
Chapter 2

Problem Setting

In this chapter we introduce the notation and the preliminaries to rigor-
ously set the problem of optimal networks. The formulation in the sense of
L. Kantorovich, by using transport plans, i.e. measures on the product space
Ω×Ω, will be presented together with a second equivalent formulation where
the main tools are the so-called transport path measures that are measures on
the family of curves in Ω. This seems to be a very natural formulation that
has already been used in previous papers (see for instance [24, 65, 6, 58]) and
that allows to obtain in a rather simple way existence results and necessary
conditions of optimality.

2.1 Notation and Preliminaries

In this monograph the ambient space Ω is assumed to be a bounded, closed,
N−dimensional convex subset of R

N , N ≥ 2, equipped with the Euclidean
distance; the convexity assumption is made here only for simplicity of presen-
tation; in fact, all the results are still valid in the more general case of bounded
Lipschitz domains. For any pair of Lipschitz paths θ1, θ2 : [0, 1] → Ω, we in-
troduce the distance

dΘ(θ1, θ2) := inf
{

max
t∈[0,1]

|θ1(t) − θ2(ϕ(t))| ,

ϕ : [0, 1] → [0, 1] increasing and bijective
}

,

(2.1)

where | · | is the Euclidean norm in R
N . We define then Θ as the set of the

equivalence classes of Lipschitz paths in Ω parametrized over [0, 1], where
two paths θ1 and θ2 are considered equivalent whenever dΘ(θ1, θ2) = 0: it is
easily noticed that Θ is a separable metric space equipped with the distance
dΘ. Moreover, simple examples show that the infimum in (2.1) might not
be attained. It will be often useful to remind that, given any sequence {θn}
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of paths in Θ with uniformly bounded Euclidean lengths, by Ascoli–Arzelà
Theorem one can find a θ ∈ Θ such that (possibly up to a subsequence)
θn

dΘ−→ θ. This implies, in particular, that the corresponding curves θn([0, 1])
converge in the Hausdorff distance to θ([0, 1]), while the converse implication
is not true. Notice that

θn
dΘ−→ θ =⇒ H 1(

θ([0, 1])
)
≤ lim inf

n→∞
H 1(

θn([0, 1])
)
,

where H 1 denotes the one-dimensional Hausdorff measure.
In the sequel, for the sake of brevity we will abuse the notation calling

θ also the set θ([0, 1]) ⊆ Ω, when not misleading. We call endpoints of the
path θ the points θ(0) and θ(1), and, given two paths θ1, θ2 ∈ Θ such that
θ1(1) = θ2(0), the composition θ1 · θ2 is defined by the formula

θ1 · θ2(t) :=
{

θ1(2t) for 0 ≤ t ≤ 1/2 ,
θ2(2t − 1) for 1/2 ≤ t ≤ 1 .

As already introduced in Chapter 1, we let now A, B : R
+ → R

+ be the costs
of moving by own means and by using the network, i.e. A(s) (resp. B(s)) is
the cost corresponding to a part of the itinerary of length s covered by own
means (resp. with the use of the network). This means that, if the urban
network is a Borel set Σ ⊆ Ω of finite length, the total cost of covering a
path θ ∈ Θ is given by

δΣ(θ) := A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θ ∩ Σ)

)
, (2.2)

since the length H 1(θ\Σ) is covered by own means and the length H 1(θ∩Σ)
is covered by the use of the network. Concerning the functions A and B, we
make from now on the following assumptions:

A is nondecreasing, continuous and A(0) = 0 ; (2.3)
B is nondecreasing, l.s.c. and B(0) = 0 . (2.4)

Note that these hypotheses follow the intuition: the meaning of the assump-
tions A(0) = 0, B(0) = 0 and of the monotonicity are obvious, while the
continuity of the function A means that a slightly longer path cannot have
a much higher cost, and it is a natural assumption once one moves by own
means. On the contrary, a continuity assumption on the function B would
rule out some of the most common pricing policies which occur in many real
life urban transportation networks: for instance, often such a pricing policy
is given by a fixed price (the price of a single ticket) for any positive distance,
or is a piecewise constant function.

We define now a “distance” on Ω which depends on Σ and is given by the
least cost of the paths connecting two points: in short,

dΣ(x, y) := inf {δΣ(θ) : θ ∈ Θ, θ(0) = x, θ(1) = y} . (2.5)
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The infimum in the above definition is not always attained, as we will see in
Example 2.8. Moreover, it has to be pointed out that in general the function
dΣ is not a distance; for instance, with A(s) = B(s) = s2 it is easy to see that
the triangle inequality does not hold. However, when A and B are subadditive
functions, i.e.

A(s1 + s2) ≤ A(s1) + A(s2) for all s1, s2 ∈ R
+ ,

B(s1 + s2) ≤ B(s1) + B(s2) for all s1, s2 ∈ R
+ ,

and they are strictly positive on (0,+∞), then an easy computation shows
that dΣ is in fact a distance (the strict positivity is needed to ensure that
dΣ(x, y) = 0 implies x = y). Nevertheless, with an abuse of notation, we will
call dΣ a distance in any case.

