

Preface

Overview
The realm of embedded systems is quite large and is predominantly carried out
around the general purpose processor and microcontrollers. The use of field
programmable gate array (FPGA) in microprocessor-based embedded systems is
often for glue logic or for off-loading the processor from tasks that require fast
updates. The motivation for writing this text is to present a single source of
information that can be used to understand how a FPGA and the Hardware
Description Language (HDL) can be used in the design of embedded digital
systems.

Digital design methodology has undergone several changes over the past three
decades. The use of FPGA and HDL for implementing digital logic has become
widespread in the last decade. The use of FPGA in embedded systems is still in its
nascent stage. The majority of the embedded applications are divided between an
8-bit microcontroller implementation and a 32-bit processor-based real time
operating system (RTOS) implementation. This text provides a starting point for
the design of embedded system using FPGA and HDL. To give the text a common
thread of thought from the application point of view, a design example of a
hypothetical industrial robot controller is taken up. Different chapters of the text
provide the necessary background on FPGA and HDL along with its use in
designing an industrial robot controller.

Coverage
The first FPGA, introduced in 1985, consisted of 2000 gates. Since then, gate
density has grown to tens of millions of gates. With increasing density of FPGAs,
varied hardware resources have become a standard feature of contemporary FPGA-
based devices. The text includes simulation of digital logic using Verilog HDL,
synthesis of HDL code for a given FPGA device and processor-based FPGA
devices. The focus of the HDL chapter is to emphasise the synthesizable area of
Verilog constructs and to provide a basis to understand the application examples
that follow in subsequent chapters. A chapter is devoted to the understanding of
hardware–software partitioning in a FPGA device. Proprietary 8-bit and a 32-bit
soft processors are discussed along with interfacing methodology using system-on-

viii Preface

chip interconnections. Basic technique for serial data communication, signal
conditioning, motor control and hardware prototyping is covered using FPGA and
HDL.

How to Use This Book
Moore’s law has kept the semiconductor business in a constant state of flux. It is
very difficult to write a book that uses FPGA and continues to be relevant despite
ongoing technological changes. The author has presented basic concepts and
techniques for using FPGA and hence should not change quickly. Since this book
covers vast areas of HDL and FPGAs, some sections are brief and sketchy. For this
the author recommends that the reader supplement the contents of each chapter
with additional available literature. The chapter on HDL coding and simulation
should be supplemented by standard textbooks on HDL coding and simulation. The
FPGA resources and synthesis topic should be supplemented by EDA tools
provided by different FPGA vendors and FPGA device datasheets. The contents on
FPGA embedded processors can be supplemented by application notes on
interfacing processors to custom codes and datasheets of soft processors.

FPGA Device and Tools Used
For purposes of illustration and consistency, Xilinx ISETM software and
SPARTANTM3E FPGA have been used throughout the book. Though the
exemplars are specific to this device, the concepts can be applied to FPGA devices
available from other FPGA vendors.

Gandhinagar Rahul Dubey
October 2008

1

Introduction

Digital systems and their design have evolved greatly over the last four decades.
Rising densities and speed have provided designers a huge canvas to create
complex digital systems. Present-day embedded systems use single-chip
microcontrollers. Contemporary microcontrollers are available with 8-, 16- and 32-
bit processing capability along with a peripheral set containing ADC, timer/counter
and networks (I2C, CAN, SPI, and UART). For most applications the
microcontroller-based board is adequate. For applications where there is a need to
integrate custom logic for faster control and additional peripherals, the
microcontroller or microprocessor board is augmented by a FPGA or an
application specific standard product (ASSP) device. The focus of this chapter is to
understand different digital design methodologies before embarking on a full
fledged description of the use of a custom digital design based on a FPGA.

1.1 Embedded System Overview

Embedded systems are usually single function applications. Various functional
constraints associated with embedded systems are low cost, single-to-fewer
components, low power, provide real-time response and support of hardware-
software co-existence. A general methodology used in designing an embedded
system is shown in Table 1.1.

