
 

Preface 

Overview 
The realm of embedded systems is quite large and is predominantly carried out 
around the general purpose processor and microcontrollers. The use of field 
programmable gate array (FPGA) in microprocessor-based embedded systems is 
often for glue logic or for off-loading the processor from tasks that require fast 
updates. The motivation for writing this text is to present a single source of 
information that can be used to understand how a FPGA and the Hardware 
Description Language (HDL) can be used in the design of embedded digital 
systems. 

Digital design methodology has undergone several changes over the past three 
decades. The use of FPGA and HDL for implementing digital logic has become 
widespread in the last decade. The use of FPGA in embedded systems is still in its 
nascent stage. The majority of the embedded applications are divided between an 
8-bit microcontroller implementation and a 32-bit processor-based real time 
operating system (RTOS) implementation. This text provides a starting point for 
the design of embedded system using FPGA and HDL. To give the text a common 
thread of thought from the application point of view, a design example of a 
hypothetical industrial robot controller is taken up. Different chapters of the text 
provide the necessary background on FPGA and HDL along with its use in 
designing an industrial robot controller. 

Coverage 
The first FPGA, introduced in 1985, consisted of 2000 gates. Since then, gate 
density has grown to tens of millions of gates. With increasing density of FPGAs, 
varied hardware resources have become a standard feature of contemporary FPGA-
based devices. The text includes simulation of digital logic using Verilog HDL, 
synthesis of HDL code for a given FPGA device and processor-based FPGA 
devices. The focus of the HDL chapter is to emphasise the synthesizable area of 
Verilog constructs and to provide a basis to understand the application examples 
that follow in subsequent chapters. A chapter is devoted to the understanding of 
hardware–software partitioning in a FPGA device. Proprietary 8-bit and a 32-bit 
soft processors are discussed along with interfacing methodology using system-on-
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chip interconnections. Basic technique for serial data communication, signal 
conditioning, motor control and hardware prototyping is covered using FPGA and 
HDL. 

How to Use This Book 
Moore’s law has kept the semiconductor business in a constant state of flux. It is 
very difficult to write a book that uses FPGA and continues to be relevant despite 
ongoing technological changes. The author has presented basic concepts and 
techniques for using FPGA and hence should not change quickly. Since this book 
covers vast areas of HDL and FPGAs, some sections are brief and sketchy. For this 
the author recommends that the reader  supplement the contents of each chapter 
with additional available literature. The chapter on HDL coding and simulation 
should be supplemented by standard textbooks on HDL coding and simulation. The 
FPGA resources and synthesis topic should be supplemented by EDA tools 
provided by different FPGA vendors and FPGA device datasheets. The contents on 
FPGA embedded processors can be supplemented by application notes on 
interfacing processors to custom codes and datasheets of soft processors. 

FPGA Device and Tools Used 
For purposes of illustration and consistency, Xilinx ISETM software and 
SPARTANTM3E FPGA have been used throughout the book. Though the 
exemplars are specific to this device, the concepts can be applied to FPGA devices 
available from other FPGA vendors. 

   
Gandhinagar  Rahul Dubey 
October 2008        
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Introduction 

Digital systems and their design have evolved greatly over the last four decades. 
Rising densities and speed have provided designers a huge canvas to create 
complex digital systems. Present-day embedded systems use single-chip 
microcontrollers. Contemporary microcontrollers are available with 8-, 16- and 32-
bit processing capability along with a peripheral set containing ADC, timer/counter 
and networks (I2C, CAN, SPI, and UART). For most applications the 
microcontroller-based board is adequate. For applications where there is a need to 
integrate custom logic for faster control and additional peripherals, the 
microcontroller or microprocessor board is augmented by a FPGA or an 
application specific standard product (ASSP) device. The focus of this chapter is to 
understand different digital design methodologies before embarking on a full 
fledged description of the use of a custom digital design based on a FPGA. 

1.1 Embedded System Overview 

Embedded systems are usually single function applications.  Various functional 
constraints associated with embedded systems are low cost, single-to-fewer 
components, low power,  provide real-time response and support of hardware-
software co-existence. A general methodology used in designing an embedded 
system is shown in Table 1.1. 

The decision on the kind of digital platform to be used takes place during the 
system architecture phase as each embedded application is linked with its unique 
operational constraints.  Some of the constraints of a digital controller of embedded 
system hardware include (in no particular order) the following: 

• Real-time update rate 
• Power  
• Cost  
• Single chip solution 
• Ease of programming 
• Portability of code 
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• Libraries of re-usable code 
• Programming tools. 