Lemma 2.1. For any θ ∈ Θ and any ε > 0, there is a path θε ∈ Θ such that

θε(0) = θ(0) , θε(1) = θ(1) , dΘ(θ, θε) < ε ,

H 1(θε) < H 1(θ) + ε , H 1(θε ∩ Σ) = 0 .

Proof. Since Ω ⊆ R
N and N ≥ 2, we can take a more than countable family

{θi}i∈I of elements of Θ such that

• θi(0) = θ(0) and θi(1) = θ(1) for each i ∈ I;
• dΘ(θ, θi) < ε and H 1(θε) < H 1(θ) + ε for each i ∈ I;
• for all i, j ∈ I with i �= j, θi ∩ θj consists of finitely many points.

The proof of this assertion is trivial if the curve θ is given by a finite union
of segments, as Figure 2.1 shows. The general case is now easily achieved
approximating any path θ by a finite union of segments as needed.

The thesis can be then proved making use of the paths θi: since
H 1(Σ)<∞, the condition H 1(θi∩Σ) > 0 may occur at most for a countable
set of indices i ∈ I; one then concludes just by taking one of the remaining
paths θi. ��

Corollary 2.2. For any θ ∈ Θ, ε > 0 and l ≤ H 1(θ ∩ Σ), there is a path
θl,ε ∈ Θ such that

θ(1)

θ
θi

θ(0)

Fig. 2.1 The path θ and some paths θi
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θl,ε(0) = θ(0) , θl,ε(1) = θ(1) , dΘ(θ, θl,ε) < ε ,

H 1(θl,ε) < H 1(θ) + ε , H 1(θl,ε ∩ Σ) = l .

Proof. This follows easily by Lemma 2.1: let t ∈ [0, 1] be such that

H 1(θ([0, t])
)

= l ,

and define θ1 to be the restriction of θ to [0, t] and θ2 to be the restriction of
θ to [t, 1], so that

θ = θ1 · θ2 , H 1(θ1 ∩ Σ) = l .

It suffices then to apply Lemma 2.1 to θ2 and to compose θ1 with the resulting
path. ��

Proposition 2.3. The function dΣ : Ω × Ω → R
+ is continuous.

Proof. This is a consequence of (2.3): take (x, y) ∈ Ω × Ω and a path θ
between x and y with

δΣ(θ) < dΣ(x, y) + ε .

Then, given any pair (x̃, ỹ) ∈ Ω × Ω, we can define a path between x̃ and
ỹ by setting θ̃ := α · θ · β for any choice of paths α and β connecting x̃ to
x and y to ỹ respectively. Thanks to Lemma 2.1, we may choose α and β
having H 1-negligible intersection with Σ and length less than |x − x̃| + ε
and |y − ỹ| + ε respectively. We infer thus

dΣ(x̃, ỹ) ≤ δΣ(θ̃)≤A
(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
+ B
(
H 1(θ ∩ Σ)

)
= δΣ(θ) + A

(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
− A
(
H 1(θ \ Σ)

)
≤ dΣ(x, y) + ε + A

(
H 1(θ \ Σ) + |x − x̃| + |y − ỹ| + 2ε

)
− A
(
H 1(θ \ Σ)

)
,

and the upper semicontinuity of dΣ follows since ε > 0 is arbitrary and A is
continuous.

Concerning the lower semicontinuity of dΣ , suppose that xn → x, yn → y
and that dΣ(xn, yn) → d as n → ∞. This means that there exist paths θn

connecting xn to yn and satisfying δΣ(θn) → d. Composing as before θn

with short paths αn and βn connecting x to xn and yn to y respectively, and
having

H 1(αn ∩ Σ) = H 1(βn ∩ Σ) = 0 ,

we find the paths θ̃n between x and y satisfying

δΣ(θ̃n) = δΣ(θn) + A
(
H 1(θn \Σ) +H 1(αn) +H 1(βn)

)
−A
(
H 1(θn \Σ)

)
.
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Since δΣ(θn) → d and since

H 1(αn) + H 1(βn) → 0 ,

the conclusion follows if H 1(θn\Σ) is uniformly bounded, because A is con-
tinuous hence uniformly continuous on compact sets. At last, if H 1(θn \ Σ)
is not uniformly bounded, then

H 1(θn \ Σ) > |x − y| + 1

for n arbitrarily large; in this case, we could directly take a path θ close to
the segment connecting x to y and having negligible intersection with Σ, so
that

δΣ(θ) = A
(
H 1(θ)

)
≤ A
(
|x − y| + 1

)
≤ A
(
H 1(θn \ Σ)

)
≤ δΣ(θn) ,

and hence, the thesis follows in this case too. ��

The problem we want to study is to find the best transportation network Σ
to move the population from their “homes” to their “workplaces”. To set the
problem, we consider two probability measures f+, f− on Ω describing the
distributions of homes and workplaces respectively. The following notion is
often used in transportation theory; throughout the monograph, πi : Ω×Ω →
Ω, i = 1, 2, stands for the i−th projection, and for a Borel map g : X → Y
the push-forward g# : M+(X) → M+(Y ) is defined by

g#µ(A) := µ
(
g−1(A)

)
for any Borel set A ⊆ Y ,

where M+(Z) is the space of the finite positive measures on a generic space
Z (see Appendix B.1).

