
Preface

I take the central task of theoretical computing science (TCS) to be the construc-
tion of mathematical models of computational phenomena. Such models provide us
with a deeper understanding of the nature of computation and representation. For
example, the early work on computability theory provided a mathematical model of
computation. Later work on the semantics of programming languages enabled a pre-
cise articulation of the underlying differences among programming languages and
led to a clearer understanding of the distinction between semantic representation and
implementation. Early work in complexity theory supplied us with abstract notions
that formally articulated informal ideas about the resources used during computa-
tion. Such mathematical modeling provides the means of exploring the properties
and limitations of languages and tools that would otherwise be unavailable.

The aim of this book is to contribute to this fundamental activity. Here we have
two interrelated goals. One is to provide a logical framework and foundation for the
process of specification and the design of specification languages. The second is to
employ this framework to introduce and study computable models. These extend the
notion of specification to the more general arena of mathematical modeling where
our aim is to build mathematical models that are constructed from specifications.

During the preparation of this book, every proper computer scientist at the Uni-
versity of Essex provided valuable feedback. Some provided quite detailed com-
ments. I will not single out any of you; you know who you are. But to all who
contributed, thank you. Referees on the various journal papers that led to the book
also provided valuable advice and criticism. But my greatest debt is to my wife,
Rosana. Over the years, she has read draft after draft and made innumerable (not
literally) suggestions for change and improvement. Without her, the size of the set
of errors that remains would be much greater than it is.

v

Chapter 2
Typed Predicate Logic

In this initial technical chapter we develop the logical framework within which to
articulate our theories of data types (TDT). It is also to form our basic language
of specification and provide the host for the construction of computable models.
It is important to note that we are not advocating a single theory of types, but a
broad framework in which a rich variety of theories can be easily and elegantly
formulated.

Generally in logic and theoretical computer science, type theories are inductively
generated from some basic types via type constructors. Our framework needs to be
sufficiently flexible to elegantly support a wide range of such constructors, including
dependent types, subtypes, and polymorphism. In addition, it must support a type
of types; i.e., it must facilitate a natural formulation of theories where objects used
to classify data become themselves items of data. However, the standard approach
to the syntax of logical languages, where the syntax is given via some context-free
grammar, does not easily support the expression of such a wide variety of notions.
Nor does the traditional approach to simple type theory, i.e., where the types are
hard-wired to the terms.

However, computer science with its emphasis on types [4, 1] and type checking,
presents us with a more flexible way of formulating a typed syntax.1 Indeed, mod-
ern logical systems also display such grammatical flexibility, e.g., the type theories
of Martin Löf [3, 2]. The present logical framework follows suit. In the next few
sections we shall present it and explore its simple properties.

2.1 Judgments and Contexts

We employ a system of natural deduction that we shall call typed predicate logic
(TPL). This will form the logical skeleton of all our theories. However, unlike
standard logical systems, where there is only one judgment form in conclusions,
we admit several. More exactly, it is a many-sorted natural deduction system with
the following four judgment forms:

1 This was itself inspired by early work in combinatorial logic.

R. Turner, Computable Models, DOI 10.1007/978-1-84882-052-4 2,
C© Springer-Verlag London Limited 2009

11

12 2 Typed Predicate Logic

T type

φ prop

t : T

φ

The first asserts that T is a type, the second that φ is a proposition, the third that t
is an object term of type T , and the fourth that φ is true. We shall refer to the first
three as type-inference judgments.

These judgments are formed from a syntax of terms that are built from vari-
ables (x0, x1, x2, x3...), constant, function, and relation symbols, including equality
(=), and the logical connectives (�,∧,∨,¬,→,∀, ∃). As metavariables for strings
on these alphabets, we employ the Roman and Greek alphabets, where we reserve
x, y, z, u, v, w to range over the object-level variables of the language. While this
is the stuff of the syntax, the actual grammar is determined not by a traditional
BNF or context-free syntax, but by a type-inference system that is constituted by
the membership and formation rules for types and propositions [6, 3, 5]. The rules
for this rule-based grammar will form part of the overall proof system.2