The decision on the kind of digital platform to be used takes place during the
system architecture phase as each embedded application is linked with its unique
operational constraints. Some of the constraints of a digital controller of embedded
system hardware include (in no particular order) the following:

• Real-time update rate
• Power
• Cost
• Single chip solution
• Ease of programming
• Portability of code

2 Introduction to Embedded System Design Using Field Programmable Gate Arrays

• Libraries of re-usable code
• Programming tools.

Table 1.1. Embedded system design flow [1]

Design phase Design phase details

Requirements Functional requirements and non-functional requirements
(size, weight, power consumption and cost)

User specifications User interface details along with operations needed to
satisfy user request

Architecture Hardware components (processor, peripherals,
programmable logic and ASSPs), software components
(major programs and their operations)

Component design Pre-designed components, modified components and new
components

System integration
(hardware and software)

Verification scheme to uncover bugs quickly

1.2 Hypothetical Robot Control System

For understanding different digital design platforms, this text uses the design of a
digital controller for a robot as a case study. The robot is a hypothetical, vertically
articulated robot system for an automated assembly line. The process of designing
this controller will help in understanding various digital design concepts. Figure
1.1 shows the various components of an assembly line robot. Each robot consists
of five electric motors that work as actuators for different joints of the robot. A
programming pendant or workstation is used to program the movements of the
robot along with a communications network to link this robot to other robots on the
assembly line. Various sensors are interfaced to the robot control system.

Data
communications

Fig. 1.1. Vertically articulated robot system used in an assembly line environment

 Introduction 3

The typical requirements of an Industrial robot controller include

• Control method for point-to-point control using servomotors
• Position detection using incremental or absolute encoder system
• Return to origin using limit switches and encoder
• Trajectory control
• Programming using a personal computer.

Table 1.2. Tasks for robot digital controller

Task Subtask Update time

Gate Driver, protection and
current sensing

Fraction of a
microsecond

Dead time Microseconds

Closed-loop torque control Tens of
microseconds

Closed-loop speed control Hundreds of
microseconds

Position coordinate
interpolation

Milliseconds

Control of
joint motors

Host communications Tens of milliseconds

Sensor signal
processing

ADC, DAC Tens of milliseconds

Networking
applications

Low-speed network Milliseconds

Control Strategy for the Robot Controller

For implementing the robot controller on a digital system, a list of controller tasks
is created in Table 1.2 along with the update time requirements. The major tasks
for the robot controller for an articulated factory robot are

• Simultaneous control of five motors with details shown in Table 1.3.
• Signal processing of sensor inputs coming from robot environment —

encoders, limit switches, proximity sensors, vision sensor
• Communication of robot co-ordinates to other robots in the vicinity, using

CAN bus or Modbus®
• Communicating with host controller over serial port
• Computation of trajectory for robot movement.

4 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 1.3. Specifications of a micro articulated robot Mitsubishi Movemaster RV-M1 [2]

Axis Description Encoder pulses per
revolution (PPR)1

Gear ratio Working range in
degrees

J1 Waist 200 1:100 300°

J2 Shoulder 200 1:170 130°

J3 Elbow 200 1:110 110°

J4 Wrist pitch 96 1:180 90°

J5 Wrist roll 96 1:110 ± 180°

The tasks and their update times are shown graphically in Fig. 1.2.

Gate
driver
and

protec-
tion

Current
Sensing

Closed
loop

Torque
Control

Dead-
time

Position
Coordinate

and
Interpola-

tion

Programmable
Logic Controller

Interface

Networking.
RS-485 ,

CAN ,
GPS,Zigbee

Host
Communi-

cations

INTERFACES

USER I/O

HOST

text M

 NON-DETERMINISTIC
COMPUTATIONS

- MEMORY INTENSIVE
- FAST COMPUTATION
- NO DEDICATED HARDWARE

 REAL TIME DETERMINISTIC

COMPUTATION
 EXTERNAL HARDWARE

- DISCRETE COMPONENT

E

E
n
c
o
d
e
r

Power
Module

fraction s s10s of s100s of s1000s of smsecs μ μ μ μ μ

C
H

IP
 W

ID
E

 B
U

S

Speed
Control

Fig. 1.2. Update times needed for various control functions of a robot control system
[3]

1.3 Digital Design Platforms

Till the 1970s, electronic system designs were based on discrete analogue
components such as transistors, operational amplifiers, resistors, capacitors and
inductors. These circuits offered concurrent processing but had problems of
parameter drift with temperature and ageing. The coming of TTL-based

1 The encoder is used to find the position and speed of the robot joint. The working of the encoder
is explained in Chap. 2.