Definition 2.4. A transport plan is a positive measure γ ∈ M+(Ω × Ω), the
marginals of which are f+ and f−, i.e.

π1#γ = f+ , π2#γ = f− .

One can intuitively think that γ(x, y) is the number of people moving from
x to y, or, more precisely, that γ(C × D) is the number of people living in
C ⊆ Ω and working in D ⊆ Ω. To each transport plan γ we associate the
total cost of transportation according to the formula

IΣ(γ) :=
∫∫

Ω×Ω

dΣ(x, y) dγ(x, y) . (2.6)

The Monge-Kantorovich optimal transport problem consists in finding a
transport plan γ̄ ∈ M+(Ω × Ω) (which is usually called optimal transport
plan) minimizing IΣ .
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It is important to notice that the transport plan γ gives no precise in-
formation on how the mass is moving (i.e. which trajectories are chosen for
transportation). To be able to recover such an information we will make use of
the following definition, already used in [58] (a quite similar idea was already
used elsewhere, for instance in [24, 65, 6]).

Definition 2.5. A transport path measure (shortly t.p.m. in the sequel) is a
measure η ∈ M+(Θ) with the property that its first and last projections are
f+ and f−, i.e.

p0#η = f+ p1#η = f− , (2.7)

where for t = 0, 1 we denote by pt : Θ → Ω the function pt(θ) := θ(t).

It is important to understand the meaning of the above definition: roughly
speaking, if η is a t.p.m., then η(θ) indicates the amount of mass to be
moved along the path θ; more precisely, η(E) is the mass following the paths
contained in E ⊆ Θ. The meaning of condition (2.7) is then clear, since p0#η
and p1#η are respectively the measure from which η starts and the measure
to which it is transported.

We are now able to define the total cost of transportation associated to
any t.p.m. by the formula

CΣ(η) :=
∫

Θ

δΣ(θ) dη(θ) . (2.8)

Finally, we denote by MK(Σ) the infimum of the above costs, namely,

MK(Σ) := inf {CΣ(η) : η is a t.p.m.} . (2.9)

The purpose of this monograph is to study the problem of finding the best
possible network Σ: in other words, we want to find a set Σ having mini-
mal total cost of usage (defined below). To do that, as already discussed in
Chapter 1, we consider a function H : R

+ → R
+
, where H(l) represents the

maintenance cost of a network Σ of length H 1(Σ) = l. We assume on H the
natural conditions

H is nondecreasing, l.s.c., H(0) = 0 and H(l) → ∞ as l → ∞ . (2.10)

Finally, the total cost of usage of Σ is defined by the formula

F(Σ) := MK(Σ) + H
(
H 1(Σ)

)
. (2.11)

Our goal is to study the problem of minimizing the functional F.
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2.2 Properties of Optimal Paths and Relaxed Costs

In (2.5) we defined a distance in Ω as the infimum of the costs of the paths
connecting two given points. We show now the possibility to choose a Borel
selection of paths which have almost minimal costs in the sense of proposition
below.

Proposition 2.6. For any ε > 0 there is a Borel function qε : Ω × Ω → Θ
such that qε(x, y) is a path connecting x to y with

δΣ

(
qε(x, y)

)
< dΣ(x, y) + ε . (2.12)

Proof. Fix a ρ > 0 and let {xi} be a finite set of points in Ω such that
⋃

B(xi, ρ) ⊇ Ω .

Let then Cij ⊆ Ω × Ω be pairwise disjoint Borel sets covering Ω × Ω, each
contained in B

(
(xi, xj), 2ρ

)
. Now, given i, j, let θij ∈ Θ be a path connecting

xi to xj and having a cost minimal up to an error ρ, that is

δΣ(θij) < dΣ(xi, xj) + ρ .

We claim that the conclusion follows if for every x ∈ Ω there is a Borel map

αx : B(x, 2ρ) → Θ

such that αx(y) is a path between x and y with length less than 4ρ and
having H 1−negligible intersection with Σ. Indeed, defining on each Cij the
function qε by the formula

qε(x, y) := α̂xi
(x) · θij · αxj

(y)

