, 4, 5}).
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From (2.64) and (2.65), we therefore have

l3, 1s + 8k1 + 16k2 ≡ 0 mod 4s, (2.67)
16k1 ≡ 0 mod 4s. (2.68)

It follows easily that s ≡ 0 mod 16, and consequently,

d(3) ≡ 0 mod 64.

Let d(3) = 64f, f ∈ Z, and suppose d(2) = d(3)c (c ∈ Z) (recall that
d(3)|d(2)). Then we have

w = [hd(2)
2 , h3]a23 = [h2, h

d(3)
3 ]ca23 =

[h2, x
64l3, 1f
1 λ64f

3 ]ca23 = [h16
2 , x

4l3, 1f
1 λ4f

3 ]ca23 .

Since h16
2 ∈ γ2(Π), it follows that w = 1.

Case (b): l3, 1 = 2l and l is odd. We assert that in this case

d(3) ≡ 0 mod 16. (2.69)

Since x
2ld(3)
1 ∈ γ2(Π), we have d(3) = 2r for some r > 0. Projecting the square

of the equation (2.64) to Z1 under the map p1, we conclude, by an application
of Lemma 2.40, that 2d1 ≡ 0 mod 4r.

Therefore we have

2d1 = 2lr + 16k1 + 32k2 ≡ 0 mod 4r,

which implies that r ≡ 0 mod 8, and consequently, we have (2.69).
Now consider the element h2 = x

l2, 1
1 x

l2, 2
2 λ2. We have

h
d(2)
2 = (xl2, 1

1 x
l2, 2
2 )d(2)λ

d(2)
2 =

∏

1≤i<j≤m

[hi, hj ]vij γ, (2.70)

for some γ ∈ γ3(Π) and vij ∈ Z.
Let I be the normal subgroup in Π generated by x1, x3, Y1, Y4, [x2, Yj ] , j ∈

{2, 3, 5}), [Yi, Yj ] (i, j ∈ {2, 3, 5}, i 
= j) and γ3(Π). Let

Q = 〈x2, Y2, Y3, Y5 | x16
2 = ξ2, (n), ξ2

2, (n) = ξ4
3, (n), ξ8

2, (n) = ξ64
5, (n)〉.

Note that Π/I 	 Q/γ3(Q) and

Q/γ3(Q) 	 (〈x2〉 ⊕ Y2/γ3(Y2)⊕ Y3/γ3(Y3)⊕ Y5/γ3(Y5))/M,

where M = 〈x16
2 ξ−1

2, (n), ξ2
2, (n)ξ

−4
3, (n), ξ8

2, (n)ξ
64
5, (n)〉. Let q : Π→ Q be the natural

projection. Applying q to the equation (2.70), we have the following equation
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q(x2)l2, 2d(2)q(λ2)d(2) =
∏

1≤i<j≤m

[q(hi), q(hj)]vij (2.71)

in the group Q/γ3(Q). This equation implies that, in the direct product

V := Y2/γ3(Y2)⊕ Y3/γ3(Y3)⊕ Y5/γ3(Y5),

we have (using (2.57))

ξ
l2, 2d(2)

16
2, (n) µ

d(2)
2 (ξ2

2, (n)ξ
−4
3, (n))

m1 (ξ8
2, (n)ξ

64
5, (n))

m2 =
∏

1≤i<j≤m

[vi, vj ]vij , (2.72)

for some integers m1, m2 and the elements µ2 ∈ γ2(V), vi ∈ V, 1 ≤ i ≤ m.
Projecting (2.72) to the first summand of V, we have the following equation:

ξe1
2, (n)µ

d(2)
2, 1 =

∏

1≤i<j≤m

[vi, 1, vj, 1],

where

e1 =
l2, 2d(2)

16
+ 2m1 + 8m2,

and µ2, 1 ∈ γ2(Y2)/γ3(Y2), vi, 1 ∈ Y2/γ3(Y2), 1 ≤ i ≤ m. Since d(3)|d(2),
therefore d(2) = 16t for some t. An application of Lemma 2.40 once again
shows that e1 ≡ 0 mod 16t; consequently, l2, 2t is even and so l2, 2d(2) = 32f
for some f . Hence

w = [hd(2)
2 , h3]a23 = [(xl2, 1

1 x
l2, 2
2 λ2)d(2), x2l

1 ]a23 = [xl2, 1
1 x

l2, 2
2 λ2, x

l3, 1d(2)
1 ]a23

= [xl2, 2
2 , x

l3, 1d(2)
1 ]a23 = [x2, x

l3, 1l2, 2d(2)
1 ]a23 = [x2, x64lf

1 ]a23

= [x2, ξ16lf
1, (n)]

a23 = [x16
2 , ξlf

1, (n)]
a23 = 1.

Case (c): l3, 1 ≡ 0 mod 4. In this case h3 ∈ γ2(Π), since x4
1 ∈ γ2(Π); there-

fore, w = 1.

Thus, in all cases, w = 1, and consequently, D4(H) = 1. This completes the
proof. �

2.7 Dimension Quotients

If G is a finite p-group, p odd, then D4(G) = γ4(G) [Pas68a]. Refuting the
long standing dimension conjecture that Dn(G) = γn(G) always, Rips [Rip72]
constructed a 2-group (Example 2.1) with D4(G) 
= γ4(G) = 1. Extending
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these results N. Gupta has shown that odd prime power groups have the
dimension property [Gup02] and, for every n ≥ 4, there exist 2-groups with
Dn(G) 
= γn(G) [Gup90]. For odd prime p, the dimension property was earlier
shown to hold for metabelian p-groups by Gupta [Gup91b] and for centre-
by-metabelian p-groups by Gupta-Gupta-Passi [Gup94]. The result for odd
prime power groups is an immediate consequence of the following result.

Theorem 2.42 (N. Gupta [Gup02]). The nth dimension quotient of a finite
nilpotent group has exponent dividing 2l, where l is the least natural number
such that 2l ≥ n.

Let n ≥ 3 be an arbitrary but fixed integer and let G be a finite nilpotent
group with γn(G) = 1. Choose a non-cyclic free presentation (see [Mag66],
Theorem 3.5, p. 140)

1→ R→ F → G→ 1,

where F is the free group with basis {x1, . . . , xm}, m ≥ 2, and R is the
normal closure in F of the set of relators {xe(1)

1 ξ1, . . . , x
e(m)
m ξm} ∪ T such

that e(i) > 1, ξi ∈ [F, F ] and T is a finite subset of [F, F ].
Let l be the least positive integer such that 2l ≥ n. Let

G = δ0(G) ⊇ δ1(G) . . . ⊇ δl−1(G) ⊇ δl(G) = 1

be the derived series of G. Then δk(G) 	 δk(F )R/R, 0 ≤ k ≤ l − 1, and
therefore we can have a presentation

1→ R(k) → F (k) → δk(G)→ 1

where F (k) is a free subgroup of the kth derived subgroup δk(F ) of F with
ordered basis B(k) = {xk, 1, . . . , xk,mk

}, mk ≥ 2, R(k) is the normal clo-
sure in F (k) of the set of relators {xe(k, 1)

k, 1 ξk, 1, . . . , x
e(k, mk)
k,mk

ξk,mk
} ∪ Tk with

e(k, i) > 1, ξk, i ∈ [F (k), F (k)] and Tk ⊂ [F (k), F (k)] a finite subset. Further-
more, it is possible to define a weight function and a weight-preserving order
on the set ∪kB(k). To this end, we need the following basic results.