 Introduction 5

components laid the foundation of digital design. The Intel 4004 microprocessor
became the first digital platform which was configurable using software. Table 1.4
lists the major contemporary digital designs along with their relative merit.

Table 1.4. Digital design platforms

Digital design platform Merit

Microprocessors Reconfigurable using software. Good for
computations

Microcontrollers, digital signal
controllers

Combination of peripherals and CPU

Application specific standard product
(ASSP)

A specialized peripheral with the ability
to communicate with a host processor

Field programmable gate array (FPGA) Ability to combine the strengths of
processor, controller and ASSP

1.3.1 Microprocessor-based Design

The microprocessor has changed digital design methodology like no other digital
component. It started out as a 42 bit programmable CPU in 1971 and still continues
to be the digital controller of choice across several application areas. The
microprocessor brought the concept of instruction set architecture (ISA), assembler
and compiler. There are many real-time applications, with fast update rates require
programming the microprocessor in its native assembly language. This is usually
done when the size of available memory is a constraint. Even though most
commercial microprocessors used today cater to data-centric applications, there are
microprocessor cores embedded in microcontrollers for real-time control
applications.

Digital control systems, like the robot application use a processor by using
interrupts for real-time processing. There are interrupts for calculation of robot arm
trajectory, encoder and sensor feedback, control of motors and networks. Each
interrupt will occur based on the update time requirement of the given task. Figure
1.3 shows the generic nature of interrupt processing, where an interrupting device
seeks CPU attention. A microprocessor-based robot controller carries out the task
of arm positioning based on the flowchart shown in Fig. 1.4.

2 The early Intel 4004 and the 8086 processor had close to 2300 and 29000 transistors. A basic 2
input NAND gate consists of 4 transistors. Effectively the early Intel processors 4004 and 8086
used only 575 and 7250 gates. This helps to put in perspective the amount of digital logic that can
be accomodated in a 500,000 gate FPGA.

6 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Start

Hardware initialization

Software variables
initialization

Waiting loop

Interrupt service
routine (ISR)

Initialization Algorithm* Waiting time

Sampling Period T = 60 µs

Software Start

Timer
Count

 * On every interrupt, the CPU updates the results of the algorithm

Timer Interrupt

Fig. 1.3. Interrupt service routine (ISR) based processing scheme of processor-controller
control scheme

Because most single core general purpose processors (GPP) are single-
threaded (can process one instruction at a time), the processor use can become very
high when managing multiple interrupts from different tasks of the robot
controller. This can be seen from Fig. 1.5, where processor CPU use increases
linearly with each motor.

 Introduction 7

Start of position control
loop interrupt service

routine (ISR)

Read motion command
of J1–J5 axis from

operator pendant or
stored in memory

Calculation of each axis
movement based on

point-to-point trajectory

For axis 1

Read encoder
generated position and
speed value of Jx axis

Calculate speed
reference based on

position controller for Jx
axis

Calculate motor
command reference

(PWM) for Jx axis

Is update of
position and speed
loops done for all

axes?

Return to calling function

Fig. 1.4. Processor-interrupt-based flowchart needed for computing a control action
[4]

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

Motor axis current loop at 10 kHz Motor axis speed loop at 1 kHz

CPU
utilization for

motor J1

CPU
utilization for

motor J2

CPU
utilization for

motor J3

CPU
utilization for

motor J4

CPU
utilization for

motor J5
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

CPU
utilization for

all motors

Fig. 1.5. CPU use for axis motor control for a single-threaded controller

1.3.2 Single-chip Computer/Microcontroller-based Design

The microcontroller represents the next generation of controllers for embedded
systems. It allows creating systems with fewer numbers of components by

8 Introduction to Embedded System Design Using Field Programmable Gate Arrays

incorporating peripherals that were earlier externally interfaced with the general
purpose processor. A block diagram of a typical single-chip controller, which is
used as a robot motor controller, is shown in Fig. 1.6.