(where θ̂(t) := θ(1− t)), one has that qε is a Borel function; moreover, if ρ is
sufficiently small, one gets (2.12) by the continuity of A. It suffices therefore to
prove the existence of such an αx (observe that Lemma 2.1 already provides a
map satisfying all the required conditions except for the Borel property). For
this purpose, we begin defining αx(y) as the line segment between x and y.
Since Σ is rectifiable, such a segment has H 1-negligible intersection with
Σ unless y is contained in one of countably many radii {Rk}k∈N of the ball
B(x, 2ρ). For each k ∈ N, choose arbitrarily a two-dimensional halfplane Πk

containing Rk on its boundary; then, for y ∈ Rk, define αx(y) as the half
circle joining x to y and lying on Πk. Arguing as before, it is clear that such
a path has H 1-negligible intersection with Σ except for countably many
points y ∈ Rk. Finally, for each of these latter y, by Lemma 2.1 we may
arbitrarily select a path αx(y) connecting x to y which is shorter than 4ρ and
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has H 1−negligible intersection with Σ. The resulting function αx has the
required properties and so the proof is completed. ��

Corollary 2.7. For any ε > 0 there is a Borel function q′ε : Ω × Ω → Θ
such that q′ε(x, y) is a path connecting x with y and satisfying

H 1(q′ε(x, y)) ≤ |y − x| + ε , H 1(q′ε(x, y) ∩ Σ) = 0 .

Proof. Consider the case when

A(s) = s , B(s) = diam Ω + 2ε

for every s > 0. By Lemma 2.1 it is clear that dΣ(x, y) = |y − x| and that
δΣ(θ) = H 1(θ) whenever H 1(θ∩Σ) = 0. Apply now Proposition 2.6 to find
a map q′ε such that

δΣ(q′ε(x, y)) < dΣ(x, y) + ε = |y − x| + ε .

If
H 1(q′ε(x, y) ∩ Σ) > 0 ,

then
δΣ(q′ε(x, y)) ≥ diam Ω + 2ε > |y − x| + ε ,

and this gives a contradiction. Thus,

H 1(q′ε(x, y) ∩ Σ) = 0

and, as a consequence,

H 1(q′ε(x, y)) = δΣ(q′ε(x, y)) < |y − x| + ε ;

hence the thesis follows. ��

We see now an example, showing that the infimum in (2.5) may be not a
minimum, and that δΣ may be not lower semicontinuous.

Example 2.8. Let Ω be the ball in R
2 centered at the origin and with radius

2, let Σ = [0, 1] × {0}, A(t) = t and B(t) = 2t; let moreover θ and θn be the
paths connecting (0, 0) to (1, 0) given by

θ(t) := (t, 0) , θn(t) :=
(

t,
1 − |2t − 1|

n

)
.

Then one has that θn converges to θ in (Θ, dΘ), δΣ(θ) = 2, while δΣ(θn) → 1:
therefore, δΣ is not l.s.c. Moreover, it is clear that

dΣ

(
(0, 0), (1, 0)

)
= 1 ,
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but δΣ(σ) > 1 for each path σ ∈ Θ connecting (0, 0) and (1, 0). Hence, the
infimum in (2.5) is not a minimum.

Since δΣ is not, in general, l.s.c., we compute now its relaxed envelope
with fixed endpoints,

δ̄Σ(θ) := inf
{

lim inf
n→∞

δΣ(θn) : θn(0) = θ(0), θn(1) = θ(1), θn
Θ−→ θ
}

. (2.13)

Notice that δ̄Σ ≤ δΣ , and that the infimum in (2.13) is a minimum. Thanks
to the standard properties of relaxed envelopes (see [16]), we are allowed to
rewrite (2.5) obtaining

dΣ(x, y) = inf
{
δ̄Σ(θ) : θ ∈ Θ, θ(0) = x, θ(1) = y

}
. (2.14)

Proposition 2.9. The function δ̄Σ : Θ → R
+ is l.s.c.

Proof. Let us take θn → θ in Θ: then, without loss of generality, we may
assume

|θn(0) − θ(0)| ≤ 1
n

, |θn(1) − θ(1)| ≤ 1
n

.

Following (2.13), we choose θ̂n having the same endpoints as θn and such
that

dΘ(θn, θ̂n) ≤ 1
n

, δΣ(θ̂n) ≤ δ̄Σ(θn) +
1
n

. (2.15)

Take now, according to Lemma 2.1, two paths αn and βn connecting θ(0)
with θ̂n(0) and θ̂n(1) with θ(1) respectively, with the properties

H 1(αn \ Σ) ≤ 2
n

, H 1(βn \ Σ) ≤ 2
n

,

H 1(αn ∩ Σ) = 0 , H 1(βn ∩ Σ) = 0 .

(2.16)

Define then θn := αn·θ̂n·βn, so that {θn}n∈N is a sequence of paths connecting
θ(0) to θ(1) which still converges to θ. For any n ∈ N, by (2.15) and (2.16)
we have

δΣ(θn) = A
(
H 1(θn \ Σ

))
+ B
(
H 1(θn ∩ Σ

))

= A
(
H 1((θ̂n ∪ αn ∪ βn

)
\ Σ
))

+ B
(
H 1(θ̂n ∩ Σ

))

≤ δΣ(θ̂n) + A
(
H 1(

θ̂n \ Σ
)

+ 4/n
)
− A
(
H 1(

θ̂n \ Σ
))

≤ δ̄Σ(θn) + 1/n + A
(
H 1(θ̂n \ Σ

)
+ 4/n

)
− A
(
H 1(θ̂n \ Σ

))
.
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Since the paths {θn} have uniformly bounded lengths, by the uniform conti-
nuity of A in the bounded intervals and by (2.13) we infer

δ̄Σ(θ) ≤ lim inf
n→∞

δΣ(θn) ≤ lim inf
n→∞

δ̄Σ(θn) ,

so the proof is completed. ��

Corollary 2.10. The l.s.c. envelope of δΣ in (Θ, dΘ) is δ̄Σ.

