
Preface

The principal aim of the book is to give a comprehensive account of the variety
of approaches to such an important and complex concept as Integrability. Devel-
oping mathematical models, physicists often raise the following questions: whether
the model obtained is integrable or close in some sense to an integrable one and
whether it can be studied in depth analytically. In this book we have tried to cre-
ate a mathematical framework to address these issues, and we give descriptions of
methods and review results.

In the Introduction we give a historical account of the birth and development of
the theory of integrable equations, focusing on the main issue of the book – the
concept of integrability itself. A universal definition of Integrability is proving to be
elusive despite more than 40 years of its development. Often such notions as “ex-
act solvability” or “regular behaviour” of solutions are associated with integrable
systems. Unfortunately these notions do not lead to any rigorous mathematical def-
inition. A constructive approach could be based upon the study of hidden and rich
algebraic or analytic structures associated with integrable equations. The require-
ment of existence of elements of these structures could, in principle, be taken as a
definition for integrability. It is astonishing that the final result is not sensitive to
the choice of the structure taken; eventually we arrive at the same pattern of equa-
tions. The relationship between the different approaches is often far from obvious
and needs to be understood better.

Integrable equations possess hidden symmetries and actually possess infinite hi-
erarchies of local symmetries. This property is taken as a definition of integrability
in the symmetry approach. A detailed introduction and review of the modern state
of the symmetry approach is given in Chap. 1, written by A.V. Mikhailov and V.
Sokolov. The symmetry approach provides powerful necessary conditions for the
existence of local higher symmetries and/or conservation laws for systems of differ-
ential equations. For a given system of equations these conditions are easily verifi-
able and eventually can serve as a criterion of integrability. Chapter 1 also contains
an account of classification results obtained and an extensive bibliography.

For evolutionary equations whose right-hand side is a homogeneous differential
polynomial, the symbolic representation and powerful results of number theory al-
low us to achieve global classification results (Chap. 2, written by J. Sanders and
J.P. Wang). One of the most spectacular results of this theory can be formulated as
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follows: any scalar integrable evolutionary equation whose right-hand side is a ho-
mogeneous differential polynomial (with a positive weight) belongs to one of the
infinite hierarchies of equations of order 2,3 or 5 and all these integrable hierarchies
are explicitly listed. It is shown that for a scalar evolutionary equation the existence
of one higher symmetry implies the existence of an infinite hierarchy of hidden
symmetries and therefore the integrability of the equation. For systems of equations
a similar statement is not valid: there are examples of systems which have only a
finite number of higher local symmetries. Chapter 2 is an excellent introduction to
the symbolic method and contains relevant number theory results in applications to
the theory of integrable equations.

In Chap. 3, written by S.P. Novikov, the phenomenon of integrability is asso-
ciated with hidden symmetries of linear spectral problems. Darboux and Laplas
transformations for one- and two-dimensional Schrödinger operators are famous
examples of the spectral symmetries. The proper discretisation of these operators,
the corresponding discrete Darboux and Laplas transformations and their relation
to integrable equations and finite gap solutions are discussed. Chapter 4, written by
A. Shabat is devoted to a detailed study of continuous and discrete spectral sym-
metries in the one-dimensional case. A connection of these symmetries with the
famous list of Painlevé equations and with dressing chains is discussed.

Chapters 5 and 6 explore perturbative and asymptotic aspects of integrable equa-
tions. The concept of approximate integrability, approximate symmetries and con-
servation laws are discussed in Chap. 5, written by Y. Hiraoka and Y. Kodama. It
is an attempt to extend the classical theory of normal forms to the case of partial
differential equations. If the main approximation is given by an integrable equa-
tion, the higher order corrections often violate integrability and give rise to new
effects, such as inelasticity in soliton interaction, creation of new solitons as a result
of soliton collisions, etc. Chapter 6, written by A. Degasperis, addresses multiscal-
ing expansion and universal equations, i.e. nonlinear equations which determine
the leading term in the asymptotic expansion. Francesco Calogero gave a simple
explanation for why integrable equations, which are rather exceptional, are widely
applicable. Universal equations have a good chance to be integrable, since the multi-
scaling expansion preserves the main attributes of integrability, such as symmetries,
local conservation laws, etc. The analysis of higher order corrections in a multiscale
expansion of a given system provides necessary conditions for integrability of the
system.

In the analytical theory of differential equations we study the structure of singu-
larities of the solutions. The absence of movable critical singularities can be taken
as a criteria for isolation of integrable systems. This is at the heart of the Painlevé
approach and its generalisations described in Chap. 7 written by A. Hone.

Chapter 8, written by J. Hietarinta, describes the modern development of the
Hirota approach and bi-linear representation of integrable equations. This kind of
representation proved to be very useful for construction and analysis of explicit
multi-soliton solutions. It can also be used for a classification of integrable equations
of special form.
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Quantum integrability is a separate and well-developed subject. It deserves a sep-
arate volume. We include lectures of T. Miwa (Chap. 9) in order to give a flavour of
quantum integrability and to highlight the symmetry aspects of quantum integrable
systems in the example of XXZ model.

This book is a unique collection of articles which could serve as the core mate-
rial for a number of graduate lecture courses. The chapters in the book are indepen-
dent and self-contained. They can be read in any order. Chapter 1 is probably more
pedagogical than others and can be recommended for those wishing to become ac-
quainted with the subject. The book was specifically designed to be accessible to
graduate students and post-docs.

Leeds, UK, Alexander V. Mikhailov
September 2008



Chapter 2
Number Theory and the Symmetry
Classification of Integrable Systems

J.A. Sanders and J.P. Wang

2.1 Introduction

The theory of integrable systems has developed in many directions, and although the
interconnections between the different subjects are clearly suggested by the similar-
ity of the results, they are not always so easy to prove or even formulate. Of the
various methods used to characterize integrable differential equations, including ex-
istence of infinitely many symmetries and/or conservation laws, soliton solutions,
linearization by inverse scattering or differential substitution, Bäcklund transforma-
tion, Painlevé property, bi-Hamiltonian structure, recursion operator, formal sym-
metry of infinite rank, etc. [35], the most fruitful for systematic classification and
discovery of new systems has been the characterization of integrable systems by the
existence of a sufficient number of higher order symmetries. The main questions in
this respect are the following:

• Can we decide, given an equation, whether there exists a generalized symmetry
(the recognition problem)?

• And if so, can we answer the question whether this leads to infinitely many sym-
metries (the symmetry-integrability problem)?

• Given a class of equations with arbitrary parameters, possibly functions of given
type, can we completely classify this class with respect to the existence of sym-
metries (The classification problem)?

As it turns out, these three questions are strongly related. In certain cases, they
can be effectively and completely analyzed by an adaptation of the symbolic method
of classical invariant theory [22], after which powerful number-theoretic results on
factorizability of polynomials based on Diophantine approximation theory [2] are
applied to complete the classification.

The history of the subject experienced two developmental periods. In the first,
following the discovery of the Korteweg–de Vries (KdV) equation, a surprisingly
large number of other integrable hierarchies, including mKdV, Sawada–Kotera,
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Kaup–Kupershmidt, were soon found. However, the second period was more dis-
appointing in this respect, as the integrable well quickly dried up, at least in the
most basic case that scalar, polynomial evolution equations are linear in the highest
order derivative. This led to the conjecture that all integrable systems of this partic-
ular form had been found. In this chapter, we describe rigorous classification results
for both commutative and noncommutative systems [24, 27, 28, 33], including a
proof of this particular conjecture and a discussion of the general methods by which
such complete classification results are established, cf. Sect. 2.4.

To do so, we prove that symmetry-integrability of an equation of the form

ut = un + f (u, · · · ,un−1), where un = Dn
xu (2.1)

with f a formal power series starting with terms that are at least quadratic, is deter-
mined by

• the existence of one generalized symmetry,
• the existence of approximate symmetries.

This led to the proof of the remark made in [7]

Another interesting fact regarding the symmetry structure of evolution equations is that in all
known cases the existence of one generalized symmetry implies the existence of infinitely
many. (However, this has not been proved in general.)

under fairly relaxed conditions. In particular, for homogeneous scalar evolution
equations, to prove the integrability of an equation of order 2 we need a symme-
try of order 3; for an equation of order 3 we need a symmetry of order 5; for an
equation of order 5 we need a symmetry of order 7; and for an equation of order 7
we need a symmetry of order 13; this enables us to give the complete list of inte-
grable homogeneous equations. The result also confirms the remark made in [10]:

It turns out from practice that if the first integrability conditions [...] are fulfilled, then often
all the others are fulfilled as well.

However, the conjecture

the existence of one symmetry implies the existence of (infinitely many) others

has been disproved using the example in [1]. This example does not contradict our
theorem, since it proves the nonexistence of certain quadratic terms, the existence of
which is one of the conditions in our theorem. In this chapter, we give the strict proof
that Bakirov’s example has only one symmetry using p-adic analysis, cf. Sect. 2.6.