Like the microprocessor, tasks in a microcontroller design environment are
divided as per the update rates required. For tasks requiring low update rates,
coding is accomplished using a software programming language such as C. Tasks
that need to have high deterministic update rates are coded using the native
assembly language for a particular microcontroller. In the robot application at
hand, many of the motor control routines require update rates of a few kilohertz.
Traditionally, these routines are written in assembly language. It is difficult to port
routines written in assembly language as they are tied to a CPU’s ISA. The other
constraint with a microcontroller-based system is the fixed number of available
peripherals. Though microcontroller vendors offer a wide range of devices with
different numbers and types of peripherals, it is not always possible to find one that
matches the application requirements perfectly.

P
ro

pr
ie

ta
ry

 p
er

ip
he

ra
l b

us

10-bit analogue-to-
digital converter

Serial peripheral
interface

Watchdog

Three 8-bit I/O ports

Status
Registers,Aux.

Registers

CPU Core

EEPROM

Data RAM

P
ro

gr
am

/D
at

a
bu

s

WorkstationPeripherals

M

~

Timers

PWM outputs

Compare outputs

Dead band logic

Quadrature encoder pulse
interface

Power interface

Fig. 1.6. Single-chip microcontroller environment for a motor control application

1.3.3 Application Specific Standard Products (ASSPs)

An ASSP is a configurable logic component for a specific application. The
functionality of an ASSP is tweaked by specifying its control word. ASSPs are
made in volumes and cater to the generic requirements of the application. Most of

 Introduction 9

the time, ASSP-based designs are used on a PCB. In the robot control application
at hand, an ASSP can be used for controlling the motor for each axis of the robot.
Based on the type of motor and control strategy used, a corresponding ASSP is
chosen. Two examples of ASSPs for motor control include LM629 from National
Semiconductor for control of a brushed DC motor and SA628 (see Fig. 1.7a and b)
for three-phase motor control. Configurable ASSPs provide address, data and
control bus connectivity for interfacing with the host processor.

Phasing and
control logic

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Waveform ROM

Address
generator

Amplitude
reference

table

Acceleration/
Deceleration

block

Speed
reference

table

Crystal
clock

generator

Trip latch

Reset

Direction

Set 1–4

Raccel

Rdecel

XTAL1

XTAL2

Vmonitor

Imonitor

Trip

Set trip

Upper Output
Red phase

Lower Output

Upper Output
Yellow phase
Lower Output

Upper Output
Blue phase

Lower Output

a

Position/velocity profile generator

Quadrature decoder

S

Host
interface

Digital PID filter
(16 bits)

+

 –

Direction

PWM

H-Bridge

Quadrature incremental
encoder

Sign

Magnitude

Control lines

Host I/O port

DC motor
LM629

b

Fig. 1.7. a ASSP chip SA628 for control of a three-phase AC Induction Motor
[5]; b ASSP chip LM629 for control of a DC motor

10 Introduction to Embedded System Design Using Field Programmable Gate Arrays

1.3.4 Design Using FPGA

The present-day FPGA provides a platform that supports both processor and
custom logic requirements. The microcontrollers currently have an edge over the
FPGA in terms of power and cost. But FPGAs are catching up by offering
portability of code across various FPGA vendors, libraries of re-usable code and
availability of low-cost programming tools. Programmable devices that were
traditionally low gate count devices are now in a position to support large parts of
digital system logic. The digital designer today has a viable option of using only
the FPGA device as the embedded system controller. The availability of high-
density, low-cost FPGA devices has given digital designers lots of flexibility to
design custom digital architectures using FPGA and HDLs. FPGA devices have
evolved from their glue logic predecessor to a device that now contains a large
variety of built-in digital components (memory, multipliers, transceivers and many
more). FPGA device density has risen over the years and at the same time its cost
has made it economically viable for use in several applications. Contemporary
FPGAs contain thousands of look up tables (LUTs) and FFs for implementing
complex digital logic.

Contemporary FPGAs offer

• Reconfigurability: Field programmable devices can be reconfigured at any
time. Designers can integrate modifications or do complete personality
changes.

• Software-defined design: The hardware is defined by software-like
languages (HDL). Designers can develop, simulate and test a circuit fully
before “running” it on a field programmable device.

• Parallelism: Circuits defined in an FPGA can be designed in a completely
parallel fashion. This is similar to using multi-path analogue circuits. A
user can instantiate multiple hardware implementations on the same chip
without cross-module interference or computation loading. An example of
FPGA-based concurrent processing is shown in Fig. 1.8.

Clock of processor, controller

Task update interval

Task 1 execution time

Task 2 execution time

Task 3 execution time

Clock PLD

Task update interval PLD

Task 1 execution time PLD

Task 2 execution time PLD

Task 3 execution time PLD

Fig. 1.8. Multi-tasking scheme using a GPP vis-à-vis a FPGA

 Introduction 11

• High speed: Because an FPGA is a hardware implementation running with
fast clock rates, designers can achieve very high speeds. Coupled with
parallelism, FPGA implementation can outperform processor-based
systems.

• Reliability: Designers can expect true hardware reliability from FPGAs
because there is no operating system or driver layer3 that can affect system
uptime.

• IP protection and re-use: Once compiled and downloaded to a FPGA,
hardware implementation is difficult to reverse engineer. A tested hardware
design can be re-used multiple times by instantiating.

FPGA-based systems are gaining acceptance because these systems integrate
digital logic design, processors and communication interface on a single chip. The
front end design flow of a FPGA is very similar to that of a custom logic design.
Almost all FPGA vendors offer a suite of software tools that allows a designer to
simulate, synthesize, place and route and program the FPGA. Table 1.5 shows the
different design tools offered by two leading vendors. Once a designer feels
comfortable in a particular design suite, it is easy to migrate to another vendor’s
design tools because they work in a similar fashion4.

Table 1.5. Common design tools provided by two leading FPGA Vendors

Functionality XILINX ALTERA

Design synthesis,
mapping, place and
route

Integrated Software
Environment
(ISE)TM

Quartus II®

FPGA embedded
processor design tool

Embedded Design
Kit (EDK)®

System on
Programmable Chip
(SoPC) builder®

Custom peripheral
support

Yes Yes

On-Chip signal logic
analyzer

ChipScopeTM Pro SignalTap®

MATLAB® co-
simulation and IP cores
library

System GeneratorTM DSP Builder®

3 Not applicable to FPGA-based processor systems.
4 One of the strengths of HDL and associated synthesis software is to make the implementation
option wider for the designer. For consistency, this book uses a contemporary Xilinx SPARTAN-
3ETM 500K gate FPGA along with the Xilinx ISETM for illustrating various examples. The author
feels strongly that if the designer is able to master one vendor’s specific design flow along with a
given FPGA architecture, the same concepts can be applied to understand quickly and implement
a digital design using FPGAs from other vendors.

12 Introduction to Embedded System Design Using Field Programmable Gate Arrays

From an implementation point of view, a robot controller using a FPGA device
can be considered a viable alternative5, as robots are usually low-volume
application-specific systems. The FPGA allows for customization of servo-motor
type for joint control, industrial communciation network, integration of custom
peripherals and control algorithms.

Software-based design flows are suited for applications which are data centric
and hardware design flow is suited for fast real-time applications.Table 1.6
provides a transition path for migrating from microprocessor/controller to FPGA-
based design. The FPGA design process consists of design entry, which is
accomplished by using either schematic or HDL. Following the design phase,
digital logic is synthesized, mapped and placed on a FPGA6.