Table 1.1. Embedded system design flow [1] 

Design phase Design phase details 

Requirements  Functional requirements and non-functional requirements 
(size, weight, power consumption and cost) 

User specifications User interface details along with operations needed to 
satisfy user request 

Architecture Hardware components (processor, peripherals, 
programmable logic and ASSPs), software components 
(major programs and their operations) 

Component design  Pre-designed components, modified components and new 
components 

System integration 
(hardware and software) 

Verification scheme to uncover bugs quickly 

1.2 Hypothetical Robot Control System 

For understanding different digital design platforms, this text uses the design of a 
digital controller for a robot as a case study. The robot is a hypothetical, vertically 
articulated robot system for an automated assembly line. The process of designing 
this controller will help in understanding various digital design concepts. Figure 
1.1 shows the various components of an assembly line robot. Each robot consists 
of five electric motors that work as actuators for different joints of the robot. A 
programming pendant or workstation is used to program the movements of the 
robot along with a communications network to link this robot to other robots on the 
assembly line. Various sensors are interfaced to the robot control system. 

  

Data 
communications

 
Fig. 1.1. Vertically articulated robot system used in an assembly line environment 
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The typical requirements of an Industrial robot controller include 

• Control method for point-to-point control using servomotors 
• Position detection using incremental or absolute encoder system 
• Return to origin using limit switches and  encoder  
• Trajectory control  
• Programming using a personal computer. 

Table 1.2. Tasks for robot digital controller 

Task  Subtask  Update time 

Gate Driver, protection and 
current sensing 

Fraction of  a 
microsecond 

Dead time  Microseconds 

Closed-loop torque control Tens of 
microseconds 

Closed-loop speed control Hundreds of 
microseconds 

Position coordinate 
interpolation 

Milliseconds 

Control of 
joint motors 

Host communications Tens of milliseconds 

Sensor signal 
processing 

ADC, DAC Tens of milliseconds 

Networking 
applications 

Low-speed network  Milliseconds 

Control Strategy for the Robot Controller 

For implementing the robot controller on a digital system, a list of controller tasks 
is created in Table 1.2 along with the update time requirements. The major tasks 
for the robot controller for an articulated factory robot are 

• Simultaneous control of five motors with details shown in Table 1.3. 
• Signal processing of sensor inputs coming from robot environment — 

encoders, limit switches, proximity sensors, vision sensor  
• Communication of robot co-ordinates to other robots in the vicinity, using 

CAN bus or Modbus® 
• Communicating with host controller over serial port 
• Computation of trajectory for robot movement. 
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Table 1.3. Specifications of a micro articulated robot Mitsubishi Movemaster RV-M1 [2] 

Axis Description Encoder pulses per 
revolution (PPR)1 

Gear ratio Working range in 
degrees  

J1 Waist 200 1:100 300°   

J2 Shoulder 200 1:170 130°   

J3 Elbow 200 1:110 110°  

J4 Wrist pitch 96 1:180 90°  

J5 Wrist roll 96 1:110 ±  180°  

The tasks and their update times are shown graphically in Fig. 1.2. 
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Fig. 1.2. Update times needed for various control functions of a robot control system  
[3] 

1.3 Digital Design Platforms 

Till the 1970s, electronic system designs were based on discrete analogue 
components such as transistors, operational amplifiers, resistors, capacitors and 
inductors. These circuits offered concurrent processing but had problems of 
parameter drift with temperature and ageing. The coming of TTL-based 

                                                 
1 The encoder is used to find the position and speed of the robot joint. The working of the encoder 
is explained in Chap. 2. 
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components laid the foundation of digital design. The Intel 4004 microprocessor 
became the first digital platform which was configurable using software. Table 1.4 
lists the major contemporary digital designs along with their relative merit. 

Table 1.4. Digital design platforms 

Digital design platform Merit 

Microprocessors Reconfigurable using software. Good for 
computations  

Microcontrollers, digital signal 
controllers 

Combination of peripherals and CPU 

Application specific standard product 
(ASSP) 

A specialized peripheral with the ability 
to communicate with a host processor  

Field programmable gate array (FPGA) Ability to combine the strengths of 
processor, controller and ASSP 

1.3.1 Microprocessor-based Design 

The microprocessor has changed digital design methodology like no other digital 
component. It started out as a 42 bit programmable CPU in 1971 and still continues 
to be the digital controller of choice across several application areas. The 
microprocessor brought the concept of instruction set architecture (ISA), assembler 
and compiler. There are many real-time applications, with fast update rates require 
programming the microprocessor in its native assembly language. This is usually 
done when the size of available memory is a constraint.  Even though most  
commercial microprocessors used today cater to data-centric applications, there are 
microprocessor cores embedded in microcontrollers for real-time control 
applications. 