Proof. The l.s.c. envelope of δΣ in (Θ, dΘ) is lower than δ̄Σ , as a direct
consequence of the definition (2.13). On the other hand, it is the greatest l.s.c.
function lower than δΣ , thus it is also greater than δ̄Σ by Proposition 2.9. ��

Corollary 2.11. The infimum in (2.14) is actually a minimum.

Proof. Let us choose x and y and take a minimizing sequence θn for (2.14): if
the Euclidean lengths of θn (possibly up to a subsequence) are bounded, then
the result immediately follows from the lower semicontinuity of δ̄Σ and by
Ascoli–Arzelà Theorem. Otherwise, since Σ has finite length, it would follow
that

lim supH 1(θn \ Σ) = ∞ ;

in this case, take a path θ joining x to y with H 1−negligible intersection
with Σ and with finite length: since A is nondecreasing, this path provides
the minimum in (2.14). ��

More precisely, we see that one can somehow “pass to the limit” in Propo-
sition 2.6. Throughout the monograph, we will call geodesics the paths θ such
that

δ̄Σ(θ) = dΣ

(
θ(0), θ(1)

)
.

Corollary 2.12. There is a Borel function q : Ω × Ω → Θ such that q(x, y)
is a path connecting x to y with cost δ̄Σ

(
q(x, y)

)
= dΣ(x, y).

Proof. Using the classical results in [28], it is sufficient to show that the subset
G of Θ given by the geodesics is closed and there is at least one element of
G connecting any couple of points in Ω × Ω. The second fact follows from
Corollary 2.11, while the closedness of G is a direct consequence of the lower
semicontinuity of δ̄Σ and of the continuity of dΣ . ��

Lemma 2.13. For any ε > 0, there is a Borel function αε : Θ → Θ such
that for any θ ∈ Θ one has

(
αε(θ)

)
(0) = θ(0) ,

(
αε(θ)

)
(1) = θ(1) , dΘ(αε(θ), θ) ≤ ε ,

H 1(αε(θ)) ≤ H 1(θ) + ε , δΣ(αε(θ)) ≤ δ̄Σ(θ) + ε .
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Proof. Our argument is quite similar to the one in Proposition 2.6: fixed
L > 0 and fixed arbitrarily a path θ ∈ Θ with H 1(θ) ≤ L, we know by
definition of δ̄Σ the existence of a path θ̃ with

θ̃(0) = θ(0) , θ̃(1) = θ(1) , dΘ(θ̃, θ) ≤ ε

4
,

H 1(θ̃) ≤ H 1(θ) +
ε

4
, δΣ(θ̃) ≤ δ̄Σ(θ) +

ε

4
.

(2.17)

We take now a number δ ≤ ε/8 such that

A(s + 4δ) − A(s) ≤ ε

2

for any 0 ≤ s ≤ L, which is possible by the continuity of A; moreover, since
the Euclidean length and the map δ̄Σ are l.s.c., we can also assume that δ is
so small that⎧⎨

⎩
H 1(σ) ≥ H 1(θ) − ε

4
,

δ̄Σ(σ) ≥ δ̄Σ(θ) − ε

4
,

whenever dΘ(θ, σ) ≤ δ . (2.18)

If we can define a Borel function αε : BΘ(θ, δ) → Θ as in the claim of this
corollary, this will show the thesis: indeed, since the subset ΘL of Θ made by
the paths of Euclidean length bounded by L is compact, it can be covered by
a finite number of balls BΘ(θi, δi), so that we infer the existence of a Borel
function αε : ΘL → Θ as in the claim; finally, it is immediate to conclude
the thesis covering Θ with countably many sets ΘLi

for a sequence Li → ∞.
Summarizing, we can restrict our attention to a ball BΘ(θ, δ).

Define now the Borel function β1 : BΘ(θ, δ) → Θ as

β1(σ) := q′δ
(
σ(0), θ(0)

)
,

where q′δ is as in Corollary 2.7: then β1(σ) is a path connecting σ(0) with
θ(0) such that

H 1(β1(σ) ∩ Σ) = 0 , H 1(β1(σ)) ≤ |σ(0) − θ(0)| + δ ≤ 2δ . (2.19)

Similarly, we let β2 : BΘ(θ, δ) → Θ to be a Borel function such that β2(σ) is
a path connecting θ(1) with σ(1) satisfying

H 1(β2(σ) ∩ Σ) = 0 , H 1(β2(σ)) ≤ 2δ ; (2.20)

We finally define αε(σ) := β1(σ) · θ̃ · β2(σ): by construction, the map

BΘ(θ, δ) � σ �→ αε(σ) ∈ Θ
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is Borel; moreover,

αε(σ(0)) = σ(0) , αε(σ(1)) = σ(1) .