Lemma 2.43 If S is a set of generators of a free group F which is linearly
independent modulo [F, F ], then S is a basis of F .

Proof. Let X be a set equinumerous with S and α : X → S a bijec-
tion. Let F be the free group on X. Then the map α extends to a homo-
morphism ᾱ : F → F . Since S generates F and is linearly independent
modulo [F, F ], the homomorphism ᾱ is an epimorhism and the induced ho-
momorphism F/[F, F] → F/[F, F ] is an isomorphism. By Theorem 1.76,
the induced homomorphisms F/γm(F) → F/γm(F ), m ≥ 2, are all isomor-
phisms, since, both F and F being free, H2(F) = H2(F ) = 0. Hence ker(ᾱ) ⊆
γω(F) = 1. It thus follows that ᾱ is an isomorphism, and so S is a free set of
generators of F . �
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Lemma 2.44 Let B be an ordered basis of a free group F . Then the basic
commutators

C(t) = [y1, y2, . . . , yt], yi ∈ B, t ≥ 2,

satisfying y1 > y2 ≤ y3 ≤ . . . ≤ yt are linearly independent modulo δ2(F ). �

Proof. Let a = Z[F ]∆(δ1(F )). Consider the Magnus embedding

θ : δ1(F )/δ2(F )→ f/fa, xδ2(F ) �→ (x− 1) + fa, x ∈ δ1(F ). (2.73)

Suppose we have an inclusion

m∏

i=1

yn(yi)
i ∈ δ2(F ), (2.74)

where yi, i = 1, 2, . . . , m, are left-normed commutators [yi1, yi2, . . . , yiti
]

satisfying yi1 > yi2 ≤ . . . ≤ yiti
. On applying θ, we then have

m∑

i=1

([yi1, yi2]− 1)(yi3 − 1) . . . (yiti
− 1) ≡ 0 mod fa. (2.75)

Since f is a free right Z[F ]-module with basis B − 1, it follows that
∑

n(yi)(yi2 − 1) . . . (yim − 1) ≡ 0 mod a,

where the sum is taken over all i for which the first entry yi1 in yi is the
same. Since the elements (y1 − 1)(y2 − 1) . . . (yr − 1), y1 ≤ y2 ≤ . . . yr with
yi’s in B are linearly independent modulo a, it follows that n(yi) = 0 for all
i = 1, 2, . . . ,m. �

The chain
F = F (0) ⊃ F (1) ⊃ · · · ⊃ F (l) = {1}, (2.76)

can be constructed inductively as follows. Let the basis {x1, . . . , xm} of
F = F (0) be renamed as B(0) = {x0,1, . . . , x0,m0} by defining m0 = m and
setting x0,1 = x1, . . . , x0,m0 = xm. To each basis element x0,i in B(0), we
assign weight 1:

wt(x0,i) = 1 for i = 1, . . . , m0.

Having defined, for k ≥ 1, the subgroup F (k−1) with an ordered basis

B(k − 1) = {xk−1,1, . . . , xk−1,mk−1}

satisfying xk−1,i < xk−1,i+1 and wt(xk−1,i) < n for i = 1, . . . , mk−1, to define
the subgroup F (k) with a weight preserving ordered basis, list the finite set
B(k) of all left-normed basic commutators of the form
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C(t) = [y1, y2, . . . , yt] , yi ∈ B(k − 1), t ≥ 2, (2.77)

satisfying y1 > y2 ≤ · · · ≤ yt and wt(y1) + · · · + wt(yt) < n. Let F (k) be
the subgroup generated by B(k). By Lemmas 2.43 and 2.44 the commutators
C(t) constitute a free basis of F (k). Now define

wt(C(t)) = wt(y1) + · · ·+ wt(yt).

Define any weight-preserving order relation on the set B(k) and relabel its
elements following this order to obtain the basis

B(k) = {xk,1, . . . , xk,m(k)} (2.78)

of the subgroup F (k).
Let k ∈ {0, 1, . . . , l − 1} be arbitrary but fixed. In the free group rings

Z[F (k)] set

r(k) = Z[F (k)](R(k) − 1),

f (n,k) = Z-span{(y±1
1 − 1) . . . (y±1

t − 1) | t ≥ 2}
with yi ∈ B(k) satisfying wt(y1) + · · ·+ wt(yt) ≥ n.

(2.79)

Next, define the kth partial dimension subgroup by

D(n)(R(k)) = F (k) ∩ (1 + r(k) + f (n, k)) (2.80)

and the kth partial lower central subgroup γ(n)(F (k)) to be the normal closure
of the set

{[y1, . . . , yt] , yi ∈ B(k) , t ≥ 2, y1 > y2 ≤ · · · ≤ yt},

where wt(y1)+ · · ·+wt(yt) ≥ n and wt(y1)+ · · ·+wt(yt−1) < n. We thus have
the following subnormal chain of subgroups:

D(n)(R(0)) ⊇ D(n)(R(1)) ⊇ · · · ⊇ D(n)(R(l)) = 1 (2.81)

where clearly R(k)γ(n)(F (k)) ≤ D(n)(R(k)).

The main result in [Gup02] is the following

Theorem 2.45 For each k ∈ {0, 1, . . . , l − 1},

D(n)(R(k))2 ⊆ R(k)γ(n)(F (k))D(n)(R(k+1)).

Theorem 2.42 is an immediate consequence of the above result. For, let
w ∈ F ∩ (1 + r + fn). Then w − 1 ∈ r(0) + f (n, 0) and w ∈ D(n)(R(0)).



2.7 Dimension Quotients 147

Theorem 2.45 implies that there exist elements

g0 ∈ R(0)γ(n)(F (0)), g1 ∈ R(1) γ(n)(F (1)), . . . , gl−1 ∈ R(l−1)γ(n)(F (l−1))

such that
(. . . ((w2g0)2g1)2 . . . )2 gl−1 = 1

and, since R(k)γ(n)(F (k)) ⊆ Rγn(F ) for each k, Theorem 2.42 follows.