Table 1.6. Transition path from a microcontroller-based system to a FPGA system

Existing
microprocessor/microcontroller code

Field programmable device

Target independent ‘C’ Code Embedded processor within the FPGA
device

Target dependent assembly constructs for
routines requiring fast update rates

Target independent HDL-based coding
for routines requiring very fast update
rates

1.4 Organization of the Book

The book is organized to weave together concepts, tools and techniques to help in
designing FPGA-based embedded systems. This book does assume that the reader
is versed in the basic concepts of embedded systems programming and interfaces.
There are references at the end of each chapter where the reader can get more
information on the topics covered in the chapter. This text is trying to put together
many components of a system, so certain sections are not covered in detail but are
used to convey the concept of system design.

The sequence of chapters is to introduce basic concepts and then build upon
them. Table 1.7 details the contribution of each chapter in building up a FPGA-
based digital system.

5 The purpose of this text is to explain embedded hardware design using FPGA. It is not the
intention of this text to prove that FPGA-based robot controller is the best digital platform for
implementing the robot controller.
6 The HDL design process is described in Chap. 2. The complete design flow of synthesis,
mapping, place and route is described in Chap. 3.

 Introduction 13

Table 1.7. Preview of FPGA-based digital design implementation

Chapter FPGA design

1 2 3 4 5 6 7

The case for using FPGAs ■

Hardware description language
(HDL)

 ■

Synthesis of HDL design using FPGA
as a target device

 ■

FPGA embedded processors ■

Serial communications and
interfacing

 ■

Motor control ■

Prototyping using FPGA ■

Broadly, Chaps. 1 to 4 of the book introduce the technology and tools for
implementing digital logic using a FPGA device. Chapters 5 to 7 discuss
interfacing, motor control and prototyping using FPGA.

As shown in Fig. 1.9, different aspects of robot controller design are covered in
chapter numbers mentioned in each component.

Workstation

Soft processor (4)

Drive Logic
(6)

Chip wide peripheral bus (4)

Drive Logic
(6)

Embedded
Memory (3)UART (5)

M

M

M

M

M

M

M

M

Motor axis
control

signals (7)

Motor axis
feedback
signals

FPGA(3) HDL
programming (2)

SPI, I2C
(5)

Fig. 1.9. Contribution of each chapter (shown in parentheses) for creating a robot controller

14 Introduction to Embedded System Design Using Field Programmable Gate Arrays

The second chapter is on simulation of digital systems using Verilog as the
hardware description language (HDL). It introduces basic concepts of how a
printed circuit board (PCB) containing digital components can be modelled using
HDL and how it can be tested using software simulators. A simulation
environment of an EDA tool is also explained.

Chapter 3 of the book introduces the architecture and resources of FPGA. Each
building block of the programmable device such as embedded memory, phase-
locked loops, logic blocks, multipliers and different interfacing I/O standards are
explained along with their HDL based instantiation template. The chapter ends
with examples of digital systems and their FPGA-based synthesis results.

FPGA-based embedded processors have made it possible to migrate from
microcontroller-based embedded system design to FPGA-based embedded system
design. FPGA-based designs give the designer an option to retain much of the skill
set of high-level software programming. Now instead of coding in a native
assembly language for a particular processor — deterministic tasks can be coded in
HDL. Chapter 4 provides methodology on bringing together the software and the
hardware worlds. FPGA immersed processors along with different interfacing
buses connect to external standard and custom peripherals. A system-on-chip is
created using this approach.
Chapter 5 discusses FPGA-based interfaces. It covers basic data communication
using HDL and FPGA and protocols. The chapter also discusses asynchronous and
synchronous serial data communications. The second section of the chapter
discusses basic signal conditioning of the acquired signal.

The actuator is the last component of the control loop. In the robot example
used in this book, the electric motor is the actuator for various joints of the robot.
Chapter 6 discusses digital design and control implementation of different motors
— stepper, permanent magnet DC motor, brushless DC motor, permanent magnet
synchronous motor (PMSM) and permanent magnet reluctance motor.