In addition, minding (2.19), (2.20) and (2.17), we get

dΘ(αε(σ), σ) ≤ dΘ(αε(σ), θ̃) + dΘ(θ̃, θ) + dΘ(θ, σ) ≤ 2δ +
ε

4
+ δ < ε .

Again by (2.19), (2.20), (2.17) and (2.18) one has

H 1(αε(σ)) ≤ 4δ + H 1(θ̃) ≤ 4δ +
ε

4
+ H 1(θ) ≤ H 1(σ) + ε .

Finally, by (2.19) and (2.20) we know that

H 1(αε(σ) ∩ Σ) = H 1(θ̃ ∩ Σ)

so that again (2.19) and (2.20), together with (2.17) and (2.18), yield

δΣ(αε(σ)) ≤ A
(
H 1(θ̃ \ Σ) + 4δ

)
+ B
(
H 1(θ̃ ∩ Σ)

)
≤ δΣ(θ̃) + A

(
H 1(θ̃ \ Σ) + 4δ

)
− A
(
H 1(θ̃ \ Σ)

)

≤ δΣ(θ̃) +
ε

2
≤ δ̄Σ(θ) +

3
4

ε ≤ δ̄Σ(σ) + ε :

hence, the proof is complete. ��
Now, generalizing (2.8), set

CΣ(η) :=
∫

Θ

δ̄Σ(θ) dη(θ) . (2.21)

Proposition 2.14. The following equalities hold

inf
{
CΣ(η) : η is a t.p.m.

}
= min {IΣ(γ) : γ is a transport plan}

= min
{
CΣ(η) : η is a t.p.m.

} (
= MK(Σ)

)
.

(2.22)

Before giving the proof, we point out the following remark.

Remark 2.15. The equality (2.22) ensures the existence of at least one optimal
transport plan γopt and one t.p.m. ηopt optimal with respect to CΣ , which
satisfy the equality IΣ(γopt) = CΣ(ηopt). On the other hand, the infimum
in (2.22) needs not to be achieved: for instance, just consider the situation of
Example 2.8 with f+ := δ(0,0) and f− := δ(1,0).

Concerning the equality between the two minima in (2.22), in particu-
lar, if γopt is an optimal transport plan then q#γopt is an optimal t.p.m.,
where q is defined in Corollary 2.12. Conversely, if ηopt is an optimal t.p.m.
then (p0, p1)#ηopt is an optimal transport plan, where p0 and p1 are as in
Definition 2.5.
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Proof (of Proposition 2.14). First of all, note that the set of all transport
plans is a bounded and weakly∗ closed subset of M+(Ω × Ω); hence, it is
weakly∗ compact by tightness (see Appendix B.1). Moreover, IΣ is a contin-
uous function on M(Ω × Ω) with respect to the weak∗ topology thanks to
Proposition 2.3. Therefore, the existence of some optimal transport plan is
straightforward.

Given now a t.p.m. η, one can construct the associated transport plan
γ = (p0, p1)#η, and from (2.5) we get IΣ(γ) ≤ CΣ(η). On the other hand,
given any transport plan γ and ε > 0, we can define η := qε#γ where qε is
as in Proposition 2.6; we obtain CΣ(η) ≤ IΣ(γ) + ε, thus the first equality
in (2.22) is established.

Concerning the second one, using (2.14) in place of (2.5) in the previous
argument one gets

min{IΣ(γ)} ≤ inf{CΣ(η)} .

But since CΣ ≤ CΣ (because δ̄Σ ≤ δΣ), it is also true that

inf{CΣ(η)} ≤ inf{CΣ(η)} .

We derive min{IΣ(γ)} = inf{CΣ(η)}, so to conclude we need only to prove
that the last inf is a minimum. To this aim, it suffices to take an optimal
transport plan γopt and to define η := q#γopt where q is as in Corollary 2.12:
by definition of q, one has CΣ(η) = IΣ(γopt), so η minimizes CΣ and the
proof is achieved. ��

From now on we will often say that a set ∆ ⊆ Θ is bounded in Θ by L
if for any θ ∈ ∆ we have H 1(θ) ≤ L; we will also say that ∆ is a bounded
subset of Θ if it is bounded in Θ by some constant L. Notice that this last
definition does not coincide with the usual boundedness in Θ with respect
to the distance dΘ, which we will never consider; in fact, this last notion of
boundedness would be useless, since the whole set Θ is clearly bounded with
respect to dΘ by the diameter of Ω. We recall that, as already mentioned
at the beginning of Section 2.1, the bounded subsets of Θ are sequentially
compact with respect to dΘ; this becomes particularly helpful once we know
that a t.p.m. is concentrated on a bounded subset of Θ, which is the argument
of Corollary 2.17 below.

