
Preface

Thermodynamics is not the oldest of sciences. Mechanics can make that claim.
Thermodynamics is a product of some of the greatest scientific minds of the 19th and
20th centuries. But it is sufficiently established that most authors of new textbooks
in thermodynamics find it necessary to justify their writing of yet another textbook.
I find this an unnecessary exercise because of the centrality of thermodynamics as
a science in physics, chemistry, biology, and medicine. I do acknowledge, however,
that instruction in thermodynamics often leaves the student in a confused state. My
attempt in this book is to present thermodynamics in as simple and as unified a form
as possible.

As teachers we identify the failures of our own teachers and attempt to correct
them. Although I personally acknowledge with a deep gratitude the appreciation for
thermodynamics that I found as an undergraduate, I also realize that my teachers did
not convey to me the sweeping grandeur of thermodynamics. Specifically the sim-
plicity and the power that James Clerk Maxwell found in the methods of Gibbs were
not part of my undergraduate experience. Unfortunately some modern authors also
seem to miss this central theme, choosing instead to introduce the thermodynamic
potentials as only useful functions at various points in the development.

I introduce the combination of the first and second laws and then the compete set
of the potentials appears in chapter four. The remainder of the text is then built on
the potentials. Before discussing modern laboratory measurements, for example, I
show that the fundamental quantities sought in the laboratory are those which are
required for determining the potentials.

The question of how to present our microscopic understanding of matter in a
thermodynamics course confronts the author of any text. Presently the subjects of
thermodynamics and statistical mechanics are a seamless whole [cf. [154, 155]].
I believe that we should try to convey that to our students without recourse to proba-
bility arguments. And so I have elected to present statistical mechanics as an integral
part of the text. I begin with a chapter that takes the reader as far as we can go with
simple models of molecules. Then I present ensemble theory as succinctly and sim-
ply as I am able, with the seamless connection to thermodynamics. Because of the
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modern work in Bose Einstein Condensation and in astrophysics, I then added a
chapter on quantum statistical mechanics.

Because of its importance in modern applications I have chosen to treat irre-
versibility and the ideas of Ilya Prigogine. This provides a logical transition into the
application of thermodynamics to chemical reactions. And irreversibility is at the
center of all of biophysics.

I have used irreversibility as a step to considerations of stability and then to
chemical equilibrium, solutions, and the equilibrium of heterogeneous systems. As
a physicist I have also looked at chemical reaction rates and transition state theory.
TST is a very interesting branch of theoretical physics. I encourage any physicist
considering this text to not disregard this chapter.

This text is intended to be used as an introduction to modern thermodynamics
and statistical mechanics. I believe it has the depth that can be appreciated without
the extreme length to which many textbooks have gone. Consistent with this I have
limited the exercises at the end of chapters. The exercises I have used are not in-
tended to teach methods of solution nor are they intended as drill. Some are even
intended as vehicles for investigation.

I suspect that my interests as a physicist will be apparent. My original training
as an engineer, however, has led me to believe that applications only follow from
understanding. Thermodynamics is subtle.

As an author I owe deep debts of gratitude to many that I can never hope to
repay. I encountered the beauty and subtlety of thermodynamics first from Jerzy
R. Moszynski. I was privileged then to work with David Mintzer and Marvin B.
Lewis, from whom I gained an understanding of statistical mechanics and kinetic
theory. I am also very grateful to generations of students who have helped this text
emerge from my efforts to introduce them to thermodynamics. In an evaluation one
student remarked that you have to work to hang on, but if you do the ride is worth
it. I am also grateful to those who have been personally involved in the writing of
this book. My wife, Betty Jane, has provided patience, understanding, and support,
without which this book never would have been written. And Thomas von Foerster
read and commended on the first drafts of almost all of the chapters. His critique
and insistence have been invaluable.

Goshen, IN Carl Helrich
August, 2008



Chapter 2
Formulation

A theory is more impressive the greater
the simplicity of its premises is, the more
different kinds of things it relates, and the
more extended its area of applicability.
Therefore the deep impression which
classical thermodynamics made upon
me. It is the only physical theory of
universal content concerning which I am
convinced that, within the framework of
the applicability of its basic concepts, it
will never be overthrown.

Albert Einstein

2.1 Introduction

Einstein’s conviction, expressed in the quotation above, is based in part on the care
with which thermodynamics is constructed as a science. In our discussions in the
preceding chapter we have not required precise definitions of terms and concepts.
Indeed these may have hindered the discussion. As we begin to formulate the science
in such a way that we can have confidence in the results of our formulation, we must,
however, define terms and concepts carefully.

In his chapter we will introduce thermodynamic systems, states and processes.
We will also present the basic principles or laws of thermodynamics. These laws
govern the behavior of material substances in transformations associated with ther-
modynamic processes. The goal of this chapter is to present a brief, but sufficiently
complete discussion that will result in the basic formulation of the thermodynamics
of closed systems in terms of a single mathematical statement.

2.2 Systems and Properties

2.2.1 Systems

In a thermodynamic analysis we always consider a system. The system is a partic-
ular amount of a substance contained within definable boundaries. The substance
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14 2 Formulation

we may consider can be quite general. In most of what we do this will be matter
composed of particles, i.e. atoms and/or molecules. However, we do not exclude
systems containing radiation (photons). The substance need not be a single element
or compound. And we shall treat substances containing particles that may undergo
chemical reactions. And the substance or substances present may be in any phase or
phases: solid, liquid or gas.

2.2.2 Boundaries

Boundaries separate the system under consideration from the immediate surround-
ings. These may be real material boundaries or imagined. We define the properties
of the boundary so that the interaction between the system and the surroundings is
specified in terms necessary for the analysis. Whether physically real or imaginary,
the system boundary is real as far as the system properties are concerned.

Generally systems may be either impervious or open to the exchange of sub-
stances (matter) with the surroundings. Systems which are impervious to the ex-
change of matter with the surroundings are closed systems. Otherwise the system
is open. In either case the system boundary may be fixed, such as a solid wall, or
movable, such as a piston.

If we are interested in the heating of a solid block, for example, the boundary
is most conveniently considered to be the outer surface of the block itself. The
boundary is then closed and movable. The boundary is closed because the block
neither gains nor loses mass. The boundary is movable because the block expands
on heating. The boundary is physically real because the surface of the block is a real
physical surface.

The analysis of a uniformly flowing fluid provides an example of an open system
with a fixed boundary. A portion of the system boundary may be determined by
a curved surface defined by the streamlines of the flowing fluid. The streamlines
are defined by the velocity of the flow and there is no macroscopic flow across
streamlines. In some circumstances we may be able to identify a real solid boundary
that is parallel to the streamlines, such as for flow through a pipe or a nozzle. We
complete the system by closing the ends of our system by open, imaginary surfaces
at the ends, through which the fluid flows.

System boundaries are also classified according to whether or not they are per-
meable to heat. An adiabatic boundary is impermeable to the flow of heat. Heat
may flow across a diathermal boundary. A system placed within a rigid adiabatic
enclosure is then completely isolated from its surroundings. Work may be done on
a system in a rigid adiabatic boundary in a Joule experiment using paddle wheels
to stir the fluid. But an adiabatically enclosed system can do work on the surround-
ings only if the boundary is movable. If two systems are separated by a diathermal
boundary, heat will flow from one system to the other until the temperatures of the
two systems are equal. In a state of equilibrium, then, the temperatures of two sys-
tems separated by a diathermal boundary are the same.
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System boundaries may then be open or closed, rigid or movable, and adiabatic
or diathermal.

2.2.3 Properties and States

Pressure, P, volume, V , and temperature, T , are examples of thermodynamic prop-
erties of a system. The thermodynamic state of a system is determined if the ther-
modynamic properties of the system are known. We consider, for example, a system
containing a certain amount of gas in a cylinder with a piston that is free to move
vertically. The volume of the system is known from the position of the piston and
the pressure of the system is determined by the weight of the piston and the weight
of any mass that may be added to the piston. If the cylinder is diathermal the temper-
ature of the system is the temperature of the room. The values of P, V , and T specify
the thermodynamic state, or simply state of the system. We implicitly assume that P
and T are uniform throughout the system so that we can speak of a single pressure
and temperature of the system.

If there is no change in the state of the system with time we define the state as
one of thermodynamic equilibrium.

2.2.4 Surfaces and States

Experiment shows that for any substance the three properties P,V, and T are not
independent, but are related in a particular way that depends upon the identity of
the substance. Specification of any two of these properties determines the third.
For example, the pressure, P, is a function of the temperature, T , and the volume,
V . The function P = P(T,V ) is then a surface in (P,V,T ) space. An example is
shown in Fig. 2.1. Each point on the surface in Fig. 2.1 is the representation of a
thermodynamic state.

Fig. 2.1 The (P,V,T ) surface.
This is the graphical represen-
tation of the thermal equation
of state. Figures 2.4, 2.6, 2.7,
and 2.13 in reference [145]
are beautiful representations
of such surfaces
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The relationship P = P(V,T ) is called the thermal equation of state for the sub-
stance and the surface in Fig. 2.1, is referred to as a (P,V,T ) surface. A substance
such as a gas, for which there are two independent thermodynamic properties, is
called simple. Most substances of interest in applications are of this type. So we
shall tentatively assume simple substances, or systems, in this text.

In general the thermal equation of state will not be known as an algebraic func-
tion. In these circumstances we must rely on tabulated data. The thermodynamic
properties for many substances of interest have been tabulated (cf. [87] and [88]).
The National Institute of Standards and Technology also has a database, NIST Ref-
erence Fluid Thermodynamics and Transport Properties - REFPROP [102], which
can be purchased and used on a personal computer. REFPROP Version 8 (April,
2007) has been used as a source of data extensively in this text.

2.2.5 Quasistatic Processes

The most efficient heat engines are those for which the changes in the thermody-
namic state of the working substance are slow enough that the system may be con-
sidered to remain in an equilibrium state. In such processes there are very small
differences between internal and external forces and an infinitesimal change in the
external force will result in a reversal of the process. These processes are called qua-
sistatic or reversible. An example is the process 1 → 2 in Fig. 2.1. In this process the
state of the substance lies on the line drawn on the surface at each instant. Each of
the states on this line are equilibrium states. The process then carries the substance
(in the system) from one equilibrium state to another.

Real processes of interest are seldom if ever quasistatic. It is often possible, how-
ever, ignore the details and base the analysis on changes in thermodynamic proper-
ties.

For situations in which the variations in thermodynamic conditions are small over
dimensions of interest or slow over measurement times, an assumption of local equi-
librium may be made. That is, we may consider that thermodynamic equilibrium ex-
ists for small volumes and over short times resulting in an ability to apply the results
of equilibrium thermodynamics to the situation. We may then speak meaningfully
about thermodynamic variables as having values which depend on position and on
the time within a system.

2.2.6 Properties and Processes

A thermodynamic property may be any general quantity that has a unique value
for each thermodynamic state of a substance. That is a thermodynamic property a
unique function of the thermodynamic state of the system. Two such functions are
the internal energy and the entropy.
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Fig. 2.2 A graphical
representation of a
thermodynamic property
F (T,V ). Separate processes
to change the thermodynamic
state from (1) to (2) are
shown

Changes in the value of a thermodynamic properties in a process are independent
of the details of the process. The function F (T,V ) plotted in Fig. 2.2 is an example
of a thermodynamic property. The value of the property F is the height of the surface
above the (T,V ) plane. We consider a quasistatic change in the thermodynamic state
from (1) to (2). We may change the thermodynamic state of the system by holding
the temperature constant and varying the volume. This is the direct path from (1)
to (2) in Fig. 2.2. The change in F in this process is ∆F = F (2)−F (1) and is
the difference in the heights of the surface F (T,V ) above the (T,V ) plane at points
(1) and (2). We may also hold the volume constant while we take the system first
through a quasistatic change in the thermodynamic state from (1) to (3) and then
follow this by a general quasistatic change in state from (3) to (2) during which
both T and V vary. The resulting change in the value of F in the second process
(1) → (3) → (2). is also ∆F = F (2)−F (1) and simply equal to the difference in
the heights of the surface F (T,V ) above the (T,V ) plane at points (1) and (2).

Calculations of the changes in values of thermodynamic properties may then be
carried out choosing any process whatsoever carrying the system from the initial to
the final thermodynamic state.

2.3 Properties and the Laws

Die Energie der Welt ist Konstant. Die Entropie der Welt strebt einem Maximum zu. (The
energy of the universe is constant. The entropy of the universe tends to a maximum)

Rudolf Clausius, 1865.

Three thermodynamic properties are defined by the laws of thermodynamics. These
are temperature, internal energy and entropy. In our historical outline of the preced-
ing chapter we presented the background behind the first and second laws. These
provide a basic understanding of heat and the motive power of heat. The first law
defines the internal energy of a substance and the second law defines the entropy.
Integral to the discussion of these laws was the concept of temperature, which we
treated as an intuitive concept. It was not until the 20th century that we recognized
that the definition of temperature requires another law. Because this should logically
precede the first and second laws it is called the zeroth law.
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2.3.1 Temperature

The sense of “hotter” or “colder” is physiological. Items in a room are all essen-
tially at the same temperature, although a table may feel colder than a book. The
physiological sensation is based on a rate of heat transfer upon touch rather than
temperature. The thermodynamic definition of temperature is based on observable
behavior of systems independent of human physiology.

We noted above that two systems in equilibrium with a diathermal boundary
between them will have the same temperature. For example if a test tube contain-
ing oil is immersed in a beaker of water both the oil and the water will have the
same temperature when a state of thermodynamic equilibrium is reached. To verify
the equality in temperatures we must perform a measurement. And to measure the
temperature of the water or of the oil we require a third system: a thermometer. In-
troducing this necessary third system brings us beyond the statement of equality of
temperatures of the first two systems. We must logically make a statement about the
third system.

In 1931, while reviewing a thermodynamics text by the great Indian astrophysi-
cist, Megh Nad Saha,1 Ralph H. Fowler2 observed that for consistency the statement
that [150]

If systems A and B are both in equilibrium across a diathermal boundary with system C,
then systems A and B will be in equilibrium with one another if separated by a diathermal
wall.

should be included in the formulation of thermodynamics.
System C is our thermometer. We only need to arrange the system C in some

contrived fashion so that we can easily determine its thermodynamic equilibrium
state when it is in contact with the systems A and B. This statement then resolves our
logical problem and serves to make the definition of an empirical (experimentally
determined) temperature possible. This is the zeroth law.

We have been using T to designate temperatures. At this stage in our discus-
sion T is an empirical temperature. With the zeroth law we have a more robust and
definitive statement of the meaning of temperature than our previous intuitive con-
cept. But this is not yet what we shall identify as a thermodynamic temperature.
The thermodynamic or absolute temperature is a quantity, which will result from
the second law.

An example of an empirical temperature scale is that determined by a mercury in
glass thermometer. Our third system here is a glass capillary tube which is partially
filled with mercury under vacuum so that only mercury vapor exists above the liquid
mercury. If we neglect the vapor pressure of the mercury we have a system at a
constant pressure (equal to zero).

1 Meghnad Saha FRS (1893–1956) was an Indian astrophysicist. He is best known for the Saha
equation, which gives the density of electrons in an ionized gas.
2 Sir Ralph Howard Fowler OBE FRS (1889–1944) was a British physicist and astronomer.
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The expansion of the liquid mercury with changes in temperature is much greater
than that of the glass so we may safely assume that only the length of the mercury
column varies with temperature. We have then contrived our system so that the
length of the mercury column is the only property we need to measure in order to
determine the temperature. The length is the thermometric property. The scale we
choose as a measure of the length of the mercury column is arbitrary. For simplicity
we may choose the scale to be linear. This requires two constants to fix the scale, or
the specification of two standard temperatures. If these are taken to be separated by
100 degrees we have a centigrade scale. If the standard temperatures are also the ice
and steam point of water the scale is the Celsius scale.

To specify our empirical temperature scale we must describe the system (mercury
in a glass capillary tube filled under vacuum), our thermometric property (length of
mercury column), our scale (linear), and the fixed points (ice and steam).

In the appendix we present the ideal gas temperature scale as an empirical scale
which requires only a single fixed point and for which there is an absolute zero fixed
by the universal properties of gases as their pressures approach zero. This scale is
identical with the thermodynamic scale.

In the appendix we find that the ideal gas has a thermal equation of state

P(V,T ) = nR
T
V

in which n is the number of mols and R is a universal constant known as the (uni-
versal) gas constant. This defines a fictitious substance that will, nevertheless, prove
very useful.

2.3.2 Internal Energy

A definition of internal energy as a thermodynamic property comes from the first
law. Thomson pointed out that Joule’s experiments identified this property and pro-
vided a method for its measurement. We have chosen to formulate the first law,
following Clausius, as an energy conservation theorem. Nevertheless our formula-
tion reduces to that of Joule and Thomson for the relationship between work and
internal energy. We, therefore, still require a definition of thermodynamic work.

Thermodynamic Work

Joule’s original experiment provides an unambiguous definition of thermodynamic
work. The work done by or on a thermodynamic system may always be used to
raise or lower a body of mass m a distance ±h in the earth’s gravitational field. This
work is ±mgh, where g is the acceleration due to the gravitational field of the earth.
Thermodynamic work is then defined in unambiguous mechanical terms as
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Definition 2.3.1. Thermodynamic work is defined as any interaction of the thermo-
dynamic system with the surroundings that can be reduced to the raising or lowering
of a material body in the gravitational field.

The intended use to which we put the work done may not be to raise or lower a
material body. The question of whether or not thermodynamic work has been done
in a process is based, however, on whether or not we can imagine an arrangement of
pulleys and gears that can reduce the final effect to raising or lowering of a material
body.

This definition of thermodynamic work allows us to obtain an expression for the
quasistatic (reversible) work done on or by a closed system. In a closed system it
is only possible to perform quasistatic thermodynamic work by moving a boundary
such as a piston. Figure 2.3 illustrates how this work can be reduced to the lowering
of a material body in the gravitational field. The cylinder contains a gas and the
force of the weight is transmitted to the piston by a cam arrangement. For practical
purposes we may consider that the suspended mass is on a balance pan. If we remove
a small amount of mass from the pan the piston and the suspended mass will both
move upward. The motion of the body through the distance δh corresponds to a
motion of the piston through a distance δ s. In this process the internal force on
the piston is a product of the system pressure, P, and the piston area, A. As the
piston moves a distance δ s the work done by the system on the surroundings is
PAδ s = PδV , where dV (= Aδ s) is the differential change in the system volume. If
there is no friction in the cam system or the piston this is equal to mgδh in which m
is the suspended mass remaining. Then, for a very small step in a quasistatic process
occurring in a closed system, the work done by the system on the surroundings is

δWrev = PdV. (2.1)

We have taken the limit δV →dV as the weight removed becomes infinitesimal
and have written δWrev for the reversible quasistatic work done.

The dependence of P on V is determined by the process involved. Therefore the
infinitesimal quasistatic work done δWrev is process dependent, as we pointed out
in Chap. 1.

Fig. 2.3 Thermodynamic
work is done by the closed
system as the piston moves
raising or lowering the mass
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If dV > 0 work is done by the system on the surroundings and the mass is raised.
If dV < 0 work is done by the surroundings on the system and the mass is lowered.

2.3.2.1 Closed Systems

For an infinitesimal, quasistatic (reversible) process occurring in a closed system we
write the first law in (1.2) as

δQrev = dU +PdV. (2.2)

The differential change in the internal energy is then given by

dU = δQrev −PdV. (2.3)

Both terms on the right hand side of (2.3) are process dependent. But their differ-
ence is the differential of a thermodynamic property and is not process dependent.

The internal energy is defined by a differential expression provided by the first
law. That is, only differences in internal energy are defined. The internal energy in
integrated form is then only determined to within a constant, which may be chosen
to be zero at an arbitrary point. This choice of a zero for the internal energy implies
nothing about the actual value of the energy of a system of atoms or molecules,
which never vanishes (see Sects. 10.3.3 and 10.4.2)

2.3.2.2 Open Systems

General. Matter may cross the boundary of a system as a result of thermodynamic
forces on the boundary or, as in many engineering applications, because of entrance
and exit ports in the system. In an open system there will be contributions to the en-
ergy associated with the transport of matter across the system boundary. The identity
of these contributions depends on the system, the process taking place and the sys-
tem design. We shall combine these additional contributions to the system energy
in an infinitesimal process to form the term dΦ . In engineering applications open
systems are often used to produce work other than the PdV work associated with
the motion of the system boundary. This work is traditionally called “shaft work”
and is designated as δWs. The first law for an open system is then

dU = δQ+dΦ −δWs −PdV. (2.4)

In this equation δQ is a general heat transfer, which may include irreversible as
well as reversible contributions.
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Engineering Applications. In engineering applications matter enters and leaves
the system through a number of ports such as steam lines. In this case the term dΦ
contains contributions from energy transported by the matter and the work done on
or by the system in transporting the matter. Work done in the transport of matter is
considered to be an energy term. We shall designate the ports by superscripts i and
the number of mols of substance λ entering or leaving the ith port in an infinitesimal
process as den(i)

λ .
At the ith port the component λ has a specific (molar) energy determined by the

conditions at the ith port,
e(i)

λ = e
(i)
λ +u(i)

λ . (2.5)

Here e
(i)
λ contains all forms of energy besides the (thermodynamic) internal en-

ergy, which we designate as u(i)
λ .

The work required to transport matter into or out of port i is equal to the product
of the pressure force at the port, Pi, and the volume occupied by the matter trans-
ported, den(i)

λ , which is Vi = v(i)
λ den(i)

λ . This results in an increase of the energy of
the system if the matter is transported into the system and a decrease if the matter is
transported out of the system.

The term dΦ resulting from the transport of matter is then

dΦ =
(
e

(i)
λ +u(i)

λ +Piv
(i)
λ

)
den(i)

λ

=
(
e

(i)
λ +h(i)

λ

)
den(i)

λ . (2.6)

Here
h(i)

λ = u(i)
λ +Piv

(i)
λ (2.7)

is the specific (molar) enthalpy3 of the component λ at the port i.
In engineering applications the system of interest generally possesses energies in

addition to the thermodynamic internal energy. We,therefore, write dE in place of
dU . The general conservation of energy in (2.4) for open engineering systems then
takes the form

dE = δQ−δWs +∑
i

eidni +∑
i

hidni. (2.8)

In (2.8) any PdV work is involved in transport of matter.

Specific Heats. From (2.7) we have the enthalpy of a single component
system as

H = nh = U +PV. (2.9)

3 The origin of the term enthalpy is with the Dutch physicist Heike Kamerlingh Onnes who derived
its meaning from the Greek word ”en-thal´-pos” (ενθαλπoζ ). Accent is on the second syllable.
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The first law for a closed system can then be written as either (2.2) or as

δQrev = dH −VdP. (2.10)

Since the heat transferred will produce a change in the system temperature at
either constant volume or constant pressure we realize that dU in (2.2) and dH in
(2.10) must both be proportional to dT and that U and H must be functions of the
temperature T . Because (2.2) already contains dV we are led to assume that U will
depend on the temperature T and the volume V . And because (2.10) already contains
dP we similarly assume that H depends on T and P. We may then measure the
temperature increase dT in the system resulting from an amount of heat transferred
quasistatically δQrev. The quantity δQrev/dT is called the heat capacity.

The concept of the heat capacity of a substance predates the work of Joule and,
therefore, our present understanding of heat transfer as the transport of energy. The
unit of the calorie was defined as the amount of heat required to raise the temper-
ature of one gram of water by 1◦C when the pressure is 1atm (101.325kPa). The
properties of water are temperature dependent and the amount of heat required to
raise the temperature of one gram of water by 1◦C depends upon the temperature
at which the measurement is made. The 20 ◦C calorie, or 20◦ cal (4.1816J) was the
amount of heat required to raise one gram of water form 19.5 to 20.5◦C at 1atm
pressure and the 15◦ cal (4.1855J) was the amount of heat required to raise the tem-
perature from 14.5 to 15.5◦C at a pressure of 1atm. These values defined the heat
capacity of water as a function of temperature [50].

With our present understanding of thermodynamics we realize that the measure-
ment required in this definition of the calorie is given in (2.10) with dP = 0. That
is

heat capacity =
δQrev]P

dT
=

1
n

(
∂H (T,P)

∂T

)

P
, (2.11)

in which n is the number of mols of the substance present in the system. Because
H = H (T,P) is a property of the substance, the quantity defined in (2.11) is also
a property of the substance. The term defined in (2.11) is no longer called the heat
capacity, but the (molar) specific heat at constant pressure, CP (T,P), defined by

CP (T,P) ≡ 1
n

(
∂H (T,P)

∂T

)

P
. (2.12)

Similarly (2.2) provides a definition of a (molar) specific heat at constant volume,
CV (T,V ), defined as

CV ≡ 1
n

(
∂U (T,V )

∂T

)

V
. (2.13)

Because U = U (T,V ) is a property of the substance (it is a thermodynamic po-
tential) the specific heat at constant volume is a property of the substance.



24 2 Formulation

Perpetual Motion. Let us consider an isolated, adiabatically enclosed system con-
sisting of interconnected subsystems, which we designate with the subscript σ . This
system can be made to go through a cyclic process by performing work on the sys-
tem and allowing work to be done by the system. That is we may arrange a system
of pulleys and gears so that weights are raised and lowered. If the system undergoes
a cyclic process all subsystems must also undergo cyclic processes. The internal en-
ergy change of the system, and of each subsystem taken separately must be zero if
the process is cyclic. The first law requires that the net work done by each subsystem
is then equal to the net heat input to the subsystem in the cycle,

Wσ = Qσ . (2.14)

But the system is adiabatic. So there is no heat transferred to the system in any
process. The net heat transferred to the system is the algebraic sum of the heats
transferred to all the subsystems. Then

∑Wσ = ∑Qσ = 0, (2.15)

Therefore no net work can be obtained from a cyclic process occurring in a closed
adiabatic system. In order to obtain work from a cycle there must be a transfer of
heat to the cycle.

A thermodynamic cycle that produces a net work without the input of heat is
called a perpetual motion machine of the first kind. The status of the first law of
thermodynamics is such that we can deny the possibility of a perpetual motion ma-
chine of the first kind with absolute confidence.

2.3.3 Entropy

The thermodynamic property introduced by the second law is the entropy. We al-
ready introduced the entropy in terms of reversible heat transfer and the (not yet de-
fined) thermodynamic temperature in Sect. 1.3.2 (see (1.3)). There we also referred
to the introduction of the entropy and its relation to irreversibility as one of the great
steps in theoretical physics. We should not then expect that a simple mathematical
definition and a single paragraph will provide all we require.

In this section we shall outline the steps that carry us from the original experimen-
tal evidence, showing that there are limitations on what can be done, to a succinct
mathematical expression of those limitations. The difficulty in the enterprise is in
the fact that we are dealing with limitations rather than positive statements. In our
presentation here we shall lift out the principle steps in the development, leaving
details to the appendix.
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Because the limitations of the second law are formulated in terms of thermody-
namic cycles our mathematical development must be first carried out in those terms.
We will later be able to cast the entropy in statistical terms (see Sect. 9.7.1).

The Verbal Statements. There are two fundamental statements of the second law.
These are due, respectively, to Clausius, and to Thomson (Lord Kelvin). They are

I. Clausius No cyclic process exists which has as its sole effect the transference of
heat from a body at a temperature Θ2 to a body at a temperature Θ1 if Θ1 >Θ2.

II. Kelvin No cyclic process exists which has as its sole effect the transference of
heat from a single body and the complete conversion of that into an equivalent
amount of thermodynamic work.

We can show that these statements are logically equivalent by demonstrating that
a violation of one implies a violation of the other. Traditionally the argument is
based on Carnot’s most efficient engine.

Carnot’s Theorem. The ideas leading to the formulation of the second law are
Carnot’s. So we formally introduce the entropy S and the thermodynamic tempera-
ture T through what is now known as Carnot’s theorem.

Theorem 2.3.1. (Carnot’s Theorem) There exist two functions of state, S and T ,
where T is a positive function of the empirical temperature alone, such that in any
infinitesimal quasistatic change of state in a system the heat transfer is δQrev = T dS.

To make this definition of the entropy complete we must add the statement that
the entropy increases in any irreversible process. Proof of this is based on the Clau-
sius inequality, which is the final goal of this section.

Carnot Cycle. Carnot realized that any difference in temperature can be used to
obtain work, and that the most efficient cycle possible will operate quasistatically
(see Sect. 1.2). Any transfer of heat must then be carried out isothermally and qua-
sistatically.

To see how this can be done we consider the system in Fig. 2.3 but assume that
the cylinder is not insulated. Removal of a very small mass from the balance pan
will produce an expansion of the gas at constant temperature. This results in work
done by the system and heat transfer to the system. Heat can be transferred from the
system isothermally by adding weights.

In the cycle we must transfer heat to the system at a high temperature and from
the system at a low temperature. Plotting pressure against volume we have the situ-
ation shown in Fig. 2.4. We consider that the cycle begins at point (1). Heat is taken
in along the isotherm at temperature T1 and the system volume expands until the
system reaches the state (2). Heat is exhausted along the isotherm at T2 from (3) to
(4) with a decrease in volume.
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Fig. 2.4 Reversible isother-
mal heat transfer to and from
a Cycle. Heat is transferred
to the system at T1 and ex-
hausted from the system at T2

Because a cycle must take the system back to the starting point (1), the two
isotherms in Fig. 2.4 must be connected by two other processes. Since heat must
only be transferred isothermally, these connecting processes cannot transfer any
heat. They must be adiabatic. The completed cycle is that shown in Fig. 2.5.

Fig. 2.5 The Carnot cycle
composed of two isotherms
and two adiabats

The cycle shown in Fig. 2.5 is then the most efficient that can possibly be con-
structed to operate between the two heat reservoirs at temperatures T1 and T2. In this
cycle

• 1–2 Heat is transferred into the system isothermally while work is done by the
system.

• 2–3 Work is done by the system during adiabatic expansion.
• 3–4 Heat is transferred from the system isothermally while work is done on the

system.
• 4–1 Work is done on the system by adiabatic compression.

This is the Carnot Cycle.
We may also represent the Carnot cycle symbolically as shown in Fig. 2.6. The

heat transferred to the cycle at T1 is Q1 and that transferred from the cycle at T2 is
Q2. The work done is W . From the first law, W = Q1 −Q2.

The Carnot cycle is an ideal cycle. Each of the isothermal and adiabatic steps
alone can be carried out using a cylinder with a piston. But the combination becomes
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Fig. 2.6 The Carnot cycle
represented symbolically.
The blocks indicated by T1
and T2 are the high and low
temperature reservoirs. Q1
and Q2 are heats transferred.
W is the work done in the
cycle

impractical. We would have to insulate the cylinder during parts of the cycle and
then remove the insulation for others. The Carnot cycle is primarily a thinking piece
for the proof of Carnot’s theorem.

We can, however, approximate the Carnot cycle in practice. Water boils produc-
ing steam at a constant temperature and the steam condenses again to water at a
single lower temperature. And because steam and water pass through them very
rapidly, turbines and pumps are approximately adiabatic. A steam power plant then
has the characteristics of a Carnot cycle.

Carnot Efficiency. From Fig. 2.6 the thermodynamic efficiency of the Carnot cycle
ηC is

ηC =
W
Q1

= 1− Q2

Q1
. (2.16)

In the appendix we provide an outline of the classical development of the second
law. There we show that the ratio of the heats transferred to and from a Carnot cycle
is equal to a ratio of two functions each of which depends solely on the temperature
of one of the reservoirs. That is

Q2

Q1
=

τ (temperature 2)
τ (temperature 1)

, (2.17)

where τ is a function of the (empirical) temperature alone. These functions of tem-
perature can never be zero, since the rejected heat Q2 can never vanish by the second
law. Thomson (Lord Kelvin) suggested that we use the relationship in (2.17) to de-
fine a temperature, which is the positive function of the empirical temperature alone
referred to in Carnot’s theorem. That is τ = T . This is the thermodynamic or abso-
lute (Kelvin) temperature.
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The efficiency of the Carnot cycle is independent of the working substance in
the cylinder (see Appendix). Therefore the thermodynamic temperature requires no
reference to any substance used in its measurement. Its definition depends solely on
the first and second laws of thermodynamics.

In the remainder of this text we will always understand T to be the thermody-
namic temperature.

With the thermodynamic temperatures T1 and T2, (2.17) becomes

Q2

Q1
=

T2

T1
, (2.18)

and Carnot efficiency is

ηC =
T1 −T2

T1
. (2.19)

Clausius Inequality. We may use the fact that the entropy must increase in a spon-
taneous process occurring in an isolated system to obtain an integral inequality that
elegantly expresses this property. We consider that an isolated system is in a ther-
modynamic state (1) and that a spontaneous process occurs within the system after
which the system is in state (2). We then devise a set of reversible processes that
will bring the system back to state (1). The change in the system entropy during the
reversible processes bringing it from (2) back to (1) is

S1 −S2 =
∫ 1

2

δQrev

T
.

Since the original spontaneous process produced a positive entropy change we
know that S2 > S1. Therefore

∫ 1

2

δQrev

T
< 0. (2.20)

We now consider that the spontaneous process resulting in the initial state change
from (1) → (2) becomes infinitesimal, but does not vanish. In the limit the states
(1) and (2) will then become indistinguishable and the integral in (2.20) becomes
an integral around a cycle. That is we have

∮

cycle

δQ
T

< 0 (2.21)

if an irreversible process occurs anywhere in the cycle. Because the integral around
the cycle now incorporates an infinitesimal irreversible process we designate the
infinitesimal heat transfer as δQ rather than δQrev. If no irreversible process oc-
curs the integral vanishes because δQrev/T is the differential of the property S. In
general, then, the second law requires that
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∮ δQ
T

� 0. (2.22)

This is the Clausius inequality. It is a complete mathematical statement of the
second law, provide we append the statement that the equality only holds in the
absence of any irreversible process in the cycle. In that case δQ → δQrev and the
definition of the entropy as

dS = δQrev/T (2.23)

emerges from the fact that the integral of dS around a cycle vanishes.

2.4 Combining the Laws

The first and second laws appear to express different aspects of what, with Carnot,
we may call the motive power of heat. But there must be a unifying principle. We
are speaking of the interaction of matter with energy. The fact that we are employing
this in the production of useful work is incidental to the understanding we seek.

The unifying principle appears in (2.23). Although the term δQrev is path de-
pendent and not itself a differential of a function, the entropy, whose differential is
defined in (2.23), is a thermodynamic property. That is we convert the path depen-
dent (problematic) term δQrev to the differential of a property if we multiply it by
1/T . If we use the form of δQrev provided by the first law, we have

dS =
1
T

dU +
P
T

dV. (2.24)

as a differential for the entropy of a closed system. This is equivalent to equating
the two definitions of the quantity δQrev appearing in (2.3) and (2.23).

T dS = dU +PdV. (2.25)

This was first done by Gibbs [57]. And (2.25) is known as the Gibbs equation.
The Gibbs equation is the foundational mathematical statement of thermodynamics.

In an address entitled The Problems of Mathematics delivered to the Second In-
ternational Congress of Mathematicians in Paris in 1900, David Hilbert4 defined 23
unsolved problems confronting mathematicians at the beginning of the new (20th)
century. Number six among these was to axiomatize all of physics. Because the
physics that came out of the 20th century was not the physics Hilbert envisaged,
physics will not be axiomatized. Nevertheless, in 1909 Constantin Carathéodory5

4 David Hilbert (1862–1943) was a German mathematician. Hibert was professor of mathematics
at Göttingen.
5 Constantin Carathéodory (1873–1950) was born in Berlin of Greek parents, grew up in Brussels,
and obtained his Ph.D. at Göttingen. The work referred to here was ”Investigations on the Foun-
dations of Thermodynamics” (Untersuchungen über die Grundlagen der Thermodynamik, Math.
Ann., 67 p. 355–386 (1909))
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was able to establish rigorously that dS in (2.25) is an exact differential. Herbert
Callen6 referred to the analysis of Carathéodory as a tour de force of delicate and
formal logic [20]. The importance of this contribution cannot be overstated because
of the centrality of thermodynamics as a science.7

The laws of thermodynamics are the three discussed in this section and the third
law, or Nernst hypothesis, which we shall consider in a later chapter. The zeroth
law is a logical statement which clarifies the concept of temperature, but contributes
nothing to the structure of thermodynamics. The third law, as we shall see, provides
understanding of the behavior of thermodynamic properties as the thermodynamic
temperature approaches absolute zero. The third law opened an entire new area of
investigation of the behavior of matter at low temperatures and provides absolute
values for certain thermodynamic properties critical in physical chemistry. But the
third law has no direct consequence for the motive power of heat or for the behavior
of matter at moderate or high temperatures. The basis of much of our study and
application of thermodynamics is then a combination of the first and second laws.
And this combination is presented succinctly, and beautifully, in the Gibbs equation.

The Gibbs equation is a relationship that must hold among infinitesimal changes
in entropy, internal energy, and volume of any physical substance. That is it defines a
surface in a space in which the axes are U , V , and S. Thermodynamics requires that
all possible states accessible to the system must lie on this surface. The geometrical
form of this fundamental thermodynamic surface must then hold the key to our
understanding of the behavior of matter in its interaction with energy. This is the
key to an understanding of thermodynamics.

2.5 Summary

In this chapter we have presented the basic concepts required for a study of thermo-
dynamics. These included systems, thermodynamic properties and states, and the
principles or laws of thermodynamics. Each of these concepts is important for our
understanding of the power, beauty, and the limitations of the science.

All of thermodynamics is based on studies of systems. When we speak of pro-
cesses and cycles we must bear in mind that these occur in systems with well defined
boundaries. The laws of thermodynamics will provide relations among thermody-
namic properties. In any application of thermodynamics, however, it is critical that
we understand the identity of the system involved.

The formulation of thermodynamics must include a discussion of the laws. We
have, therefore, included a brief, but basically complete discussion of the first three
laws of thermodynamics. In this we have chosen to make the laws understandable.
We have, however, deviated from an approach based only on experimental evidence.

6 Herbert B. Callen (1919–1993) was professor of physics at the University of Pennsylvania. He is
author of Thermodynamics and an Introduction to Thermostatistics, one of the most widely cited
books in physics.
7 We have provided an outline of Carathéodory’s principle in the appendix.
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The claim that energy (or the total mass-energy of relativity) is conserved is
presently accepted based on our experience of more than a century since the first
law was formulated. But this was not the case for Clausius. We have followed Clau-
sius’ path to accepting conservation of energy as the fundamental principle. An
alternative, philosophically more positivist approach would be based solely on ex-
periment. The final mathematical statement of the first law is unchanged. In the
positivist approach heat transfer is, however, a derived concept defined in terms of
the measurable thermodynamic work.

The second law can also be treated in a more positivist framework. Although
satisfying, the development in this framework is involved and is not transparent.
We have, therefore, elected to present the concepts of the second law without proof
based on either direct experimental evidence or on rigorous mathematics. The stan-
dard, classical development of the second law is presented in the appendix.

Exercises

2.1. You want to study heating of a moving, nontoxic liquid. You mount a section
of pipe on the laboratory table, connect one end of the pipe to a cold source
of the liquid, and the other end you exhaust into a large reservoir. Around
the pipe you wrap heating wire and insulation. You can measure the power
supplied to the heater.
What is your system if you are interested in the temperature rise of the liquid?
Classify the system.

2.2. Fuel and oxidant are sprayed into a rocket combustion chamber and burn-
ing takes place. Hot gases, which may still be reacting, leave the chamber
and enter the nozzle. Assume that the combustion chamber is approximately
spherical.

(a) You are interested in the combustion process. Where will you draw your
system? Define the boundaries. Classify the system.

(b) If you are interested in the mixing process for the fuel and oxidant, where
is the system boundary? Classify the system.

2.3. You want to measure the thermal conductivity of a fluid. To do this you pro-
pose to place a platinum wire in the fluid and use the wire as a heat source. An
electrical current in the wire will produce the heat and this will be transferred
by conduction into the fluid. The wire will then itself be used as a thermometer
so that the temperature field around the wire will not be affected by the intro-
duction of a separate measuring device. In the experiment the temperature of
the wire will be measured as a function of time.
It is known that the resistance of a platinum wire varies linearly with the tem-
perature. Describe the empirical temperature scale you intend to set up for
your experiment.
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2.4. You are designing a steam power plant and have decided that it helps your
thought pattern to return to Clausius’ way of picturing heat transfer and work
done. Use arrows for heat and work. In your plant you will have a boiler
operating at a temperature of T1. You may assume that the steam coming out
of the boiler has that temperature. You have cooling coils which you can locate
either in cooling towers or in the local river. Call the low temperature of the
cooling coils T2.
A turbine does the work, which is then used to drive a generator. The best you
can hope for is an efficiency η = W/Qin = (T1 −T2)/T1.

(a) Redraw the Clausius cycle indicating clearly the location of the boiler,
cooling coils, heat engine.

(b) The temperature of the river is ∆T (degrees) lower than the cooling coils.
You want to increase efficiency. You can either raise the boiler temperature
by ∆T or opt out for the river over the towers. Which do you choose to
obtain the greatest increase in efficiency?

2.5. The ideal gas is a simple model to use in calculations. We obtained equations
for δQrev in terms of both dU and dH for the ideal gas we also will find that
the specific heats are constants. Defining γ = CP/CV, and using the equations
for dU and dH in terms of δQrev show that for the ideal gas PV γ = constant
in an adiabatic reversible (isentropic) process.

2.6. Show that the empirical ideal gas temperature Tg, which we can take to be
defined by the ideal gas equation of state obtained from a gas thermometer
(see Appendix) as P = RTg/V , is identical to the thermodynamic temperature,
which is defined in terms of the heats transferred to and from a Carnot engine
Qin/Qout = Thigh/Tlow.

2.7. Assume that the atmosphere is isothermal. If ρ is the air density the mass of
a volume dV = Adh, where A = area and dh =height, of air is dm = ρAdh.
The weight of this mass of air is supported by the difference in pressures
dP = P2 −P1 between the bottom of dV and the top (a distance dh). Find the
variation in pressure with altitude of an isothermal atmosphere if air is an ideal
gas.

2.8. A helium balloon, which is a sphere of radius r, rises in an isothermal atmo-
sphere. Assume also that the difference in pressure of the helium inside the
balloon and that of the atmosphere outside is given by PHe−Pa = α/r. This is
known as the Laplace equation for the excess pressure inside a bubble, where
the constant α is proportional to the surface tension. The temperature of the
helium will be that of the atmosphere. Assume helium is an ideal gas.
What is the relationship between the balloon radius and the height to which
the balloon rises?

2.9. A rubber bag contains m kilograms of sand at a temperature T0. The sand has
a specific heat of

CV = (αT +β ) kJkg−1,
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where α and β are constants. Assume that the rubber bag is adiabatic to a
reasonable approximation. The bag of sand is dropped from a height of hm
onto the laboratory floor, which is hard epoxy. Assume no energy in any form
is transferred to this hard floor. The bag also does not bounce.
What is the rise in temperature of the sand?

2.10. Consider a volume contained in an adiabatic boundary. The volume consists
of two separate, but identical parts with an adiabatic boundary between them.
One compartment contains nA mols of gas A at temperature TA and pressure
PA. The other contains nB mols of gas B at temperature TB > TA and pressure
PB. Let the specific heat of the gas A be (3/2)R and of the gas B be (5/2)R.
The two compartments are connected through a valve (a stopcock). You can
open the valve and the gases will flow freely between compartments. Assume
the gases to be ideal so that the molecules behave completely independently
of one another.
What is the entropy produced in the process?

2.11. Consider a gas contained in a cylinder with a movable piston. The gas is taken
sequentially through constant pressure and constant volume processes. The
gas is first in state we shall call A. By placing a particular mass on the top
of the piston the pressure is maintained at a pressure P2 while the volume is
increased from V1 → V2 to point B. Then the piston is clamped in place and
the pressure is decreased to a value of P1 to point C. The next step is like the
first in that a mass on the piston keeps the pressure constant as the volume
is decreased to V1 at point D. The final step goes back to A with the piston
clamped in place.
Plot the cycle on the (P,V )− plane.

(a) Which steps require doing work on the system? In which steps is work
done by the system? In which steps is no work done at all?

(b) Is there net work done on or by the system? What is the net work?
(c) In which processes is heat flow into the system? In which is heat flow out

of the system?
(d) What is the total change in internal energy in the cycle?
(e) Recalling Carnot’s idea that heat engines should work on a cycle, what

you have is a cycle that could be used as a heat engine. The engine may be
difficult to build in practice. But the cycle is there. Do you need additional
information to compute the efficiency of this engine?

2.12. Find the work done by an ideal gas in (a) an isothermal process and (b) an
isentropic process. Which is greater between the same initial states and the
same final volumes? Indicate this graphically by drawing both processes on a
(P,V ) plane and showing the work done in each process.

2.13. In the system shown here a n mols of a gas are contained in an adiabatic vessel.
The vessel has an internal heating coil which supplies an amount of heat, Q,
to the system. The gas temperature increases and the spring is compressed.
You make three measurements on the system: the power supplied to the coil
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P and the time taken ∆ t (i.e. you measure the total energy supplied by the
battery to the coil) and the compression, x, of the spring. Find the increase in
temperature of the gas. Assume the gas to be ideal.

2.14. Consider the isothermal heat transfer steps in a Carnot engine. The engine is
in contact with large isothermal reservoirs during these steps. The working
substance you may assume is an ideal gas.

(a) What is the change in entropy for each reservoir?
(b) what is the change in entropy for the gas during a cycle in terms of any

change in thermodynamic state variables? In terms of the heat transferred?
(c) What is the total change in entropy of the gas system and the surround-

ings?

2.15. You have a thermodynamic cycle which, when plotted in the (T,S) plane is a
rectangle. The cycle is from A (in the upper right hand corner) → B → C →
D → A.

(a) Show that the work done in this cycle is equal to the area enclosed in the
(T,S) diagram.

(b) What is the heat transferred to or from the system in each step of the cycle?
(c) What is the entropy change in the cycle?
(d) What is the efficiency of this cycle?

Do you recognize the cycle?

2.16. A nozzle converts thermal energy into kinetic energy. The combustion cham-
ber is to the left of the nozzle shown here. Designate the conditions in the
combustion chamber by subscript 1. The thermodynamic state of the gas is
known and the velocity is essentially zero. Designate the conditions of the gas
at the exit by the subscript 2. The velocity at the exit is V .
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(a) Find V in terms of the temperature difference and the mass flow rate.
(b) What has the nozzle done in energy terms.
(c) explain the concept of thrust of the rocket engine.

2.17.(a) A 100Ω resistor is immersed in an oil bath. The oil bath remains at a
constant temperature of 27◦C. A current of 100mA flows in the resistor
for 50S. Find the entropy change of the resistor and of the oil bath. At the
beginning at at the end of the experiment the temperature of the resistor is
that of the oil bath.

(b) Instead of placing the resistor in the above problem in an oil bath assume
it is thermally insulated. That is you enclose it in an adiabatic boundary.
The resistor has a mass of 5g and the material from which it is made has a
specific heat at constant pressure of 850Jkg−1 K−1. The other parameters
for the experiment are the same. What is the change in entropy of the
resistor? You may assume that the experiment is conducted under constant
pressure. Assume also that the resistor volume change is negligible during
the experiment.