We should remark that the modified conjecture made in [8]

... Similarly for n-component equations one needs n symmetries

has also been disproved in [11, 12], where the authors found a two-component sys-
tem that has only two symmetries.

This theory was soon successfully applied to noncommutative evolution equa-
tions of the form (2.1) in which the field variable u takes its values in an associative,
non-commutative algebra [24]. In this manner, it was rigorously proved that the list
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of integrable evolution equation in [23] is complete. These equations can be re-
garded as quantizing classical integrable systems; see [6], where the authors treated
the Korteweg–de Vries equation.

The classification problem has been noticed and studied since the 1960s. The
group consisting of A.B. Shabat, A.V. Mikhailov, V.V. Sokolov, S.I. Svinolupov,
R.I. Yamilov and co-workers, cf. [19, 25], was successful in giving the complete
classification for equations of fixed order, allowing for much bigger equivalence
classes. We only work with homogeneous equations and transformations that do not
change the weight of the dependent variables, but this restriction enables us, at least
in the scalar case, to obtain results for all orders of the evolution equation.

2.2 The Symbolic Method

2.2.1 Basic Definitions

The symbolic method was first introduced by Gel’fand-Dikiı̌ [9] and used in [32] to
show (as an example) that the symmetries of the Sawada–Kotera equation have to be
of order 1 or 5 (mod 6). The basic idea of the symbolic method is simply to replace
ui, where i is an index – in our case counting the number of derivatives – by uξ i,
where ξ is now a symbol. We see that the basic operation of differentiation, i.e. re-
placing ui by ui+1, is now replaced by multiplication with ξ , as is the case in Fourier
transform theory. For higher degree terms with multiple us, one uses different sym-
bols to denote differentiation; for example, the noncommutative binomial uiu j has
symbolic form u2ξ i

1ξ j
2 . In the commutative case, one needs to average over permu-

tations of the differentiation symbols so that uiu j and u jui have the same symbolic
form. However, in the noncommutative case, this is no longer necessary. In other
words, the noncommutative symbolic method works with general tensors, while in
the commutative case one restricts to (multi)-symmetric tensors, or polynomials for
short.

Usually one replaces ui by ξ i, but this leads to confusion for the expressions like
un since the distinction between the powers disappears.

With this method one can readily translate solvability questions into divisibility
questions and we can use generating functions to handle infinitely many orders at
once. While this does not mean that the questions are much easier to answer, we
do now have the whole machinery which has been developed in number theory
available, and this makes a crucial difference.

For simplicity, we restrict our attention to the case of a single independent vari-
able x and a single dependent field variable u. Extensions of the basic ideas to several
(noncommutative) dependent variables are immediate, see Sect. 2.5, and to several
commutative independent variables can be found in [34].

A differential monomial takes the form uI = ui1 ui2 · · ·uik . We call k the degree of
the monomial, #I = i1 + · · ·+ ik the index, and max(i j, j = 1, · · · ,k) the order. For
brevity, [u] is used to denote the set of arguments u,u1,u2, . . ..
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We denote by U k
n the set of differential polynomials in [u] of degree k + 1 and

index n. Let U k =
⊕

n U k
n , and U =

⊕
k≥0 U k, the algebra of all differential poly-

nomials. Notice that we consider k ≥ 0 that excludes the constant case, i.e. 1 /∈U .
The order of a differential polynomial is the maximum of the orders of its con-
stituent monomials.

The symbolic transform defines a linear isomorphism between the space U k of
(non)-commutative differential polynomials of degree k + 1 and the space A k =
R[ξ1, . . . ,ξk+1] of algebraic polynomials in k+1 variables. It is uniquely defined by
its action on monomials.

Definition 1. The symbolic form of a differential monomial is defined as

ui1 ui2 · · ·uik �−→ uk < ξ i1
1 ξ i2

2 · · ·ξ
ik
k >

=

⎧⎪⎨
⎪⎩

ukξ i1
1 ξ i2

2 · · ·ξ
ik
k (noncommutative);

uk

k! ∑
π∈Sk

ξ i1
π(1)ξ

i2
π(2) · · ·ξ

ik
π(k) (commutative),

where S
k is the permutation group of k elements.

In general, in analogy with Fourier transforms, we denote the symbolic form of P ∈
U k, whether it is commutative or not, by P̂. The transform has two basic properties:

D̂xP(ξ1, . . . ,ξk+1) = (ξ1 + · · ·+ξk+1) P̂(ξ1, . . . ,ξk+1),

∂̂P
∂ui

(ξ1, · · · ,ξk) =
1
i!

1
k +1

k+1

∑
j=1

∂ i+1P̂
∂u(∂ξ j)i (ξ1, · · · ,ξ j−1,0,ξ j, · · · ,ξk).

(2.2)

The following key result is a consequence of these formulae.

Proposition 2. Let K ∈ U m and Q ∈ U n. Then DK(Q) ∈ U m+n, where DK is the
Fréchet derivative of K, and

D̂K [Q] =
1

m+1

m+1

∑
τ=1

×
〈

∂ K̂
∂u

(
ξ1, . . . ,ξτ−1,

n

∑
κ=0

ξτ+κ ,ξτ+n+1, . . . ,ξm+n+1

)
Q̂(ξτ , . . . ,ξτ+n)

〉
.

Proof. Using (2.2), we compute

D̂K(Q) =

〈
∑

i

∂̂K
∂ui

D̂i
xQ

〉

=

〈
∑

i

1
i!

1
m+1

m+1

∑
τ=1

∂ i+1K̂
∂u(∂ξτ)i (ξ1, · · · ,ξτ−1,0,ξτ , · · · ,ξm)

×(ζ1 + · · ·+ζn+1)iQ̂(ζ1, · · · ,ζn+1)

〉
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=
1

m+1

m+1

∑
τ=1

〈
∂ K̂
∂u

(
ξ1, · · · ,ξτ−1,

n+1

∑
κ=1

ζκ ,ξτ , · · · ,ξm

)
Q̂(ζ1, · · · ,ζn+1)

〉

and the conclusion follows. ��

For any K,Q ∈U , we define [K,Q] = DQ(K)−DK(Q). This bracket makes U into
a graded Lie algebra.

The following polynomials play a critical role in the analysis.

Definition 3. The G-functions are the (commutative) polynomials

G(m)
k = ξ k

1 + · · ·+ξ k
m+1−

(
ξ1 + · · ·+ξm+1

)k
.

The key fact is the following formula for the bracket of a differential polynomial
with a linear differential polynomial:

[̂uk,Q] = G(m)
k Q̂, whenever Q ∈U m. (2.3)

This follows directly from Proposition 2 and the fact that uk has symbolic form ûk =
u ξ k

1 . An immediate application is the known result that the space of the symmetries
of linear evolution equations ut = un with n > 1 is U 0, as shown in the following:

Proposition 4. Consider the linear evolution equation ut = ∑p
j=1 λ ju j, where the λ j

are constants and λp �= 0. The space of its symmetries is

• U iff p = 1;
• U 0 iff p > 1.

Proof. Let Q ∈U and Q = ∑Qi, where Qi ∈U i. Since U is a graded Lie algebra,
Q is a symmetry of this equation iff [∑p

j=1 λ ju j, Qi] = 0 for any i≥ 0. Formula (2.3)
leads to

p

∑
j=1

λ jG
(i)
j = 0.

Under the assumption, this holds iff either p = 1 or p �= 1 and i = 0. ��

The crucial step is the following result [2] on the divisibility properties of the G-
functions. The proof relies on sophisticated techniques from diophantine analysis.

Proposition 5. The symmetric polynomials G(k)
n can be factorized as

G(k)
n = tk

ng(k)
n ,where (g(k)

n ,g(k)
m ) = 1, for all n < m,

and tk
n is one of the following polynomials:

• k = 1 :

– m = 0 (mod 2) : ξ1ξ2

– m = 3 (mod 6) : ξ1ξ2(ξ1 +ξ2)
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– m = 5 (mod 6) : ξ1ξ2(ξ1 +ξ2)(ξ 2
1 +ξ1ξ2 +ξ 2

2 )
– m = 1 (mod 6) : ξ1ξ2(ξ1 +ξ2)(ξ 2

1 +ξ1ξ2 +ξ 2
2 )2

• k = 2 :

– m = 0 (mod 2) : 1
– m = 1 (mod 2) : (ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3)

• k > 2 : 1

Proof. For k = 1, this was proved by F. Beukers using diophantine approximation
theory [2]; for k = 2, see Appendix 2.8; and k > 2 is a special case of Theorem
16. ��

Despite the innocent look of the polynomials involved, we have not been able to

find a simpler proof for k = 1. It is conjectured that the g(1)
m are Q[ξ ]-irreducible.

2.2.2 Computational Example: Fifth-Order Symmetry of KdV

To illustrate how the symbolic method works, we give the symbolic calculation for
the fifth-order symmetry of the Korteweg–de Vries equation. When one computes
a symmetry, the natural approach is to do this degree by degree. So for instance, if
we have the equation

ut = K = K0
3 +K1

1 = u3 +uu1 (KdV)

then we try a symmetry

S5 = S0
5 +S1

3 + · · ·= u5 +a1uu3 +a2u1u2 + · · · ,

where K j
i ,S j

i ∈U j
i . We have to solve [K0

3 ,S1
3]+ [K1

1 ,S0
5] = 0, i.e.

D3
xS1

3 +uDxS0
5 +u1S0

5

= D5
xK1

1 +a1uD3
xK0

3 +a1u3K0
3 +a2u1D2

xK0
3 +a2u2DxK0

3 .

Translating this to the symbols, we have

(ξ1 +ξ2)
3 Ŝ1

3 +
(

ξ 5
1 +ξ 5

2

)
K̂1

1

= (ξ1 +ξ2)
5 K̂1

1 +
(
ξ 3

1 +ξ 3
2

)
Ŝ1

3,

where K̂1
1 = u2

2 (ξ1 +ξ2). We can now (formally) express Ŝ1
3 in terms of K̂1

1 :

Ŝ1
3 =

(ξ1 +ξ2)5−ξ 5
1 −ξ 5

2

(ξ1 +ξ2)3−ξ 3
1 −ξ 3

2

K̂1
1 .
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By Definition 3, this can be rewritten as Ŝ1
3 = G(1)

5

G(1)
3

K̂1
1 . This is a real solution if Ŝ1

3

turns out to be a polynomial. Thus we have translated our problem into the question

whether the polynomials G(1)
5 and G(1)

3 have common factors.
The symbolic method brings the possibility to apply the invariant theory of the

permutation group to attack the classification problem.
Let us introduce ξ0 by requiring that ξ0 +ξ1 +ξ2 = 0. For odd n, we have

G(1)
n =

2

∑
i=0

ξ n
i ,

that is, the G(1)
n are S

3-invariants, where S
3 permutes the ξ -indices. Let

cn =
2

∑
i=0

ξ n
i , n = 2,3. (2.4)

The invariants of S
3 are generated by c2 and c3. This implies that G(1)

3 ≡ c3 and

G(1)
5 ≡ c2c3 up to multiplication by constants, since there is only one way in which

we can write 5 as an additive combination of 2 and 3. Therefore Ŝ1
3 ≡ c2K̂1

1 . To be
explicit,

Ŝ1
3 =

5
3

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)
K̂1

1 =
5
6

(
ξ 3

1 +2ξ 2
1 ξ2 +2ξ1ξ 2

2 +ξ 3
2

)
u2.

Let us compute S2
1 by solving [S1

3,K
1
1 ]+ [S2

1,K
0
3 ] = 0. By Proposition 2, this leads to

Ŝ2
1 =

5
6

(ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3)(ξ1 +ξ2 +ξ3)
(ξ1 +ξ2 +ξ3)3−ξ 3

1 −ξ 3
2 −ξ 3

3

u3 =
5
18

(ξ1 +ξ2 +ξ3)u3.

Note that [S2
1,K

1
1 ] = 0 in the next degree. Thus, the fifth-order symmetry is

S5 = S0
5 +S1

3 +S2
1 = u5 +

5
3

uu3 +
10
3

u1u2 +
5
6

u2u1,

the well-known Lax equation.
This illustrates both the simplification induced by the symbolic method as well

as the role of the G-functions in the whole analysis. The fact that the fifth-order
integrable equations like Kaup–Kupershmidt and Sawada–Kotera have hierarchies
with period 6 can now be explained by the invariant group S

3.

2.2.3 The Higher Order Symmetries of KdV

What do we need in order to show that there exists a symmetry at every odd order
for the Korteweg–de Vries equation? Let us sketch the computation for a higher
order symmetry
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S2k+1 = S0
2k+1 +S1

2k−1 + · · ·= u2k+1 +a1uu2k−1 +a2u1u2k−2 + · · · .

First we have to solve [K0
3 ,S1

2k−1]+ [K1
1 ,S0

2k+1] = 0. If we translate this to the sym-
bols, by Definition 3 we obtain

G(1)
3 Ŝ1

2k−1−G(1)
2k+1K̂1

1 = 0.

We can now (formally) express Ŝ1
2k−1 in terms of K̂1

1 as

Ŝ1
2k−1 =

G(1)
2k+1

G(1)
3

K̂1
1 ,

and this is a real solution if Ŝ1
2k−1 turns out to be a polynomial. Since the invariants

of S
3 are generated by c2 and c3, cf. (2.4), that is, G(1)

2k+1 is a polynomial in these two,

we must have c3|G(1)
2k+1. Therefore, Ŝ1

2k−1 is polynomial. Note that the whole argu-
ment is completely independent from the fact that we started with the Korteweg–de
Vries equation; it only depends on the equation being third order. This means in
general that there are no obstructions to be expected in computing the quadratic
terms of an odd-order symmetry for third-order equation. The first obstructions do
occur in the computation of the cubic terms.

2.3 An Implicit Function Theorem

In this section we formulate a theorem that leads to the proof that the existence of
one generalized symmetry implies infinitely many under fairly relaxed condition.
The theorem itself, stated in the context of graded (or filtered) Lie algebras, is not
difficult to prove. Its difficulty lies in formulating and checking some technical con-
ditions, which derive immediately from the symbolic formulation. Here we give the
theorem in graded Lie algebra version so that the reader can understand it better.
The filtered Lie algebra version is put in Appendix 2.9.

Consider a graded Lie algebra g = ∏∞
i=0 gi and let V be a graded g-module

∏∞
i=0 V i, where the action of g on V is such that if Xi ∈ gi and v j ∈ V j, then

Xi · v j ∈V i+ j.

Example 6. A typical example is g j = V j = U j, the set of differential polynomials
of degree j +1, and the action of g on V is the usual adjoint action given by the Lie
bracket.

Definition 7. We call K0 ∈ g0 nonlinear injective if KerK0 · ⊂V 0.

For Example 6, any element in g0 is nonlinear injective unless it is a multiple of u1,
cf. Proposition 4.

Definition 8. We call S0 ∈ g0 relatively l-prime with respect to K0 ∈ g0 if S0 ·X j ∈
ImK0⇒ X j ∈ ImK0 for all j ≥ l.
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We know from formula (2.3) that the Lie bracket of a differential polynomial with
an element in g0 equals the multiplication with a G-function, cf. Definition 3. In
this case, this definition can be checked by answering whether the corresponding
G-functions of S0 and K0 have common factors.

Theorem 9. Let K = ∑k
i=0 Ki and S = ∑s

i=0 Si, where Ki,Si ∈ gi and 0 < k,s ∈ N.
Suppose there exists Q j ∈V j, j = 0, · · · , l−1 such that

• [K,S] = 0,
• K0 is nonlinear injective,
• S0 is relatively l-prime with respect to K0,
• ∑p

i=0 Ki ·Qp−i = 0 for p = 0, · · · , l−1 and S0 ·Q0 = 0.

Then there exists a unique Q = ∑∞
i=0 Qi, Qi ∈V i, such that K ·Q = S ·Q = 0.

Proof. First we prove that ∑ j
i=0 S j−i ·Qi = 0 for all 0≤ p < l by induction.

For p = 0 this is true by assumption. Suppose it is true for all j ≤ p < l− 1.
Now we show it is also true for p + 1. We know that the action of a Lie algebra on
a module is [K,S] · = K ·S · −S ·K · and that the assumption that [K,S] = 0 implies
that ∑q

j=0[K
j,Sq− j] = 0, for any q ∈ N. It follows

K0 ·
p+1

∑
i=0

Sp+1−i ·Qi =
p+1

∑
i=0

[
K0,Sp+1−i] ·Qi +

p+1

∑
i=0

Sp+1−i ·K0 ·Qi

= −
p+1

∑
i=0

p+1−i

∑
j=1

[
K j,Sp+1−i− j] ·Qi−

p+1

∑
i=0

Sp+1−i ·
i

∑
j=1

K j ·Qi− j

= −
p+1

∑
j=1

p+1− j

∑
i=0

[
K j,Sp+1−i− j] ·Qi−

p+1

∑
j=1

p+1

∑
i= j

Sp+1−i ·K j ·Qi− j

= −
p+1

∑
j=1

p+1− j

∑
i=0

(
[K j,Sp+1−i− j] ·Qi +Sp+1−i− j ·K j ·Qi)

= −
p+1

∑
j=1

K j ·
p+1− j

∑
i=0

Sp+1−i− j ·Qi =−
p

∑
j=0

K p− j+1 ·
j

∑
i=0

S j−i ·Qi = 0.

By the nonlinear injectiveness of K0, we obtain that ∑p+1
i=0 Sp+1−i ·Qi = 0.

Next we suppose that there exists ∑p−1
j=0 Q j satisfying ∑ j

i=0 K j−i ·Qi = 0 and

∑ j
i=0 S j−i ·Qi = 0 for j = 0, . . . , p−1.
For p = l, this follows from the previous.