Lemma 2.16. If A(s) is not constant for large s (for instance, if A(s) → ∞
as s → ∞), then there is a constant L ∈ R such that the Euclidean length
H 1(θ) of any geodesic θ is bounded by L. Otherwise, if A(s) is constant for
large s, it is still true that for any pair (x, y) of points in Ω there exists some
geodesic of length bounded by L. In both cases, the constant L depends only
on A, Ω and H 1(Σ) (but not on Σ).

Proof. Suppose first that A(s) is not constant for large s, and let L be a
sufficiently large number such that

A
(
L − H 1(Σ)

)
> A
(
diam Ω + 1

)
.
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Take now a path θ ∈ Θ with H 1(θ) > L and let θ̂, according to Lemma 2.1,
be a path with length less than

|θ(1) − θ(0)| + 1 ≤ diam Ω + 1

connecting θ(0) to θ(1) and having H 1−negligible intersection with Σ. Since

H 1(θ \ Σ) ≥ H 1(θ) − H 1(Σ) > L − H 1(Σ) ,

we immediately get δ̄Σ(θ) > δ̄Σ(θ̂), so that θ is not a geodesic and the first
part of the proof is achieved.

Consider now the case when A(s) is constant for large s, and let

L := H 1(Σ) + diam Ω + 1 .

Arguing exactly as in the first part of the proof, we see that for any path θ
there is a path θ̂ with H 1(θ̂) ≤ diam Ω+1 and with δ̄Σ(θ̂) ≤ δ̄Σ(θ) (the only
difference is that this time the strict inequality δ̄Σ(θ̂) < δ̄Σ(θ) in the case
H 1(θ) > L may be false). Hence, it is not true that all the geodesics have
Euclidean length less than L, but that for any pair (x, y) ∈ Ω × Ω there is
at least one geodesic between x and y of Euclidean length less than L. ��

Corollary 2.17. If A(s) is not constant for large s then the support of any
t.p.m. η which is optimal with respect to CΣ is bounded in Θ by L, where
L is as in the previous Lemma. Otherwise, if A(s) is constant for large s, it
is still true that there exists some optimal t.p.m. η the support of which is
bounded in Θ by L.

Proof. Recall that, thanks to (2.22), any t.p.m. optimal with respect to CΣ

is concentrated in the set of all geodesics; this set is closed, as already noticed
in Corollary 2.12, hence the whole support of any optimal t.p.m. is made by
geodesics and the first part of the proof is trivial.

Concerning the second claim, we recall that Corollary 2.12 implies that
the set G of all geodesics is a closed subset of Θ containing at least one path
which connects any given pair of points in Ω × Ω. The same property is true
for the set

GL := G ∩
{
θ ∈ Θ : H 1(θ) ≤ L

}
,

by the above lemma and since the Euclidean length is l.s.c. with respect to
the distance in Θ. Therefore, arguing as in Corollary 2.12, we find a Borel
map q̃ : Ω × Ω → Θ such that q̃(x, y) is a geodesic between x and y of
Euclidean length less than L. This easily gives also the second part of the
thesis: arguing as in Proposition 2.14, taken any optimal transport plan γ,
one has that the t.p.m. q̃#γ is as required. ��

We present now a useful exact formula for δ̄Σ .
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Proposition 2.18. The following equality holds:

δ̄Σ(θ) = J
(
H 1(θ \ Σ),H 1(θ ∩ Σ)

)
, (2.23)

where the function J : R
+ × R

+ → R is given by

J(a, b) := inf
{
A
(
a + l

)
+ B
(
b − l
)

: 0 ≤ l ≤ b
}

. (2.24)

Before giving the proof, we shortly discuss the above formula.

Remark 2.19. The meaning of (2.23), as one can understand comparing
with (2.2), is that, roughly speaking, one can “walk on the railway”: in other
words, the cost δ̄Σ of some path θ is not necessarily given by the cost of mov-
ing by own means out of the network and by train along it, but moving by
own means out of the network and possibly in some part of it, and by train
along the remaining part. The basic idea of the proof is then easily imagined:
instead of walking on the network, one can just walk very close to it, which
is possible since the dimension N is larger than 1.

Proof (of Proposition 2.18). Set a := H 1(θ \ Σ) and b := H 1(θ ∩ Σ), then
take an arbitrary sequence θn of paths having the same endpoints as θ and
converging to θ. It is known that

H 1(θ) ≤ lim inf
n→∞

H 1(θn) , (2.25)

H 1(θ \ Σ) ≤ lim inf
n→∞

H 1(θn \ Σ) ; (2.26)

the first inequality is the classical lower semicontinuity of the length, the sec-
ond is a recent generalization of the Go�la̧b theorem that we state in Theorem
3.6 (see also for instance [14] and [30]).