Digital control systems, like the robot application use a processor by using 
interrupts for real-time processing. There are interrupts for calculation of robot arm 
trajectory, encoder and sensor feedback, control of motors and networks. Each 
interrupt will occur based on the update time requirement of the given task. Figure 
1.3 shows the generic nature of interrupt processing, where an interrupting device 
seeks CPU attention. A microprocessor-based robot controller carries out the task 
of arm positioning based on the flowchart shown in Fig. 1.4. 

                                                 
2 The early Intel 4004 and the 8086 processor had close to 2300 and 29000 transistors. A basic 2 
input NAND gate consists of 4 transistors. Effectively the early Intel processors 4004 and 8086 
used only 575 and 7250 gates. This helps to put in perspective the amount of digital logic that can 
be accomodated in a 500,000 gate FPGA.  
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Fig. 1.3. Interrupt service routine (ISR) based processing scheme of processor-controller 
control scheme 

Because most single core general purpose processors (GPP) are single- 
threaded (can process one instruction at a time), the processor use can become very 
high when managing multiple interrupts from different tasks of the robot 
controller.  This can be seen from Fig. 1.5, where processor CPU use increases 
linearly with each motor. 
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Fig. 1.4. Processor-interrupt-based flowchart needed for computing a control action  
[4] 
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Fig. 1.5. CPU use for axis motor control for a single-threaded controller 

1.3.2 Single-chip Computer/Microcontroller-based Design 

The microcontroller represents the next generation of controllers for embedded 
systems. It allows creating systems with fewer numbers of components by 
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incorporating peripherals that were earlier externally interfaced with the general 
purpose processor. A block diagram of a typical single-chip controller, which is 
used as a robot motor controller, is shown in Fig. 1.6. 

Like the microprocessor, tasks in a microcontroller design environment are 
divided as per the update rates required. For tasks requiring low update rates, 
coding is accomplished using a software programming language such as C. Tasks 
that need to have high deterministic update rates are coded using the native 
assembly language for a particular microcontroller. In the robot application at 
hand, many of the motor control routines require update rates of a few kilohertz. 
Traditionally, these routines are written in assembly language. It is difficult to port 
routines written in assembly language as they are tied to a CPU’s ISA. The other 
constraint with a microcontroller-based system is the fixed number of available 
peripherals. Though microcontroller vendors offer a wide range of devices with 
different numbers and types of peripherals, it is not always possible to find one that 
matches the application requirements perfectly. 
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Fig. 1.6. Single-chip microcontroller environment for a motor control application 

1.3.3 Application Specific Standard Products (ASSPs) 

An ASSP is a configurable logic component for a specific application. The 
functionality of an ASSP is tweaked by specifying its control word. ASSPs are 
made in volumes and cater to the generic requirements of the application. Most of 
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the time, ASSP-based designs are used on a PCB. In the robot control application 
at hand, an ASSP can be used for controlling the motor for each axis of the robot.  
Based on the type of motor and control strategy used, a corresponding ASSP is 
chosen. Two examples of ASSPs for motor control include LM629 from National 
Semiconductor for control of a brushed DC motor and SA628 (see Fig. 1.7a and b) 
for three-phase motor control. Configurable ASSPs provide address, data and 
control bus connectivity for interfacing with the host processor. 
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Fig. 1.7. a ASSP chip SA628 for control of a three-phase AC Induction Motor  
[5]; b ASSP chip LM629 for control of a DC motor 
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1.3.4 Design Using FPGA 

The present-day FPGA provides a platform that supports both processor and 
custom logic requirements. The microcontrollers currently have an edge over the 
FPGA in terms of power and cost. But FPGAs are catching up by offering 
portability of code across various FPGA vendors, libraries of re-usable code and 
availability of low-cost programming tools.  Programmable devices that were 
traditionally low gate count devices are now in a position to support large parts of 
digital system logic. The digital designer today has a viable option of using only 
the FPGA device as the embedded system controller. The availability of high- 
density, low-cost FPGA devices has given digital designers lots of flexibility to 
design custom digital architectures using FPGA and HDLs. FPGA devices have 
evolved from their glue logic predecessor to a device that now contains a large 
variety of built-in digital components (memory, multipliers, transceivers and many 
more). FPGA device density has risen over the years and at the same time its cost 
has made it economically viable for use in several applications. Contemporary 
FPGAs contain thousands of look up tables (LUTs) and FFs for implementing 
complex digital logic. 

Contemporary FPGAs offer 

• Reconfigurability: Field programmable devices can be reconfigured at any 
time. Designers can integrate modifications or do complete personality 
changes. 

• Software-defined design: The hardware is defined by software-like 
languages (HDL). Designers can develop, simulate and test a circuit fully 
before “running” it on a field programmable device. 

• Parallelism: Circuits defined in an FPGA can be designed in a completely 
parallel fashion. This is similar to using multi-path analogue circuits. A 
user can instantiate multiple hardware implementations on the same chip 
without cross-module interference or computation loading. An example of 
FPGA-based concurrent processing is shown in Fig. 1.8. 
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Fig. 1.8. Multi-tasking scheme using a GPP vis-à-vis a FPGA 
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• High speed: Because an FPGA is a hardware implementation running with 
fast clock rates, designers can achieve very high speeds. Coupled with 
parallelism, FPGA implementation can outperform processor-based 
systems. 

• Reliability: Designers can expect true hardware reliability from FPGAs 
because there is no operating system  or driver layer3 that can affect system 
uptime. 

• IP protection and re-use: Once compiled and downloaded to a FPGA, 
hardware implementation is difficult to reverse engineer. A tested hardware 
design can be re-used multiple times by instantiating. 

FPGA-based systems are gaining acceptance because these systems integrate 
digital logic design, processors and communication interface on a single chip. The 
front end design flow of a FPGA is very similar to that of a custom logic design. 
Almost all FPGA vendors offer a suite of software tools that allows a designer to 
simulate, synthesize, place and route and program the FPGA. Table 1.5 shows the 
different design tools offered by two leading vendors. Once a designer feels 
comfortable in a particular design suite, it is easy to migrate to another vendor’s 
design tools because they work in a similar fashion4. 

Table 1.5. Common design tools provided by two leading FPGA Vendors 

Functionality XILINX ALTERA 

Design synthesis, 
mapping, place and 
route 

Integrated Software 
Environment 
(ISE)TM 

Quartus II® 

FPGA embedded 
processor design tool 

Embedded Design 
Kit (EDK)® 

System on 
Programmable Chip 
(SoPC) builder® 

Custom peripheral 
support 

Yes Yes 

On-Chip signal logic 
analyzer 

ChipScopeTM Pro SignalTap® 

MATLAB® co-
simulation and IP cores 
library 

System GeneratorTM DSP Builder® 

                                                 
3 Not applicable to FPGA-based processor systems. 
4 One of the strengths of HDL and associated synthesis software is to make the implementation 
option wider for the designer. For consistency, this book uses a contemporary Xilinx SPARTAN-
3ETM 500K gate FPGA along with the Xilinx ISETM for illustrating various examples.  The author 
feels strongly that if the designer is able to master one vendor’s specific design flow along with a 
given FPGA architecture, the same concepts can be applied to understand quickly and implement 
a digital design using  FPGAs from other vendors.    
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From an implementation point of view, a robot controller using a FPGA device 
can be considered a viable alternative5, as robots are usually low-volume 
application-specific systems. The FPGA allows for customization of servo-motor 
type for joint control, industrial communciation network, integration of custom 
peripherals and control algorithms. 

Software-based design flows are suited for applications which are data centric 
and hardware design flow is suited for fast real-time applications.Table 1.6 
provides a transition path for migrating from microprocessor/controller to FPGA-
based design. The FPGA design process consists of design entry, which is 
accomplished by using either schematic or HDL. Following the design phase, 
digital logic is synthesized, mapped and placed on a FPGA6. 

Table 1.6. Transition path from a microcontroller-based system to a FPGA system 

Existing 
microprocessor/microcontroller code 

Field programmable device 

Target independent ‘C’ Code  Embedded processor within the FPGA 
device 

Target dependent assembly constructs for 
routines requiring fast update rates 

Target independent HDL-based coding 
for routines requiring very fast update 
rates 

1.4 Organization of the Book 

The book is organized to weave together concepts, tools and techniques to help in 
designing FPGA-based embedded systems. This book does assume that the reader 
is versed in the basic concepts of embedded systems programming and interfaces. 
There are references at the end of each chapter where the reader can get more 
information on the topics covered in the chapter. This text is trying to put together 
many components of a system, so certain sections are not covered in detail but are 
used to convey the concept of system design. 

The sequence of chapters is to introduce basic concepts and then build upon 
them. Table 1.7 details the contribution of each chapter in building up a FPGA-
based digital system. 

                                                 
5 The purpose of this text is to explain embedded hardware design using FPGA. It is not the 
intention of this text to prove that FPGA-based robot controller is the best digital platform for 
implementing the robot controller.  
6 The HDL design process is described in Chap. 2.  The complete design flow of synthesis, 
mapping, place and route is described in Chap. 3.  
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Table 1.7. Preview of FPGA-based  digital design implementation 

Chapter FPGA design  

1 2 3 4 5 6 7 

The case for using FPGAs ■       

Hardware description language 
(HDL) 

 ■      

Synthesis of HDL design using FPGA 
as a target device 

  ■     

FPGA embedded processors    ■    

Serial communications and 
interfacing 

    ■   

Motor control      ■  

Prototyping using FPGA       ■ 

Broadly, Chaps. 1 to 4 of the book introduce the technology and tools for 
implementing digital logic using a FPGA device. Chapters 5 to 7 discuss 
interfacing, motor control and prototyping using FPGA. 

As shown in Fig. 1.9, different aspects of robot controller design are covered in 
chapter numbers mentioned in each component. 
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Fig. 1.9. Contribution of each chapter (shown in parentheses) for creating a robot controller 
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The second chapter is on simulation of digital systems using Verilog as the 
hardware description language (HDL). It introduces basic concepts of how a 
printed circuit board (PCB) containing digital components can be modelled using 
HDL and how it can be tested using software simulators. A simulation 
environment of an EDA tool is also explained. 

Chapter 3 of the book introduces the architecture and resources of FPGA.  Each 
building block of the programmable device such as embedded memory, phase- 
locked loops, logic blocks, multipliers and different interfacing I/O standards are 
explained along with their HDL based instantiation template. The chapter ends 
with examples of digital systems and their FPGA-based synthesis results.  

FPGA-based embedded processors have made it possible to migrate from 
microcontroller-based embedded system design to FPGA-based embedded system 
design. FPGA-based designs give the designer an option to retain much of the skill 
set of high-level software programming. Now instead of coding in a native 
assembly language for a particular processor — deterministic tasks can be coded in 
HDL. Chapter 4 provides methodology on bringing together the software and the 
hardware worlds.  FPGA immersed processors along with different interfacing 
buses connect to external standard and custom peripherals. A system-on-chip is 
created using this approach. 
Chapter 5 discusses FPGA-based interfaces. It covers basic data communication 
using HDL and FPGA and protocols. The chapter also discusses asynchronous and 
synchronous serial data communications. The second section of the chapter 
discusses basic signal conditioning of the acquired signal. 

The actuator is the last component of the control loop. In the robot example 
used in this book, the electric motor is the actuator for various joints of the robot.  
Chapter 6 discusses digital design and control implementation of different motors 
— stepper, permanent magnet DC motor, brushless DC motor, permanent magnet 
synchronous motor (PMSM) and permanent magnet reluctance motor.  

The last chapter of the text is on prototyping the different schemes discussed 
using a FPGA-based board. It discusses various hardware verification and 
interfacing techniques, which are useful for hardware system integration. 

Problems 

1. Give an example of a application suited for a microcontroller and for a 
FPGA. Justify why one cannot replace the other. 

2. What are the limitations of a FPGA-based system vis-à-vis a custom ASIC-
based system. 

3. How is real-time processing done on a GPP or a microcontroller based 
system by using interrupts? 

4. What kind of power constraints are part of an articulated factory robot and 
that of a robotic rover shown in Fig. 1.10? 

5. The robotic rover application (shown in Fig. 1.10) involves travel along 
terrains either by use of a remote link such as the Global Positioning 
System (GPS). The rover collects information about its surroundings using 
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sensors and relays it to a base station or operator console. A list of tasks for 
this rover includes 

a. Power management for the rover 
b. Control of six motors  
c. Signal processing of sensor inputs coming from the robotic 

environment using a vision sensor.  
d. Determining the robot position using GPS  
e. Communicating with the host controller  using ZigBee 
f. Ability to interface with various payloads — new sensors, new 

actuators. 

Partition the tasks as per their update time requirements and comment on 
the suitability of putting the task on a FPGA or a GPP. 
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Fig. 1.10. Diagram of a robotic rover 
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