The last chapter of the text is on prototyping the different schemes discussed
using a FPGA-based board. It discusses various hardware verification and
interfacing techniques, which are useful for hardware system integration.

Problems

1. Give an example of a application suited for a microcontroller and for a
FPGA. Justify why one cannot replace the other.

2. What are the limitations of a FPGA-based system vis-à-vis a custom ASIC-
based system.

3. How is real-time processing done on a GPP or a microcontroller based
system by using interrupts?

4. What kind of power constraints are part of an articulated factory robot and
that of a robotic rover shown in Fig. 1.10?

5. The robotic rover application (shown in Fig. 1.10) involves travel along
terrains either by use of a remote link such as the Global Positioning
System (GPS). The rover collects information about its surroundings using

 Introduction 15

sensors and relays it to a base station or operator console. A list of tasks for
this rover includes

a. Power management for the rover
b. Control of six motors
c. Signal processing of sensor inputs coming from the robotic

environment using a vision sensor.
d. Determining the robot position using GPS
e. Communicating with the host controller using ZigBee
f. Ability to interface with various payloads — new sensors, new

actuators.

Partition the tasks as per their update time requirements and comment on
the suitability of putting the task on a FPGA or a GPP.

M1 M3 M5

M2 M4 M6M2
drive

FPGA based
controller

GPS

Ultrasonic
sensor

ZigBee
transceiver

M1
drive

M4
drive

M3
drive

M5
drive

M6
drive

Processor

Fig. 1.10. Diagram of a robotic rover

References

1. Wolf W (2005) Computers as Components: Principles of Embedded Computer Systems
Design. Morgan Kaufmann, San Francisco

2. Kung YS, Shu GS (2005) Development of a FPGA-based motion control IC for robot
arm. Paper presented at IEEE Industrial conference on Industrial Technology (ICIT
2005), City University of Hong Kong, Hong Kong, December 2005

3. Goetz J, Takahashi TT (2003) A design platform optimized for inner loop motor
control. Paper presented at power conversion and intelligent motion (PCIM 2003)
conference. http://www.irf.com/technical-info/whitepaper/pcimeur03innerloop.pdf.
Accessed 15 October 2008.

4. Kung YS, Shu GS (2005) Design and implementation of a control IC for vertical
articulated robot arm using SOPC technology. Paper presented at IEEE Mechatronics
ICM 2005, pp. 532–536

5. Mallinson N (1998) Plug and play single chip controllers for variable speed induction
motor drives in white goods and HVAC systems. Paper presented at IEEE applied
power electronics conference APEC 1998, 2:756–762

16 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Further Reading

1. Maxfield C (2004) The design warrior’s guide to FPGAs – devices, tools and flow.
Newnes

2. Vahid F, Givargis T (2002) Embedded system design – A unified hardware/software
introduction. John Wiley

3. Keramas JG (1999) Robot technology fundamentals. Thomson Delmar
4. Klafter RD et al (1989) Robotic engineering, an integrated approach. Prentice-Hall
5. Balch M (2003) Complete digital design, a comprehensive guide to digital electronics

and computer architecture. McGraw Hill
6. Slater M (1989) Microprocessor-Based Design, A Comprehensive Guide to Hardware

Design. Prentice-Hall
7. Monmasson E, Chapuis Y (2002) Contributions of FPGAs to the Control of Electrical

Systems, a Review. IEEE Industrial Electronics Society Newsletter, 49(4)
8. Newman KE, Hamblen JO, Hall TS (2002) An Introductory Digital Design Course

Using a Low-Cost Autonomous Robot. IEEE transactions on Education, 45(3):289–
296

9. Kung YS et al (2006) FPGA-Implementation of Inverse Kinematics and Servo
Controller for Robot Manipulator. Paper presented at IEEE Robotics and Biomimetics,
(ROBIO 2006) at Kunming China, December 2006

10. Navabi Z (2007) Embedded Core Design with FPGAs. McGraw Hill
11. Navabi Z (2004) Digital Design and Implementation with Field Programmable

Devices. Springer
12. Navabi Z (1999) Verilog Digital System Design. McGraw Hill