For a given n ∈ N, assume that

H 1(θn ∩ Σ) ≥ H 1(θ ∩ Σ) :

then, taking l = 0 in (2.24), we obtain

J(a, b) ≤ A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θ ∩ Σ)

)
≤ A
(
H 1(θ \ Σ)

)
+ B
(
H 1(θn ∩ Σ)

)
≤ δΣ(θn) + A

(
H 1(θ \ Σ)

)
− A
(
H 1(θn \ Σ)

)
.

(2.27)

On the other hand, if

H 1(θn ∩ Σ) < H 1(θ ∩ Σ)

then, taking
l := H 1(θ ∩ Σ) − H 1(θn ∩ Σ)
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in (2.24), we obtain

J(a, b) ≤ A
(
H 1(θ) − H 1(θn ∩ Σ)

)
+ B
(
H 1(θn ∩ Σ)

)
≤ δΣ(θn) + A

(
H 1(θ) − H 1(θn ∩ Σ)

)
− A
(
H 1(θn) − H 1(θn ∩ Σ)

)
.

(2.28)

Recalling now that A is nondecreasing and continuous, combining (2.27)
with (2.26) and (2.28) with (2.25) gives J(a, b) ≤ lim inf δΣ(θn), and therefore
J(a, b) ≤ δ̄Σ(θ).

To prove the opposite inequality take 0 ≤ l ≤ H 1(θ ∩ Σ) and let {θn}
be, according to Corollary 2.2, a sequence of paths connecting θ(0) and θ(1)
such that

θn → θ , H 1(θn) → H 1(θ) , H 1(θn ∩ Σ) = H 1(θ ∩ Σ) − l ∀n ∈ N .

Hence, making use of the continuity of A, one gets

δΣ(θn) = A
(
H 1(θn)− (H 1(θ∩Σ)− l)

)
+B
(
b− l
)
−−−→
n→∞

A(a+ l)+B(b− l) .

Thus for every 0 ≤ l ≤ b one has

δ̄Σ(θ) ≤ A(a + l) + B(b − l) ,

so the inequality J(a, b) ≥ δ̄Σ(θ) follows taking the infimum on l. ��

It is also convenient to introduce an auxiliary function, namely

D(a, b) := J(a, b − a) ; (2.29)

indeed, the above proposition tells us that

δ̄Σ(θ) = J
(
H 1(θ \ Σ),H 1(θ ∩ Σ)

)
,

or equivalently that

δ̄Σ(θ) = D
(
H 1(θ \ Σ),H 1(θ)

)
. (2.30)

In other words, we can express δ̄Σ(θ) in terms of the length H 1(θ\Σ) outside
of the network and of the length H 1(θ∩Σ) inside the network if we make use
of J , or in terms of the length H 1(θ \Σ) out of the network and of the total
length H 1(θ) if we make use of D. The advantage of the second possibility,
i.e. the advantage of (2.30) with respect to (2.23), is that the variables H 1(θ\
Σ) and H 1(θ) satisfy the useful lim inf inequalities (2.25)–(2.26), while the
same is not true for H 1(θ ∩Σ); on the contrary, for H 1(θ ∩Σ) the lim sup
inequality is true, as one can immediately deduce by Lemma 4.1. Another
easy interesting property of both D and J is the following one.
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Proposition 2.20. The functions J and D are nondecreasing in each of their
variables.

Proof. Consider first J : take b ≥ 0 and a′ ≥ a ≥ 0; for 0 ≤ l ≤ b one has
A(a + l) ≤ A(a′ + l), so by (2.24) one gets J(a′, b) ≥ J(a, b) and thus J is
nondecreasing in its first variable. Concerning the second one, take a ≥ 0 and
b′ ≥ b ≥ 0: one has

A(a + l) + B(b′ − l) ≥ A(a + l) + B(b − l) ≥ J(a, b) ∀ 0 ≤ l ≤ b ;

on the other hand, one has

A(a + l) + B(b′ − l) ≥ A(a + b) + B(0) ≥ J(a, b) ∀ b ≤ l ≤ b′ .

It follows that J(a, b′) ≥ J(a, b), so J is nondecreasing also in its second
variable.

Consider now D: first of all, we rewrite (2.29) in a more convenient way
as

D(a, b) = inf {A(a + l) + B(b − a − l) : 0 ≤ l ≤ b − a}
= inf {A(l) + B(b − l) : a ≤ l ≤ b} .

(2.31)

Then, take b ≥ 0 and a′ ≥ a ≥ 0: if a′ ≤ l ≤ b then a fortiori a ≤ l ≤ b,
hence one gets D(a, b) ≤ D(a′, b) directly by (2.31), and consequently D is
nondecreasing in its first variable. Finally, concerning the second one, take
a ≥ 0 and b′ ≥ b ≥ 0: if a ≤ l ≤ b then

A(l) + B(b′ − l) ≥ A(l) + B(b − l) ≥ D(a, b) ;

on the other hand, if b ≤ l ≤ b′ then

A(l) + B(b′ − l) ≥ A(b) + B(0) ≥ D(a, b) .

It follows that D(a, b′) ≥ D(a, b), so D is nondecreasing also in its second
variable and the proof is completed. ��


