
Preface to the Fourth Edition

We are pleased by the positive resonance of our book which now necessitates a fourth
edition. We have used this opportunity to implement corrections of misprints and
amendments at several places, and to extend and improve the discussion of many of
the exercises and examples. We hope that our presentation of the method of equivalent
photons (Example 3.17), the form factor of the electron (Example 5.7), the infrared
catastrophe (Example 5.8) and the energy shift of atomic levels (Example 5.9) are now
even better to understand. The new Exercise 5.10 shows in detail how to arrive at the
non-relativistic limit for the calculation of form factors. Moreover, we have brought
up-to-date the Biographical Notes about physicists who have contributed to the devel-
opment of quantum electrodynamics, and references to experimental tests of the the-
ory. For example, there has been recent progress in the determination of the electric
and magnetic form factors of the proton (discussed in Exercise 3.5 on the Rosenbluth
formula) and the Lamb shift of high-Z atoms (discussed in Example 5.9 on the energy
shift of atomic levels), while the experimental verification of the birefringence of the
QED vacuum in a strong magnetic field (Example 7.8) remains unsettled and is a topic
of active ongoing research.

Again, we thank all colleagues and readers for their comments and information
about misprints in the book, and are grateful to the team at Springer-Verlag and es-
pecially to Dr. Stefan Scherer for smoothly handling the preparation of this fourth
edition.

Frankfurt am Main, Walter Greiner
October 2008 Joachim Reinhardt

VII



The Propagators for Electrons and Positrons 2

In the following we will generalize the nonrelativistic propagator theory developed

Fig. 2.1. Illustration of the
nth-order contribution to the
Green’s function G+(x′;x)

which describes the probabil-
ity amplitude for multiple scat-
tering of a particle

in the previous chapter to the relativistic theory of electrons and positrons. We will be
guided by the picture of the nonrelativistic theory where the propagator G+(x′;x) is
interpreted as the probability amplitude for a particle wave originating at the space–
time point x to propagate to the space–time point x′. This amplitude can be decom-
posed as in (1.28) into a sum of partial amplitudes, the nth such partial amplitude
being a product of factors illustrated in Fig. 2.1. According to (1.28), the probabil-
ity amplitude consists of factors that describe the propagation of the particle between
the particular scattering events (caused by the interaction V (x)) and when integrated
over the space–time coordinates of the points of interaction represent the nth-order
scattering process of the particle.

Each line in Fig. 2.1 represents a Green’s function; e.g. the line xi−1 xi signifies
the Green’s function G+

0 (xi, xi−1), i.e. the amplitude that a particle wave originat-
ing at the space–time point xi−1 propagates freely to the space–time point xi . The
space–time points where an interaction occurs (vertices) are represented by small cir-
cles (•). At the point xi the particle wave is scattered with the probability amplitude
V (xi) per unit space–time volume. The resulting scattered wave then again propa-
gates freely forward in time from the space–time point xi towards the point xi+1 with
the amplitude G+

0 (xi+1, xi) where the next interaction happens, and so on. The total
amplitude is then given by the sum over contributions from all space–time points at
which an interaction occurs. The particular space–time points at which the particle
wave experiences an interaction are termed vertices. One may also describe the indi-
vidual scattering processes by saying that the interaction at the i’th vertex annihilates
the particle that has propagated freely up to xi , and creates a particle that propagates
on to xi+1, with ti+1 ≥ ti .

This latter interpretation of scattering events is well suited for a generalization to
relativistic hole theory since it contains the overall space–time structure of the scatter-
ing process and the interaction.

Our aim is now to develop, by analogy with the nonrelativistic propagator the-
ory, methods to describe and calculate scattering processes mathematically within the
framework of the Dirac hole theory. We need to focus on the new feature of pair cre-
ation and annihilation processes that are now contained in our relativistic picture of
scattering processes. We shall adopt many of the calculation rules intuitively by requir-
ing them to be consistent with the dynamics of the Dirac equation. A more rigorous
mathematical justification of these rules can be given using the methods of quantum
field theory. Some references on this subject are given in the appendix. In the follow-
ing we shall use mainly heuristic arguments.

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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40 2. The Propagators for Electrons and Positrons

Fig. 2.2. Some examples
of processes encountered
within the electron–positron
theory. The diagrams repre-
sent: (a) electron scattering;
(b) positron scattering;
(c) electron–positron pair
creation; (d) pair annihila-
tion; (e) electron scattering
that in addition includes an
electron–positron pair cre-
ation process; and (f) a closed
loop describing vacuum
polarization

Let us now take a look at the typical processes that must be described within the
relativistic theory. These are collected in Fig. 2.2, illustrated by diagrams that we shall
learn to understand in the following.

In addition to the ordinary scattering processes of an electron (Fig. 2.2a) or
a positron (Fig. 2.2b) there are also pair production and annihilation processes
(Fig. 2.2c–f). Let us first take a look at the pair production illustrated in Fig. 2.2c:
The electron–positron pair is created by a potential acting at space–time point x1. The
two particles then propagate freely forward in time, the positron to x′ and the electron
to x. Similarly, Fig. 2.2d shows the trajectories of an electron and a positron which
start from the points x and x′, respectively, and meet at the point x1 where they anni-
hilate.

Diagram 2.2e represents the scattering of an electron originating at x moving for-
ward in time, experiencing several scatterings, and ending up at x′. Along its way
from x to x′ a pair is produced by a potential acting at x1; the two created particles
propagate forward in time. The positron of this pair and the initial electron converge
at x3 and are annihilated. The surviving electron of the pair then propagates to x′.

Diagram 2.2f shows a pair produced at x1, propagating up to x2, and being anni-
hilated in the field there. It was only “virtually” present for a short intermediate time
interval. Below we will recognize this process as the polarization of the vacuum.

These simple considerations already show that the relativistic electron–positron
theory contains more ingredients than its nonrelativistic counterpart: we need to de-
scribe not only the amplitude for a particle (electron) to propagate from x1 to x2 but
also the amplitude for the creation of a positron that propagates from one space–time
point to another, where it is destroyed again. It is this positron amplitude we have to
construct in the first place, enabling us then to find the total amplitude for the vari-
ous processes illustrated in Fig. 2.2 by summing, or integrating, over all intermediate
points (interaction events) that can contribute to the total process. In a scattering event
(e.g. Fig. 2.2e) in general both electron and positron amplitudes will contribute.

The Dirac hole theory (see Theoretical Physics, by W. Greiner: Relativistic Quan-
tum Mechanics – Wave Equations, hereon referred to as RQM ) interprets a positron
as a hole in the Dirac sea, i.e. the absence of an electron with negative energy from the
filled sea. Thus we may view the destruction of a positron at some space–time point as
equivalent to the creation of an electron with negative energy at this point. This sug-
gests the possibility, e.g. in Fig. 2.2e, that the amplitude for creating the positron at x1
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and destroying it at x3 is related to the amplitude for creating a negative-energy elec-
tron at x3 and destroying it at x1 where t1 < t3. In this picture a pair creation process
such as in Fig. 2.2e,c therefore leads to the following definition of positrons: Positrons
with positive energy moving forward in space–time are viewed within the propagator
theory as electrons with negative energy travelling backward in space–time.

Fig. 2.3. Electron scattering with
involving an intermediate pair
creation process

This is the Stückelberg–Feynman definition of positrons, which we already encoun-
tered in the discussion of the time reversal and PCT symmetries (see RQM, Chap. 12).
Electrons are represented by particle waves with positive energy propagating forward
in space–time. A process such as in Fig. 2.3 can therefore be interpreted using two
different but equivalent languages as follows.

An electron originating at x propagates forward in time, is scattered into a state
of negative energy at x2 by the interaction V (x2), propagates backward in time to x1,
where it is scattered again into a state of positive energy, and finally propagates for-
ward in time to x′. Alternatively one may say that an electron originating at x moves
forward in time up to x2, where it is destroyed by the interaction V (x2) together with
the positron of the e+ − e− pair that has been created earlier at x1 by V (x1). The
electron of this pair propagates forward in time to x′.

Fig. 2.4. A loop diagram

Processes that are represented by closed loops as illustrated in Fig. 2.4 are inter-
preted in terms of an e+ − e− pair being produced at x1 by V (x1) that propagates
forward in time to x2, where it is destroyed again by V (x2). Equivalently, within the
picture of the hole theory, we can say that the potential V (x1) at x1 scatters an elec-
tron from the sea of negative-energy states into a state of positive energy leaving a hole
behind; it is then scattered back into the sea, recombining with the hole at x2 under
the action of V (x2). Or, in propagator language, the electron created at x1 is scattered
back in time at x2 to destroy itself at x1.

Our next aim is to find a unified mathematical description for the various processes
making use of the relativistic propagator formalism. The first step is to construct the
Green’s function for electrons and positrons. It is known as the relativistic propagator1

SF(x′, x;A) (2.1)

and is required in analogy to the nonrelativistic propagator (1.64), to satisfy the fol-
lowing differential equation:

4∑

λ=1

[
γμ

(
i�

∂

∂x′
μ

− e

c
Aμ(x′)

)
− m0c

]

αλ

(SF)λβ(x′, x;A) = �δαβδ4(x′ − x) ,

(2.2)

which is the Dirac equation with a pointlike inhomogeneous term. By means of this
definition the propagator SF(x′, x;A) is a 4×4 matrix corresponding to the dimension
of the γ matrices. The third argument of SF serves as a reminder that the propagator
defined by (2.2) depends on the electromagnetic field Aμ.

1 The symbol SF has been aptly chosen, bearing in mind that the originators of the relativistic prop-
agator formalism were Stückelberg and Feynman: the propagator is commonly called the Feynman
propagator. The original references are E.C.G. Stückelberg and D. Rivier: Helv. Phys. Acta 22, 215
(1949) and R.P. Feynman: Phys. Rev. 76, 749 (1949).
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It is useful to remember from relativistic quantum mechanics the standard repre-
sentation of the γ μ matrices and their commutation relations:

γ 0 =
(

1 0
0 1

)
, γ i =

(
0 σ̂ i

−σ̂ i 0

)
, (2.3a)

and

γ μγ ν + γ νγ μ = 2gμν14×4 . (2.3b)

Here, σ̂ i are the 2 × 2 Pauli matrices, obeying

σ̂i σ̂j + σ̂j σ̂i = 2δij12×2 . (2.3c)

In relativistic quantum theory usually one employs “natural units” and sets
� = c = 1, implying the substitutions

e

�c
→ e ,

m0c

�
→ m0 . (2.3)

Thus in matrix notation with indices suppressed (2.2) becomes

(i/∇ ′ − e /A′ − m0)SF(x′, x;A) = δ4(x′ − x)1 . (2.4)

Note that the definition of the relativistic propagator (2.2, 2.4) differs from the non-
relativistic counterpart (1.64): the differential operator i∂/∂t ′ − Ĥ (x′) occurring in
(1.64) has been multiplied by γ 0 in (2.2, 2.4) in order to form the covariant operator
(i/∇ ′ − e /A′ − m0). The unit matrix in spinor space on the right-hand side of (2.4) is
most commonly suppressed, i.e.

(i/∇ ′ − e /A′ − m0)SF(x′, x;A) = δ4(x′ − x) . (2.5)

However, it must be kept in mind that (2.5) is a matrix equation so that the delta
function in (2.5) is meant to be multiplied by 1.

The free-particle propagator must satisfy (2.5) with the interaction term e /A′ ab-
sent, i.e.

(i/∇ ′ − m0)SF(x′, x) = δ4(x′ − x) . (2.6)

As in the nonrelativistic case we compute SF(x′, x) in momentum space, using the fact
that SF(x′, x) depends only on the distance vector x′ − x. This property is a manifes-
tation of the homogeneity of space and time and in general would not be valid for the
interacting propagator SF(x′, x;A). Fourier transformation to four-dimensional mo-
mentum space then yields for the free propagator

SF(x′, x) = SF(x′ − x) =
∫

d4p

(2π)4
exp

[−ip · (x′ − x)
]
SF(p) . (2.7)

Inserting (2.7) into (2.6) we obtain an equation that determines the Fourier amplitude
SF(p), namely

∫
d4p

(2π)4
( /p − m0)SF(p) exp

[−ip · (x′ − x)
] =

∫
d4p

(2π)4
exp

[−ip · (x′ − x)
]

,
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which implies that

( /p − m0)SF(p) = 1 (2.8)

or, in detail, restoring the indices,

4∑

λ=1

( /p − m0)αλ(SF(p))λβ = δαβ . (2.9)

Equation (2.8) can be solved for the Fourier amplitude SF(p) by multiplying with
( /p + m0) from the left:

( /p + m0)( /p − m0)SF(p) = ( /p + m0) . (2.10)

Since

/p /p = γμγνp
μpν = 1

2
(γμγν + γνγμ)pμpν = gμνp

μpν = pμpμ = p2 , (2.11)

(2.10) becomes

(p2 − m2
0)SF(p) = ( /p + m0) (2.12)

or

SF(p) = /p + m0

p2 − m2
0

for p2 �= m2
0 . (2.13)

In order to complete the definition of SF(p) we must give a prescription to handle
the singularities at p2 = m2

0 which is just the mass-shell condition p2
0 − p2 = m2

0 or

p0 = ±
√

m2
0 + p2 = ±Ep . From the foregoing discussion of the nonrelativistic prop-

agator formalism we know that this additional information comes from the boundary
conditions that are imposed on SF(x′ − x). We will now put into practice the previous
interpretation of positrons as negative-energy electrons moving backwards in time. In
order to implement this concept we return to the Fourier representation (2.7) and the
Fourier amplitude (2.13) and perform the energy integration (dp0 integration) along
the special contour CF shown in Fig. 2.5.

Fig. 2.5. Integration con-
tour CF that defines the
Feynman propagator. The
singularities are located on
the real p0 axis at p0 = −Ep

and p0 = +Ep
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We obtain

SF(x′ − x) =
∫

d4p

(2π)4
SF(p) exp

[−ip · (x′ − x)
]

=
∫

d4p

(2π)4
SF(p) exp

{−i
[
p0(t

′ − t) − p · (x′ − x)
]}

=
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]

×
∫

CF

dp0

2π

exp
[−ip0(t

′ − t)
]

p2 − m2
0

( /p + m0) . (2.14)

For t ′ > t we close the integration contour in the lower half plane, since in this case
the integral along the lower semicircle, parametrized by p0 = �eiφ , does not contribute
for � → ∞. By means of the residue theorem then only the positive energy pole at

p0 = Ep = +
√

p2 + m2
0

contributes to the p0 integration. Hence, we obtain

∫

CF

dp0

2π

exp
[−ip0(t

′ − t)
]

p2
0 − p2 − m2

0

( /p + m0)

=
∫

CF+C1

dp0

2π

exp
[−ip0(t

′ − t)
]

(p0 − Ep)(p0 + Ep)
(p0γ

0 + piγ
i + m0)

= −2π i
exp

[−iEp(t ′ − t)
]

2π2Ep

(Epγ 0 − p · γ + m0) , (2.15)

so that (2.14) yields

SF(x′ − x) = −i
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]
exp

[−iEp(t ′ − t)
]

× (Epγ 0 − p · γ + m0)

2Ep

for t ′ > t . (2.16)

The minus sign in (2.15) results from integrating along the contour in a mathematically
negative (clockwise) sense. This propagator describes particle motion from x to x′
forward in time (t ′ > t). At x′ = (x′, t ′) SF contains positive-energy components only,
since the energy factor occurring in the exponent of exp(−iEp(t ′ − t)) is defined to

be positive, Ep = +
√

p2 + m2
0.

On the other hand, considering the particle propagation backward in time implies
that t ′ − t is negative so that the p0 integration must be performed along the contour
closed in the upper half plane in order to give a zero contribution along the semicircle
for � → ∞. Then only the negative-energy pole at

p0 = −Ep = −
√

p2 + m2
0
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contributes (Fig. 2.5). This yields

∫

CF+C2

dp0

2π

exp
[−ip0(t

′ − t)
]

(p0 − Ep)(p0 + Ep)
(p0γ

0 + piγ
i + m0)

= 2π i
exp

[−i(−Ep)(t ′ − t)
]

2π(−2Ep)
(−Epγ 0 − p · γ + m0) . (2.17)

Thus the propagator (2.14) for the case t ′ < t reads

SF(x′ − x) = −i
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]
exp

[+iEp(t ′ − t)
]

× (−Epγ 0 − p · γ + m0)

2Ep

for t ′ < t . (2.18)

This propagator describes the propagation of negative-energy particle waves back-
ward in time, as can be read off the factor exp

(−i(−Ep)(t ′ − t)
)
. These negative-

energy waves are absent in the nonrelativistic theory, since no solution of the energy–

momentum relation at p0 = −Ep = −
√

p2 + m2
0 exists. Here, in the relativistic case,

they are unavoidable owing to the quadratic form of the energy–momentum dispersion
relation.

We note that other choices of the integration contour CF, e.g. as in Fig. 2.6, would
lead to contributions from negative-energy waves propagating into the future (case a)
or positive-energy waves into the past (case b). As we can see, the choice of the con-
tour CF according to Fig. 2.5 results in positive-energy waves moving forward in time
and negative-energy waves backward in time, just as we required. These negative-
energy waves propagating backward in time we identify with positrons.

Fig. 2.6. Possible alternative
choices for the integration
contour that lead to propaga-
tors with the wrong asymp-
totic behaviour

As we recall from hole theory it is the definition of the vacuum (specified by the
position of the Fermi surface EF) that prescribes which of the particle-wave states
are to be interpreted as electrons and which as positrons. It is assumed that particle
states with E < EF are occupied and that the absence of a particle in such a state
is interpreted in terms of a positron. The choice of the propagator is based on this
definition of the vacuum, which determines the choice of the integration contour C,
i.e. the transition of C from the lower to the upper complex p0 half plane. For example,
in supercritical fields (see Chap. 7) the vacuum carries charge. Consequently, some of
the negative-energy states are to be interpreted as electrons propagating forward in
time. For an atom the Fermi surface is usually located at a bound state. Hence, in this
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case the propagator is required to be evaluated along an integration contour that passes
over from the lower half plane to the upper half plane at an energy slightly above the
highest occupied bound state. Another example of a modified ground state (and thus
a modified propagator) is the Fermi gas of electrons, which will be introduced in
Exercise 2.2 below.

The integration contour CF determining the propagator SF (x′ − x) may be alterna-
tively characterized by adding a small positive imaginary part +iε to the denominator
in (2.14), where the limit ε → 0 is to be taken at the end of the calculation:

SF (x′ − x) =
∫

d4p

(2π)4

exp
[−ip · (x′ − x)

]

p2 − m2
0 + iε

( /p + m0) . (2.19)

Then the singularities corresponding to positive-energy states,

p0 = +
√

p2 + m2
0 − iε = +

√
p2 + m2

0 − iη(ε) , (2.20a)

lie below the real p0 axis while the poles corresponding to negative-energy states,

p0 = −
√

p2 + m2
0 − iε = −

√
p2 + m2

0 + iη(ε) , (2.20b)

are located above the p0 axis, just as required for the contour CF. The prescription of
(2.19) is most easily remembered in the form of a rule: To ensure the correct boundary
conditions, the mass has to be given a small negative imaginary part. The two prop-
agators describing positive-energy particle waves (2.16) and negative-energy particle
waves (2.18) moving forward and backward in time, respectively, may be combined
by introducing the energy projection operators Λ̂±(p) (see RQM, Chap. 7)

Λ̂r (p) = εr /p + m0

2m0
,

εr =
{+1 for waves of positive energy

−1 for waves of negative energy
. (2.21)

Then, by changing the three–momentum p to −p in the propagator for negative-
energy waves (2.18), which does not alter the result since the integral

∫
d3p includes

all directions of the three–momentum, we can write

SF(x′ − x) = −i
∫

d3p

(2π)3

{
exp

[−i(+Ep)(t ′ − t)
]

exp
[+ip · (x′ − x)

]

× (+Epγ 0 − p · γ + m0)

2Ep

Θ(t ′ − t)

+ exp
[−i(−Ep)(t ′ − t)

]
exp

[−ip · (x′ − x)
]

× (−Epγ 0 + p · γ + m0)

2Ep

Θ(t − t ′)
}

= −i
∫

d3p

(2π)3

m0

Ep
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×
(

p0γ
0 + piγ

i + m0

2m0
exp

{−i
[
p0(t

′ − t) − p · (x′ − x)
]}

Θ(t ′ − t)

+−p0γ
0 − piγ

i + m0

2m0
exp

{+i
[
p0(t

′ − t) − p · (x′ − x)
]}

Θ(t − t ′)
)

= −i
∫

d3p

(2π)3

m0

Ep

{
/p + m0

2m0
exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+− /p + m0

2m0
exp

[+ip · (x′ − x)
]
Θ(t − t ′)

}

= −i
∫

d3p

(2π)3

m0

Ep

{
Λ̂+(p) exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+Λ̂−(p) exp
[+ip · (x′ − x)

]
Θ(t − t ′)

}
. (2.22)

Equivalently, by means of the normalized Dirac plane waves (see RQM, Chap. 6)

ψr
p(x) =

√
m0

Ep

1
√

2π
3

ωr(p) exp (−iεrp · x) , (2.23)

with the normalization
∫

d3xψr†
p (x)ψr ′

p′(x) = δrr ′δ3(p − p′). (2.23a)

SF(x′ − x) can be transcribed to the following form (cf. Exercise 2.1):

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑

r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑

r=3

ψr
p(x′)ψ̄r

p(x) . (2.24)

This result is the relativistic generalization of the nonrelativistic Green’s func-
tion (1.77). The propagator SF now consists of two parts: the first describes the
propagation of positive-energy states forward in time, the latter the propagation of
negative-energy states backward in time. With the aid of (2.24) the following rela-
tions for positive-energy solutions (ψ(+E)) and negative-energy solutions (ψ(−E)) are
easily verified:

Θ(t ′ − t)ψ(+E)(x′) = i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x) , (2.25)

Θ(t − t ′)ψ(−E)(x′) = −i
∫

d3xSF(x′ − x)γ0ψ
(−E)(x) . (2.26)

In analogy to the nonrelativistic propagator theory (cf. (1.7) and (1.9)) the occur-
rence of an additional minus sign in (2.26) results from the difference of the direction
of propagation in time between (2.25) and (2.26) corresponding to propagation of
positive-energy solutions forward in time and negative-energy solutions backward in
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time, respectively. The validity of (2.25) can be seen by writing

i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

2∑

r=1

ψr
p(x′)

∫
d3x ψr†

p (x)ψ(+E)(x)

− Θ(t − t ′)
∫

d3p

4∑

r=3

ψr
p(x′)

∫
d3x ψr†

p (x)ψ(+E)(x) (2.27)

and expanding the general positive-energy solution ψ(+E)(x) in terms of Dirac plane
waves

ψ(+E)(x) =
∫

d3p

4∑

r=1

ar(p)ψr
p(x) . (2.28)

The coefficients ar(p) vanish except for r = 1,2, since by definition ψ(+Ep) describes
a wave packet containing only positive energies or “frequencies”. By means of the or-
thonormality relations of the ψr

p(x)

ar(p) =
∫

d3xψ(+E)(x)ψr†
p (x) �= 0 (r = 1,2) , (2.29)

ar(p) =
∫

d3xψ(+E)(x)ψr†
p (x) = 0 (r = 3,4) , (2.30)

the second term in (2.27) vanishes, while the first term gives

Θ(t ′ − t)

∫
d3p

2∑

r=1

ar(p)ψr
p(x′) = Θ(t ′ − t)ψ(+E)(x′) . (2.31)

Thus we have proved the relation (2.25).
Equation (2.26) can be verified in similar manner. Equations (2.25) and (2.26)

explicitly express our interpretation of electrons and positrons in terms of positive-
energy solutions propagating forward in time and negative-energy solutions moving
backward in time, respectively.

EXERCISE

2.1 Plane-Wave Decomposition of the Feynman Propagator

Problem. Prove that the Stückelberg–Feynman propagator

SF(x′ − x) = − i
∫

d3p

(2π)3

m0

Ep

{
Λ̂+(p) exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+ Λ̂−(p) exp
[
ip · (x′ − x)

]
Θ(t − t ′)

}



Exercise 2.1

2. The Propagators for Electrons and Positrons 49

may equivalently be represented as

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑

r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑

r=3

ψr
p(x′)ψ̄r

p(x) .

Solution. As we recall from RQM, Chap. 6, the Dirac plane waves (2.23) satisfy the
following relations (� = c = 1!):

( /̂p − m0)ψ
r
p(x) = 0 , (1)

(εr /p − m0)ω
r(p) = 0 or ( /p − εrm0)ω

r(p) = 0 , (2)

ω̄r (p)( /p − εrm0) = 0 where ω̄r (p) = ωr(p)†γ 0 , (3)

ω̄r (p)ωr ′
(p) = δrr ′εr , (4)

4∑

r=1

εrω
r
α(p)ω̄r

β(p) = δαβ , (5)

ωr†(εrp)ωr ′
(εr ′p) = Ep

m0
δrr ′ . (6)

Remember also that γ 0γ μ† = γ μγ 0. Here r and r ′ can take on the values 1,2,3,4.
With the aid of (2.23) we find that (bearing in mind that ε1 = ε2 = +1, ε3 = ε4 = −1)

2∑

r=1

ψr
p(x′)ψ̄r

p(x) = 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 2∑

r=1

ωr(p)ω̄r (p)

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 4∑

r=1

ωr(p)ω̄r (p)
/p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 4∑

r=1

εrω
r(p)ω̄r (p)

︸ ︷︷ ︸
=1 (because of (5))

/p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] /p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

]
Λ̂+(p) .

This result is just the first term of the propagator SF(x′ − x) in its representation in
terms of the projection operators Λ̂±. Similarly, for the second part one obtains

4∑

r=3

ψr
p(x′)ψ̄r

p(x) = 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

] 4∑

r=3

ωr(p)ω̄r (p)



50

Exercise 2.1

2. The Propagators for Electrons and Positrons

= 1

(2π)3

m0

Ep

exp
[+ip · (x′ − x)

] 4∑

r=1

−( /p − m0)

2m0
ωr(p)ω̄r (p)

= 1

(2π)3

m0

Ep

exp
[+ip · (x′ − x)

] 4∑

r=1

(− /p + m0)

2m0
(−εr )ω

r(p)ω̄r (p)

= − 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

] (− /p + m0)

2m0

= − 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

]
Λ̂−(p) .

Thus we have verified the proposed equivalence between the two representations of
SF(x′ − x).

Equations (2.22) or (2.24) determine the free-particle propagator of the electron–
positron theory. In analogy to (1.83) and (1.86), respectively, we may now formally
construct the complete Green’s function and the S matrix for the electron–positron
field interacting with an electromagnetic potential A. This will then enable us to cal-
culate various scattering processes of electrons and positrons in the presence of exter-
nal fields, as will be demonstrated in the following chapter. To accomplish the aim of
constructing the exact propagator SF(x′, x;A) we start from the differential equation
(2.5) that determines SF(x′, x;A) and transcribe it, paraphrasing the nonrelativistic
treatment (cf. (1.80)), to the following form:

(i/∇ ′ − m0)SF(x′, x;A) = δ4(x′ − x) + e /A(x′)SF(x′, x;A) . (2.32)

This can be viewed as an inhomogeneous Dirac equation of the form

(i/∇ − m0)Ψ (x) = �(x) , (2.33)

which is solved by the Green’s function technique as follows

Ψ (x) = Ψ0(x) +
∫

d4ySF(x − y)�(y) , (2.34)

Ψ0(x) solves the homogeneous equation. In this way (2.32) leads to an integral equa-
tion for the Stückelberg–Feynman propagator

SF(x′, x;A) =
∫

d4ySF(x′ − y)
[
δ4(y − x) + e /A(y)SF(y, x;A)

]

= SF(x′ − x) + e

∫
d4ySF(x′, y)/A(y)SF(y, x;A) . (2.35)

Note that the homogeneous solution of (2.32) is a superposition of plane waves with
an arbitrary constant factor which is set to zero because the solution of the homoge-
neous equation is not a Green’s function. Equation (2.35) is the relativistic counterpart
of the Lippmann–Schwinger equation (1.83). This integral equation determines the
complete propagator SF(x′, x;A) in terms of the free-particle propagator SF(x′, x).
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Proceeding in analogy to the nonrelativistic treatment (cf. (1.28)) the iteration of the
integral equation yields the following multiple scattering expansion:

SF(x′, x;A) = SF(x′ − x) + e

∫
d4x1SF(x′ − x1) /A(x1)SF(x1 − x)

+ e2
∫

d4x1d4x2SF(x′ − x1) /A(x1)SF(x1 − x2) /A(x2)SF(x2 − x)

+ . . . . (2.36)

In analogy to (1.31) the exact solution of the Dirac equation

(i/∇x − m0)Ψ (x) = e /A(x)Ψ (x) (2.37)

is completely determined in terms of SF if one imposes the boundary condition of
Feynman and Stückelberg, namely

Ψ (x) = ψ(x) +
∫

d4ySF(x − y)e /A(y)Ψ (y) . (2.38)

Here ψ(x) is a solution of the free Dirac equation, i.e. of the homogeneous version
of (2.37). The potential V (x) occurring in (1.31) is now replaced by e /A(x). The sec-
ond term on the right-hand side represents the scattered wave. In accordance with the
properties of the Stückelberg–Feynman propagator (2.24) this scattered wave contains
only positive frequencies in the distant future and only negative frequencies in the
distant past, since

Ψ (x) − ψ(x) ⇒
∫

d3p

2∑

r=1

ψr
p(x)

(
−ie

∫
d4y ψ̄r

p(y)/A(y)Ψ (y)

)
for t → +∞

(2.39)

and

Ψ (x) − ψ(x) ⇒
∫

d3p

4∑

r=3

ψr
p(x)

(
+ie

∫
d4y ψ̄r

p(y)/A(y)Ψ (y)

)
for t → −∞ .

(2.40)

Notice that here x and y are to be identified with x ′ and x, respectively, in (2.24), and t

in (2.39, 2.40) corresponds to t ′ in (2.24).
The result (2.39) expresses our formulation of the relativistic scattering problem,

which is consistent with the requirements of hole theory. These requirements have
been essentially built into the Stückelberg–Feynman propagator by the special choice
of the integration contour and thus take into account the location of the Fermi border
(cf. Fig. 2.5 and Exercise 2.2). Furthermore, according to (2.39), an electron cannot
“fall into the sea” of (occupied) negative-energy states after scattering by an external
field /A(y), since only the unoccupied positive-energy states are available. In contrast,
positrons interpreted in terms of negative-energy electrons travelling backward in time
are scattered back to earlier times into other negative-energy states according to (2.40).

The S-matrix elements are defined in the same manner as in the nonrelativistic
case (1.37). Terming ψf (x) the final free wave with the quantum numbers f that is
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observed at the end of the scattering process, we infer from (2.38)–(2.40) with the aid
of (2.24) that

Sf i = lim
t→±∞

〈
ψf (x) Ψi(x)

〉

= lim
t→±∞

〈
ψf (x) ψi(x) +

∫
d4ySF(x − y)e /A(y)Ψi(y)

〉
. (2.41)

Here the limit t → +∞ is understood if ψf (x) describes an electron and t → −∞
if ψf (x) means a positron, since the latter is considered a negative-energy electron
moving backward in time. For electron scattering we have

Sf i = δf i − ie lim
t→+∞

〈
ψf (x)

∫
d3p

2∑

r=1

ψr
p(x)

∫
d4y ψ̄r

p(y)/A(y)Ψi(y)

〉
,

(2.41a)

while positron scattering is described by

Sf i = δf i + ie lim
t→−∞

〈
ψf (x)

∫
d3p

4∑

r=3

ψr
p(x)

∫
d4y ψ̄r

p(y)/A(y)Ψi(y)

〉
.

(2.41b)

The
∫

d3x integral implied by the brackets projects out just that state ψr
p(x) whose

quantum numbers agree with ψf (x). All other terms of the integral-sum
∫

d3p
∑

r do
not contribute. This yields for (2.41a)

Sf i = δf i − ie
∫

d4y ψ̄f (y)/A(y)Ψi(y)

and a similar expression for positron scattering. Both results can be combined by
writing (εf = +1 for positive-energy waves in the future and εf = −1 for negative-
energy waves in the past)

Sf i = δf i − ieεf

∫
d4y ψ̄f (y)/A(y)Ψi(y) . (2.42)

Depending on whether ψf (x) represents an electron or a positron, the first or the
second term, respectively, is nonzero. In (2.42) Ψi(x) stands for the incoming wave,
which either reduces at y0 → −∞ to an incident positive-frequency wave ψi(x) car-
rying the quantum numbers i or at y0 → +∞ to an incident negative-frequency wave
propagating into the past with quantum numbers i, according to the Stückelberg–
Feynman boundary conditions.

To elucidate how the various scattering processes are contained in (2.42) we first
consider the “ordinary” scattering of electrons. In this case

Ψi(y)
y0→−∞=⇒ ψ

(+E)
i (y) =

√
m0

E−
1

(2π)3/2
u(p−, s−) exp(−ip− · y), (2.43)

with u(p−,1/2) ≡ w1(p−), u(p−,−1/2) ≡ w2(p−) reduces to an incoming electron
wave with positive energy E−, momentum p− and spin s−. The minus sign here desig-
nates the negative charge of the electron. The nth order contribution to the perturbation
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expansion of the S-matrix element (2.42) is then

Fig. 2.7. Two graphs for third-
order electron scattering. The
lower graph involves an in-
termediate electron–positron
pair

S
(n)
f i = −ien

∫
d4y1 . . .d4yn ψ̄

(+E)
f (yn)/A(yn)SF(yn − yn−1) /A(yn−1) . . .

× SF(y2 − y1) /A(y1)ψ
(+E)
i (y1) . (2.44)

This expression contains both types of graphs shown in Fig. 2.7: That is, in addition
to ordinary scattering intermediate pair creation and pair annihilation are included in
the series, since the various d4y integrations also allow for a reverse time ordering,
y0
n+1 < y0

n . We therefore recognize that, inevitably, the second part of the propagator
(2.24) also contributes.

Next we consider the pair production process. In accordance with the developed
formalism, Ψi(y) in this case at y0 → +∞ reduces to a plane wave with negative
energy. This particle state propagating backward in time then represents a positron. We
use the notation p−, s− for three–momentum and spin corresponding to the physical
electron and p+, s+ for the physical positron where p0± > 0. The physical positron
state at t → ∞ is described by a plane wave of negative energy with quantum numbers
−p+,−s+, ε = −1. This wave propagating backward in time enters into the vertex.
That is,

Ψi(y)
y0→∞=⇒ ψ

(−E)
i (y) =

√
m0

E+
1

(2π)3/2
v(p+, s+) exp (ip+ · y) . (2.45)

This form of the wave function explicitly exhibits the negative energy and negative
three–momentum of the particle wave. The positive sign in the exponent in (2.45) ob-
viously expresses this property since a wave with positive energy and positive three–

Fig. 2.8. First- and second-order
Feynman diagrams for electron–
positron pair creation

momentum carries a phase factor exp(−ip− · y). The fact that the spin direction is
reversed, i.e. −s+, is taken into account by the definition of the spinor v(p+, s+). As
we recall from RQM, Chap. 6, the spinors have been defined according to

v(p+,+1/2) = ω4(p+) and v(p+,−1/2) = ω3(p+) ,

where ω4 is the spinor corresponding to a negative-energy electron with spin up
and ω3 a negative-energy electron with spin down.

The final wave function ψf in the case of the pair creation process is a positive-
energy solution carrying the quantum numbers p−, s−, ε = +1 and describes the elec-
tron.

To resume our previous considerations, from hole theory (see RQM, Chap. 12) we
know that the absence of a negative-energy electron with four–momentum −p+ and
spin −s+ is interpreted in terms of a positron with four–momentum +p+ and po-
larization +s+. Within the framework of the propagator formalism the probability
amplitude for the creation of a positron at x propagating forward in space–time and
emerging out of the interaction region into the final free state (p+, s+) at x′ is calcu-
lated by the probability amplitude for the propagation of a negative-energy electron
(four–momentum −p+, spin −s+) backward in time entering into the interaction re-
gion. Then, being scattered by the force field, it emerges out of the interaction volume
as a positive-energy state propagating forward in time. The diagrams for the pair cre-
ation are illustrated in Fig. 2.8. We emphasize that the second-order amplitude con-
sists of two diagrams corresponding to the second scattering of the positron. These
two second-order diagrams are said to differ in the time ordering of the two scattering
processes.
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Since the Feynman propagator according to (2.24) consists of two parts there is no
need to deal explicitly with time orderings when calculating any process. The formula
for the S matrix automatically contains them all.

Now let us consider pair annihilation. This process in lowest order is represented
by the graph of Fig. 2.9. In this case we insert for Ψi(y) a solution of (2.38) that

Fig. 2.9. The graph for pair
annihilation

reduces to ψ
(+E)
i (y) at t → −∞. This positive-energy solution represents an electron

that propagates forward in time into the interaction volume, to be scattered backward
in time and emerges into a negative energy state. According to (2.42) the nth-order am-
plitude that the electron scatters into a given final state ψ

(−E)
f , labelled by the physical

quantum numbers p+, s+, εf = −1 (the corresponding formal quantum numbers en-
tering the wave function, however, are −p+,−s+; cf. the discussion following (2.45)),
is given by

S
(n)
f i = ien

∫
d4y1 . . .

∫
d4ynψ̄

(−E)
f (yn)/A(yn)SF(yn − yn−1) . . . /A(y1)ψ

(+E)
i (y1) .

(2.46)

In the language of hole theory this is the nth-order amplitude that a positive-
energy electron is scattered into an electron state of negative energy, negative three–
momentum −p+, and spin −s+. This state must of course have been empty at
t → −∞. That is, there must have been a hole or positron present with four–
momentum p+ and spin or polarization s+.

Finally let us turn to positron scattering, which (in lowest order) is represented
by either of the two equivalent graphs of Fig. 2.10. The incident wave is an elec-
tron of negative frequency (negative energy) labelled by the quantum numbers
−p+,−s+, εf = −1. The final state (outgoing wave) is represented as a negative-
energy electron too. Notice that the incoming electron of negative energy character-
izes the outgoing positron of positive energy, and similarly the incoming positron is
represented as an outgoing negative-energy electron. In Sect. 3.4 we will elaborate
this explicitly.

Fig. 2.10. Positron scattering in lowest order. The emerging positron (ψpositron
f

, in (b)) corre-

sponds to an incoming negative-energy electron (ψ(−E)
i

in (a)). Similarly, the incident positron

(ψpositron
i

in (b)) is represented in terms of an outcoming negative-energy electron (ψ(−E)
f

in (a)). In other words, (a) describes the scattering process in accordance with our calculational
techniques, whereas (b) illustrates the real physical picture of positron scattering
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EXERCISE

2.2 Feynman Propagator for a Fermi Gas

Problem. Suppose in our formalism we replace the vacuum by a noninteracting
Fermi gas of electrons with Fermi momentum kF. How is the Stückelberg–Feynman
propagator modified? Evaluate SF in the low-density limit.

Solution. In a degenerate Fermi gas the levels in the positive-energy electron con-
tinuum are occupied up to the Fermi momentum kF. These occupied states have to be
treated like the negative-energy states of the Dirac sea. That is, the Feynman propaga-
tor is modified according to

iSG
F (x′ − x) = Θ(t ′ − t)

∑

k
r=1,2

ψr
k(x′)ψ̄r

k(x)Θ(k − kF)

− Θ(t − t ′)
∑

k

⎛

⎝
∑

r=3,4

ψr
k(x′)ψ̄r

k(x)

+
∑

r=1,2

ψr
k(x′)ψ̄r

k(x)Θ(kF − k)

⎞

⎠ , (1)

where

ψr
k(x) = (m0/Ek)

1/2 (2π)−3/2 ωr(k) exp (−iεrk · x) , (2)

with k0 = Ek =
√

k2 + m2
0 are the normalized Dirac plane waves. For the special case

kF = 0 this expression reduces to the ordinary Feynman propagator. We recall the
following representations of the Θ function:

Θ(t ′ − t) = i

+∞∫

−∞

dp′
0

2π
exp

[−ip′
0(t

′ − t)
] 1

p′
0 + iε

, (3a)

Θ(t − t ′) = −i

+∞∫

−∞

dp′
0

2π
exp

[−ip′
0(t

′ − t)
] 1

p′
0 − iε

, (3b)

where the second expression is obtained from the first by complex conjugation. Fur-
thermore we need the relations

∑

r=1,2

ωr(k)ω̄r (k) = /k + m0

2m0
= Λ̂+(k) ,

∑

r=3,4

ωr(k)ω̄r (k) = /k − m0

2m0
= −Λ̂−(k) . (4)
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With the aid of (4), (1) yields

iSG
F (x′ − x) = Θ(t ′ − t)

∫
d3k

(2π)3

m0

Ek

Λ̂+(k) exp
[−ik · (x′ − x)

]
Θ(k − kF)

+ Θ(t − t ′)
∫

d3k

(2π)3

m0

Ek

Λ̂−(k) exp
[
ik · (x′ − x)

]

− Θ(t − t ′)
∫

d3k

(2π)3

m0

Ek

Λ̂+(k) exp
[−ik · (x′ − x)

]
Θ(kF − k)

≡ I1 + I2 + I3 . (5)

Substituting the representation (3a) of the Θ function we find that

I1 = i
∫

d3k

(2π)3

m0

Ek

Λ̂+(k) exp
{−i

[
Ek(t

′ − t) − k · (x′ − x)
]}

×
∫

dk′
0

2π
exp

{−i
[
k′

0(t
′ − t)

]} 1

k′
0 + iε

Θ(k − kF)

= i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{−i

[
(Ek + k′

0)(t
′ − t) − k · (x′ − x)

]}

× Ekγ0 − k · γ + m0

k′
0 + iε

Θ(k − kF) . (6a)

Similarly, using (3b), we get

I2 = −i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{
i
[
(Ek − k′

0)(t
′ − t) − k · (x′ − x)

]}

× −Ekγ0 + k · γ + m0

k′
0 − iε

, (6b)

I3 = i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{−i

[
(Ek + k′

0)(t
′ − t) − k · (x′ − x)

]}

× Ekγ0 − k · γ + m0

k′
0 − iε

Θ(kF − k) . (6c)

In order to evaluate these integrals, we introduce the following substitutions:

k0 = k′
0 + Ek in I1 and I3 , (7a)

k0 = k′
0 − Ek and k → −k in I2 . (7b)

In addition, in the integral I2 we make use of the identity

1 = Θ(k − kF) + Θ(kF − k) (8)

so that (6) becomes

I1 = i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] Ekγ0 − k · γ + m0

k0 − Ek + iε
Θ(k − kF) ,
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I2 = −i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] −Ekγ0 − k · γ + m0

k0 + Ek − iε

× [Θ(k − kF) + Θ(kF − k)] ,

I3 = i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] Ekγ0 − k · γ + m0

k0 − Ek − iε
Θ(kF − k) . (9)

In the next step we add I1 to that part of I2 which contains Θ(k − kF). The combined
denominator of the two integrands is

(k0 − Ek + iε)(k0 + Ek − iε) = k2
0 − E2

k + 2iεEk + ε2

= k2
0 − E2

k + iε′ = k2 − m2
0 + iε′ , (10)

since ε is an infinitesimal quantity and Ek > 0. This results in

Ekγ0 − k · γ + m0

k0 − Ek + iε
− −Ekγ0 − k · γ + m0

k0 + Ek − iε

= (Ekγ0 − k · γ + m0)(k0 + Ek) − (−Ekγ0 − k · γ + m0)(k0 − Ek)

k2 − m2
0 + iε′

= 2Ek(k0γ0 − k · γ + m0)

k2 − m2
0 + iε′

= 2Ek(k · γ + m0)

k2 − m2
0 + iε′ . (11)

Similarly the second part of I2 is added to I3. The combined denominator in this case
is

(k0 + Ek − iε)(k0 − Ek − iε) = k2
0 − E2

k − 2iεk0

= k2 − m2
0 − iε′k0 . (12)

Proceeding as in (11), we find that

Ekγ0 − k · γ + m0

k0 − Ek − iε
− −Ekγ0 − k · γ + m0

k0 + Ek − iε

= (Ekγ0 − k · γ + m0)(k0 + Ek) − (−Ekγ0 − k · γ + m0)(k0 − Ek)

k2 − m2
0 − iε′k0

= 2Ek(k · γ + m0)

k2 − m2
0 − iε′k0

. (13)

We insert these expressions into (5) and obtain

SG
F (x′ − x) =

∫
d4k

(2π)4

γ · k + m0

k2 − m2
0 + iε

exp
[−ik · (x′ − x)

]
Θ(k − kF)

+
∫

d4k

(2π)4

γ · k + m0

k2 − m2
0 − iεk0

exp
[−ik · (x′ − x)

]
Θ(kF − k) . (14)

Instead of adding an infinitesimal iε to the denominator of the propagators (14),
one may alternatively perform the integrations along the contours in the complex k0
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Fig. 2.11. The integration
contours which define the
Feynman propagator (CF)

and the advanced propaga-
tor (CA)

plane as shown in Fig. 2.11:

SG
F (x′ − x) =

∫

CF

d4k

(2π)4

exp
[−ik · (x′ − x)

]

k · γ − m0
Θ(k − kF)

+
∫

CA

d4k

(2π)4

exp
[−ik · (x′ − x)

]

k · γ − m0
Θ(kF − k) , (15)

where we have introduced the symbolic notation

γ · k + m0

k2 − m2
0

= γ · k + m0

(γ · k + m0)(γ · k − m0)
= 1

γ · k − m0
. (16)

For t ′ > t the second integral in (15),

∫

CA

d4k

(2π)4

exp
{−i

[
k0(t

′ − t) − k · (x′ − x)
]}

k · γ − m0
Θ(kF − k) (17)

is evaluated along the contour CA closed in the lower half plane so that it vanishes.
This procedure yields the advanced propagator that transforms all solutions below the
Fermi surface (k < kF) backward in time. The integration contour CF in Fig. 2.11 is
the ordinary contour in the vacuum, since the old vacuum remains unchanged above
the Fermi momentum kF. The corresponding “causal” propagator transforms particles
(positive-energy solutions) to propagate forward in time. In Fig. 2.12 we have illus-
trated these properties:

Fig. 2.12. The integration
contour CkF crosses the real
k0 axis at the border between
occupied and empty states

Solutions with a momentum k < kF, i.e. with an energy below the corresponding

Fermi energy EF =
√

k2
F + m2

0, propagate backward in time and are pictured as holes
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(hatched region). Particles, on the other hand, have energies larger than EF and prop-
agate forward in time.

We summarize the steps that led to this result. For particles of a Fermi gas the
integration contour cuts the real k0 axis just above the Fermi energy EF. In the ordinary
vacuum only the negative energy states are occupied. In this case one chooses kF = 0,
that is, EF ≤ |Ek| for all k, and the point where the contour cuts the real k0 axis lies
somewhere in the interval [−Ek,Ek], the precise position being irrelevant. In the case
of the Fermi gas (kF > 0) we have to distinguish between two alternatives. For k > kF

the integration contour passes the same interval because EF < |Ek|. In both cases
the contour agrees with CF. On the other hand, at low momenta k < kF, implying
EF > |Ek|, i.e. EF > Ek > −Ek , the integration has to be performed along the dashed
contour, which is equivalent to CA! This prescription is symbolically expressed as

SG
F (x′ − x) =

∫

CkF

d4k

(2π)4

exp
[−ik · (x′ − x)

]

k · γ − m0
, (18)

where the contour CkF crosses the real axis at k0 = EF.
The extension of this prescription to the case of the Feynman propagator in the

presence of an external field Aμ(x) is straightforward. For example, consider an atom
with bound states (located within the interval −m0 < E < m0). In this case the inte-
gration contour in the complex k0 plane has to be chosen such that it passes below the
occupied and above the empty states.

For practical purposes it is convenient to split the propagator into a free and
a density-dependent part. In momentum space the result takes the simple form

SG
F (k) = SF(k) + (γ · k + m0)δ(k0 − Ek)Θ(kF − k) . (19)

This can be easily derived from (14) by using the identity

1

z − iε
= 1

z + iε
+ 2π iδ(z) . (20)

In the low-density limit the Fermi momentum kF is directly related to the density
of the electron gas. That is, with the normalization condition for a box of volume V

the particle number is given by

N =
2∑

r=1

∑

k

Θ(kF − k) → 2V

∫
d3k

(2π)3
Θ(kF − k) = V

3π2
k3

F , (21)

where the factor 2 accounts for the spin degeneracy. Thus in the low-density limit,
� = N/V = k3

F/3π3 → 0, the Fermi momentum kF approaches 0, so that the propa-
gator SG

F reduces to SF.

Supplement. Finite Temperatures. The result (14) can be generalized to the case of
a free-electron gas at finite temperature T . From statistical mechanics it is well known
that a quantum-mechanical state with an energy E cannot definitely be said to be oc-
cupied or empty. Instead an occupation probability function f (E) is introduced. The
explicit form of this function depends on the type of particle considered; for particles
with half-integer spin, Fermi–Dirac statistics requires f (E) to be of the form

f (E) ≡ f (E,T ,μ) = 1

exp
[
(E − μ)/kBT + 1

] , (22)
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where kB is the Boltzmann constant kB = 8.62 × 10−11 MeV/K. The Fermi function
contains two free parameters, the temperature T and the chemical potential μ. The

latter is a generalization of the Fermi energy EF =
√

k2
F + m2

0, as becomes obvious in
the limit T → 0, when the Fermi function approaches the Θ function,

f (E,T ,μ) → Θ(μ − E) . (23)

That is, below the chemical potential μ all states are occupied, whereas above μ all
states are empty.

To generalize (1) to the case of finite temperature, we therefore replace the Θ func-
tions Θ(k − kF) = Θ(Ek − EF) and Θ(kF − k) = Θ(EF − Ek) by the occupation
function (23). However, we must be careful to distinguish four different contributions:
free-electron states (r = 1,2) and occupied positron states (r = 3,4) propagating for-
ward in time, as well as occupied electron states and free-positron states, propagating
backward in time. In contrast to (1), where all positron states were assumed empty,
the electron gas also contains positrons owing to thermal excitation, as expressed by
the Fermi function (22). This is depicted in Fig. 2.13. However, the temperature at
which these contributions become important, i.e. where kBT ≈ 2m0c

2, is quite large,
T ≈ 10−10 K.

Fig. 2.13. The occupation
probability for a hot electron
gas. The hatched regions
mark the occupied electron
and positron states

According to these considerations the temperature-dependent Feynman propagator
must be of the following form:

iSG
F (x′ − x) =

⎡

⎣
∑

k

∑

r=1,2

(1 − f (Ek))ψr
k(x′)ψ̄r

k(x)

+
∑

k

∑

r=3,4

(1 − f (−Ek))ψr
k(x′)ψ̄r

k(x)

⎤

⎦Θ(t ′ − t)

−
⎡

⎣
∑

k

∑

r=3,4

f (−Ek)ψ
r
k(x′)ψ̄r

k(x)

+
∑

k

∑

r=1,2

f (Ek)ψ
r
k(x′)ψ̄r

k(x)

⎤

⎦Θ(t − t ′) . (24)
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With the aid of the integral representation of the Θ function (3) and by employing (2)
and (4), (24) yields

iSG
F (x′ − x) = i

∫
dk′

0

(2π)

1

k′
0 + iε

exp
[−ik′

0(t
′ − t)

]

×
{∫

d3k

(2π)3 (1 − f (Ek))
m0

Ek

/k + m0

2m0
exp

[−ik · (x′ − x)
]

−
∫

d3k

(2π)3 (1 − f (−Ek))
m0

Ek

−/k + m0

2m0
exp

[+ik · (x′ − x)
]}

+ i
∫

dk′
0

(2π)

1

k′
0 − iε

exp
[−ik′

0(t
′ − t)

]

×
{
−

∫
d3k

(2π)3
f (−Ek)

m0

Ek

−/k + m0

2m0
exp

[−ik · (x′ − x)
]

+
∫

d3k

(2π)3
f (Ek)

m0

Ek

/k + m0

2m0
exp

[−ik · (x′ − x)
]}

. (25)

To evaluate the four integrals we proceed as before by shifting the frequency variables
and inverting the momentum variables, i.e. by carrying out the substitution (7a) in the
first and last integrals and the substitution (7b) in the second and third integral. This
gives

SG
F (x′ − x) =

∫
d4k

(2π)4
SG

F (k) exp
[−ik · (x′ − x)

]
, (26)

where

SG
F (k) = 1

2Ek

[
(1 − f (Ek))

Ekγ0 − k · γ + m0

k0 − Ek + iε

− (1 − f (−Ek))
−Ekγ0 − k · γ + m0

k0 + Ek + iε

− f (−Ek)
−Ekγ0 − k · γ + m0

k0 + Ek − iε
+ f (Ek)

Ekγ0 − k · γ + m0

k0 − Ek + iε

]
. (27)

We combine the four terms into two using the identity

1

x − iε
= 1

x + iε
+ 2π iδ(x) (28)

and obtain

SG
F (k) = /k + m0

k2 − m2
0 + iεk0

+ 1

2Ek

(/k + m0)2π i
[
f (Ek)δ(k0 − Ek)

−f (−Ek)δ(k0 + Ek)
]

. (29)
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Finally, employing the relations

Θ(k0)δ(k
2 − m2

0) = 1

2Ek

δ(k0 − Ek) ,

Θ(−k0)δ(k
2 − m2

0) = 1

2Ek

δ(k0 + Ek) (30)

we find that

SG
F (k) = /k + m0

k2 − m2
0 + iεk0

+ 2π i(/k + m0)δ(k
2 − m2

0)

× [
f (Ek)Θ(k0) − f (−Ek)Θ(−k0)

]
. (31)

This expression may be transformed to a more symmetric form by separating off the
free Feynman propagator according to the following identity:

/k + m0

k2 − m2
0 + iεk0

= /k + m0

k2 − m2
0 + iε

+ 2π i(/k + m0)δ(k
2 − m2

0)Θ(−k0) . (32)

Hence, we have the final result

SG
F (k) = SF(k) + 2π i(/k + m0)δ(k

2 − m2
0)

×
{

Θ(k0)

exp
[
(Ek − μ)/kBT + 1

] + Θ(−k0)

exp
[
(Ek + μ)/kBT

] + 1

}
. (33)

In the low-temperature limit T → 0 and μ = EF > 0, (33) reduces to the previous
expression (14) for the electron gas. This is easily proved by inserting (32) into (14).

EXERCISE

2.3 Nonrelativistic Limit of the Feynman Propagator

Problem. Show that SF(x′, x) reduces to the free retarded propagator for the
Schrödinger equation in the nonrelativistic limit.

Solution. To solve the problem it is advantageous to change to momentum space. The
representation of the propagators in configuration space is then obtained by Fourier
transformation. However, to determine the propagators uniquely we need to give a pre-
scription how the singularities have to be treated.

The Feynman propagator is

SF(x′ − x) =
∫

d4p

(2π)4
exp

[−ip(x′ − x)
]
SF(p) (1)
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and the nonrelativistic retarded propagator is

G+
0 (x′ − x) =

∫
d3p

(2π)3
exp

[
ip · (x′ − x)

]

×
∫ +∞

−∞
dω

2π
exp

[−iω(t ′ − t)
]
G+

0 (p,ω) . (2)

From the previous discussion of the Feynman propagator we have learnt that the ap-
propriate boundary conditions correspond to shifting the poles by adding an infinites-
imal imaginary constant, such that

SF(p) = /p + m0

p2 − m2
0 + iε

. (3)

This form implies positive-energy solutions propagating forward in time and negative-
energy solutions backward in time. In order to find the nonrelativistic limit of SF we
consider (3) in the approximation |p|/m0  1 and investigate the vicinity of the poles.
We write

/p + m0

p2
0 − p2 − m2

0 + iε
= p0γ0 − p · γ + m0(

p0 −
√

p2 + m2
0

)(
p0 +

√
p2 + m2

0

)
+ iε

(4)

and obtain, using the approximation
√

p2 + m0 = m0 + p2/2m0 + O(p4/m4
0),

SF(p) ≈ p0γ0 − p · γ + m0(
p0 − m0 − p2

2m0

)(
p0 + m0 + p2

2m0

)
+ iε

. (5)

Now we study the behaviour of the propagator in the vicinity of its positive-frequency
pole. Introducing ω = p0 − m0 we can reduce (5) to

SF(p) ≈ (ω + m0)γ0 − p · γ + m0(
ω − p2

2m0

)(
ω + 2m0 + p2

2m0

)
+ iε

. (6)

For the positive-frequency pole, ω lies in the vicinity of p2/2m0. Therefore we have
ω > 0 and (ω + 2m0 + p2/2m0) ≈ 2m0 > 0. Thus, within the approximation of small
momenta, (5) can be transformed into

SF(p) ≈ 1

2m0

m0(γ0 + 1) − p · γ(
ω − p2

2m0

)
+ iε

2m0

=
1
2 (γ0 + 1) − p·γ

2m0(
ω − p2

2m0

)
+ iε′

, (7)

where also ε′ is a small imaginary constant. The first term

1

2
(γ0 + 1) =

⎛

⎜⎜⎝

1 0
1

0
0 0

⎞

⎟⎟⎠
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selects the two upper components of a given bispinor. Since we have restricted our
consideration to positive energy solutions by choosing the positive-energy pole, the
two large spinor components are extracted. The second matrix

−p · γ
2m0

=
(

0 − p·σ
2m0

p·σ
2m0

0

)
(8)

mixes the upper and lower components of the bispinor Ψ = (
ϕ
χ

)
. Since |χ |  |ϕ| the

contribution of this term is quadratic in p/m0, however, and can therefore be neglected
within our small–momentum approximation. Thus the numerator of (7) reduces to
unity (or, more precisely, to the unit matrix in spin space). We therefore have the
result

SF(p) → 1

ω − p2/2m0 + iε
= G+

0 (p,ω) . (9)

Fourier transforming (8) back to coordinate space then yields the retarded propagator
of the Schrödinger theory.

Remark. In the vicinity of the pole p0 = −
√

p2 + m2
0 the procedure outlined above,

but with the substitution ω = −p0 − m0, would yield the same result (8). How-
ever, when Fourier transforming back to configuration space the energy-dependent
exponent exp

(
ip0(t

′ − t)
) = exp

(
im(t ′ − t)

)
exp

(+iω(t ′ − t)
)

produces a time de-
pendence Θ(t − t ′). Thus, for antiparticles the Feynman propagator reduces to the
advanced Green’s function in the nonrelativistic limit.

EXERCISE

2.4 Time-Evolution of Dirac Wave Functions

Problem. Prove the following identities:

Θ(t ′ − t)ψ(+E)(x′) = i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x) , (1)

Θ(t − t ′)ψ(−E)(x′) = −i
∫

d3xSF(x′ − x)γ0ψ
(−E)(x) , (2)

and deduce similar relations for the adjoint solutions ψ̄(+E) and ψ̄(−E).

Solution. A wave packet of positive energy may be expressed in terms of a superpo-
sition of normalized plane waves:

ψ(+E)(x) =
∫

d3p

(2π)3/2

√
m0

Ep

2∑

r=1

b(p, r)ωr(p) exp (−iεrp · x) , (3)
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where Ep =
√

p2 + m2
0 and ε1 = ε2 = +1. Similarly, for negative-energy wave pack-

ets we write ε3 = ε4 = −1.

ψ(−E)(x) =
∫

d3p

(2π)3/2

√
m0

Ep

4∑

r=3

d∗(p, r)ωr(p) exp (−iεrp · x) . (4)

In order to make use of the orthogonality condition for spinors

ωr†(εrp)ωr ′
(εr ′p) = Ep

m0
δrr ′ (5)

we employ the plane-wave representation of the Feynman propagator

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑

r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑

r=3

ψr
p(x′)ψ̄r

p(x) , (6)

where the ψr
p(x) are given by

ψr
p =

√
m0

Ep

1

(2π)3/2
ωr(p) exp (−iεrp · x) . (7)

Inserting (3), (6) and (7) into the right-hand side of (1) we then obtain

i
∫

d3x SF(x′ − x)γ0ψ
(+E)

=Θ(t ′ − t)

∫
d3x

∫
d3p

(2π)3

m0

Ep

×
2∑

r=1

ωr(p)ω̄r (p)γ0 exp
[−iεrp · (x′ − x)

] ∫ d3p′

(2π)3/2

√
m0

Ep′

×
2∑

r ′=1

b(p′, r ′)ωr ′
(p′) exp

(−iεr ′p′ · x)

− Θ(t − t ′)
∫

d3x

∫
d3p

(2π)3

m0

Ep

4∑

r=3

ωr(p)ω̄r (p)γ0 exp
[−iεrp · (x′ − x)

]

×
∫

d3p′

(2π)3/2

√
m0

Ep′

2∑

r ′=1

b(p′, r ′)ωr ′
(p′) exp

(−iεrp
′ · x)

=Θ(t ′ − t)

∫
d3p d3p′

(2π)3/2

m0

Ep

√
m0

Ep′
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×
∑

r=1,2
r′=1,2

ωr(p)ωr†(p)ωr ′
(p′)b(p′, r ′) exp

(−iεrp · x′)

×
∫

d3x

(2π)3
exp

[
i(εrp − εr ′p′) · x] − Θ(t − t ′)

∫
d3p d3p′

(2π)3/2

m0

Ep

√
m0

Ep′

×
∑

r=3,4
r′=1,2

ωr(p)ωr†(p)ωr ′
(p′)b(p′, r ′) exp

(−iεrp · x′)

×
∫

d3x

(2π)3
exp

[
i(εrp − εr ′p′) · x] . (8)

Performing the x integration in the Θ(t ′ − t) term yields

exp
[
i(Ep − Ep′)t

]
δ3(p − p′) , (9)

where we have used εr = εr ′ = 1, since r, r ′ = 1,2. The Θ(t − t ′) term in the last line
of (8) on the other hand produces a factor

exp
[−i(Ep + Ep′)t

]
δ3(p + p′) , (10)

since in this case εr = −1 (r = 3,4) and εr ′ = +1 (r ′ = 1,2). Integrating over d3p

and relabelling p′ as p we find that

i
∫

d3x SF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

(2π)3/2

(
m0

Ep

)3/2

×
∑

r=1,2
r′=1,2

ωr(p)ωr†(p)ωr ′
(p)b(p, r ′) exp

(−iεrp · x′)

− Θ(t − t ′)
∫

d3p

(2π)3/2

(
m0

Ep

)3/2 ∑

r=3,4
r′=1,2

ωr(−p)ωr†(−p)ωr ′
(+p)b(p, r ′)

× exp
(−iεr p̃ · x′) exp

(−i2Ept
)

(11)

where p̃ = (p0,−p). Now we make use of the orthogonality relation (5), which reads,
for r, r ′ = 1,2,

ωr†(p)ωr ′
(p) = ωr†(εrp)ωr ′

(εr ′p) = Ep

m0
δrr ′ (12)

and, for r = 3,4 and r ′ = 1,2,

ωr†(−p)ωr ′
(p) = ωr†(εrp)ωr ′

(εr ′p) = 0 , (13)



Exercise 2.4

2. The Propagators for Electrons and Positrons 67

i.e. the second term in (11) vanishes. The remaining first term gives

i
∫

d3x SF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

(2π)3/2

√
m0

Ep

2∑

r=1

b(p, r)ωr(p) exp
(−iεrp · x′)

= Θ(t ′ − t)ψ(+E)(x′) , (14)

completing the proof of (1). The relation (2) is verified in an analogous manner. In this
case, since ψ(−E) consists of spinors with r = 3,4 only, the second part of SF(x′ − x)

contributes while the first term vanishes, thus yielding −Θ(t − t ′)ψ(−E)(x′).
Very similar relations can also be deduced for the propagation of the adjoint spinors

ψ̄(+E)(x), ψ̄(−E)(x). Since the ordering of operators is inverted when performing
Hermitian conjugation, the propagator SF should now stand to the right of ψ̄ . There-
fore we study the following integral

i
∫

d3x ψ̄(+E)(x)γ0SF(x − x′)

= i
∫

d3x

∫
d3p′

(2π)3/2

m0

Ep

√
m0

Ep′

∫
d3p

(2π)3

×
2∑

r=1

b∗(p′, r ′)ω̄r ′
(p′) exp

(
ip′x

)
γ0

×
{

−iΘ(t − t ′)
2∑

r=1

ωr(p)ω̄r (p) exp
[−ip · (x − x ′)

]

+ iΘ(t ′ − t)

4∑

r=3

ωr(p)ω̄r (p) exp
[+ip · (x − x′)

]
}

. (15)

Now the calculation that led from (8) to (14) can be repeated, i.e. the x integration
can be performed and the orthogonality relations for the unit spinors used. Then (15)
reduces to the simple expression

Θ(t − t ′)
∫

d3p

(2π)3/2

√
m0

Ep

2∑

r=1

b∗(p, r)ω̄r (p) exp (ip · x) . (16)

This is the expansion of the adjoint spinor ψ̄(+E)(x′). Thus the ansatz (15) has indeed
led to a propagation equation for the adjoint wave function, namely

Θ(t − t ′)ψ̄(+E)(x′) = i
∫

d3x ψ̄(+E)(x)γ0SF(x − x′) . (17)

In a similar manner one derives the relation

Θ(t ′ − t)ψ̄(−E)(x′) = −i
∫

d3x ψ̄(−E)(x)γ0SF(x − x′) . (18)
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A comparison of (17, 18) with (1, 2) reveals that the order of the time arguments
t and t ′ is interchanged. This is not surprising, since ψ(x) describes an incoming
wave and ψ̄(x) an outgoing wave.

EXERCISE

2.5 The Explicit Form of SF(x) in Coordinate Space

Problem. Derive a closed expression for the Feynman propagator in configuration
space. How does it behave on the light cone, x2 → 0, and at large spacelike or timelike
separations x2 → ±∞?

Solution. Our starting point is the integral representation of the Feynman propagator
of the Dirac equation. The integral can be simplified by factorizing out the Dirac
differential operator:

SF(x) =
∫

CF

d4p

(2π)4

e−ip·x

p2 − m2
( /p + m)

=
∫

d4p

(2π)4

i∂μγ μ + m

p2 − m2 + iε
e−ip·x

= (iγ · ∂ + m)

∫
d4p

(2π)4

e−ip·x

p2 − m2 + iε

= (iγ · ∂ + m)�F(x) . (1)

Fig. 2.14. The integration
contour CF

Figure 2.14 illustrates the integration contour CF. Alternatively, the integration may
be performed by shifting the poles by an infinitesimal constant iε. The integral

�F(x) ≡
∫

d4p

(2π)4

e−ip·x

p2 − m2 + iε
=

∫

CF

d4p

(2π)4

e−ip·x

p2 − m2
, (2)

which we introduced for the sake of mathematical simplification, also has a physical
meaning. It is the Feynman propagator of the Klein–Gordon field!
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Fig. 2.15. Definition of the in-
tegration contours C− and
C+

The p0 integration in �F(x) can be evaluated by using the residue theorem, which
determines the values of integrals along closed contours in the complex plane. Since
the integrand carries a factor exp(−ip0x0 + ip ·x), it is obvious that for x0 > 0 the in-
tegrand vanishes asymptotically for large |p0| in the lower half plane. Thus, for x0 > 0
an “infinite” semicircle in the lower half plane can be appended to the contour CF with-
out affecting the value of the integral. Since the integrand is regular everywhere except
for the two poles, the path of integration can be contracted to a contour C+ which en-
circles the point p0 = +Ep , as shown in the Fig. 2.15. Conversely, for x0 < 0 the
contour CF needs to be closed in the upper half plane and we may integrate along the
contour −C− (the direction of integration is essential). Thus, we obtain

�F(x) = Θ(x0)�
+(x) − Θ(−x0)�

−(x) , (3)

where

�±(x) =
∮

C±

d4p

(2π)4

e−ip·x

p2 − m2
. (4)

We proceed by rewriting the denominator as

1

p2 − m2
= 1

2Ep

(
1

p0 − Ep

− 1

p0 + Ep

)
(5)

where Ep = +√
p2 + m2 to isolate the two poles and obtain

�±(x) =
∫

d3p

(2π)3
exp (ip · x)

× 1

2Ep

∮

C±

dp0

2π
exp (−ip0x0)

(
1

p0 − Ep

− 1

p0 + Ep

)

= ∓ i
∫

d3p

(2π)3

1

2Ep

exp
[−i(±Epx0 − p · x)

]
. (6)

Notice that the contours C± are directed in a negative mathematical sense.
Using this result both contributions to �F(x) in (3) can be combined into a single

expression

�F(x) = −i
∫

d3p

(2π)3

1

2Ep

exp
(−iEp|x0| + ip · x) . (7)
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In order to evaluate this three-dimensional integral we introduce spherical polar coor-
dinates. The angular integrations can be carried out immediately

�F(x) = − i

(2π)3

∞∫

0

dp

+1∫

−1

d cos θ

2π∫

0

dφ
p2

2Ep

exp
(−iEp|x0| + ipr cos θ

)

= − i

(2π)3
2π

∞∫

0

dp
p2

2Ep

1

ipr
exp

(−iEp|x0|
) (

exp (ipr) − exp (−ipr)
)

= − 1

8π2r

∞∫

0

dp
p

Ep

exp
(−iEp|x0|

) (
exp (ipr) − exp (−ipr)

)
, (8)

where we have written |p| = p and |x| = r . Substituting p → −p in the second term
the two contributions in (8) can be combined into a single expression. Furthermore,
the factor p under the integral can be replaced by a differentiation with respect to the
parameter r

�F(x) = − 1

8π2r

∞∫

−∞
dp

p

Ep

exp
(−iEp|x0|

)
exp (ipr)

= i

8π2r

∂

∂r

∞∫

−∞
dp

exp
[−i(Ep|x0| − pr)

]

Ep

. (9)

This integral can be brought into a more convenient form using the substitution

Ep = m coshη , p = m sinhη , (10)

which obviously satisfies the relativistic energy momentum relation E2
p − p2 = m2.

Now (9) takes the form

�F(x) = i

8π2r

∂

∂r

∞∫

−∞
dη

dp

dη

exp
[−im(coshη|x0| − sinhηr)

]

m coshη

= i

8π2r

∂

∂r

∞∫

−∞
dη exp

[−im(|x0| coshη − r sinhη)
]

. (11)

The further evaluation of this integral depends on the relative size of the time and
space arguments, |x0| and r . We will separately discuss the three possible cases.

Case 1: Timelike separation x2 > 0, i.e. |x0| > r . We substitute

|x0| =
√

x2
0 − r2 cosh θ ,

r =
√

x2
0 − r2 sinh θ , (12)
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and use one of the addition theorems for the hyperbolic functions

|x0| coshη − r sinhη =
√

x2
0 − r2(cosh θ coshη − sinh θ sinhη)

=
√

x2
0 − r2 cosh(η − θ) . (13)

Thus we have

�F(x) = i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
−im

√
x2

0 − r2 cosh(η − θ)

)

= i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
−im

√
x2

0 − r2 coshη

)
. (14)

This integral can be solved in terms of Bessel functions2 of zeroth order:

∞∫

−∞
dη exp (−iz coshη) = 2

∞∫

0

dη cos(z coshη) − 2i
∫ ∞

0
dη sin(z coshη)

= −iπJ0(z) − πN0(z) = −iπH
(2)
0 (z) . (15)

Fig. 2.16. Bessel function J0
and Neumann function N0 of
zeroth order

J0 and N0 are the Bessel functions of first kind (often simply called the Bessel func-
tion) and of second kind (also known as the Neumann function). Both can be combined
to yield the complex Hankel function H

(2)
0 (z) (Bessel function of third kind). The

functions J0(z) and N0(z) are sketched in the Fig. 2.16. At z → 0 J0(z) approaches 1
while N0(z) has a logarithmic singularity. Using the identity

d

dz
H

(2)
0 (z) = −H

(2)
1 (z) (16)

we obtain the scalar Feynman propagator for |x0| > r

�F(x) = 1

8πr

d

(
m

√
x2

0 − r2

)

dr

[
−H

(2)
1

(
m

√
x2

0 − r2

)]

= m

8π

√
x2

0 − r2
H

(2)
1

(
m

√
x2

0 − r2

)
. (17)

Case 2: Spacelike separation x2 < 0, i.e. |x0| < r . Here we substitute

|x0| =
√

r2 − x2
0 sinh θ ,

r =
√

r2 − x2
0 cosh θ , (18)

and use the addition theorem

sinh θ coshη − cosh θ sinhη = − sinh(η − θ) . (19)

2 See e.g. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover, New York,
1965), Chap. 9.
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This leads to

�F(x) = i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
im

√
r2 − x2

0 sinhη

)

= i

8π2r

∂

∂r
2
∫ ∞

0
dη cos

(
m

√
r2 − x2

0 sinhη

)
. (20)

The sin term does not contribute, being an odd function in η. Here we encounter
the integral representation of the modified Bessel function K0(z) (also known as the
MacDonald function) which is related to the Hankel function of imaginary argument

2
∫ ∞

0
dη cos(z sinhη) = 2K0(z)

= −iπH
(2)
0 (−iz) . (21)

Fig. 2.17. Modified Bessel func-
tion of zeroth order K0(x)

The MacDonald function has a logarithmic singularity at z → 0 and falls off like√
π/2z exp (−z) at z → ∞, see Fig. 2.17. Using (21) we obtain for r > |x0|

�F(x) = 1

8πr

d

(
−mi

√
r2 − x2

0

)

dr

[
−H

(2)
1

(
−im

√
r2 − x2

0

)]

= im

8π

√
r2 − x2

0

H
(2)
1

(
−im

√
r2 − x2

0

)
. (22)

Obviously this is the analytical continuation of the result of case 1, (17).

Case 3: Lightlike separation x2 = 0, i.e. |x0| = r . This case has to be treated with
special care since here the integral (8) is divergent. For large values of p the integrand
approaches

lim
p→∞

p

Ep

exp
(−iEpr

) (
exp (ipr) − exp (ipr)

)

= lim
p→∞

(
1 − exp (−2ipr)

)
. (23)

Since the first term approaches a constant (instead of oscillating, which would be the
case for |x0| �= r) the integral will diverge. A certain singular behaviour of SF(x) is
already apparent when the results (17) or (22) are continued to the argument |x0| → r .
In addition, however, also a singular distribution might contribute which has its sup-
port solely on the light cone |x0| = r and thus does not emerge when one studies the
limit just mentioned.

It is easy to see that this indeed is the case. Let us study the divergent part of the
integral (8) explicitly. For this it is justified to replace Ep → p. Then we find

�F(x)|x0→r � − 1

8π2r

∫ ∞

0
dp

{
exp

[−ip(|x0| − r)
] − exp

[−ip(|x0| + r)
] }

� − 1

8π2r

(
1

2
2πδ(|x0| − r) − 1

2
2πδ(|x0| + r)

)
. (24)
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This calculation has taken into account only the delta-function contribution. Both
terms in (24) can be combined to yield

�F(x)|x0→r � − 1

4π
δ(x2

0 − r2) . (25)

We have to add this singular contribution to our earlier result. The final result for the
Feynman propagator �F for the Klein–Gordon field then reads (using x2 = x2

0 − r2)

�F(x) = − 1

4π
δ(x2) + mΘ(x2)

8π
√

x2
H

(2)
1

(
m
√

x2
)

+ imΘ(−x2)

8π
√−x2

H
(2)
1

(
−im

√
−x2

)
. (26)

As an important special case of �F(x), let us consider the limit m → 0. Since
H

(2)
1 (z) ∼ 2i/πz for z → 0 (Abramowitz, Stegun, p. 360, No. 9.1.9) it follows that

DF(x) ≡ lim
m→0

�F(x)

= − 1

4π
δ(x2) + lim

m→0

(
Θ(x2)2im

8π2mx2
+ Θ(−x2)2imi

8π2imx2

)

= − 1

4π
δ(x2) + i

4π2

1

x2

= i

4π2

1

x2 − iε
. (27)

Up to a constant factor this agrees with the photon propagator, which will be discussed
in Sect. 3.2.

Let us return to the Feynman propagator of the Dirac equation SF(x) which is
related to �F(x) by (1)

SF(x) = (iγ · ∂ + m)�F(x) = m�F(x) + iγ · ∂�F(x) , (28)

where the first term tacitly contains the unit matrix in spinor space. Often it is sufficient
to work with this representation of the propagator. For completeness, however, we will
derive the explicit form of SF(x) which calls for an evaluation of the derivative of
�F(x) given in (26). We proceed by employing the following identities:

∂μΘ(x2) = 2xμδ(x2) = −∂μΘ(−x2) , (29)

∂μ(x2)1/2 = xμ(x2)−1/2 ,

∂μ(x2)−1/2 = −xμ(x2)−3/2 , (30)

and also (Abramowitz, Stegun, p. 361, No. 9.1.27)

d

dz
H

(2)
1 (z) = 1

2

(
H

(2)
0 (z) − H

(2)
2 (z)

)
. (31)



74

Exercise 2.5

2. The Propagators for Electrons and Positrons

The last term in (28) has the form

iγ · ∂�F(x) = −i
1

4π
γ · ∂δ(x2) + m

8π
iγ · ∂

[
Θ(x2)√

x2
H

(2)
1

(
m
√

x2
)

+ iΘ(−x2)√−x2
H

(2)
1

(
−im

√
−x2

)]
. (32)

We evaluate the derivative of the term in square brackets by using (29)–(31) and obtain

m

8π
iγ μxμ

{
2

δ(x2)

(x2)1/2
H

(2)
1

(
m
√

x2
)

− Θ(x2)

(x2)3/2
H

(2)
1

(
m
√

x2
)

+ mΘ(x2)

2x2

[
H

(2)
0

(
m
√

x2
)

− H
(2)
2

(
m
√

x2
)]

− 2i
δ(x2)

(−x2)1/2
H

(2)
1

(
−im

√
−x2

)
+ iΘ(−x2)

(−x2)3/2
H

(2)
1

(
−im

√
−x2

)

+ mΘ(−x2)

2x2

[
H

(2)
0

(
−im

√
−x2

)
− H

(2)
2

(
−im

√
−x2

)] }
. (33)

The two factors that are multiplied by δ(x2) can be combined. Then we have

lim
|x2|→0

⎡

⎣
H

(2)
1

(
m
√|x2|

)

√|x2| − i
H

(2)
1

(
−im

√|x2|
)

√|x2|

⎤

⎦

= lim
|x2|→0

⎡

⎢⎣
i

π

2

m
(√|x2|

)2
− i

π

2i

(−im)
(√|x2|

)2

⎤

⎥⎦

= lim
|x2|→0

[
4i

πm

1

|x2|
]

, (34)

where we have used the asymptotic expansion of the Hankel functions for small argu-
ments

H(2)
ν (z) ∼ i

π
Γ (ν)

(
2

z

)ν

, ν > 0 . (35)

Thus the explicit expression for the Feynman propagator in coordinate space reads

SFαβ (x) = mδαβ�F(x) − i

4π
γ

μ
αβ∂μδ(x2) − 1

π2
γ

μ
αβ xμ

δ(x2)

|x2|
+ im

8π
γ

μ
αβ xμ

{
Θ(x2)

[
− 1

(x2)3/2
H

(2)
1

(
m
√

x2
)

+ m

2x2

(
H

(2)
0

(
m
√

x2
)

− H
(2)
2

(
m
√

x2
))]

+ iΘ(−x2)

[
1

(−x2)(3/2)
H

(2)
1

(
−im

√
−x2

)

− i
m

2x2

(
H

(2)
0

(
−im

√
−x2

)
− H

(2)
2

(
−im

√
−x2

))]}
, (36)
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where �F(x) is given by (26). We emphasize that propagators like �F(x) and SF(x),
looked upon mathematically are distributions, that is, they only make sense in integrals
when multiplied with suitable “well-behaved” test functions.

Asymptotic Behaviour.
1) x2 small: �F(x) and – even more so – SF(x) exhibit several kinds of singularities

on the light cone x2 → 0. A study of the asymptotic behaviour of the scalar Feynman
propagator, (26), leads to

�F(x) ≈ − 1

4π
δ(x2) + i

4π2

1

x2
− im2

8π2
ln

(
m
√|x2|

2

)
+ m2

16π
Θ(x2) . (37)

The leading singularity is contained in the first two terms, namely

�F(x) ≈ i

4π2

1

x2 − iε
+ O(m2) . (38)

Note that this result agrees with the massless propagator �F(x) given in (27). This
coincidence is quite reasonable since the singularity at x2 → 0 in momentum space
is related to the divergence of integrals at p → ∞. In this region the mass can be
neglected. The singular nature of the propagators is the cause of great concern when
integrals involving the product of several propagators have to be evaluated. In gen-
eral the “collision” of singularities will render the integral divergent. The elaborate
formalism of renormalization theory is required to extract meaningful results from
these infinite quantities, see Chap. 5. These calculations, however, are more easily
performed using momentum space propagators �F(p).

2) x2 large: The Hankel function behaves for large arguments |z| as

H(2)
ν (z) ∼

√
2

πz
exp

[
−i

(
z − πν

2
− 1

4
π

)]
for |z| → ∞ . (39)

Applying this relation to (26) we deduce the following asymptotic behaviour of the
scalar Feynman propagator

�F(x) → const.
(
x2

)− 3
4

exp
(
−im

√
x2

)
for x2 → ∞ , (40a)

�F(x) → const. |x2|− 3
4 exp

(
−m

√
|x2|

)
for x2 → −∞ . (40b)

Thus for large timelike distances (x2 → +∞) the propagator is an oscillating function
slowly decreasing in amplitude owing to the power-law factor. On the other hand, for
large spacelike distances (x2 → −∞) the propagator rapidly falls to zero according to
the exponential function in (40b). The scale is set by the inverse mass of the particle,
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Fig. 2.18. The propagators
�F(x) and SF(x) are oscillat-
ing functions inside the light
cone and fall off outside the
light cone. On the light cone
they are singular distributions

i.e. by its Compton wavelength. These conclusions remain valid also for the spin-1/2
Feynman propagator SF(x) given in (36).

Figure 2.18 illustrates the qualitative behaviour of the propagators. This result can
be understood quite easily if one thinks of the propagation of a wave Ψ (x) → Ψ (x′) in
terms of Huygens’ principle. Classically, from each point x elementary waves emanate
which can propagate with velocities up to the velocity of light, i.e. inside the forward
light cone (x′ − x)2 ≥ 0. The fact that the propagator is nonzero (albeit rapidly de-
creasing) also in the region of spacelike distances is a quantum mechanical tunnelling
phenomenon caused by the difficulty to localize a particle on a scale smaller than its
Compton wavelength. This apparent violation of causality vanishes in the classical
limit m → ∞ (or, formally, � → 0).