2.18. The vessel shown here is insulated (adiabatic) and the two compartments are
separated by a frictionless adiabatic piston. In compartment A is a heater with
electrical connections to the outside. The total volume of the vessel is V . Ini-
tially the two compartments A and B are filled with equal amounts of the
same monatomic ideal gas at the same temperature (T0) and pressure (P0).
The heater is turned on and the piston moves to the right very slowly until the
volume of the right compartment is VB < V/2. What is the heat supplied?

2.19. A metal cylinder is divided into two compartments by a metal disk welded to
the walls. One compartment contains a gas under pressure. The other is empty.
The empty compartment is 9 tenths of the total volume. Initially the gas in the
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compartment behind the disk has temperature T1, pressure P1, and volume V1.
the disk is puncture remotely and the gas expands to fill the vessel. The final
and initial temperatures are the same (that of the room).

(a) The process is irreversible. The entropy will increase. What is the increase
in entropy?

(b) We realize that an increase in entropy means we have lost the ability to do
work. We decide to put in a movable (frictionless) piston with a rod pass-
ing through the evacuated part of the vessel to the outside where we can
use the work done. We move the piston slowly so the process is isothermal
and quasistatic. How much work can we get?

2.20. A reversible engine gains heat from a single reservoir at 400K and exchanges
heat, at two points in the cycle, to reservoirs at 300K and at 200K. During a
number of cycles the engine absorbs 1200J of heat from the reservoir at 400K
and performs 200J of thermodynamic work.

(a) find the quantities of heat exchanged with the reservoirs at 300K and at
200K and decide whether the engine absorbs or exhausts heat at each
reservoir.

(b) Find the change in entropy of each reservoir.
(c) What is the change in entropy of the engine plus surroundings?

2.21. You have two identical metal blocks at different temperatures T1 and T2 with
T1 > T2. The block mass of each block is m and the specific heat of the metal
at constant pressure is CP. You may assume that there is no change in vol-
ume of the blocks. The temperature in the laboratory is T0 = (T1 −T2)/2. The
temperatures of the two blocks may be made equal in a number of ways. You
consider three ways.

(a) Bring the blocks into contact with one another.
(b) Place the blocks in a large constant temperature oil bath (T0). The oil bath

has mass Mbath and specific heat CP,bath.
(c) Use the two blocks as reservoirs for a Carnot cycle and run the cycle until

the temperatures are the same.

What is the final temperature and the entropy produced in each method? You
should find a greater increase in entropy when the bath is used as an interme-
diary. Think about this.
How does the final temperature in (c) compare to the laboratory temperature?
Comment on this.

2.22. An experiment to measure the dependence of the internal energy of a gas
on volume was first conducted in 1807 by Joseph-Louis Gay-Lussac (1778–
1850) and later reproduced by Joule. The experimental apparatus is shown in
Fig. 2.7. A glass vessel with two parts separated by a stopcock was immersed
in a water bath. One part of the vessel contains the gas of interest and the
other is initially evacuated. In the experiment the stopcock was opened and
the gas flowed freely into the evacuated part of the vessel. A thermometer in
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the water bath measures the change in the water temperature resulting from
the free expansion of the gas.

Fig. 2.7 Gay-Lussac
apparatus

Analyze the experiment based on the first law and relate the temperature mea-
surement to (∂U/∂V )T . Do you make any assumptions about the apparatus?

2.23. In a classic experiment designed by Joule and Thomson to measure the de-
pendence of enthalpy on pressure a gas was forced through a porous plug of
cotton wool [84, 85]. The core of the experimental apparatus of Joule and
Thomson is shown in Fig. 2.8. The pipe was made of beechwood and insu-
lated. Thermometers were located on both sides of the cotton wool. Pressure
on each side of the wool plug were maintained by cylindrical reservoirs with
weighted covers [[4], p. 138]. The gas flowed very slowly through the cotton
wool plug under pressure. The gas velocities on either side of the plug could
then be neglected. The dashed line is a system boundary enclosing a constant
amount of air.
Using the first law for open systems, show that in this experiment the thermal
enthalpy is a constant.
In the experiment pressures and temperatures were measured on both sides
of the wool plug. So the experiment measured (∂T/∂P)H , which has become
known as the Joule-Thomson, or simply Joule coefficient µJ = (∂T/∂P)H .
How to extract (∂H/∂P)T from µJ is a mathematical question that will be
investigated in Chap. 3.

Fig. 2.8 The Joule-Thomson
apparatus

2.24. Throttling. Rather than the wool plug of the Joule-Thomson experiment con-
sider a pipe with a constriction, such as a partially opened valve or a long
and narrow capillary. The process is known as throttling and has industrial
applications [[89], p. 248]. Analyze flow through a throttling valve using the
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first law. Assume that the incoming fluid is moving slowly. If you neglect the
kinetic energy compared to the thermal enthalpy change, you should have the
result that throttling is an isenthalpic process.

2.25. You are impressed that the most efficient cycle must transfer heat isothermally
and that the other legs of the cycle must be isentropic. The cycle plotted on
(S,T ) coordinates is a rectangle.
You know that the isentropic assumption may be made when a fluid flows
rapidly, because then the heat transfer per mol is small. Turbines do this very
well. So you can use a turbine to obtain work isentropically. You also know
that water boils and condenses at constant temperatures if the pressures are
held constant.
In Fig. 2.9 we have plotted the idea in (S,T ) coordinates for water. The satu-
ration line and the phases of water are indicated.

Fig. 2.9 Carnot and Rankine
cycles plotted in the (S,T )
plane of water. The saturation
line is shown

The Carnot cycle is a→b→c→d. The leg b→c is the turbine, and you propose
to pump the partially condensed liquid from d→a to enter the boiler. The dif-
ficulty becomes clear after some thought. So you elect to heat the steam to a
higher temperature before entrance to the turbine and you allow the conden-
sation to run to completion. The result is the cycle a→b→e→f→c→d→g→h.
The small vertical leg g→h is the liquid pump, which is also isentropic.

(a) Explain the problems that led to super heating and full condensation.
(b) In which legs are work done and is this by or on the system?
(c) Draw the cycle on a sheet of paper and indicate heat into the cycle and

heat exhausted.
(d) What represents the work done?
(e) Where are boiling and condensation?

This cycle is actually the Rankine cycle and forms the basis of power produc-
tion.

2.26. Conduct a first law analysis of the boiler and the turbine in for the cycle in
Exercise 2.25. Use the Eq. (2.8) written for a time dependent process, i.e.

dE /dt = Q̇−Ẇs +∑
i

eidni/dt +∑
i

hidni/dt.
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Here all terms are rate terms. Q̇ and Ẇs are rate of heat transfer and rate at
which work is done. For steady state processes dE /dt = 0 because the total
energy of the system does not change in time. The terms dni/dt are mass flow
rates at the ports with flow in positive.

2.27. Consider running the cycle in Exercise 2.25 in reverse. That is we replace the
turbine with a compressor, condense the fluid at the high temperature and boil
it at the low temperature. We no longer use water for this. Describe what you
have.