Generally, judgments in the logic are made relative to a context � that is a finite
sequence of terms. In the logic, these take one of the following two forms:

x : T

φ

i.e., a declaration that a variable has a given type or the assumption that a proposi-
tion, φ, is true. Thus, sequents in the theory have the shape,

� 	 �

where � is one of our four judgment forms and � a context. Such sequents are the
basic carriers of meaning in the logic. They determine not only what follows from
what, but also what is grammatically legitimate. We shall call contexts that contain
only type assignments, i.e., ones of the form x : T , declaration contexts. We shall

2 This background syntax may be further refined via the following BNF grammar.

t ::= F(t1, .− ., tn)|R(t1, .− ., tn)|O(t1, .− ., tn) | t =t t

t ∨ t |t ∧ t |¬t |∀x : t · t |∃x : t.t

Similarly, the raw syntax of contexts might also be made explicit as follows.

� ::= t | t, �

However, such BNF style definitions do not play too much of a role, since they sanction way
too much nonsense. They only provide the background strings for the actual grammar, which is
rule-given, i.e., by the rules of the logic itself.

2.3 Types 13

use c, c′, d, d ′, etc., as variables for these contexts and c� for that part of the context
� that consists of just its type assignments.

2.2 Structural Rules

We begin with the structural rules, i.e., assumption, thinning, and substitution. The
first two permit the addition of new (grammatically acceptable) assumptions. The
next allows weakening under the same grammatical constraints. The final rule is
a substitution rule. Note that it respects the fact that, in contexts, the order of the
occurrence of assumptions is significant.

A1
� 	 T type

�, x : T 	 x : T
A2

� 	 φ prop

�, φ 	 φ

W1
�, � 	 � � 	 T type

�, x : T, � 	 �

W2
�, � 	 � � 	 φ prop

�, φ, � 	 �

Sub
�, y : S, � 	 � � 	 s : S

�, �[s/y] 	 �[s/y]

where in A1 and W1, x is fresh (i.e., it is not declared in �, �) and �[s/y] indicates
the substitution of the term s for the variable y. Grammatical constraints play a
significant role. For example, in A1 we are only permitted to add type assignments
involving terms that are types, whereas A2 only sanctions assumptions that are
propositions. Note that we do not have an exchange rule. This is a consequence
of the fact that, in general, contexts will be dependent, i.e., the grammatical status
of later assumptions may depend upon earlier ones. For example, the status of a
purported proposition may depend upon the types of its free variables, and so may
depend upon previous type declarations. A simple illustration of such dependence
is generated by the equality rules. We shall see this shortly. The Sub rule could be
avoided (it is partly covered by the universal elimination rule), but it will often prove
convenient for the statement of our theories.

2.3 Types

As we have previously emphasized, types, relations, and functions are the basic
building blocks of computable models. However, our treatment is not standard. They

14 2 Typed Predicate Logic

are to be taken as intensional and primitive notions whose content is given by the
rules of the system. This will become clear as we proceed.

The types of any particular theory will be given in terms of some basic types
and closed under a collection of type constructors. More explicitly, in their most
elementary guise, the formation rules for types will take the following shape.

O1 B type O2
� 	 T1 type, ..., � 	 Tn type

� 	 O(T1, ..., Tn) type

The first rule allows for the inclusion of basic types such as Booleans and numbers.
In addition, there will be a type rule for each type constructor O of the language. For
example, the rule for Cartesian products has the following formation rule.

� 	 T type � 	 S type

� 	 T ⊗ S type

Such a rule might be expressed in standard context-free style as follows.

t ype ::= ...| type ⊗ type

But this approach is limited in that it does not easily support dependency. Later, we
shall consider generalizations of such type formation rules as O2, rules that permit
types to depend upon propositions and other types, i.e., dependent types.3 We shall
discuss these notions in more detail when we get to them. Our rule-based account
of the grammar of types will really come into its own when we consider a type
of types and, subsequently, consider the types themselves as items of data. Here
we indicate their possibility to give the reader a sense of what is to come and that
this is a much more flexible approach to type formation than any standard context-
free style grammar. One cannot easily generalize the latter to cater for such notions
of type.

The alert reader might think that we also need rules of type equality. We shall get
to these when types are themselves taken to be objects in the theory. At this point,
suffice it to say that, whatever type equality is taken to be, it will not be extensional;
i.e., we shall not identify two types on the basis of shared membership.

3 For example, in the following the first rule generalizes Cartesian products to allow for the second
type to depend on the first one. The second introduces separation or sub-types. Here proposition
formation may depend upon type formation, and subsequently, type formation may depend upon
proposition formation.

� 	 T type �, x : T 	 S type

� 	 �x : T · S type

� 	 T type �, x : T 	 φ prop

� 	 {x : T · φ} type

2.5 Equality 15

2.4 Relations and Functions

A relation is introduced by its grammatical rule, which takes the following shape.

R
� 	 t1 : T1, ..., � 	 tn : Tn

� 	 R(t1, ..., tn) prop

This informs us of its grammatical territory, its intended domain and range. Of
course, in any theory there may be many such relations, given by such rules.

This notion of relation is to be seen in contrast to the standard set-theoretic one
in which a relation is taken to be a set of ordered tuples i.e.,

R ⊆ T1⊗, ...,⊗Tn

where now T1, ..., Tn are sets. This is a fundamentally different notion of relation.
And while ours has a set-theoretic interpretation, it is not the intended one. As we
have said before, our relations are not taken to be extensional; i.e., they are not taken
to satisfy any axiom of extensionality that insists that relations that hold of the same
objects are the same relation. This is forced by the set-theoretic interpretation.

Similar remarks apply to functions. In the rule for function symbols, the resulting
type is tied to a type constructor of the language; i.e., we assume that rule O governs
the formation of the type O(T1, ..., Tn). Thus, the types themselves are introduced
via rules and the function symbols follow suit.

F
� 	 t1 : T1, ..., � 	 tn : Tn

� 	 F(t1, ..., tn) : O(T1, ..., Tn)

In line with the generalization of type formation, the rules for functions and relations
will admit parallel generalizations. But we shall explain these in context.

2.5 Equality

The formation rule for equality is a special case of the formation rule for relations.
E1 insists that equality forms a proposition when the terms flanking it have the same
type. In addition, distinguished symbols such as equality are given content by their
associated axioms and rules. E2 and E3 are the standard rules of introduction and
elimination; i.e., every element of every type is equal to itself and equal objects can
be substituted for each other in all contexts.

16 2 Typed Predicate Logic

E1
� 	 t : T � 	 s : T

� 	 t =T s prop
E2

� 	 t : T

� 	 t =T t

E3
� 	 t =T s � 	 �[t/x]

� 	 �[s/x]

The equality rules illustrate how dependency in contexts can occur. For instance, a
provable sequent such as

x : T, y : T, z : T, x =T y, y =T z 	 x =T z

demonstrates how the occurrences of equality in the context (as well as the conclu-
sion) are legitimate (i.e., form propositions) only where their constituent terms have
the same type. Observe that, as a suffix, the type of the equality symbol is explicitly
marked. However, where the context determines matters, we shall often drop the
subscript on the equality relation; i.e., we shall just write:

x : T, y : T, z : T, x = y, y = z 	 x = z

This principle of parsimony will be adopted generally.

2.6 Propositional Rules

We next provide the rules for the propositional connectives. The formation rules for
these connectives capture their standard closure conditions, i.e., the ones normally
given in a context-free style, while the introduction and elimination rules are their
standard introduction and elimination logical rules.

L1
� 	 φ prop � 	 ψ prop

� 	 φ ∧ ψ prop
L2

� 	 φ � 	 ψ

� 	 φ ∧ ψ

L3
� 	 φ ∧ ψ

� 	 φ
L4

� 	 φ ∧ ψ

� 	 ψ

L5
� 	 φ prop � 	 ψ prop

� 	 φ ∨ ψ prop

L6
� 	 φ ∨ ψ �, φ 	 η �, ψ 	 η

� 	 η

L7
� 	 φ � 	 ψ prop

� 	 φ ∨ ψ
L8

� 	 ψ � 	 φ prop

� 	 φ ∨ ψ

2.7 Quantifier Rules 17

L9 � 	 � prop L10
� 	 φ � 	 ¬φ

� 	 �

L11
� 	 φ prop � 	 �

� 	 φ

L12
� 	 φ prop � 	 ψ prop

� 	 φ → ψ prop
L13

�, φ 	 ψ

� 	 φ → ψ

L14
� 	 φ → ψ � 	 φ

� 	 ψ

L15
� 	 φ prop

� 	 ¬φ prop
L16

�, φ 	 �

� 	 ¬φ
L17

�,¬φ 	 �

� 	 φ

There are additional grammatical assumptions in some of the rules. For instance,
in the disjunction introduction rules (L7, L8), we include the assumption that the
alternate constituent of the disjunction has to be a proposition. These grammatical
side conditions, as we shall see, are to ensure that only grammatically legitimate
objects (i.e., propositions) are provable. Note that the underlying logic is classical
logic. Unless overridden by parentheses, we shall assume that negation takes prece-
dence over conjunction and disjunction, which take precedence over implication.
But most of the time we shall use brackets.

2.7 Quantifier Rules

Aside from their generalized grammatical setting, the rules for the quantifiers are
also classical. In particular, we assume the normal side conditions for the quantifier
rules; i.e., in L20, x must not be free in �, T, or η, and in L22, x must not be free in
any proposition in �.

L18
�, x : T 	 φ prop

� 	 ∃x : T · φ prop

L19
� 	 φ[t/x] � 	 t : T �, x : T 	 φ prop

� 	 ∃x : T · φ

L20
� 	 ∃x : T · φ �, x : T, φ 	 η

� 	 η
L21

�, x : T 	 φ prop

� 	 ∀x : T · φ prop

L22
�, x : T 	 φ

� 	 ∀x : T · φ L23
� 	 ∀x : T · φ � 	 t : T

� 	 φ[t/x]

We shall assume that the scope of the quantifier in ∀x : T · φ, ∃x : T · φ is the
whole of φ. It is only overridden by explicit parentheses.

18 2 Typed Predicate Logic

This concludes the rules of TPL. We shall often indicate matters explicitly and
write

� 	TPL �

if the sequent � 	 � is derivable using the rules of TPL.
The system may appear to be somewhat nonstandard, especially for the reader

accustomed to first-order predicate logic. Hence, we provide some example
derivations.

2.8 TPL Derivations

There is little here that is not a straightforward generalization that flows from the
additional rules that replace the standard context-free grammar of a typed logic.
However, given the slightly novel nature of TPL, we illustrate its notion of deduc-
tion with some simple examples. Of course, we shall see many more throughout the
book. However, they will be somewhat less completely and formally presented.

Example 1 We deduce

∀x : B · ∀y : B · x =B y → y =B x

By the first equality rule, E1, we have

x : B, y : B 	 x : B x : B, y : B 	 y : B

x : B, y : B 	 x =B y prop
(1)

In the following, (2) is an instance of the structural rule, A2.

x : B, y : B 	 x =B y prop

x : B, y : B, x =B y 	 x =B y
(2)

Step (3) is an instance of the second equality rule E2.

x : B 	 x : B

x : B 	 x =B x
(3)

The conclusion of (3) may be enriched to (4). This follows by a judicious use of A1

and A2.

x : B 	 x =B x

x : B, y : B, x =B y 	 x =B x
(4)

2.8 TPL Derivations 19

By the third equality rule, the conclusions of (2) and (4), we may deduce the fol-
lowing

x : B, y : B, x =B y 	 x =B y x : B 	 x =B x

x : B, y : B, x =B y 	 y =B x
(5)

By the implication introduction rule L13 and the conclusion of (5), we can deduce
(6).

x : B, y : B, x =B y 	 y =B x

x : B, y : B 	 x =B y → y =B x
(6)

By L21 and the conclusion of (6), we may conclude

x : B, y : B 	 x =B y → y =B x

x : B 	 ∀y : B · x =B y → y =B x
(7)

By the conclusion of (7) and L21, we arrive at the following

x : B 	 ∀y : B · x =B y → y =B x

∀x : B · ∀y : B · x =B y → y =B x
(8)

Example 2 We deduce

∀x : B · ∃y : B · x =B y

By the first structural rule, A1, we have

B type

x : B 	 x : B
(1)

By the first equality rule, E1, we have

x : B, y : B 	 x : B x : B, y : B 	 y : B

x : B, y : B 	 x =B y prop
(2)

The conclusion (3) is an instance of the equality rule E2

x : B 	 x : B

x : B 	 x =B x
(3)

By the existential introduction rule, L19, and conclusions of (1), (2), and (3), we
may deduce the following

x : B 	 x =B x x : B 	 x : B x : B, y : B 	 x =B y prop

x : B 	 ∃y : B · x =B y
(4)

20 2 Typed Predicate Logic

By the conclusion of (4) and universal introduction, we obtain

x : B 	 ∃y : B · x =B y

∀x : B · ∃y : B · x =B y
(5)

We shall not see a great many examples worked out in such great detail. But these
should be enough for the reader to grasp the dynamics of deduction in the system.

Example 3 Given

φ prop and ψ prop

i.e., we can derive these in some context, we may define, in that context,

φ ↔ ψ � (φ → ψ) ∧ (ψ → φ)

These is a new defined connective that illustrates the way that new notions are
introduced via specification. But more of this later.

2.9 Type Inference

A distinctive aspect of TPL is its underlying type-inference system. As mentioned at
the outset, we have inherited our approach to typed systems from the type-checking
approach to syntax developed by computer scientists to ensure the type correctness
of programs. It is a flexible approach in which types are not attached to terms. In-
stead, terms receive their types via type declarations.

This type-inference system constitutes the real grammar of TPL. We shall refer
to it as TI. It is populated by the formation and type membership rules for the theory.
Such a grammatical framework not only supports a very elegant and syntactically
sensitive way of expressing a wide range of theories of data, but also has some
conceptual significance. Types in our theories are meant to be vehicles for carving up
the world in ways that can assist the computational model builder. As such, they play
somewhat the same role as dimensional analysis in physics, a role that is isolated in
the following subsystem.

Definition 4 The subtheory TI is that sub theory of TPL whose rules are those of
TPL but restricted to instances of the form

c1 	 �1, ..., cn 	 �n

c 	 �

where the contexts are type declarations and the conclusions (�, �i) are type-
inference judgments, i.e., of the form

2.9 Type Inference 21

T type

φ prop

t : T

We write

c 	TI �

if the sequent follows in TI.

A quick glance shows that only the rules O1, O2, R, F , E1, E3, A1, W1, W2, Sub,
L1, L5, L9, L12, L15, L18, and L21 furnish possible instances of such type-inference
rules.

We first establish that this system is independent of the main one; i.e., it is a
genuine subsystem.

Proposition 5 (Independence) If � 	TPL �, where � is a type-inference judgment,
then c� 	TI �.

Proof By induction on the rules with type-inference conclusions. Observation of
these demonstrates that they only require declaration contexts and type-inference
premises. For example, consider the structural rule

� 	 T type

�, x : T 	 x : T

By induction, c� 	 T type. By the rule itself, c�, x : T 	 T type. Similarly, for the
following rule, i.e., if only type-inference is used in the premises, it is only used in
the conclusion.

�, � 	 � � 	 T type

�, x : T, � 	 �

This style of argument succeeds for all cases.�

The following provides the basis for a type-checking algorithm.

Proposition 6 (Type Checking) In TI we have:

1. c 	 R(t1, ..., tn) prop iff c 	 t1 : T1 and...and c 	 tn : Tn,

2. c 	 O(T1, ..., Tn) t ype iff c 	 T1 t ype and...and c 	 Tn type,
3. c 	 F(t1, ..., tn) : O(T1, ..., Tn) iff c 	 t1 : T1 and...and c 	 tn : Tn,

4. c 	 φ ◦ ψ prop iff c 	 φ prop and c 	 ψ prop, where ◦ = ∨,∧,→,

5. c 	 ¬φ prop iff c 	 φ prop,

6. c 	 Qx : T .φ prop iff c, x : T 	 φ prop where Q = ∃ or ∀
7. c 	 t =T s prop iff c 	 t : T and c 	 s : T

22 2 Typed Predicate Logic

Proof The directions from right to left follow immediately from the rules. For the
other direction, we use induction on the structure of derivations. Consider part 1. If
the conclusion follows from the formation rule

R
c 	 t1 : T1, ..., c 	 tn : Tn

c 	 R(t1, ..., tn) prop

the result is immediate. If the conclusion is the result of a structural rule, the result
follows from using the structural rule itself. Consider part 4. If the conclusion fol-
lows from the introduction rules for the connective, the result is immediate. If the
conclusion is the result of a structural rule, the result follows from using the struc-
tural rule itself. For example, suppose the last step in the derivation is the following
instance of an application of W1.

c 	 T type c 	 φ ∧ ψ prop

c, x : T 	 φ ∧ ψ prop

Consider the premises. By induction, we may suppose that c 	 φ prop and c 	
ψ prop. By induction, c, x : T 	 φ prop and c, x : T 	 ψ prop.

The other rules follow exactly the same pattern of argument.�

Using the left-to-right directions, we obtain an obvious recursive algorithm for
type checking. The next result is significant for the coherence of the logic. It guar-
antees that what is provable is grammatical.

Theorem 7 (Coherence)

1. If � 	 φ, then � 	 φ prop,

2. If � 	 t : T, then � 	 T type,
3. If �, x : T, �

′ 	 �, then � 	 T type,
4. If �, φ, �

′ 	 �, then � 	 φ prop

Proof By induction on the structure of derivations. Most of the cases are routine.
We illustrate part 1 with the cases of disjunction elimination, universal introduction,
and existential quantification introduction. Consider

� 	 φ ∨ θ �, φ 	 η �, θ 	 η

� 	 η

By induction, and using type checking, we obtain

c� 	 η prop

Next, consider the existential introduction rule

� 	 φ[t/x] � 	 t : T �, x : T 	 φ prop

� 	 ∃x : T · φ

References 23

By induction, c�, x : T 	 φ prop. By the formation rule for the existential quanti-
fier, we are finished. Finally, consider the existential elimination rule in the follow-
ing case.

� 	 ∃x : T · φ �, x : T, φ 	 η

� 	 η

By the premises �, x : T, φ 	 η. By induction and type checking, and the fact that
x is not free in η, c� 	 η prop. For part 2, we illustrate with rule F; i.e., suppose
that the last step is

� 	 t1 : T1 � 	 tn : Tn

� 	 F(t1, ..., tn) : O(T1, ..., Tn)

By induction and the assumptions, T1 t ype, T2 t ype,...,Tn type. Hence by the rule
O, O(T1, ..., Tn) t ype. For part 3, the substantial case is

W1
�, �

′ 	 � � 	 T type

�, x : T, �′ 	 �

It follows immediately that � 	 T type. The same argument works for part 4 and

W2
�, �

′ 	 δ � 	 φ prop

�, φ, �′ 	 δ

The rest of the rules can be established using similar observations.�

TPL is a generalization of a standard many-sorted logic in two ways. First, the
types may be inductively generated, and so it generalizes the simple fixed structure
of standard many-sorted logic. Second, and more importantly, the variables of the
theory range freely over the types. This has the knock-on effect that the grammatical
legitimacy of the various syntactic constructs not only depends upon the types, but
also depends dynamically on them; i.e., the expressions are only well formed rela-
tive to an assignment of types to the variables. This is a Curry (after Haskell Curry)
approach to typing [1]. And for the natural and elegant development of our quite
rich range of theories, we need all this flexibility. So the slightly complex nature of
our logical framework will eventually reap its rewards.

References

1. Barendregt, H.P. Lambda Calculus With Types. In: S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, (Eds), Handbook of Logic in Computer Science. Oxford Science Publications.
Abramsky, S., Gabbay, D.M. and Maibaum, T.S.E., pp. 118–310, Oxford University Press,
Oxford, 1992.

2. Beeson, M.J. Foundations of Constructive Mathematics, Springer-Verlag Berlin, 1985.

24 2 Typed Predicate Logic

3. Martin-Lof, P. An intuitionistic theory of sets, predicative part. In Logic Colloquim, 73. North-
Holland, Amsterdam, 1975.

4. Pierce, B.C. Types and Programming Languages. MIT Press, Cambridge, MA, 2002.
5. Thompson, S. Type Theory and Functional Programming. Addison-Wesley, Reading, MA,

1991.
6. Turner, R. Type inference for set theory. Theor. Comput. Sci. 266(1–2): 951–974, 2001.