K0 ·
p−1

∑
i=0

Sp−i ·Qi =
p−1

∑
i=0

[
K0,Sp−i] ·Qi +

p−1

∑
i=0

Sp−i ·K0 ·Qi

= −
p−1

∑
i=0

p−i

∑
j=1

[
K j,Sp−i− j] ·Qi−

p−1

∑
i=0

Sp−i ·
i

∑
j=1

K j ·Qi− j
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= −
p

∑
j=1

p− j

∑
i=0

[
K j,Sp−i− j] ·Qi−

p

∑
j=1

p−1

∑
i= j

Sp−i ·K j ·Qi− j

= −
p

∑
j=1

(
p− j

∑
i=0

[
K j,Sp−i− j] ·Qi +

p−1− j

∑
i=0

Sp−i− j ·K j ·Qi

)

= −
p

∑
j=1

K j ·
p− j

∑
i=0

Sp−i− j ·Qi +S0 ·
p

∑
j=1

K j ·Qp− j = S0 ·
p

∑
j=1

K j ·Qp− j.

We have ∑p
j=1 K j ·Qp− j ∈ ImK0 since S0 is relatively l-prime with respect to K0.

So we can uniquely define Qp by

K0 ·Qp =−
p

∑
j=1

K j ·Qp− j .

We then automatically have ∑p
i=0 K p−iQi = 0. That ∑p

i=0 Sp−iQi = 0 follows from
the first part of the proof. Again by induction on p, we prove that Q can always be
extended such that all graded parts of K ·Q and S ·Q vanish. ��

If one thinks of the application of this theorem to the computation of symmetries
of evolution equations, cf. Example 6, then this proves (at least up till the existence
of ∑l

i=0 Qi) the long-held belief that one nontrivial symmetry S of the equation K is
enough for integrability. With such a strong result one has to inspect the conditions.
The strangest of them seems to be the relative prime condition. In the next sections,
however, we show that for scalar equations with linear part ut = uk any symmetry
S starting with us,s �∈ {1,k} satisfies the conditions of the theorem with l = 2 when
K1 �= 0 and l = 3 when K1 = 0 and K2 �= 0.

2.4 Symmetry-Integrable Evolution Equations

2.4.1 Symmetries of λ -Homogeneous Equations

In this section we give the complete classification for homogeneous scalar commu-
tative and noncommutative evolution equations. A key result is that it suffices to
compute the linear and quadratic terms, or cubic if the quadratic terms are zero,
of a nontrivial odd-order symmetry in order to guarantee its existence. This speeds
up the classification process, since any obstructions to the existence of symmetries
have to show up early in the computation.

The differential equation (2.1) is said to be λ -homogeneous of weight µ if it
admits the one-parameter group of scaling symmetries

(x, t,u) �−→ (a−1x,a−µ t,aλ u), a ∈ R
+.
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For example, the Korteweg–de Vries equation ut = uxxx + uux is homogeneous of
weight 3 for λ = 2.

Two evolution equations ut = K and ut = Q are symmetries of each other if and
only if [21]

[K, Q] = 0. (2.5)

An equation is called (symmetry-)integrable if it has infinitely many linearly inde-
pendent higher order symmetries.

Any λ -homogeneous evolution equation of order n can be broken up into its
homogeneous components, and so it takes the form

ut = K = ∑
i≥0

Ki
n−λ i,

(
Ki

n−λ i ∈U i
n−λ i

)
. (2.6)

We assume that K0
n = un, n ≥ 2, and 0 < λ ∈ Q. When iλ /∈ N, Ki

n−iλ = 0. This
reduces the number of relevant λ to a finite set.

For λ = 1, this describes the family of Burgers-like equations and for λ = 2 the
family of KdV-like equations.

Let S ∈ U be a symmetry of order m of the evolution equation (2.6). We break
up the bracket condition [S,K] = 0 into its homogeneous summands, leading to the
series of successive symmetry equations

∑
i+ j=r

[
S j

m−λ j,K
i
n−λ i

]
= 0, for r = 0,1,2, . . . . (2.7)

According to Proposition 4, S must have nontrivial linear term, S0
m �= 0, and we

can set S0
m = um without loss of generality. Clearly we have [S0

m,K0
n ] = 0. The next

equation to be solved is
[
S0

m,K1
n−λ
]
+
[
S1

m−λ ,K0
n

]
= 0. (2.8)

Condition (2.8) is trivially satisfied if K has no quadratic terms: K1
n−λ = 0. Let us

concentrate on the case K1
n−λ �= 0. We use (2.3) and Proposition 5 to rewrite (2.8) in

symbolic form:

K̂1
n−λ =

Ŝ1
m−λ

G(1)
m

G(1)
n = u2 p(ξ1,ξ2)

ξ1ξ2(ξ1 +ξ2)
G(1)

n , (2.9)

where limξ1+ξ2→0 p(ξ1,ξ2) exists. We next set r = 2 in (2.7) and find

Ŝ2
m−2λ =

K̂2
n−2λ G(2)

m + M̂

G(2)
n

, (2.10)

where M̂ is the symbolic form of the commutator

M =
[
S1

m−λ ,K1
n−λ
]

(2.11)



100 J.A. Sanders and J.P. Wang

between the quadratic terms.
We use the notation q|p to indicate that the polynomial q divides the polynomial

p. Consider the set

I = { p(ξ1,ξ2) : (ξ1 +ξ2)|p(ξ1,ξ2) or ξ1ξ2|p(ξ1,ξ2) }

consisting of bivariate polynomials p(ξ1,ξ2) that have either ξ1 + ξ2 or ξ1ξ2 as a
factor.

Proposition 10. Suppose m and n are both odd. Let M̂ and p be given by (2.11) and
(2.9), respectively. Then (ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3) divides M̂ iff p ∈I .

Proof. Using formula (2.9), we compute M̂ to be

M̂ = u3
〈

p(ξ1 +ξ2,ξ3)p(ξ1,ξ2)Fξ2,ξ3
(ξ1 +ξ2)

ξ1ξ2ξ3(ξ1 +ξ2)2(ξ1 +ξ2 +ξ3)

〉

+ u3
〈

p(ξ1,ξ2 +ξ3)p(ξ2,ξ3)Fξ2,ξ1
(ξ2 +ξ3)

ξ1ξ2ξ3(ξ2 +ξ3)2(ξ1 +ξ2 +ξ3)

〉
,

where

Fξi,ξ j
(η) = G(1)

n (η ,ξ j)G(1)
m (η−ξi,ξi)−G(1)

m (η ,ξ j)G(1)
n (η−ξi,ξi) .

Here we only write out the analysis for noncommutative case. For the commutative
case, the expression of M̂ needs to be symmetrized. However, the proof is quite
similar, cf. [27].

Notice that ξ1 + ξ3 is a factor of M̂. We now prove that limξ1+ξ2→0 M̂ = 0. The
second summand has

lim
ξ1+ξ2→0

Fξ2,ξ1
(ξ2 +ξ3)

= G(1)
n (−ξ2,ξ2 +ξ3)G(1)

m (ξ2,ξ3)−G(1)
m (−ξ2,ξ2 +ξ3)G(1)

n (ξ2,ξ3)

=−G(1)
n (ξ2,ξ3)G(1)

m (ξ2,ξ3)+G(1)
m (ξ2,ξ3)G(1)

n (ξ2,ξ3) = 0.

As for the first part, a straightforward computation shows that

Fξ2,ξ3
(0) = 0 =

d
dη

Fξ2,ξ3
(0).

Moreover,

d2

dη2 Fξ2,ξ3
(0) = 2

(
d

dη
G(1)

n (ξ3,η)
d

dη
G(1)

m (η−ξ2,ξ2)

− d
dη

G(1)
n (η−ξ2,ξ2)

d
dη

G(1)
m (ξ3,η)

) ∣∣
η=0

= 2nm
(
ξ m−1

3 ξ n−1
2 −ξ n−1

3 ξ m−1
2

)
�= 0.
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This implies that

lim
ξ1+ξ2→0

Fξ2,ξ3
(ξ1 +ξ2)

(ξ1 +ξ2)2 �= 0

and therefore (ξ1 +ξ2) � | M̂ unless (ξ1 +ξ2)|p(ξ1 +ξ2,ξ3)p(ξ1,ξ2) or, equivalently,
(ξ1 + ξ2)|p(ξ1,ξ2) or ξ1|p(ξ1,ξ2). Similarly, when we deal with factor ξ2 + ξ3,
we obtain (ξ2 + ξ3) � | M̂ unless (ξ1 + ξ2)|p(ξ1,ξ2) or ξ2|p(ξ1,ξ2). Therefore, the
statement of the proposition follows. ��

Corollary 11. Assume m and n are odd. Then (ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3) divides

K̂2
n−2λ G(2)

m + M̂ if and only if K̂1
n−λ (ξ1,ξ2) ∈I .

We next state a result that says the symmetry algebra of a commutative or non-
commutative polynomial evolution equation is commutative. Moreover, every sym-
metry is uniquely determined by its quadratic terms.