If G is a group whose lower central factors γn(G)/γn+1(G) are all torsion-
free, then G has the dimension property (see [Pas79], p. 48). Thus, in par-
ticular, free nilpotent groups and the free poly-nilpotent groups have the
dimension property.

Theorem 2.46 (Kuz’min [Kuz96]). If G is an extension of a group whose
lower central quotients are torsion-free by an abelian group, then G has the
dimension property.

It is known [Gup73] that the lower central factors of the free centre-by-
metabelian group are, in general, not torsion-free. However, we have the
following

Theorem 2.47 (Gupta-Levin [Gup86]). Free centre-by-metabelian groups
have the dimension property.

Let f be the augmentation ideal of the free group ring Z[F ]. For c ≥ 1, let
ac be the ideal Z[F ](γc(F )− 1).

Theorem 2.48 (Gupta-Gupta-Levin [Gup87b]). For all n, c ≥ 1,

F ∩ (1 + fac + fn+1) = [γc(F ), γc(F )]γn+1(F ).

In particular, the groups F/[γc(F ), γc(F )], c ≥ 1, have the dimension
property.

For c = 2, the above result was proved earlier by Gupta [Gup82].

Theorem 2.49 (Gupta-Kuz’min). For any n ≥ 1 and a group G, the sub-
quotient group Dn(G)/γn+1(G) is abelian.

Proof. Let G be a nilpotent of class n. We have to show that Dn(G) is
abelian. Let A be a maximal abelian normal subgroup of G. It is easy
to show that A coincides with its centralizer CG(A). We can view A as a
G-module via conjugation. Then for any k ≥ 1, we have

a ◦ (g − 1) ⊆ γk+1(G), g ∈ Dk(G).

In particular, any g ∈ Dn(G) lies in CG(A). Therefore Dn(G) ⊆ CG(A) and
hence Dn(G) is an abelian group. �
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2.8 Plotkin’s Problems

The following problems have been raised and discussed by Plotkin in [Plo73]
(see also Hartley [Har84]).

Problem 2.50 For every group G, is it true that Dω(G) = γω(G).

Problem 2.51 Is it true that for every nilpotent group G, there exists an
integer n(G) such that Dn(G)(G) = 1? In other words, does every nilpotent
group have finite dimension series?

Plotkin conjectures that problem 2.50 has an affirmative answer.

Theorem 2.52 (Hartley [Har82c]). If G is a nilpotent group in which the tor-
sion subgroup has finite dimension series, then G itself has finite dimension
series.

For a group G, let s(G) denote the least natural number n, if it exists,
such that Dn(G) = 1, and infinity otherwise. Let Nc denote the variety of
nilpotent groups of class ≤ c. It is easy to see that finitely generated nipotent
groups and torsion-free nilpotent groups have finite dimension series.

Let c be a natural number and suppose that every group in Nc has finite
dimension series. Then there exists a natural number r = r(c) such that
Dr(G) = 1 for every G ∈ Nc. For, if not, then we can find groups in Nc

having arbitrarily long dimension series. Choose groups G1, G2, . . . in Nc

so that Gi has dimension series of length ≥ i. Then the group Γ = ⊕∞i=1Gi,
is in Nc, but its dimension series does not terminate with identity in a finite
number of steps. A standard reduction argument (see [Pas68a]) shows that if
s = s(c) is a number such that, for every finite p-group G ∈ Nc, Ds(G) = 1,
then, for every group Γ ∈ Nc, Ds(Γ ) = 1.

Lemma 2.53 Let H � G and suppose that

[H, mG] := [. . . [H, G], G]. . . . , ], G
︸ ︷︷ ︸

m terms

] = 1.

Let M be a right G-module such that M.gr ⊆ M.h for some integer r ≥ 1.
Then M.grnm ⊆M.hn for all n ≥ 1.

Proof. We proceed by induction on m ≥ 1. If m = 1, then H is a cen-
tral subgroup. Therefore, repeated use of M.gr ⊆ M.h gives the required
inclusion:

M.grn ⊆M.hn.

Now suppose m > 1 and the result holds for m − 1. Let K = [H, m−1G]
and consider the groups H̄ = H/K and Ḡ = G/K. Note that H̄ � Ḡ and
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[H̄, m−1Ḡ] = 1. The quotient M̄ = M/M.k is a Ḡ-module under the action
induced by that of M as a G-module and

M̄.ḡr ⊆ M̄.h̄.

Therefore, by induction hypothesis,

M̄.ḡr.nm−1 ⊆ M̄.h̄n,

for all n ≥ 1. This implies that

M.grnm−1 ⊆M.hn + M.k.

Since K is a central subgroup of G, iteration gives

M.grnm ⊆M.hn,

and the proof is complete. �

Lemma 2.54 Let G be a group, and suppose that H �G, G = HF for some
finite p-group F ⊆ G, [H, mG] = 1 for some integer m ≥ 1. Then for every
r ≥ 1, there exists u = u(r) such that

Z[H] ∩ gu ⊆ hr.

Proof. Let D = H∩F . Then D is a finite p-group. Let r ≥ 1 be given. Choose
s ≥ 1 such that psd ⊆ dr ⊆ hr. Observe that hr

Z[G]+psfZ[H] is a right ideal
of Z[G]. Consider the right G-module M = Z[G]/(hr

Z[G] + pshZ[H]). Since
G/H is a finite p-group, there exists n ≥ 1 such that gn ⊆ hZ[G] + psfZ[H].
Hence, by Lemma 2.53, we can conclude that there exists an integer u =
u(r) ≥ 1 such that M.gu ⊆M.hr, i.e.,

gu ⊆ hr
Z[G] + psfZ[H].

Intersecting with Z[H] we get

Z[H] ∩ gu ⊆ Z[H] ∩ (hr
Z[G] + psfZ[H]). (2.82)

If T is a transversal for D in F including 1, then by the choice of s, we have

hr
Z[G] + psfZ[H] = hr

Z[G] + pstZ[H],

where t is the additive subgroup of Z[G] generated by t − 1, t ∈ T . Let
θ : Z[G] → Z[H] be the linear extension of the map G → H given by
g = th �→ h (t ∈ T, h ∈ H). Applying θ to the inclusion (2.82) we get

Z[H] ∩ (hr
Z[G] + psfZ[H]) = hr.

Hence Z[H] ∩ gu ⊆ hr. �
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Theorem 2.55 (Kuskulei, see [Plo73]). If G is a nilpotent group having a
subgroup H of finite index whose dimension series is finite, then G has finite
dimension series.

Proof. It clearly suffices to consider the case when H � G and G/H is a
cyclic group of prime order, p say. If the torsion subgroup T of G lies in H,
then T has finite dimension series and therefore, by Theorem 2.52, G has
finite dimension series. If T 
⊆ H, then H has a supplement of p-power order
in G, and Lemma 2.54 implies that G has finite dimension series. �

Theorem 2.56 (Tokarenko and Rips [Plo73]). If a semi-direct product G =
H � K is nilpotent and both H and K have finite dimension series, then G
has finite dimension series and s(G) ≤ max(s(H)c, s(K)).

Proof. Regard Z[H] as a right G-module as follows. For α ∈ Z[H], g = hk ∈
G, h ∈ H, k ∈ K, define

α.g = αkh,

where αk stands for the element of Z[H] obtained on conjugating by k each
element in the support of α. Then, as can be seen by induction on the class
of G,

Z[H].gmc ⊆ hm.

Since K has finite dimension series, Dn(G) ⊆ H for n ≥ s(K). Let n ≥
max(s(H)c, s(K)) and x ∈ Dn(G). Then x− 1 ∈ Z[H] ∩ gs(H)c

. Hence

1.(x− 1) ∈ hs(H).

However, under the G-module action we are considering, 1.(x − 1) = x − 1
Therefore, it follows that x − 1 ∈ hs(H), and consequently x = 1, showing
that G has finite dimension series with s(G) ≤ max(s(H)c, s(K)). �

Corollary 2.57 (Valenza [Val80]). If G is a nilpotent group and G = H �K
with K abelian, then s(G) is bounded by a function of s(H) and the class
of G.

A group G is said to satisfy the minimal condition on subgroups if each
nonempty collection of subgroups contains a minimal element; or, equiva-
lently, each descending chain of subgroups stabilizes after a finite number
of steps. A solvable group satisfies the minimum condition on subgroups if
and only if it is an extension of a direct product of finitely many quasicyclic
groups by a finite group (see [Rob95, p. 156]). Thus, in view of Theorem 2.55,
we have:
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Proposition 2.58 Every nilpotent group which satisfies minimum condition
on subgroups has finite dimension series.

An A3-group, in the notation of Mal’cev [Mal56], is an abelian group G
whose periodic part P satisfies the minimum condition on subgroups and
the quotient G/P has finite rank. A nilpotent A3-group is a nilpotent group
having a finite normal series in which the factor groups are A3-groups. Clearly,
the torsion subgroup of a nilpotent A3-group satisfies the minimum condition
on subgroups and therefore, by Proposition 2.58, the torsion part, and hence
by Theorem 2.52, the group itself has finite dimension series:

Theorem 2.59 (Plotkin [Plo73]). A nilpotent A3-group has finite dimension
series.

2.9 Modular Dimension Subgroups

In contrast to the case of integral dimension subgroups, definitive answer for
the identification of dimension subgroups over fields has long been known.
To state the result we need the following definitions, given a group G and a
prime p:

(i) Define the series {Mn, p(G)}n≥1 by setting

M1, p(G) = G, M2, p(G) = γ2(G), Mn+1, p(G) = [G, Mn, p(G)]Mp
( n

p ), p(G)

(2.83)
for n ≥ 2, where ( r

s ) denotes the least integer ≥ r
s .

(ii) Define the series {Gn, p}n≥1 by setting

Gn, p =
∏

ipj≥n

γi(G)pj

. (2.84)

If H is a subset of a group G, we denote by
√

H the radical of H:
√

H = {x ∈ G |xm ∈ H, for some m > 0}. (2.85)

Theorem 2.60 (Jennings, [Jen41], [Jen55]). Let F be a field and G a group.
(i) If char(F ) = 0, then Dn, F (G) =

√
γn(G) for all n ≥ 1.

(ii) If char(F ) = p > 0, then Dn, F (G) = M(n), p(G) = Gn, p for all n ≥ 1.

Over general rings, it is known that the dimension subgroups of groups
depend only on the ones over the rings Zn, n ≥ 0 (see Passi [Pas79], p. 16
for details). We mention here a few results in low dimensions.
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Theorem 2.61 (Moran [Mor70]; see also Tasić [Tas93]). For every group G,
prime p and integer e ≥ 1,

Dn, Zpe (G) = Gpe

γn(G) for 1 ≤ n ≤ p.

Let n be a non-negative integer; if n is even, let n = 2qm, where q is a
power of 2 and m is odd. Let

Kn(G) =

{
Gnγ3(G), if n is odd or 0,
(Gmγ3(G)) ∩ 〈x2q |xq ∈ G2qγ2(G)〉γ3(G), if n is even.

Let N/Kn(G) be the subgroup of the centre of G/Kn(G) consisting of the
elements of order dividing n.

Theorem 2.62 (Passi-Sharma [Pas74]).

(i) G ∩ (1 + ∆3
Zn

(G) + ∆Zn (G)∆Zn (N)) = Kn(G) if n is odd or 0.

(ii) G ∩ (1 + ∆3
Zn

(G) + ∆Zn (G)∆Zn (N)) = Kn(G)〈xn |xqm ∈ N〉 if n is even.

(iii) G ∩ (1 + ∆3
Zn

(G)) = Kn(G) for all n.

2.10 Lie Dimension Subgroups

Given a multiplicative group G and a commutative ring R with identity,
define ideals ∆(n)

R (G), n ≥ 1, inductively by setting ∆(1)
R (G) = ∆R(G), the

augmentation ideal of the group ring R[G], and

∆(n)
R (G) = [∆(n−1)

R (G), ∆R(G)]R[G], n > 1, (2.86)

the two-sided ideal of R[G] generated by [α, β]=αβ−βα, α ∈ ∆(n−1)
R (G), β ∈

∆R(G). We then have a decreasing series

∆R(G) = ∆(1)
R (G) ⊇ ∆(2)

R (G) ⊇ . . . ⊇ . . . ∆(n)
R (G) ⊇ . . .

of two-sided ideals in R[G]; this series has the property that

∆(m)
R (G).∆(n)

R (G) ⊆ ∆(n+m−1)
R (G) (2.87)

for all m, n ≥ 1 (see [Pas79], Prop. 1.7 (iii), p.4). Let

D(n), R(G) = G ∩ (1 + ∆(n)
R (G)), n ≥ 1.
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We call D(n), R(G) the nth upper Lie dimension subgroup of G over R. In
view of (2.87), {D(n), R(G)}n≥1 is a central series in G. When R = Z, we drop
the suffix and write simply D(n)(G) instead of D(n), Z(G).

Let L be a Lie ring. For subsets H, K of L, we denote by [H, K] the
additive subgroup of L spanned by the commutators [h, k] = hk − kh, h ∈
H, k ∈ K. Recall that the lower central series {Ln}n≥1 of L is defined
inductively by setting L1 = L, and Ln+1 = [L, Ln] for n ≥ 1. The Lie ring L
is said to be nilpotent if Ln = 0 for some n ≥ 1.

Let A be an associative ring. We can view A as a Lie ring with the bracket
operation defined by

[α, β] = αβ − βα, α, β ∈ A.

Define a series of two-sided ideals {A[n]}n≥1 of A by setting A[1] = A and
A[n], n > 1, to be the two-sided ideal of A generated by the nth term An

in the lower central series of A viewed as a Lie ring. We say that A is Lie
nilpotent (resp. residually Lie nilpotent) if A[n] = 0 for some n ≥ 1 (resp.⋂

A[n] = 0).

Theorem 2.63 (Gupta-Levin [Gup83]). Let A be an associative ring with
identity and let U = U(A) be its group of units. Then

A[m].A[n] ⊆ A[m+n−2] for all m, n ≥ 2.

Let G be a multiplicative group and R a commutative ring with identity.
Consider the series {∆[n]

R (G)}n≥1 of two-sided ideals in R[G]. Clearly

∆[n]
R (G) ⊆ ∆(n)(G) for all n ≥ 1,

and, by Theorem 2.63, we have

∆[n](G)∆[m](G) ⊆ ∆[n+m−2](G)Z[G] (2.88)

for every group G. The filtration {∆[n]
R (G)}n≥1 of ∆R(G) defines a series of

normal subgroups {D[n], R(G)}n≥1 in G:

D[n], R(G) = G ∩ (1 + ∆[n]
R (G)). (2.89)

We call D[n], R(G), n ≥ 1, the nth lower Lie dimension subgroup of G over R.
As usual, when the ring R is Z, we drop the suffix R and write D[n](G) instead
of D[n], Z(G).

From definitions, and in view of Theorems 1.6 and 2.63, it is then clear
that for any group G and integer n ≥ 1, we have the following inclusions:

γn(G) ⊆ D[n](G) ⊆ D(n)(G) ⊆ Dn(G). (2.90)
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In general, not only the inclusion γn(G) ⊆ Dn(G) can be strict, but even the
inclusion γn(G) ⊆ D[n](G) can be strict. To this end, we have

Theorem 2.64 Let s be an arbitrary natural number. Then there exists a
natural number n and a nilpotent group G of class n, such that D[n+s](G) 
= 1.

We first prove two lemmas.

Lemma 2.65 Let Π be a group, k # l# 4. If x1, x2, x3 ∈ γm(Π) and there
exist ξi ∈ γn(Π), i = 1, . . . , 5, n ≥ 2m, m ≥ 3, such that

x4
1 = ξ1, x2l

2 = ξ2, x2l+1

2 x2k

3 = ξ4
3 , x−2l+1

1 x2k+1

3 = ξ2l

4 , x2k

1 x2k+1

2 = ξ2k

5 ,

then
w = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ] ∈ D[n+2m−6](Π).

Proof. Since 1− x ∈ ∆[n](Π)Z[Π] for x ∈ γn(Π), we have

1− w ≡ α1 + α2 + α3 mod ∆[2n](Π)Z[Π],

where α1 = (1− [x1, x2l+1

2 ]), α2 = (1− [x1, x2k

3 ]), α3 = (1− [x2, x2k+1

3 ]). Now,
working modulo ∆[n+2m−6](Π)Z[Π], we have

α1 ≡ (1 + (x−1
1 x−2l+1

2 − 1))((1− x2l+1

2 )(1− x1)− (1− x1)(1− x2l+1

2 ))

≡ (1− x2l+1

2 )(1− x1)− (1− x1)(1− x2l+1

2 ),

since x−1
1 x−2l+1

2 ∈ γm(Π) and

(x−1
1 x−2l+1

2 − 1)((1− x2l+1

2 )(1− x1)− (1− x1)(1− x2l+1

2 )) ∈ ∆[n+2m−6](Π)Z[Π]

by (2.88). Modulo ∆[n+2m−6](Π)Z[Π], we have:

α1 ≡ (1− x2l+1

2 )(1− x1)− 2l+1(1− x1)(1− x2)

+
n−1∑

i=2

(−1)i

(
2l+1

i

)

(1− x1)(1− x2)i

Note that
(2l+1

i

)
is divisible by 4n for sufficiently large l and i ≤ n. Hence, for

such a large l,

n−1∑

i=2

(−1)i

(
2l+1

i

)

(1− x1)(1− x2)i ∈ ∆[n+2m−6](Π)Z[Π].

By the same principle, we get

2l+1(1− x1)(1− x2) ≡ (1− x2l+1

1 )(1− x2) mod ∆[n+2m−6](Π)Z[Π].



2.10 Lie Dimension Subgroups 155

Therefore,

α1 ≡ (1− x2l+1

2 )(1− x1)− (1− x2l+1

1 )(1− x2) mod ∆[n+2m−6](Π)Z[Π].

Choosing k to be such that
(2k+1

i

)
is divible by 2ln for any i ≤ n, we get

α2 ≡ (1− x2k

3 )(1− x1)− (1− x2k

1 )(1− x3) mod ∆[n+2m−6](Π)Z[Π],

α3 ≡ (1− x2k+1

3 )(1− x2)− (1− x2k+1

2 )(1− x3) mod ∆[n+2m−6](Π)Z[Π].

Therefore,

α1 + α2 + α3 ≡ (2− x2l+1

2 − x2k

3 )(1− x1) + (x2l+1

1 − x2k+1

3 )(1− x2)+

(x2k

1 +x2k+1

2 −2)(1−x3) ≡ (1−ξ4
3)(1−x1)+(1−ξ2l

4 )(1−x2)+(1−ξ2k

5 )(1−x3) ≡
(1−ξ3)(1−ξ1)+(1−ξ4)(1−ξ2)+(1−ξ5)(1−ξ3) ≡ 0 mod ∆[n+2m−6](Π)Z[Π],

and hence w ∈ D[n+2m−6](Π). �

Lemma 2.66 Let Wm, n be the group given by the following presentation:

〈x1, . . . , x14 | [x1, mx11]4ξ1, [x2, mx12]2
l

ξ2, [x3, mx13]2
k

ξ3,

[x4, nx14, x10]4[x4, nx14, x3, mx13, x7]2
k−1

, ξ2k−2

1 ξ2k−l+1

2 〉,

where

ξ1 = [x4, nx14, x7]2[x4, nx14, x6][x4, nx14, x5]2,

ξ2 = [x4, nx14, x7]2
l−2

[x4, nx14, x10]−1[x4, nx14, x5]2,

ξ3 = [x4, nx14, x6]−2l−2
[x4, nx14, x10]−2.

Then the element

wn, m = [x1, mx11, [x2, mx12]2
l+1

][x1, mx11, [x3, mx13]2
k

]

[x2, mx12, [x3, mx13]2
k+1

]

does not lie in γn+m+4(Wn, m), n ≥ m ≥ 0.

Proof. Let F be a free group with basis {x1, . . . , x10}. Consider four types
of relations:

R1 = γ4(F ),

R2 = 〈R1, [xi, xj , xk] /∈ 〈α, β, γ, δ, ε, θ〉R1 for all i, j, k,

α2k−l

β−1, β2l−2
γ−1, γ4, βε, αδ, θγ〉,
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where

α = [x4, x3, x7], β = [x4, x2, x6], γ = [x4, x10, x1], δ = [x4, x7, x3],
ε = [x4, x6, x2], θ = [x4, x1, x10];

Now define R3 to be the subgroup generated by R2 together with the
normal closure of the following words:

[x3, x4]2
k

, [x2, x4]2
l

,

[x4, x1]4, [x2, x3]2
l

α−2l−2
,

[x3, x1]4α−2, [x2, x1]4β−1,

[x4, x5]2
k−l+2

α−2k−1
, [x4, x7]2

k

γ2,

[x4, x6]2
k−2

, [x4, x10]4γ2,

[x5, xi], i 
= 1, [x1, xi], [x2, xi], [x3, xi], i > 4.

Let R4 be the subgroup generated by R3 and the normal closure of words

c1 = x4
1[x4, x7]2[x4, x6][x4, x5]2,

c2 = x2l

2 [x4, x7]2
l−2

[x4, x10]−1[x4, x5]2,
c3 = x2k

3 [x4, x6]−2l−2
[x4, x10]−2.

Set H = F/R4. We claim that [Ri+1, F ] ⊆ Ri, i = 1, 2, 3. This is obvious
for i = 1, 2. We show it for i = 3. Working modulo R3, we have:

[c1, x1] = 1,

[c1, x2] = [x1, x2]4[x4, x6, x2] = [x1, x2]4β = 1,

[c1, x3] = [x1, x3]4[x4, x7, x3]2 = [x1, x3]4α2 = 1,

[c1, x4] = [x1, x4]4 = 1,

[c2, x1] = [x2, x1]2
l
[x4, x10, x1]−1 = β2l−2

γ−1 = 1,

[c2, x2] = 1,

[c2, x3] = [x2, x3]2
l
[x4, x7, x3]2

l−2
= [x2, x3]2

l
α−2l−2

= 1,

[c2, x4] = [x2, x4]2
l

= 1,

[c3, x1] = [x3, x1]2
k
[x4, x10, x1]−2 = α2k−1

γ−2 = 1,

[c3, x2] = [x3, x2]2
k
[x4, x6, x2]−2l−2

= α2k−2
β−2l−2

= 1,

[c3, x3] = 1,

[c3, x4] = [x3, x4]2
k

= 1.

By standard arguments, one can show that the element

w = [x1, x2l+1

2 ][x1, x2k

3 ][x2, x2k+1

3 ]

is nontrivial in H. Note that all brackets [xj , xi, xj ] are trivial in H.
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Let W be a group given by the following presentation:

〈x1, . . . , x10 | x4
1ξ1, x2l

2 ξ2, x2k

3 ξ3,

[x4, x10]4[x4, x3, x7]2
k−1

, ξ2k−2

1 ξ2k−l+1

2 〉,

where

ξ1 = [x4, x7]2[x4, x6][x4, x5]2,

ξ2 = [x4, x7]2
l−2

[x4, x10]−1[x4, x5]2,

ξ3 = [x4, x6]−2l−2
[x4, x10]−2.

It is easy to see that the group W0, 0 is a free product of W with a free
group of rank 5. The group W naturally maps onto H, and W0, 0 maps onto
G2. The image of w0, 0 is exactly the element w which is nontrivial, hence
w0, 0 /∈ γ4(W0, 0).

We shall prove first that wm, m /∈ γ2m+4(Wm, m), i.e., the case n = m. For
any m consider the quotient W ′

m, m = Wm, m/γ2m+4(Wm, m)Nm, where Nm

is the normal closure in Wm, m of brackets [y1, . . . , yt], t ≥ 3, such that there
are at least two occurrences of yi = x1 or yi = x2, or yi = x3, or yi = x4 in
this bracket, or at least three occurrences of elements from {x1, x2, x3, x4}
simultaneously. We see that all such brackets are trivial in H, hence w0, 0 is
nontrivial in W ′

0, 0.
We assume that the element wm, m is nontrivial in W ′

m, m for a given m
and we shall prove the statement for m + 1.

Consider the following automorphism f of the free group of rank 14:

xi �→ xi, i 
= 11, 12, 13, 14,

x11 �→ x11x1,

x12 �→ x12x2,

x13 �→ x13x3,

x14 �→ x14x4.

Clearly, this automorphism can be extended to get an automorphism f ′ of a
group W ′

m, m. This automorphism defines the semi-direct product

W ′′
m, m = W ′

m, m � 〈x〉,

where x acts as f ′. Clearly, we have in W ′′
m, m:

[x, xi] = 1, i 
= 11, 12, 13, 14,

[x11, x] = x1, [x12, x] = x2, [x13, x] = x3, [x14, x] = x4.
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It is easy to see that W ′′
m, m is nilpotent with γ2m+6(W ′′

m, m) = 1. Note that
W ′′

m, m is an epimorphic image of Wm+1, m+1; thus the image of the element
wm+1, m+1 is nontrivial in W ′′

m, m, since it is the same as the element wm, m

in W ′′
m, m. Thus we have proved that wm+1, m+1 /∈ γ2m+6(W ′

m+1, m+1). The
induction is thus complete and we have

wm, m /∈ γ2m+4(W ′
m, m)

for any m ≥ 0.
Now we shall prove the needed result for general case n ≥ m ≥ 0. We fix m

and make an induction on t = n−m. For the case t = 0 we already proved the
needed result. We consider the quotient W ′

n, m = Wn, m/γn+m+4(Wn, m)Nm.
Consider the following automorphism f ′ of a free group on generators xi:

xi �→ xi, i 
= 14,
x14 �→ x14x4.

Clearly, it extends to an automorphism of the group W ′
n, m. Then the

corresponding semi-direct product W ′′
n, m = Wn, m � x is nilpotent with

γn+m+5(W ′′
n, m) = 1. Observe that W ′

n+1, m naturally maps onto W ′′
n, m, send-

ing non-trivially the element wn+1, m. Hence wn+1, m /∈ γn+m+5(W ′
n+1, m) and

we have thus completed the induction. �

Proof of Theorem 2.64. By Lemma 2.65, for k # l# 4, we have

wn, m ∈ D[n+2m−2](Wn, m) \ γn+m+4(Wn, m).

Since the difference (n+2m−2)−(n+m+4) = m−6 can be taken arbitrarily,
the statement of the Theorem 2.64 follows. �

When R is a field, upper Lie dimension subgroups have been identified in
[Pas75b] (see also [Pas79]). To state the result we need the following defini-
tions, given a group G and a prime p:

(i) Define the series {M(n), p(G)}n≥1 by setting
M(1), p(G)=G, M(2), p(G)=γ2(G), M(n+1), p(G)=[G, M(n), p(G)]Mp

( n+p
p ), p

(G)

for n ≥ 2, where ( r
s ) denotes the least integer ≥ r

s .

(ii) Define the series {G(n), p}n≥1 by setting

G(n), p =
∏

(i−1)pj≥n

γi(G)pj

.

Theorem 2.67 (Passi-Sehgal [Pas75b]). Let G be a group and F a field.
Then, for n ≥ 2,
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D(n), F (G) =

{√
γn(G) ∩ γ2(G), if char(F ) = 0,

G(n−1), p = M(n), p(G), if char(F ) = p > 0.

Some very interesting properties of lower central and dimension subgroups
have been observed by A. Shalev [Sha90a]. To mention a sample, let us adopt
the following

Notation. For integers n ≥ 1, k ≥ 0, write

Dn, k(G) =
∏

ipj≥n

γpj

i+k(G).

Proposition 2.68 (Shalev [Sha90a].) For integers n ≥ 1, k ≥ 0,

[Dn, k(G), G] = Dn, k+1(G).

We next consider the lower Lie dimension subgroups in characteristic p> 0.
An identification of these subgroups is known when p 
= 2, 3. First note the
following

Proposition 2.69 The series {D[n], Fp
(G)}n≥1 is a central series of G sat-

isfying

(i) [D[m], Fp (G), D[n], Fp (G)] ⊆ D[m+n−2], Fp (G), m, n ≥ 2.

(ii) (D[n], Fp (G))p ⊆ D[p(n−2)+2], Fp (G), n ≥ 2.

Theorem 2.70 (Bhandari-Passi [Bha92b]), Riley [Ril91]). For every group G
and field F with char(F ) 
= 2, 3,

D[n], F (G) = D(n), F (G) for all n ≥ 1.

Theorem 2.71 (Bhandari-Passi [Bha92b]). Let G be a group. Then for all
n ≥ 0

(i) D[2n+2], F2 (G) = D(2n+2), F2 (G);

(ii) D[a3n+2], F3 (G) = D(a3n+2), F3 (G), 0 ≤ a ≤ 2.

As a result of Theorems 2.70 and 2.71, we have

Corollary 2.72 The following statements for a group algebra F [G] are
equivalent:

(i) F [G] is residually Lie nilpotent.

(ii)
⋂

n≥1 D[n], F (G) = 1.

(iii) Either char(F ) is zero and G is residually “nilpotent with derived group torsion
free”, or char(F ) = p > 0 and G is residually “nilpotent with derived group a p-group
of bounded exponent”.

We end this section with a review of the results on integral Lie dimension
subgroups.
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Theorem 2.73 D(n)(G) = γn(G) for 1 ≤ n ≤ 8.

The above result for 1 ≤ n ≤ 6 is due to Sandling [San72a] and the cases
n = 7, 8 are due to Gupta-Tahara [Gup93].

Theorem 2.74 (Gupta-Srivastava [Gup91c]). In general,

D[n], Z(G) 
= γn(G) for 9 ≤ n ≤ 13.

Theorem 2.75 (Hurley-Sehgal [Har91b]). In general,

D[n], Z(G) 
= γn(G) for n ≥ 14,

and
D(n), Z(G) 
= γn(G) for n ≥ 9.

2.11 Lie Nilpotency Indices

Theorem 2.76 (Passi, Passman and Sehgal [Pas73]). The group algebra F [G]
of a group G over a field F is Lie nilpotent if and only if either the charac-
teristic of F is zero and G is abelian, or the characteristic of F is a prime
p, G is nilpotent and G′, the derived subgroup of G, is a finite p-group.

As a consequence of the above theorem, we have

Corollary 2.77 The following two statements are equivalent:

(i) F (G)(m) = 0 for some m ≥ 1.

(ii) F (G)[n] = 0 for some n ≥ 1.

For a Lie nilotent group algebra F [G], define the upper and lower Lie
nilpoency indices tL(F [G]) and tL(F [G]) as follows:

tL(F [G]) = min{m |F [G](m) = 0},

tL(F [G]) = min{m |F [G][m] = 0}.
Clearly tL(F [G]) ≤ tL(F [G]), and by Theorem 2.63, the unit group U(F [G])
is nilpotent of class c, say, with c + 1 ≤ tL(F [G]). In fact, in view of a result
of Du [Du,92], c + 1 = tL(F [G]) (see Theorems 2.79, 2.80 below).

Recall that a ring R is said to be a Jacobson radical ring if, for every
r ∈ R, there exists s ∈ R such that

r + s− rs = 0 = r + s− sr.

Let R be a Jacobson radical ring. Define a binary operation on R by setting
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a ◦ b = a + b− ab, a, b ∈ R.

With this binary operation, R is a group, called the adjoint group of R; we
denote this group by (R, ◦).

Example 2.78

Let G be a finite p-group and F a field of characteristic p. Then the augmen-
tation ideal ∆F (G) is nilpotent; therefore ∆F (G) is a Jacobson radical ring.
Observe that the group (∆F (G), ◦) is isomorphic to the group U1(F [G]) of
units of augmentation 1 under the map

α �→ 1− α, α ∈ ∆F (G).

Theorem 2.79 If G is a finite p-group, F a field of characteristic p, then

nilpotency class of U(F [G]) = tL(F [G]).

This result is an immediate consequence of the following

Theorem 2.80 (Du [Du,92]). The associated Lie ring of a Jacobson radical
ring is nilpotent of class n if and only if its adjoint group is nilpotent of
class n.

Theorem 2.81 (Bhandari-Passi [Bha92a]). Let F be a field of characteristic
p > 3 and let G be a group such that F [G] is Lie nilpoent. Then

tL(F [G]) = tL(F [G]) = 2 + (p− 1)
∑

m≥1

md(m+1),

where, for m ≥ 2, pd(m) = [D(m), F (G) : D(m+1), F (G)].

The proof of the above theorem requires the following results of Sharma-
Srivastava. Following their notation, let Ln(R) denote the nth term in
the lower central series of the ring R when viewed as a Lie ring under
commutation.

Theorem 2.82 (Sharma-Srivastava [Sha90b], Theorem 2.8). Let R be a ring
in which both 2, 3 are invertible. If m and n are any two positive integers
such that one of them is odd, then

Lm(R)RLn(R)R ⊆ Lm+n−1(R)R.