Theorem 12. Suppose the evolution equation (2.6) has a nonzero symmetry S of
order m≥ 2 . Suppose Q1

q−λ is a nonzero quadratic differential polynomial (q≥ λ ),
where q �∈ {m,n}, and q is odd if n is odd, which satisfies the leading order symmetry
condition [K0

n ,Q1
q−λ ]+[K1

n−λ ,Q0
q] = 0, cf. (2.8). Then there exists a unique symmetry

of the form Q = ∑i≥0 Qi
q−iλ . Moreover, the symmetries Q and S commute.

Proof. For even n or m, this follows from Theorem 9, since S0
m is relatively 2-prime

with respect to K0
n .

We conclude from the existence of S that (ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3) divides

K̂2
n−2λ G(2)

m +
[
Ŝ1

m−λ , K̂1
n−λ

]
(2.12)

for odd n and m. In other words, K̂1
n−λ (ξ1,ξ2) ∈I .

Since S is a symmetry, i.e. [K, S] = 0, we have

[K, [S, Q]] = [S, [K, Q]]

from Jacobi identity. We break it up into its homogeneous summands leading to

g(2)
n

([
Ŝ1, Q̂1

]
+
[
Ŝ2, Q̂0

])
= g(2)

m

([
K̂1, Q̂1

]
+
[
K̂2, Q̂0

])
.

We know that (g(2)
m ,g(2)

n ) = 1, and (by exactly the same argument as for S)

(ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3)
∣∣([K̂1, Q̂1

]
+
[
K̂2, Q̂0

])
.

This implies that G(2)
n divides [K̂1, Q̂1]+ [K̂2, Q̂0]. Therefore,

Q̂2
q−2λ =

[Q̂1, K̂1]+ [Q̂0, K̂2]

G(2)
n
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is well defined. Since the G(k)
n are relative prime for k > 2, this means that K0

m is
relatively 2-prime and we can apply Theorem 9 to draw the conclusion that there
indeed exists a symmetry Q commuting with S. ��

We make a very interesting observation. Suppose Q is a nontrivial qth odd-order
symmetry of (2.6) with odd n, whose quadratic terms, cf. (2.9), have the following
symbolic expression:

Q̂1
q−λ =

K̂1
n−λ

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)s−s′
g(1)

q

g(1)
n

.

Proposition 5 implies that λ ≤ 3+2min(s,s′), where s′ = n+3
2 (mod 3) and s = q+3

2
(mod 3). Then Theorem 12 implies that

Q̂1
2s+3−λ =

K̂1
n−λ

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)s−s′
g(1)

2s+3

g(1)
n

gives rise to a symmetry Q = Q0
2s+3 + Q1

2s+3−λ + · · · of the original equation. (Of
course, one can use this argument to generate an entire hierarchy of symmetries.)
This implies that the evolution equations defined by Q and K have the same symme-
tries, so instead of considering K we may consider the equation given by Q, which is
of order q = 2s+3 for s = 0,1,2. It follows that we only need to find the symmetries
of λ -homogeneous equations (with λ ≤ 7) of order ≤ 7 in order to obtain the com-
plete classification of symmetries of λ -homogeneous scalar polynomial equations
starting with linear terms.

A similar observation can be made for even n > 2. Suppose we have found a
nontrivial symmetry with quadratic term

Q̂1
q−λ =

K̂1
n−λ G(1)

q

ξ1ξ2 g(1)
n

.

This immediately implies λ ≤ 2. Then Q̂1
2−λ = 2K̂1

n−λ
/

g(1)
n gives rise to a symmetry

Q = Q0
2 + Q1

2−λ + · · · of the original equation. Therefore, we only need to find the
symmetries of equations of order 2 to get the complete classification of symmetries
of λ -homogeneous scalar polynomial equations (with λ ≤ 2) starting with an even
linear term.

Finally, we must analyze the case when K has no quadratic terms. Assume that
Ki

n−λ i = 0 for i = 1, . . . , j−1, and K j
n−λ j �= 0 for some j > 1. In place of (2.8), we

now need to solve the leading order equation

[S0
m,K j

n− jλ ]+ [S j
m− jλ ,K0

n ] = 0.

Using (2.3), the symbolic form of this condition is
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Ŝ j
m− jλ =

K̂ j
n− jλ G( j)

m

G( j)
n

. (2.13)

Proposition 5 implies that this polynomial identity has no solutions when j ≥ 3,

or when j = 2 and n is even, since G( j)
m and G( j)

n have no common factors, and
the degree of K j

n− jλ is n− jλ < n, which is the degree of G( j)
n . Thus there are no

symmetries for such equations. When j = 2 and n is odd, the equation can only have
odd-order symmetries. If Eq. (2.13) can be solved for any m, it can also be solved
for m = 3.

By now, we have proved the following

Theorem 13. A nontrivial symmetry of a λ -homogeneous equation with λ > 0 is
part of a hierarchy starting at order 3,5 or 7 in the odd case, and at order 2 in the
even case.

2.4.2 The List of Symmetry-Integrable Equations

Only an equation with nonzero quadratic or cubic terms can have a nontrivial sym-
metry. For each possible λ > 0, we must find a third-order symmetry for a second-
order equation, a fifth-order symmetry for a third-order equation, a seventh-order
symmetry for a fifth-order equation with quadratic terms and the thirteenth-order
symmetry for a seventh-order equation with quadratic terms. The last case can be
easily reduced to the case of fifth-order equations by determining the quadratic terms
of the equation. The details of this final symbolic computation are completed as in
the commutative case described in [26].

2.4.2.1 Commutative Case

We list all integrable hierarchies which are λ -homogeneous, with λ ≥ 0. For λ = 0,
details can be found in [28]. For λ > 0 the equivalence transformations are just
scalings u �→ αu, while for λ = 0 we allow arbitrary change of variables u �→ h(u).
The classification theorem states that every λ -homogeneous evolution equation with
linear leading term is equivalent, modulo homogeneous transformations in u, to an
equation lying in one of the following hierarchies.

Korteweg–de Vries
ut = u3 +uu1

Kaup–Kupershmidt

ut = u5 +10uu3 +25u1u2 +20u2u1
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Sawada–Kotera
ut = u5 +10uu3 +10u1u2 +20u2u1

Burgers
ut = u2 +uu1

Potential Korteweg–de Vries

ut = u3 +u2
1

Modified Korteweg–de Vries

ut = u3 +u2u1

Potential Kaup–Kupershmidt

ut = u5 +10u1u3 +
15
2

u2
2 +

20
3

u3
1

Potential Sawada–Kotera

ut = u5 +10u1u3 +
20
3

u3
1

Kupershmidt Equation [19, 4.2.6]

ut = u5 +5u1u3 +5u2
2−5u2u3−20uu1u2−5u3

1 +5u4u1

Ibragimov–Shabat [5]

ut = u3 +3u2u2 +9uu2
1 +3u4u1

Potential Burgers/Heat Equation

ut = u2 ∼ ut = u2 +u2
1

Potential modified Korteweg–de Vries

ut = u3 +u3
1

Potential Kupershmidt Equation

ut = u5 +5u2u3−5u2
1u3−5u1u2

2 +u5
1

2.4.2.2 Noncommutative Case

Recently, the analysis of integrable evolution equations in which the field variable
u takes its values in an associative, noncommutative algebra, such as matrix, op-
erator, Clifford and group algebras, has attracted attention. A complete classifica-
tion for λ > 0 homogeneous equations with linear leading term was established in
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[24]. (The case λ = 0 poses considerable technical difficulties.) There are only five
noncommutative hierarchies, each generalizing one of the preceding commutative
hierarchies.

Korteweg–de Vries
ut = u3 +uu1 +u1u

Burgers
ut = u2 +uu1, ut = u2 +u1u

Potential Korteweg–de Vries

ut = u3 +u2
1

Modified Korteweg–de Vries I

ut = u3 +u2u1 +u1u2

Modified Korteweg–de Vries II

ut = u3 +uu2−u2u− 2
3

uu1u

Interestingly, whereas the mKdV has two inequivalent noncommutative versions,
there is no noncommutative generalization of the Sawada–Kotera, Kaup-Kupers-
hmidt, Kupershmidt, or Ibragimov–Shabat hierarchies.

2.5 Evolution Systems with k Components

In this section, we use a simple geometric fact to prove that homogeneous evolution
systems with positive weights of order larger than 1 and their linear parts with dis-
tinct nonzero eigenvalues are not symmetry-integrable without quadratic and cubic
terms.

As we mentioned in Sect. 2.2, the generalization of the symbolic method to more
dependent variables is straightforward. We introduce a symbol for each of dependent
variables, like u and v, for instance ξ and η . Thus the symbolic expression for u1u2v3

is 1
2 ξ1ξ2η3

1 (ξ1 +ξ2)u2v, symmetric with respect to ξ1 and ξ2, the symbols from us,
and with respect to η1, the symbol from v. If we would not carry along the u’s and
v’s, information would be lost: consider the expressions uv and u2. The alternative
would be to keep the zeroth power of any symbol, so that uv would go to ξ 0η0, but
this is very awkward in actual polynomial computations.

Consider evolutionary vectorfields with two components u and v. Let U
(i, j)

m de-
note a set of differential polynomial vectorfields with index m, total number of x-

derivatives, and degree i in u and j in v. This degree can be −1: ∂
∂u ∈U

(−1,0)
0 .

Assume the weights of u and v are λ1 and λ2, respectively, and λ2 ≥ λ1 > 0. So
any nth-order homogeneous system can be written:
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ut
∂
∂u

+ vt
∂
∂v

= K = ∑
i, j

K(i, j)
n−iλ1− jλ2

, K(i, j)
l ∈U

(i, j)
l , i, j ≥−1. (2.14)

Only when n− iλ1− jλ2 < n ∈N does the term K(i, j) make sense and can appear in

the system. The linear part of the system can be written as K(0,0)
n +K(−1,1)

n−λ2+λ1
, where

K(0,0)
n = a1un

∂
∂u +a2vn

∂
∂v , K(−1,1)

n−λ2+λ1
= a3vn−λ2+λ1

∂
∂u , and ai ∈ C.

Assumption 14. We assume that the linear part of the system equals

K(0,0)
n = a1un

∂
∂u

+a2vn
∂
∂v

, a1a2 �= 0, a1 �= a2, n≥ 2. (2.15)

Since the linear part is diagonal, it will act semisimply on polynomial vectorfields.
This simplifies the analysis considerably. Let us compute the action of the diagonal
linear part on vectorfields of Q(i, j) using the symbolic method:

̂
[

Q(i, j),

(
a1un

a2vn

)]
=

(
f (i, j)
u;n (a1,a2;ξ ;η) 0

0 f (i, j)
v;n (a1,a2;ξ ;η)

)
Q̂(i, j)(ξ ;η),

where Q̂(i, j)(ξ ;η) is the symbolic expression of Q(i, j) and

f (i, j)
u;n (a1,a2;ξ ;η) = a1

(
i+1

∑
l=1

ξl +
j

∑
k=1

ηk

)n

−a1

i+1

∑
l=1

ξ n
l −a2

j

∑
k=1

ηn
k ;

(2.16)

f (i, j)
v;n (a1,a2;ξ ;η) = a2

(
i

∑
l=1

ξl +
j+1

∑
k=1

ηk

)n

−a1

i

∑
l=1

ξ n
l −a2

j+1

∑
k=1

ηn
k .

These are two important polynomials corresponding to the G-functions in scalar
case, cf. Definition 3, and related by

f (i, j)
u;n (a1,a2;ξ ;η) = f ( j,i)

v;n (a2,a1;η ;ξ ). (2.17)

This calculation immediately leads to the following result (cf. Proposition 4):

Proposition 15. The space of the symmetries of a linear system of the form of (2.15)
is U (0,0) =

⊕
m U

(0,0)
m .

We are now in the position to do the same analysis as in Sect. 2.4. However,
since we do not have the neat results on functions (2.16) as in Proposition 5 for
the G-functions, the analysis is more complicated and difficult, for details see [31],
where we did complete classification for second-order evolution equations with two
components.

Let S be a symmetry of order m of system (2.14). Its linear part is in U (0,0).

Without loss of generality, we set S(0,0)
m = b1um

∂
∂u + b2vm

∂
∂v . The next equation to

be solved is
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[
S(0,0)

m ,K(i, j)
n−iλ1− jλ2

]
=
[
K(0,0)

n ,S(i, j)
m−iλ1− jλ2

]
, i+ j = 1. (2.18)

Assume that system (2.14) has no quadratic and cubic terms, that is,

K(i, j)
n−iλ1− jλ2

= 0, 1≤ i+ j ≤ 2.

We then need to solve (2.18) for i+ j = 3. Translating this to the symbolic language,
we need to study

(
f (i, j)
u;n (a1,a2;ξ ;η), f (i, j)

u;m (b1,b2;ξ ;η)
)

, i+ j = 3.

If they have no common factors, system (2.14) has no such symmetry.
The following theorem is due to Frits Beukers.

Theorem 16. For any positive integer m the polynomial

hc,m = (ξ1 +ξ2 +ξ3 +ξ4)m− cm−1
1 ξ m

1 − cm−1
2 ξ m

2 − cm−1
3 ξ m

3 − cm−1
4 ξ m

4 ,

where Π 4
i=1ci �= 0, is irreducible over C.

Proof. Suppose that ha,m = A ·B with A,B polynomial of positive degree. Then the
projective hypersurface Σ given by ha,m = 0 consists of two components ΣA,ΣB

given by A = 0 and B = 0, respectively. ΣA
⋂

ΣB consists of an infinite number of
points, which should be singularities of Σ since

dha,m

dξi
=

dA
dξi
·B+A · dB

dξi
|ΣA

⋂
ΣB = 0.

Thus it suffices to show that Σ has finitely many singular points.
We compute the singular points by setting the partial derivatives of hc,m equal to

zero, i.e.

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c1ξ1)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c2ξ2)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c3ξ3)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c4ξ4)m−1 = 0.

From these equations it follows in particular that

ξ1 = ζ1/c1, ξ2 = ζ2/c2, ξ3 = ζ3/c3, ξ4 = ζ4/c4,

where ζ m−1
i = 1 and ζ1/c1 + ζ2/c2 + ζ3/c3 + ζ4/c4 = 1. For given ci, i = 1, · · · ,4,

we get finitely many singular points. ��

In two-component case, the ci are determined by a1 and a2. The condition
Π 4

i=1ci �= 0 is automatically satisfied due to the assumption that a1a2 �= 0. This
implies that when system (2.14) has no quadratic and cubic terms, i.e. K(i, j) = 0
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(1 ≤ i + j ≤ 2), it is not integrable. One can even make the stronger statement that
it has no nontrivial generalized symmetries at all!

We can draw the similar conclusion to k-component systems from this theorem
that homogeneous evolution systems with positive weights of order large than 1 and
their linear parts with distinct nonzero eigenvalues cannot have nontrivial general-
ized symmetries without quadratic and cubic terms.

2.6 One Symmetry Does not Imply Integrability

As we proved in Sect. 2.4, scalar evolution equations are integrable once one non-
trivial generalized symmetry exists. However, this cannot be generalized to multi-
component systems. The first example was found by Bakirov [1] (see also [21, p.
381], exercise 5.15 and [3]) that the system

{
ut = u4 + v2

vt = 1
5 v4

(2.19)

has one symmetry of order 6, but no others were found up till order 53. In this
section, we prove that indeed no other symmetries exist for this system. Further
classification and recognition of integrable such type of equations can be found in
[13].

2.6.1 The Symbolic Interpretation of Bakirov’s Example

We rewrite system (2.19) as (u4 + v2) ∂
∂u + 1

5 v4
∂
∂v . Its symbolic form is

(
ξ 4

1 u+ v2) ∂
∂u

+
1
5

η4
1 v

∂
∂v

Since the system satisfies Assumption 14, from Proposition 15, its symmetry of a
given order m has to start with aum

∂
∂u +bvm

∂
∂v , i.e.

aξ m
1 u

∂
∂u

+bηm
1 v

∂
∂v

.

At first sight we are losing some candidates (for being a symmetry) here, since
we implicitly assume the vectorfield to be polynomial. As is shown in [1], however,
this is not a restriction.

Computing the commutator of the quadratic part of system (2.19) with this linear
part of the (potential) symmetry, we have

[
η0

1 +η0
2

2
v2 ∂

∂u
,aξ m

1 u
∂

∂u
+bηm

1 v
∂
∂v

]
= (a(η1 +η2)m−b(ηm

1 +ηm
2 ))v2 ∂

∂u
.
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Notation 17. Let F(n)
a = a(η1 +η2)n− (ηn

1 +ηn
2 ) and F̄(n)

a = a(x+1)n− (xn +1).

We now construct the quadratic terms of the symmetry. Provided b �= 0, we compute
[(

ξ 4
1 u+ v2) ∂

∂u
+

1
5

η4
1 v

∂
∂v

,
(
aξ m

1 u+ Âv2) ∂
∂u

+bηm
1 v

∂
∂v

]

=
(

bF(m)
a/b −

1
5

ÂF(4)
5

)
v2 ∂

∂u
.

Let Â = 5 b F(m)
a/b /F(4)

5 . If Â is polynomial in η1,η2, then

(
aξ p

1 u+ Âv2) ∂
∂u

+bη p
1 v

∂
∂v

is a symmetry of system (2.19).
Therefore, the question about the existence of symmetries of an evolution system

of the form (2.19) is translated into:

Question 18. Given a,n, for which b ∈ C and m ∈ N does F(n)
a divide F(m)

b ?

This can be answered by the following results.

Theorem 19. Let a∈C\{0,1} and n∈N≥2. We consider F̄(n)
a . Suppose that at least

one of the following conditions holds:

1. n≥ 6,
2. n = 4,5 and F̄(n)

a has two zeros α,β �= 0,−1 such that α/β ,(1+α)/(1+β ) or
αβ ,(1+α)/(1+1/β ) are not simultaneously roots of unity.

Then there exist at most finitely many pairs b∈C,m∈N such that F̄(n)
a divides F̄(m)

b .

This theorem will be proved in Sect. 2.6.2.

Remark 20. • For n = 2 or 3, it is easy to check that there are infinitely many such
pairs. Condition 2 in the theorem is violated only in seven cases including a = 1,
see [4] for details.

• Since there is one-to-one correspondence between F(n)
a and F̄(n)

a , we can trans-

late the results on F̄(n)
a to those on F(n)

a , and further back on symmetries of the
evolution systems.

In particular given a,n it is often possible to compute the complete set of b,m
explicitly. This will be done for the example a = 5,n = 4 in Sect. 2.6.3, which is
precisely Bakirov’s example. Here we only give the result.

Theorem 21. Suppose F(4)
5 divides F(m)

b . Then (b,m) equals (5,4) or (11,6).

In the first case, it leads to the system itself. For (b,n) = (11,6), we find Â = 25
22 η2

2 +
20
11 η1η2 + 25

22 η2
1 . We now translate these results back to results on symmetries of

system (2.19).
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Corollary 22. The system

{
ut = u4 + v2,
vt = 1

5 v4

has one and only one nontrivial symmetry:
(

u6 +
5

11

(
5vv2 +4v2

1

)) ∂
∂u

+
1
11

v6
∂
∂v

.

2.6.2 The Lech–Mahler Theorem

In this section we prove Theorem 19 by using the Lech–Mahler theorem from num-
ber theory.

First we realize that F̄(n)
a has double zeros for some values of a, which is impor-

tant for our analysis later on.

Lemma 23. Suppose that F̄(n)
a has a multiple zero. Then this is given by an (n−1)th

root of unity ζ and a = 1/(ζ +1)n−1. Together with 1/ζ these are the only multiple
zeros and they have multiplicity two.

Proof. We solve the simultaneous equations F̄(n)
a = dF̄(n)

a /dx = 0. Explicitly, a(x+
1)n = xn +1 and a(x+1)n−1 = xn−1. Multiply the second by x+1 and subtract the

equations. We obtain 0 = 1− xn−1. Hence the roots of F̄(n)
a , denoted by X , are an

n−1th root of unity and from the second equation we get a = 1/(1+X)n−1. Since

d2F̄(n)
a

dx2

∣∣
X = n(n−1)

(
a(x+1)n−2− xn−2)∣∣

X = n(n+1)
(

1
X +1

− 1
X

)
�= 0,

the root X is a double zero. Suppose we have a second (n−1)th root of unity Y such
that a(1+Y )n−1 = 1. In particular we find that |1+Y |= |1+X | and |X |= |Y |. This
implies that either X = Y or X = Y = 1/Y . This proves our lemma. ��

For the proof of Theorem 19 we shall use the following theorem from number
theory [14].

Theorem 24 (Lech, Mahler). Let A1,A2, . . . ,An ∈ C be nonzero complex numbers
and similarly for a1,a2, . . . ,an. Suppose that none of the ratios Ai/A j with i �= j is a
root of unity. Then the equation

a1Ak
1 +a2Ak

2 + · · ·+anAk
n = 0

in the unknown integer k has finitely many solutions.

Repeatedly applying this theorem, we obtain the following corollary:
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Corollary 25. Let A,B,C,D ∈ C be nonzero complex numbers. Suppose that the
equation

Ak +Bk = Ck +Dk

has infinitely many integers k with Ak +Bk �= 0 as solution. Then at least one of the
pairs A/C,B/D or A/D,B/C consists of roots of unity.

Proof of Theorem 19. Let α,β be complex zeros of F̄(n)
a not equal to 0,−1 such

that condition (2) of Theorem 19 is satisfied.
For n = 4 or 5 such zeros exist by assumption. For n≥ 6 we shall prove that such

zeros also exist.
Suppose that α/β ,(1+α)/(1+β ) are roots of unity. Then we have |α|= |β | and

|1+α|= |1+β |. Hence β lies on the intersection of the circles |z|= |α| and |z+1|=
|1+α| which implies β = α or β = α . Similarly if αβ and (1+α)/(1+1/β ) are
roots of unity then β = 1/α or β = 1/α . As a consequence of the statement, we

need to prove there exists a root of F̄(n)
a such that it is not in a set of the form

Vα = {0,−1,α,1/α,α ,1/α}. If F̄(n)
a has multiple zeros then, according to Lemma

23, the multiple zero is an (n−1)th root of unity, which we may assume to be equal
to α . Together with 1/α these are the only multiple zeros and they have multiplicity

two. Whether G(m)
a has multiple zeros or not, it is clear that if a �= 1 and m≥ 6, F̄(m)

a

has a zero outside Vα .
Note that α,β being zeros of F̄(n)

a implies

(αn +1)/(α +1)n = (β n +1)/(β +1)n = a,

that is, (
1

1+1/α

)n

+
(

1
α +1

)n

=
(

1
1+1/β

)n

+
(

1
β +1

)n

.

Suppose F̄(n)
a divides F̄(m)

b for some b ∈ C,m ∈ N. Then we also have

(
1

1+1/α

)m

+
(

1
α +1

)m

=
(

1
1+1/β

)m

+
(

1
β +1

)m

.

Suppose there are infinitely many such pairs (b,m). Then, according to Corollary
25, the ratios

1+1/α
1+1/β

,
1+α
1+β

or
1+1/α

1+β
,

1+α
1+1/β

are roots of unity. Let us assume the first. Then we see that the ratios α/β and (1+
α)/(1+β ) are roots of unity. This was excluded by our assumptions. We deal sim-
ilarly with the second case. ��
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2.6.3 Skolem’s Method

In this section we prove Theorem 21. We assume that the reader is familiar with the
concept of p-adic numbers. The set of p-adic numbers is denoted by Qp and the set
of p-adic integers by Zp.

Lemma 26. (Skolem’s method) Suppose p is an odd prime. Let A,B,C,D ∈ Zp and
suppose they are not zero modulo p. Write

Ap−1 = 1+ pα, Bp−1 = 1+ pβ , Cp−1 = 1+ pγ, Dp−1 = 1+ pδ ,

where α,β ,γ,δ ∈ Zp. Denote for every k ∈ Z, Hk = Ak +Bk−Ck−Dk.
Suppose that Hk �≡ 0 (mod p). Then Hk+r(p−1) �= 0 for all r ∈ Z.
Suppose Hk = 0 and αAk + βBk − γCk − δDk �≡ 0 (mod p). Then, for r ∈ Z,

Hk+r(p−1) = 0 implies r = 0.

Proof. Note that by Fermat’s little theorem,

Hk+r(p−1) = Ak+r(p−1) +Bk+r(p−1)−Ck+r(p−1)−Dk+r(p−1)

≡ Ak +Bk−Ck−Dk ≡ Hk (mod p).

Since Hk �≡ 0 (mod p) we conclude that Hk+r(p−1) �≡ 0 (mod p) for all r ∈ Z and
our first statement follows.

Suppose Hk+r(p−1) = 0 and assume r ≥ 0. Then

0 = Ak+r(p−1) +Bk+r(p−1)−Ck+r(p−1)−Dk+r(p−1)

= Ak(1+ pα)r +Bk(1+ pβ )r−Ck(1+ pγ)r−Dk(1+ pδ )r

=
r

∑
i=1

(
r
i

)
pi
(

Akα i +Bkβ i−Ckγ i−Dkδ i
)

.

Suppose that r �= 0. Dividing by pr and using the fact that

1
r

(
r
i

)
=

1
i

(
r−1
i−1

)
,

we obtain

0 = Akα +Bkβ −Ckγ−Dkδ +
r

∑
i=2

(
r−1
i−1

)
pi−1

i

(
Akα i ++Bkβ i−Ckγ i−Dkδ i

)
.

The summation is of course empty when r = 1. Since p ≥ 3 the number pi−1

i has
p-adic valuation less than 1/p. So after reduction modulo p we obtain

0≡ Akα +Bkβ −Ckγ−Dkδ (mod p)
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which contradicts our assumption. Hence we conclude r = 0. When r < 0 we can
repeat the above proof with A−1,B−1,C−1,D−1 instead of A,B,C,D. ��
Proof of Theorem 21. When F(4)

5 divides F(m)
b this means in particular that the zeros

of f = F̄(4)
5 are a subset of the zeros of F̄(m)

b . This holds true in any field, also p-adic

fields. Let r,s be two zeros of f . Then clearly, (r+1)4

r4+1
= (s+1)4

s4+1
. Suppose f divides

F̄(m)
b for some b,m. Then we also have (r+1)m

rm+1 = (s+1)m

sm+1 and hence

((r +1)s)m +(r +1)m− ((s+1)r)m− (s+1)m = 0.

Note that when modulo 181 we have the factorisation

f ≡ 4(x−66)(x−139)(x−96)(x−56) (mod 181).

Since 181 does not divide the discriminant of f , this implies that f has four roots in
Q181. They are

66+13 ·181, 139+29 ·181, 96+93 ·181, 56+44 ·181 (mod 1812).

We now apply Lemma 26 with p = 181 and A = (r+1)s,B = r+1,C = r(s+1),D =
s+1. We take r,s to be the first two roots. Then, using modulo 1812, we get

A≡ 67+13 ·181, B≡ 82, C ≡ 140+29 ·181, D≡ 9+165 ·181 (mod 1812).

We also compute modulo 181,

α ≡ 33, β ≡ 46, γ ≡ 40, δ ≡ 140 (mod 181).

A straightforward computation shows that Hk ≡ 0 (mod 181) and 0 ≤ k < 180
yields k = 0,1,4,6. Lemma 26 now implies that Hk+180r �= 0 for all r when
k �= 0,1,4,6. When k = 0,1,4 or 6 we easily check that Hk = 0 and

αAk +βBk− γCk−δDk �≡ 0 (mod 181).

Again, application of Lemma 26 shows that Hk = 0⇒ k = 0,1,4,6. When k = 6 we
check that b = r6+1

(r+1)6 = 11 and f divides indeed 11(x+1)6−x6−1. ��
We finally remark that the method sketched in this section works also for other

cases. When (a,b,n,m) = (29,3599,4,10) we can take p = 491. When (a,b,n,m) =
(11,14867171,4,28) or (a,b,n,m) = (17/3,78719/81,4,16) we can take p = 101.

2.7 Concluding Remarks, Open Problems
and Further Development

We have shown in this chapter that the symbolic method, combined with the im-
plicit function theorem for filtered Lie algebras, gives us a powerful technique,
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which translates our classification questions into questions about divisibility. To at-
tack these, we have at our disposal the results of centuries of mathematics, ranging
from number theoretical methods as diophantine approximation theory and p-adic
methods, to algebraic geometry. Still not all problems have been solved, and the
two- and three-variable version of Theorem 16 would be very welcome, even in
some restricted form with relations between the parameters. Nevertheless, all this
seems to be within range, and we may hope that further results along these lines
will enable us to completely classify evolution systems under certain conditions.

We have not discussed here the application of these methods to for instance the
classification of co-symmetries. In principle the same techniques apply, but there
are two difficulties. First of all, the G-functions do not belong to the same class
now, and we have to look at the quotient of a regular G-function and a dual G-
function. This complicates the analysis and makes the results less regular than for
symmetries. The second problem arises when the system does not have a symmetry.
In this case we cannot apply the implicit function theorem for filtered Lie algebras
and we have to go back to ad hoc techniques. These issues are discussed in [26, 29].
Similar remarks apply to the classification of other objects like recursion operators
or formal symmetries.

One can also start, once partial classification results are available, to apply larger
transformation ‘groups’ to the integrable equations, to see which can be transformed
into one another. The introduction of canonical densities as new coordinates can lead
to remarkable simplification of the results, and smaller lists, as was pointed out to
us by Prof. V.V. Sokolov and A. Meshkov.

Further development has shown that symbolic representation can be extended
to differential [30] and pseudo-differential operators [15]. It has been a suitable
tool to study integrability of nonevolutionary [15, 17, 18, 20], nonlocal (integro-
differential) [16] and multi-dimensional equations [34].

2.8 Some Irreducibility Results by F. Beukers

The results in this appendix are obtained by F. Beukers, Mathematical Department,
University of Utrecht and are published here with his kind permission.

Theorem 27. Consider the polynomial G(2)
k = ξ k

1 + ξ k
2 + ξ k

3 + (−ξ1 − ξ2 − ξ3)k.

Then G(2)
k is absolutely irreducible if k is even. When k is odd it factors as

(ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3)g
(2)
k , where g(2)

k is absolutely irreducible.

Proof. Consider the projective curve C defined by G(2)
k = 0. Suppose that G(2)

k =
A ·B, where A and B are two polynomials of positive degree. Geometrically the curve
C now consists of two components C1,C2 given by A = 0,B = 0, respectively. The
curves C1 and C2 intersect in at least one point, which implies that the curve C has
a singularity.
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Let us now determine the singularities of C , i.e. the projective points (ξ1,ξ2,ξ3)
where all partial derivatives of G(2)

k vanish. Hence

kξ k−1
1 − k(−ξ1−ξ2−ξ3)k−1 = 0,

kξ k−1
2 − k(−ξ1−ξ2−ξ3)k−1 = 0,

kξ k−1
3 − k(−ξ1−ξ2−ξ3)k−1 = 0.

We see that ξ k−1
1 = ξ k−1

2 = ξ k−1
3 = ξ k−1

0 where ξ0 = −ξ1− ξ2− ξ3. By taking
ξ3 = 1, say, we can assume that ξ1,ξ2,ξ0 are (k− 1)th roots of unity such that
ξ0 + ξ1 + ξ2 + 1 = 0. Note that four complex numbers of the same absolute value
can only add up to zero if they form the sides of a parallelogram with equal sides.
Hence one of the ξ1,ξ2,ξ3 is−1 and the others are opposite. Suppose without loss of
generality that ξ0 =−1 and ξ1 =−ξ2. If k is even we see that 1 = ξ k−1

3 =−(−1) =
−ξ k−1

0 , contradicting ξ k−1
3 = ξ k−1

0 . Hence C is nonsingular if k is even. In particular
C is irreducible in this case.

Now suppose that k is odd. Then we have 3k − 6 singular points, namely
(ζ ,−ζ ,1), (ζ ,−1,1), (−1,ζ ,1) where ζ k−1 = 1. Note that we have a priori
3k− 3 singular points, but some of them coincide. Consider such a singular point,
say (ζ ,−ζ ,1). We study the singular point locally by introducing the coordi-
nates ξ1 = ζ + u,ξ2 = −ζ + v. Up to third-order terms we find the local equation
(ζ (u+v)− (u−v))(u+v)+ · · ·. Since the quadratic part factors in two distinct fac-
tors the singularity is simple, i.e. there are two distinct tangent lines through the

point. Consider now the curves (ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3) = 0 and g(2)
k = 0. These

curves intersect in 3(k−3) points. Moreover, the first curve has three singularities.

This accounts for the 3k−6 singular points we found. Hence g(2)
k = 0 cannot have

any singular points and in particular it is irreducible. ��

2.9 The Filtered Lie Algebra Version of the Implicit
Function Theorem

We give a filtered Lie algebra version of the implicit function theorem in Sect. 2.3.
The proof is quite neat, but more abstract.

Consider a filtered Lie algebra F = F 0 ⊃F 1 ⊃ ·· · ⊃F n ⊃ ·· · and let V be a
filtered F -module V = V 0 ⊃ V 1 ⊃ ·· · ⊃ V n ⊃ ·· · (with

⋂∞
i=0 V j = 0), where the

action of F on V is such that if Xi ∈F i and v j ∈ V j, then Xi · v j ∈ V i+ j.

Definition 28. We call K ∈F nonlinear injective if for all Xl ∈ V l , l > 0, K ·Xl ∈
V l+1⇒ Xl ∈ V l+1.

The nonlinear injectiveness of K ∈F implies that K (mod F 1) �= 0.

Definition 29. We call S ∈F relatively l-prime with respect to K ∈F if S ·X j ∈
ImK (mod V j+1)⇒ X j ∈ ImK|V j (mod V j+1) for all j ≥ l and X j ∈ V j.
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Theorem 30. Let K,S ∈F be linearly independent. Suppose there exists some Q̄ ∈
V such that

• [K,S] = 0,
• K is nonlinear injective,
• S is relatively l-prime with respect to K

and there exists some Q̄ ∈ V such that

• K · Q̄ ∈ V l and S · Q̄ ∈ V 1.

Then there exists a unique Q = Q̄+Ql ,Ql ∈ V l such that

K ·Q = S ·Q = 0.

Proof. We use the fact that we have an action of a Lie algebra on a module, i.e.
[K,S] · = K ·S · −S ·K · . It follows that

K ·S · Q̄ = S ·K · Q̄

By the nonlinear injectiveness of K it follows that S · Q̄ ∈ V l .
Now we prove by induction on p that there exists Q̃ satisfies that K · Q̃ ∈ V p and

S · Q̃ ∈ V p, p≥ l. For p = l we can take Q̃ = Q̄. We have

K ·S · Q̃ = S ·K · Q̃

and therefore S ·K ·Q̃∈ im K (mod V p+1). It follows from the relatively l-primeness
that K · Q̃ ∈ ImK|V p (mod V p+1). So we can define Qp ∈ V p by

K ·Qp =−K · Q̃.

By construction Q̂ = Q̃+Qp obeys K · Q̂ = 0 (mod V p+1). It then follows from the
nonlinear injectiveness of K that S · Q̂ ∈ V p+1. Therefore there exists a convergent
(in the filtration topology) sequence with limit Q = Q̃ + ∑∞

p=l+1 Qp such that K ·Q
and S ·Q vanish. Uniqueness follows from the assumption that

⋂∞
p=0 V p = 0. This

proves the statement. ��
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