Lemma 2.83 (Sharma-Srivastava [Sha90b], Lemma 2.11). Let R be a ring in
which both 2, 3 are invertible. Then for any positive integers m and n and
for all g1, g2, . . . , gm ∈ U(R),

([g1, g2, . . . , gm+1]− 1)n ∈ Lmn+1(R)R.
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Proof of Theorem 2.81. Since F [G] is Lie nilpotent, by Theorem 2.76, G
is nilpotent and its derived subgroup G′ is a finite p-group. If G is abelian,
then the assertion is obviously true; thus we assume that G′ 
= 1.

Let Hi = D(i+1), F (G), i ≥ 1, and pei = [Hi : Hi+1] so that ei = d(i+1).
The series

G = H1 ⊃ H2 ⊃ . . . ⊃ Hd ⊃ Hd+1 = 1

is a restricted N -series in G′, i.e.,

[Hi, Hj ] ⊆ Hi+j , Hi ⊆ Hip, for all i, j ≥ 1.

By Theorem 2.67,
Hn =

∏

(i−1)pj≥n

γi(G)pj

.

Now observe that Hn is generated, modulo Hn+1, by the elements of the
type xpj

, where x is a left-normed group commutator of weight i and
(i − 1)pj = n. Thus it is possible to choose a canonical basis (see [Pas79],
p. 23) {x11, x12, . . . , x1e1 , x21, x22, . . . , x2e2 , . . . , xd1, xd2, . . . , xded

} of G′,
where for 1 ≤ r ≤ d, 1 ≤ k ≤ er, xrk is an element of of the type ξpj , where
ξi is a left-normed group commutator of weight i and (i − 1)pj = r. It then
follows that the element

α = (x11 − 1)(p−1)(x12 − 1)(p−1) . . . (x1e1 − 1)(p−1) . . .

(xd1 − 1)(p−1) . . . (xded
− 1)(p−1) (2.91)

is a non-zero element of F [G]. For 1 ≤ r ≤ d, 1 ≤ k ≤ er, xrk = ξpj

i , by
Lemma 2.83, we have

(xrk − 1)(p−1) = (ξi − 1)pj(p−1) ∈ F [G][(i−1)pj (p−1)+1] = F [G][r(p−1)+1].

Moreover, by Theorem 2.82

(xr1 − 1)(p−1)(xr2 − 1)(p−1) . . . (xrer
− 1)(p−1) ∈ F [G][rer(p−1)+1],

which in turn yields that α ∈ F [G][1+(p−1)
∑d

r=1 rer ]. Since α 
= 0, it follows
that

tL(F [G]) ≥ 2 + (p− 1)
d∑

r=1

rer = 2 + (p− 1)
∑

m≥1

md(m+1),

as er = d(r+1) for r ≥ 1.
Since, tL(F [G]) = 2 + (p − 1)

∑d
r=1 rer = 2 + (p − 1)

∑
m≥1 md(m+1) (see

[Pas79], p. 47) and tL(F [G]) ≥ tL(F [G]) always, the proof is complete. �

Let p be a prime and R a ring of characteristic p. Consider the Lie powers
R(m), m ≥ 1, of R defined inductively by setting R(1) = R, and, for m ≥ 1,
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R(m+1) to be the two-sided ideal of R generated by the ring commutators
xy − yx, x ∈ R(m), y ∈ R.

Theorem 2.84 (Shalev [Sha91]). If R(1+(p−1)pi−1) = 0 for some i ≥ 1, then
R satisfies the identity

(X + Y )pi

= Xpi

+ Y pi

. (Pi)

Corollary 2.85 Let G be a finite group of exponent pe, and K a field of char-
acteristic p. If K[G](1+(p−1)pe−1) = 0, then exp(U1(K[G])) = exp(G), where
U1(K[G]) is the group of units of K[G] having augmentation 1.

Proof. Since G⊆U1(K[G]), it only needs to be checked that exp(U1(K[G]))≤
exp(G).

Let u =
∑

ajgj ∈ U1(K[G]), aj ∈ K, gj ∈ G. Since, by Theorem 2.84,
K[G] satisfies the identity (Pi), we have

upe

=
∑

(ajgj)pe

=
∑

ape

j .1 = 1. �

In [Sha91] Shalev shows that the hypothesis of the above Corollary is
satisfied if p ≥ 7 and exp(G)3 > |G|, and thus we have

Theorem 2.86 (Shalev [Sha91]). Let K be a field of prime characteristic p,
and G a finite p-group. Then G and U1(K[G]) have the same exponent if
p ≥ 7 and exp(G)3 > |G|.

2.12 Subgroups Dual to Dimension Subgroups

Let G be a group and R a commutative ring with identity. Define a series
{Zn(R[G])}n≥0 of two-sided ideals in R[G] inductively by setting

Z0(R[G]) = 0

and

Zn+1(R[G]) = {α ∈ R[G] |α(g − 1) ∈ Zn(R[G]), (g − 1)α ∈ Zn(R[G])}

for n ≥ 0. This ascending series {Zn(R[G])}n≥0 of two-sided ideals of R[G]
is the most rapidly ascending among all ascending series stabilized by G; it
defines an ascending series {zn, R(G)}n≥0 of normal subgroups of G, by setting

zn, R(G) := G ∩ (1 + Zn(R[G])).

The series {zn, R(G)}n≥0 has been investigated by R. Sandling [San72b]; it is
in a sense dual to the dimension series {Dn, R(G)}n≥1 defined by the series of
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augmentation powers ∆n
R(G), n ≥ 1, which is the most rapidly descending

among the descending series stabilized by G. The subgroups zn, R(G), n ≥ 1,
are rarely non-trivial. More precisely, we have

Theorem 2.87 (Sandling [San72b]). The normal subgroup zn, R(G) is non-
trivial for some n ≥ 1 if and only if the group G is a finite p-group and the
ring R is of characteristic pe for some e ≥ 1.

Proof. Suppose N := zn, R(G) has a non-trivial element g, say, for some
n ≥ 1. Then, by definition of Zn(R[G]), (g−1)∆n

R(G) = 0. This is not possible
if G is infinite. Hence G must be finite. Now ∆n+1

R (N) = 0. Therefore, there
exists a prime p such that N a finite p-group and R has characteristic pe for
some e ≥ 1. If 1 
= h ∈ G is a p′-element, then (g − 1).(h − 1)n = 0. It then
follows that (g − 1)(h− 1) = 0 and hence h = 1, a contradiction. Hence G is
a finite p-group. �

Let R be a commutative ring with identity and G a group. Let W = R �G,
the standard wreath product of the abelian group R and the group G. Let

Jn(R, G) := {α ∈ R[G] |α.∆n
R(G) = 0},

i.e., the left annihilator of ∆n
R(G). The subgroups zn(R, G) are related to the

upper central series {ζn(W )}n≥0 of W . More precisely, there is the following
result which is easily proved by induction.

Theorem 2.88 (Sandling [San72b]). For all natural numbers n,

ζn(W ) = zn−1(R, G)Jn(R, G).


